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Summary

� The tropical Andes of South America, the world’s richest biodiversity hotspot, are home to

many rapid radiations. While geological, climatic, and ecological processes collectively explain

such radiations, their relative contributions are seldom examined within a single clade.
� We explore the contribution of these factors by applying a series of diversification models

that incorporate mountain building, climate change, and trait evolution to the first dated phy-

logeny of Andean bellflowers (Campanulaceae: Lobelioideae). Our framework is novel for its

direct incorporation of geological data on Andean uplift into a macroevolutionary model.
� We show that speciation and extinction are differentially influenced by abiotic factors: spe-

ciation rates rose concurrently with Andean elevation, while extinction rates decreased during

global cooling. Pollination syndrome and fruit type, both biotic traits known to facilitate mutu-

alisms, played an additional role in driving diversification. These abiotic and biotic factors

resulted in one of the fastest radiations reported to date: the centropogonids, whose 550

species arose in the last 5 million yr.
� Our study represents a significant advance in our understanding of plant evolution in

Andean cloud forests. It further highlights the power of combining phylogenetic and Earth

science models to explore the interplay of geology, climate, and ecology in generating the

world’s biodiversity.

Introduction

Species-rich rapid radiations are a conspicuous ecological and
evolutionary phenomenon in the Tree of Life. Clades that have
undergone such diversification are often documented in insular
environments, including islands (Baldwin & Sanderson, 1998;
Givnish et al., 2009; Lapoint et al., 2014), lakes (Wagner et al.,
2012), and mountains (McGuire et al., 2007; Hoorn et al., 2013;
Hughes & Atchison, 2015; Merckx et al., 2015). Although they
represent just one-eighth of terrestrial land surface, mountains
are home to one-third of all species (Antonelli, 2015) and a large
number of species-rich radiations (Hughes & Atchison, 2015;
Schwery et al., 2015), including some of the fastest diversification
rates reported to date (Madri~n�an et al., 2013). Of particular
importance are the tropical Andes, which stretch from Venezuela
to northern Argentina along the western coast of South America.
These incredibly species-rich mountains (Barthlott et al., 2005;
Kreft & Jetz, 2007) are home to c. 15% of all flowering plant
species, half of which are endemic to the region (Myers et al.,
2000). The extent of this biodiversity is especially striking consid-
ering the recency of mountain uplift: despite debate over the pre-
cise timing and rates of uplift (Sempere et al., 2006; Ehlers &
Poulsen, 2009), an increasing body of evidence suggests that

> 60% of the current elevation of the central Andes was attained
within the last 10 million yr (Myr) (Gregory-Wodzicki, 2000;
Garzione et al., 2006, 2008, 2014). Although the onset of
Andean orogeny dates to the Paleocene and Eocene (66–
33.9Myr), including in regions as far north as the modern East-
ern Cordillera of Colombia (Parra et al., 2009), exceptionally
rapid surface uplift occurred during the late Miocene (c. 10–
6Myr) and early Pliocene (c. 4.5 Myr) (Garzione et al., 2008;
Hoorn et al., 2010; Mulch et al., 2010). Such mountain building
is thought to promote diversification in a variety of ways, includ-
ing by increasing physiographic heterogeneity, affecting local and
regional climate, facilitating the immigration of preadapted
species, and creating opportunities for extensive, parallel geo-
graphic speciation and adaptive radiation in island- and
archipelago-like venues (Hoorn et al., 2013; Givnish et al., 2014;
Mulch, 2016).

The role of the rise of the Andes in the origination of biodiver-
sity has been implicated in clades as diverse as birds (McGuire
et al., 2014), butterflies (Elias et al., 2009), and angiosperms
(Hughes & Eastwood, 2006; Madri~n�an et al., 2013). Within
angiosperms, previous work has emphasized that the timing
and geotemporal trajectories of diversification have been very
different across Andean biomes (Pennington et al., 2010). While
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high-elevation grassland clades are exceptionally young, fast, and
species-rich (e.g. Hughes & Eastwood, 2006), clades in lower-
elevation dry inter-Andean valleys are much older, slower, and
species-poor (S€arkinen et al., 2012). Despite their species rich-
ness, however, cloud forest biomes have been largely unexplored
with respect to angiosperm diversification, although data suggest
that they are intermediate in terms of age and tempo (S€arkinen
et al., 2012).

Identifying the causes of species-rich rapid radiations, such as
those that characterize Andean high-elevation grasslands and
cloud forests, is a major goal in ecology and evolutionary biology.
While rapid diversification is undoubtedly the product of both
abiotic and biotic factors acting on different spatial and temporal
scales (Antonelli & Sanmart�ın, 2011; Ezard et al., 2011; Bouch
enak-Khelladi et al., 2015), a tendency to explain a given diversity
pattern with a single process has persisted until recently. For
montane Andean radiations, this was exemplified by invoking
molecular divergence time estimates contemporaneous with the
final stages of Andean uplift, during which new habitats formed
and provided ecological opportunity for diversification (Hughes
& Eastwood, 2006; McGuire et al., 2014). However, other fac-
tors are probably at play simultaneously. For example, rapid plant
diversification in the region has also been attributed to specialized
pollination relationships with hummingbirds (Schmidt-Lebuhn
et al., 2007; Abrahamczyk et al., 2014; Givnish et al., 2014),
shifts between pollination syndromes (Kay et al., 2005), and the
acquisition of fleshy fruits in understory taxa (Smith, 2001;
Givnish, 2010). Further, these factors are not likely to be inde-
pendent of one another, e.g. mountain building affects the local
climate (Armijo et al., 2015), which, in turn, alters biotic interac-
tions (Blois et al., 2013). Not surprisingly, diversification studies
using molecular phylogenies have become more integrated in
their scope as methodology improves, and analyzing multiple fac-
tors underlying diversification patterns is becoming tractable
(Ezard et al., 2011; Wagner et al., 2012; Givnish et al., 2014;
Donoghue & Sanderson, 2015; Hughes et al., 2015).

Here, we seek to untangle the ecological and historical factors
that have contributed to the generation of Andean megadiversity,
especially in mesic mid-montane forests, using the Neotropical
bellflowers as a model system. The Neotropical bellflowers (Cam-
panulaceae: Lobelioideae) are an Andean-centered (Gentry,
1982) clade of c. 600 morphologically and ecologically diverse
species found from lowland Amazonia to high-elevation grass-
lands above 5000 m, although the vast majority of species are
found in cloud forests (Lagomarsino et al., 2014). The group was
recently resolved into three well-supported subclades: the Chilean
lobelias (Lobelia section Tupa; four species) of the temperate
southern Andes; the p�aramo and puna endemic Lysipomia (50
species); and the centropogonid clade of primarily cloud forest
endemics (Centropogon, Burmeistera, and Siphocampylus; c. 550
species) (Lagomarsino et al., 2014). Lysipomia are diminutive
herbs, while the other subclades are robust and mostly woody.
The centropogonids are particularly diverse in their growth form:
most species are vines with woody bases, but herbs, shrubs, and
trees are all represented (Fig. 1). Similar phenotypic diversity is
also apparent in two traits known to facilitate plant–animal

interactions: fruit type and floral morphology. Abiotically dis-
persed capsules characterize c. 40% of the species, while the
remaining species produce fleshy, animal-dispersed berries, which
evolved at least seven times from capsular-fruited ancestors
(Lagomarsino et al., 2014). Floral morphology is also highly vari-
able. Lysipomia produces small, white flowers indicative of inver-
tebrate pollination (Faegri & van der Pijl, 1979), while both the
Chilean lobelias and the centropogonids produce robust flowers
that are usually vertebrate-pollinated. Flowers in the centropogo-
nid clade are particularly diverse (Fig. 2) and principally adapted
to pollination by hummingbirds and nectar bats (Colwell et al.,
1974; Stein, 1992; Muchhala, 2006; Muchhala & Potts, 2007).

Owing to their broad Andean distribution and remarkable flo-
ral and fruit diversity, the Neotropical bellflowers represent a
model group to examine the interaction of abiotic and biotic fac-
tors that trigger mountain radiations. To accomplish this goal,
we develop and apply numerous statistical models to investigate
diversification dynamics in the Neotropical bellflowers. More-
over, our analyses are among the first to incorporate geological
data into a model of evolutionary diversification (also see Valente
et al., 2014 and Mulch, 2016). In this framework, we explicitly
investigate the influence of geology, climate, and ecological traits
on species diversification using the first well-sampled, time-
calibrated phylogeny of the group.

Materials and Methods

Taxon sampling and molecular dataset

One-third of Andean bellflower species were sampled, including
all four species of Lobelia section Tupa, five of the c. 40 species of
Lysipomia, and 191 species of the c. 550 species of the centro-
pogonid clade (Supporting Information Table S1). Our sampling
includes representatives from all taxonomic subdivisions of
Centropogon, Burmeistera, and Siphocampylus (Lagomarsino et al.,
2014). We assembled a concatenated molecular matrix that
includes seven plastid regions totaling 11 990 bp. Taxon sam-
pling, molecular methods for newly generated sequences, and
alignment protocols followed Lagomarsino et al. (2014). Out-
group sampling includes broad representation across
Lobelioideae. Nine representatives of Campanuloideae were used
as outgroups to root the phylogeny and provide appropriate
nodes for fossil calibration.

Phylogenetics and dating

Phylogenies were inferred using maximum likelihood (ML) and
Bayesian inference as implemented in RAxML 8.0 (Stamatakis,
2014) and BEAST 2.1.3 (Bouckaert et al., 2014). Four calibration
points were used to estimate divergence times: the fossil seed of
†Campanula paleopyramidalis as a minimum age constraint of
16Myr for the most recent common ancestor of C. pyramidalis
and C. carpatica (Cellinese et al., 2009; Crowl et al., 2014); a geo-
logical maximum age constraint of 29.8Myr, which corresponds
to the age of the Kure atoll, the oldest emerged island of the
Hawaiian Ridge (Clague, 1996), for the crown group of the
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endemic Hawaiian clade, encompassing c. 125 spp. in six genera
represented in our sampling by Brighamia, Cyanea, Clermontia
and Delissea (Antonelli, 2009); and two secondary age constraints
from Bell et al. (2010): 41–67Myr ago for crown group Cam-
panulaceae, and 28–56Myr ago for crown group Campanu-
loideae. The fossil record for Campanulaceae is very poor, and
†C. paleopyramidalis, described from Miocene deposits in the
Nowy Sacz Basin in the West Carpathians of Poland (Łancucka-
Srodoniowa, 1977), is the only fossil appropriate for calibration
of divergence time estimates in this family (Antonelli, 2009;
Cellinese et al., 2009). It is assigned as a close relative of
C. pyramidalis on the basis of their shared reticulate seed coats, a
feature uncommon in the genus (Łancucka-Srodoniowa, 1977;
Cellinese et al., 2009).

The optimal RAxML tree was dated using penalized likelihood
in treePL (Smith & O’Meara, 2012) with hard minimum and
maximum age constraints. Confidence intervals were generated
using 1000 RAxML bootstrap trees. We then simultaneously
inferred phylogenetic relationships and divergence times using
both relaxed uncorrelated lognormal and exponential clock mod-
els in BEAST. A lognormal prior (mean of 1.5 and SD of 1.0) was
assigned to the fossil calibration age of 16Myr, a uniform prior

was assigned to the geological age constraint at 29.8 Myr (maxi-
mum hard bound), and normal priors were placed on the two
secondary age constraints (mean age of 56.0Myr and SD of
8.3Myr for Campanulaceae; mean age of 43.0Myr and SD of
8.0Myr for Campanuloideae). The dated tree from treePL was
specified as the starting tree in each of eight separate BEAST runs,
which were each conducted for 10 million generations of Markov
chain Monte Carlo (MCMC). Convergence was assessed using
effective sample size (ESS) values of the runs in Tracer 1.6
(Rambaut et al., 2014), applying a cutoff value of 200. The maxi-
mum clade credibility tree, including credibility intervals (CIs)
for ages and posterior probabilities (PPs) for node support, was
then assembled using TREEANNOTATOR (Bouckaert et al., 2014).

Robustness of age estimates was assessed by removing one or a
series of calibration points. The following sets of calibration
points were used for this purpose: the Campanulaceae secondary
constraint only; the fossil and the Campanulaceae secondary age
constraint; and the fossil and both secondary age constraints.
Divergence time estimation can be sensitive to branch length
variation, which is potentially influenced by growth form (Smith
& Donoghue, 2008). As they are generally herbaceous and have
longer internal branches than their woody relatives, we suspected

(a) (b) (c) (d) (e)

(i)(h)(g)(f)

Fig. 1 Growth form diversity in Neotropical bellflowers. (a) Siphocampylus tunarensis Zahlbr., a tree c. 7–10m. (b) Centropogon congestus Gleason, a
clonal herbaceous species of wet soil, c. 1.5 m. (c) Centropogon pulcher Zahlbr., a hanging vine. (d) Burmeistera sp., a hemi-epiphytic herb. (e)
Siphocampylus tunicatus Zahlbr., a tall shrub, with individual stems c. 5 m tall, arising from a single point. (f) Lysipomia muscoides Hook f., a minute
rosette herb growing among moss in puna habitat. (g) Siphocampylus jelskii Zahlbr., a giant rosette shrub with elongated stems, each c. 1–2m tall,
apparently clonal, growing in high-altitude grasslands. (h) Siphocamplus smilax Lammers, a xerophyte with a densely woody stem (probably water-
storing) growing in sandstone. (i) Siphocampylus williamsii Rubsy, a plant producing a small number of narrow aerial stems arising from a xylopodium, or
underground tuber-like stem. Photographs by: L. Lagomarsino (b–h), D. Santamar�ıa-Aguilar (a), and A. Fuentes (i).
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Fig. 2 Diversification of Neotropical bellflowers. A time-calibrated species-level phylogeny shows the c. 5Myr age of the largely Andean centropogonid
clade (c. 550 species, node 1), whose origin is associated with a significant increase in diversification rate (yellow star) as detected by Bayesian Analysis of
Macroevolutionary Mixture (BAMM). Lysipomia (c. 50 species) and Chilean Lobelia (four species) are indicated (nodes 2 and 3, respectively).
Representative floral diversity, shown on the right, illustrates the striking phenotypic diversity in the clade (see Fig. 1 for comparable growth form diversity);
scale bars, 0.5 cm. Diversification models examining the abiotic correlates of this rapid diversification include average paleoelevation of the tropical Andes
through time (a) and global temperatures through time (c). Gray dots in (a) and (c) represent individual data points utilized to create the curves. Results
from these models show inferred speciation (blue) and extinction (red) rates through time under models depending on paleoelevation (b) and
paleotemperature (d). Additional diversification analyses using binary state-speciation and extinction (BiSSE) demonstrate the effect of two abiotic and two
biotic traits on net diversification rate: Andean occurrence (e; extra-Andean (red) vs Andean (blue)), elevation (f; low elevation, ≤ 1900m (orange) vs high
elevation, > 1900m (purple)), fruit type (g; dry capsules (light blue) vs fleshy berries (pink)), and pollinator type (h; invertebrate (yellow) vs vertebrate
(green)). Trait scorings are color-coded to the right of phylogeny. Outgroups were removed, and taxon names omitted because of space constraints.
Photographs by L. Lagomarsino. Geological timescale shown at bottom fromWalker et al. (2012).
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this may be the case for Lysipomia. We thus removed Lysipomia
species entirely, and re-estimated molecular divergence times to
determine if these differences had an impact on results. We find
no evidence that the results are affected by dating method,
calibration strategy, or branch length heterogeneity: the 95%
CIs of the re-estimated ages overlap with the 95% CIs from the
BEAST analysis that we use for diversification analyses (see also
Table S2).

Trait categorization

Species traits were newly obtained from a variety of sources,
including: online databases (GBIF, http://www.gbif.org/ and
Tropicos, http://www.tropicos.org/), herbarium specimens, taxo-
nomic literature (Wimmer, 1943, 1953), and field collections.
Morphological characters and area of occurrence were coded
from type specimens available on the JSTOR Global Plants
database (http://plants.jstor.org/) for nearly all 594 species, many
of which were not represented in our phylogenetic sampling but
were used to account for sampling biases. We scored four binary
traits related to the biology and geographic occurrence of all
Andean bellflower species for our diversification analyses: fruit
type (berry or capsule), pollinator type (vertebrate or inverte-
brate), elevation (median species occurrence ≤ 1900 m vs
> 1900 m), and presence/absence in the Andes. Pollinator type
was coded according to classical morphological definitions of pol-
lination syndromes (Faegri & van der Pijl, 1979; Muchhala,
2006). Because they are not sensitive to outliers, we used median
elevation across all specimen locality data to determine each
species value for elevation. We further used the global median of
these values across species as our cutoff for high vs low elevation
because this resulted in an equal distribution of the character
states (high vs low) across the phylogeny, which is ideal for binary
state-speciation and extinction (BiSSE) analyses (Maddison &
FitzJohn, 2015). All trait data are provided in Table S3 and in
Fig. 2 and are deposited in Dryad (doi: 10.5061/dryad.7h4j).

Diversification analyses

We applied a series of birth–death models to quantify the effects
of abiotic and biotic correlates of speciation and extinction in
Neotropical bellflowers. We assessed the robustness of our results
in a variety of ways. First, to accommodate phylogenetic and dat-
ing uncertainties (except in the case of the diversity-dependent
analyses, which are computationally intensive), we conducted our
analyses across 500 randomly sampled trees from the BEAST

posterior distribution (outgroups removed). Second, we imple-
mented a sampling fraction to account for nonsampled species
diversity. We also applied a sampling fraction, including trait
data for species not sampled in our phylogeny, to account for any
sampling bias in trait space for BiSSE analyses (Maddison et al.,
2007). Third, for each of our diversification analyses except for
those using Bayesian Analysis of Macroevolutionary Mixture
(BAMM 2.2.2, Rabosky, 2014), we selected the best-fitting
model by computing the corrected Akaike information criterion
(AICc) based on the log-likelihood and the number of free

parameters for each model. The model supported by the lowest
AICc was considered best if it was at least two ΔAIC units better
than the model with the second lowest score. We also used likeli-
hood ratio tests (significant at P < 0.05) to estimate support for
the best-fitting model when compared with rival models.

The diversification models we apply assume that extinction
rates can be estimated from molecular phylogenetic branching
patterns, as originally proposed by Nee et al. (1994). It is impor-
tant to note this is a controversial practice (Rabosky, 2010,
2015), especially without incorporating paleontological data
(Quental & Marshall, 2010). Despite this, recent studies have
suggested that unbiased estimates of extinction rates can be
obtained solely from molecular phylogenies (Morlon et al., 2011;
Beaulieu & O’Meara, 2015). In this spirit, we explore the indi-
vidual components of diversification rate in our discussion of
results, particularly with respect to paleoenvironmental change.

Time-dependent diversification

We used BAMM to estimate speciation and extinction rates
through time and to identify shifts in diversification rate. We
accounted for incomplete taxon sampling by applying clade-
specific sampling fractions in each of the three principal Andean
bellflower subclades: the Chilean lobelias (1.0), Lysipomia (0.12),
and the centropogonids (0.35). We were unable to provide finer-
scale sampling fractions within the centropogonids because of
nonmonophyly of genera and the difficulty of placing species into
their constituent clades, particularly within Siphocampylus (Lago-
marsino et al., 2014). While our taxon sampling is fairly low,
recent studies exploring the effect of incomplete taxon sampling
on the identification of rate shifts suggest that, while results may
be incomplete, they should be accurate (Spriggs et al., 2015). We
ran BAMM with four reversible jump MCMC chains, each for
five million generations. ESS values (> 200) were used to assess
convergence. The posterior distribution was used to estimate the
configuration of the diversification rate shifts, and alternative
diversification models were compared using Bayes factors. Results
were analyzed and plotted using the R package BAMMTOOLS

2.0.2 (Rabosky et al., 2014).

Paleoenvironment-dependent diversification

We quantified the effect of the past environment (i.e. climate
change and Andean surface uplift) on speciation and extinction
rates in Neotropical bellflowers via an approach that builds on
time-dependent diversification models (Nee et al., 1994; Morlon
et al., 2011). The method we utilized allows speciation and
extinction rates to correlate not only with time, but also with a
quantitative external variable that is time-dependent (see Con-
damine et al., 2013 for details). These paleoenvironment-
dependent birth–death models are implemented in the R package
RPANDA (Morlon et al., 2016). We incorporated two quantitative
external paleoenvironmental variables: the global Cenozoic deep-
sea oxygen isotope record as a proxy for global temperature
(Zachos et al., 2008), and a generalized model of the paleoeleva-
tion history of the tropical Andes. The latter was compiled from
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several references (Garzione et al., 2006, 2008, 2014; Ehlers &
Poulsen, 2009; Leier et al., 2013) and is available on the Dryad
repository (doi: 10.5061/dryad.7h4j).

The R package PSPLINE was used to interpolate a smooth line
for each environmental variable. This smooth line was sampled
during each birth–death modeling process to give the value of the
paleoenvironmental variable at each time point. Speciation and/
or extinction rates were then estimated as a function of these
values along the dated phylogenies according to the parameters
of the following models. For both temperature and Andean
elevation, we first applied two standard models, i.e. constant
speciation without extinction (Yule model) and constant-rate
birth–death, as null references for model comparison. We then
applied four models in which the paleoenvironment dependency
was exponential (Table S4): speciation rate varies with the envi-
ronmental variable and no extinction; speciation rate varies with
the environmental variable and extinction rate is constant; specia-
tion rate is constant and extinction rate varies with the environ-
mental variable; and both speciation and extinction rates vary
with the environmental variable. We repeated these models with
linear dependence on the environmental variable (Table S4).

Trait-dependent diversification

We modeled the impact of traits on the diversification of
Neotropical bellflowers by concurrently estimating their impact
on speciation, extinction, and transition rates using BiSSE (Mad-
dison et al., 2007). For each of the four traits (Andean occur-
rence, elevation, pollination syndrome, and fruit type), we
evaluated eight BiSSE diversification models of increasing com-
plexity in which speciation, extinction, and transition rates were
allowed to either vary or remain equal between traits (Table S5).
Analyses were performed using the R package DIVERSITREE 0.7-6
(FitzJohn, 2012). Once the best-fitting model was selected, CIs
for each parameter were estimated for the tree. We used an expo-
nential prior following FitzJohn (2012), and began the MCMC
with the ML estimates. We ran MCMC for 20 000 generations
and applied a burn-in of 2000 steps. We then computed the net
diversification rates for each trait. Finally, to determine if these
traits were correlated, pairwise trait comparisons were performed
across a random sampling of 500 trees from the posterior distri-
bution in both a ML and Bayesian framework in BAYESTRAITS 2.0
(Pagel & Meade, 2006). The significance of binary trait depen-
dence was assessed against a rival model where these traits evolved
independently using likelihood ratio tests (ML) and Bayes factors
of the harmonic mean of likelihood values.

Binary state-speciation and extinction models have received
recent criticism, including high type I error rates (Maddison &
FitzJohn, 2015; Rabosky & Goldberg, 2015), especially for trees
with fewer than 300 terminals and for traits present in < 10% of
taxa (Davis et al., 2013). The distribution of characters states is
also important; for example, rapid diversification rates in a region
of a phylogeny can be erroneously attributed to a particular char-
acter state when the trait is characterized by high transition rates
(Rabosky & Goldberg, 2015). However, despite these known
issues, SSE models remain a viable framework to test the effect of

particular traits on species diversification, particularly when these
caveats have been mitigated (Ng & Smith, 2014), as we have
attempted to do here. Where possible, we also compare the trait-
dependent results with the inferences made with nontrait-
dependent models (i.e. BAMM and RPANDA) to show that that
they are consistent.

Diversity-dependent diversification

We applied models that allow speciation and extinction to vary
according to the number of lineages in the phylogeny. Using the
R package DDD 2.7 (Etienne et al., 2012), we built two models:
speciation declines with diversity, assuming no extinction, and
speciation declines with diversity, allowing for extinction. The ini-
tial carrying capacity was set to the current species diversity, and
the final carrying capacity was estimated according to the model
and corresponding parameters. These models were run on the
maximum clade credibility (MCC) tree from our BEAST analysis.

Results

Molecular phylogeny and divergence time estimation

The final alignment for phylogenetic analysis comprised seven
loci (c. 12 000 bp) sequenced for 275 species (doi: 10.5061/
dryad.7h4j) (Table S1). The concatenated Bayesian phylogenetic
analysis using the best-fitting partitioning scheme yielded a highly
resolved and strongly supported tree compatible with the ML tree
and previously published results (Lagomarsino et al., 2014).
Sequence divergence, particularly in the centropogonid clade, was
low, as reflected by the shallow branching pattern toward the tips.
Despite short internal branches, indicative of a recent radiation,
the phylogeny is generally well supported: 66% of nodes are
recovered with moderate support (PP > 0.90) and 28% are well
supported (PP > 0.95). Our results support the monophyly of the
subfamilies Campanuloideae and Lobelioideae and the Neotropi-
cal bellflowers (the centropogonids, Lysipomia, and Chilean
lobelias) with maximum nodal support (PP = 1).

Results of the dating analyses are presented in Fig. 2 (see Figs
S1 and S2 for the 95% CI for each node). Similar estimates were
obtained using different dating methods and with alternative cali-
bration scenarios and settings (Table S2). This suggests that
potential biases such as long internal branch lengths, possibly
attributed to growth form variation, do not have a large effect on
our age estimates. Based on the molecular divergence time esti-
mates from BEAST (Bouckaert et al., 2014) and treePL (Smith &
O’Meara, 2012), we place the origin of the extant Neotropical
bellflowers diversity in the Miocene, c. 17.1 Myr ago (95% CI:
14.32–20.32 Myr ago). We further found that the crown groups
of their three main subclades – Chilean lobelias, Lysipomia, and
the centropogonids – originated 1.45Myr ago (95% CI: 0.42–
2.78Myr ago), 11.87Myr ago (95% CI: 9.00–15.24Myr ago),
and 5.02Myr ago (95% CI 3.95–6.13Myr ago), respectively
(Figs 2, S1). All branching events in the most species-rich clade,
the centropogonids, occur in the Plio-Pleistocene (5.3–0.01Myr
ago).
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The age inferred for Lysipomia is surprisingly old considering
that the genus is currently restricted to p�aramo and puna vege-
tations, the youngest of Andean biomes (van der Hammen &
Cleef, 1986). This older age is potentially an artifact caused by
the substantial DNA substitution rate heterogeneity observed
between Lysipomia and the rest of the phylogeny, as illustrated
in the phylogram in Fig. S3. This elevated substitution rate may
be explained by Lysipomia’s herbaceous habit or high-altitude
occurrence (Lagomarsino et al., 2014). It is likely that this sub-
stantial rate heterogeneity is not adequately accommodated by
the rate smoothing in BEAST, as documented in other groups
that exhibit between-clade rate variation (Beaulieu et al., 2015).
The age estimates for Lysipomia are thus potentially overesti-
mated as a result, which may impact diversification analyses.
However, we have shown that this rate heterogeneity does not
affect the estimated age of the other two major subclades of
Neotropical bellflowers, and as such the impact should be
minimal (Table S2).

Diversification analyses

A time-dependent diversification analysis in BAMM strongly
rejects constant diversification. Instead, it indicates that the
Neotropical bellflowers underwent a significant shift in net
diversification rate coinciding with the recent origin of the cen-
tropogonid subclade (c. 5 Myr ago), which includes 550 of the
600 species (Figs 2, S4). This analysis further provides evidence
for a 3.7-fold increase in diversification rate (1.83 vs 0.5
events Myr–1 per lineage); net diversification rate is similarly
high using an alternative metric (Magall�on & Sanderson, 2001)
(0.82–1.15 events Myr–1 per lineage under high (e = 0.90) and
low (e = 0) extinction fractions, respectively). As illustrated in
Fig. S4(b), the diversification rate for the centropogonid clade is
much higher than its background rate.

We then adapted a recently developed paleoenvironment-
dependent diversification model that explicitly accommodates
the effect of changing environment through time (Condamine
et al., 2013) to examine the effect of Andean paleoelevation
(Fig. 2a) and past temperature on diversification rate (Fig. 2d).
This novel integration of Andean geological data into an anal-
ysis of evolutionary diversification reveals that speciation rates
in the Neotropical bellflowers are positively correlated with
the elevation history of the Andes, while extinction rates
appear to be unlinked to mountain uplift (Fig. 2b; Table S4).
Here, we reconstruct a continuous increase in speciation rate
beginning at c. 12Myr ago (mid-Miocene) and peaking at c.
5 Myr ago (early Pliocene), consistent with our result from
BAMM. This coincides with the attainment of maximum
paleoelevation of the Andes (> 4000 m), at which point we
infer an unprecedented ~15 speciation events Myr–1 per lin-
eage for Neotropical bellflowers. Because of the magnitude of
this result, we ran additional analyses implementing a trait-
dependent diversification model using BiSSE (Maddison et al.,
2007). We investigated two traits that serve as a proxy for the
effect of Andean orogeny on diversification in this framework:
Andean presence (Andean vs extra-Andean) and elevational

distribution (high elevation (> 1900 m) vs low elevation
(≤ 1900 m)). The best-fitting model for these BiSSE analyses
inferred significantly higher speciation rates for Andean species
and for species occurring at high elevation (Figs 2e,f, S5;
Table S5), respectively. The similar results of these BiSSE
analyses are potentially due to the correlated nature of eleva-
tional distribution and Andean occurrence that we identified
in BAYESTRAITS (Pagel & Meade, 2006) (Table S6); this corre-
lation is not surprising given that the Andes represent the
majority of the topographic relief across the Neotropical
bellflowers’ range. Together, these results are consistent with
an integral role of Andean surface uplift as a trigger of rapid
diversification for Neotropical bellflowers.

Using the same paleoenvironmental birth–death model, but
instead incorporating relative global temperature proxies that
span the last c. 20 Myr of the Cenozoic (Zachos et al., 2008),
we demonstrate a significant correlation between climate change
and Andean bellflower diversification (Fig. 2d). In contrast to
Andean orogeny, which influenced primarily speciation, the
best-fitting paleoclimatic model suggests that climate change had
a significant impact only on extinction. Beginning c. 15Myr ago
(mid-Miocene), extinction rates decreased dramatically towards
the present as a function of global temperature (Fig. 2d;
Table S4).

Additional BiSSE analyses demonstrate that various clade-
specific biotic traits influence diversification rates in Neotro-
pical bellflowers. BAYESTRAITS analyses showed uncorrelated
evolution of these traits with respect to one another, and with
both the abiotic factors discussed earlier (Table S6). The best
models, as supported by both AICc and likelihood ratio tests
(Table S5), infer higher net diversification rates in lineages with
two character states: fleshy fruits (vs dry fruits; Figs 2g, S5),
and vertebrate pollination syndromes (vs invertebrate pollina-
tion syndromes; Figs 2h, S5). These traits acted differently on
the two components of diversification: fleshy fruits confer lower
extinction rates than capsules, while species pollinated by verte-
brates have higher speciation rates than invertebrate-pollinated
species.

Finally, a diversity-dependent analysis inferred that the
Neotropical bellflowers have not reached diversity equilibrium:
the estimated carrying capacity (i.e. number of species potentially
sustained in the clade) far exceeds the current extant diversity of
the clade (Table S7).

Discussion

The Andes are famous for their high species richness (Myers
et al., 2000) and the rapid diversification rates that characterize
many of their emblematic clades (Hughes & Eastwood, 2006;
Madri~n�an et al., 2013; Givnish et al., 2014). Although numer-
ous studies have documented this pattern, there have been few
attempts to ascertain the processes that underlie this megadi-
versity, especially in the cloud forests where Neotropical
bellflower diversity is concentrated. Our study tackles this issue
with an interdisciplinary approach that paves the way for
future inquiry.
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The impact of Andean orogeny and climate change on
species diversification

Within the morphologically and ecologically diverse Neotropical
bellflower clade, a shift to increased diversification rates on the
branch subtending the centropogonid subclade resulted in a cloud
forest-centered radiation with c. 550 extant species. The diversifi-
cation rate for the centropogonids, estimated to be between 0.65
and 1.42 events Myr–1 per lineage, makes them one of fastest
species radiations reported to date (Table 1), with average overall
rates of speciation exceeding iconic groups ranging from Espeletia
(Madri~n�an et al., 2013) and hummingbirds (McGuire et al.,
2014) in the Andes to the silverswords (Baldwin & Sanderson,
1998) and Drosophilidae of Hawaii (Lapoint et al., 2014).

In addition, our analyses provide key insights into the abiotic
and biotic drivers of rapid diversification in the Andes. Using
diversification models that incorporate geological data, we
demonstrate that mountain building is correlated with increased
diversification rates. Specifically, we demonstrate that the final
stages of Andean uplift are strongly associated with the origin
and rise of prolific speciation rates in the Neotropical bellflowers
(Fig. 2b; Table S4). These rates peaked at a remarkable c. 15
events Myr–1 per lineage, concurrent with the attainment of the
maximum past elevations of the Andes. Although not sustained,
this diversification rate exceeds the highest reported in plants,
including in the Mediterranean carnations (2.2–7.6 events Myr–1

per lineage, Valente et al., 2010) and Andean lupines (2.49–5.21
events Myr–1 per lineage, Hughes & Eastwood, 2006; Drum-
mond et al., 2012). These results are corroborated by the shift to
faster speciation rates that was detected by BAMM along the
branch that subtends the centropogonid clade, during the period
of final Andean uplift. Furthermore, BiSSE analyses bolster our
findings that the Andes in general are a major driver of species
diversification in this clade: Andean taxa have significantly higher
net diversification rates than extra-Andean taxa (Figs 2e, S5;
Table S5). Moreover, species diversification is faster at higher ele-
vations (> 1900 m) (Figs 2f, S5: Table S5). The likely driver of
this impressive diversification was not paleoelevation per se (as
would be expected under a predominantly vicariant model of
speciation), but rather ecological opportunity triggered by the
availability of wet montane forests. These habitats emerged and
greatly expanded across the eastern flanks of the Amazon in the
late Miocene and early Pliocene during periods of active moun-
tain building (van der Hammen & Cleef, 1986).

We further present evidence that past climate change has inde-
pendently influenced diversification rates in the Neotropical
bellflowers. Our paleotemperature-dependency analysis shows
that, while speciation rates remained high but constant, extinc-
tion rates are positively correlated with past temperature. Conse-
quently, inferred extinction rates were lowest during the coolest
past intervals, and have generally been declining since the origin
of the clade, a result that is particularly striking in today’s world
of anthropogenic warming. Although our proxy of climate
change is global, it is almost certain that cooling since the mid-
Miocene has affected the Andes, especially at mid-to-high eleva-
tions, where Neotropical bellflowers are most diverse. We

hypothesize that Neotropical bellflowers evolved their tolerance
to cool habitats in southern, perhaps temperate, regions of South
America, similar to where Chilean lobelias now occur, before
major tropical Andean surface uplift. This climatic preadaptation
may explain their northward expansion and decreased extinction
rates as this clade exploited cooler niches associated with the ris-
ing Andes. These results significantly improve our understanding
of the abiotic determinants that have triggered Andean diversifi-
cation, and collectively indicate that mountain building and cli-
mate are key contributors to increases in diversification rate in
Neotropical bellflowers, although they have acted on different
components of net diversification.

Biotic traits that facilitate mutualisms are associated with
elevated rates of net diversification

In addition to orogeny and climate change, our trait-dependent
analyses point to a role of species ecology in influencing species
diversification in Neotropical bellflowers (Table S5). Specifically,
we identify that mutualistic interactions with seed dispersers and
pollinators promote diversification. Here, we demonstrate that
bird-dispersed berries and vertebrate-pollinated flowers are associ-
ated with significantly higher rates of diversification than their
counterparts (Figs 2g,h, S4; Table S5). Species with berries have a
net diversification rate that is c. 3.5 times higher than capsular
species, whose seeds are abiotically dispersed (Figs 2g, S4). As in
other groups, fleshy fruits in Neotropical bellflowers are generally
associated with densely forested understory habitats where abiotic
dispersal is not as effective as in open habitats, where capsular taxa
dominate (Lagomarsino et al., 2014). Owing to the limited move-
ment of understory birds, dispersal of fleshy fruits in these habi-
tats is typically across very short distances (Theim et al., 2014).
When coupled with rare long-distance dispersal events, these
short dispersal distances can lead to rampant allopatric speciation
(Givnish et al., 2005, 2009; Givnish, 2010). Further, the repeated
evolution of berries in the centropogonid clade may be indicative
of multiple parallel radiations across the Andes, each with rapid
speciation rates, consistent with a model of cordilleran diversifica-
tion, as recently proposed in bromeliads (Givnish et al., 2014).

Pollination by vertebrates appears to have played an even big-
ger role in species diversification than seed dispersal. Here, we see
an approximately sixfold increase in diversification rate relative to
invertebrate pollination (Figs 2h, S5; Table S5). Vertebrate polli-
nators, namely hummingbirds and bats, are hypothesized to be
more effective pollinators than invertebrates, in part because they
carry higher pollen loads over longer distances (Fleming et al.,
2009). The increased speciation rates among vertebrate-
pollinated taxa (Table S5; Fig. S5) are a likely result of floral iso-
lation, which allows prezygotic reproductive isolation to be
achieved via an interplay of floral morphology and pollinator
behavior (Fulton & Hodges, 1999; Muchhala, 2003; Schiestl &
Schl€uter, 2009). Supporting this, many Andean bellflower species
have sympatric distributions that appear to have been facilitated
by either shifts between different classes of vertebrate pollinators
(Muchhala, 2006) or character partitioning of floral traits in
species that share pollinators (Muchhala & Potts, 2007).
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Our analyses of biotic traits indicate that ecological factors,
particularly mutualisms with other species, constitute additional
triggers of rapid diversification rates in Neotropical bellflowers,
as has been demonstrated in extra-Andean plant groups (Weber
& Agrawal, 2014). This effect of species ecology is especially pro-
nounced within the centropogonids, in which more than half of
the species are vertebrate-pollinated and/or produce berries, and
in which diversification rates are particularly elevated (Fig. S4).
Our results further demonstrate that diversity-dependent pro-
cesses did not govern diversification, suggesting that the clade is
in its early phases of diversification and is not presently bounded
by ecological limits.

A synergy of abiotic and biotic factors drives diversification
in Andean cloud forests

Although the interplay between abiotic and biotic drivers has
long been recognized as fundamental for regulating diversity,
progress toward understanding their interaction has been slow.
Our study is among the first to explore this interaction in a
clade distributed predominantly in Andean cloud forests. Using
the Neotropical bellflowers as a model system, we first provide
important evidence that the age and tempo of diversification of
cloud forest clades are intermediate between those in the older
inter-Andean valleys and more recent high-elevation grasslands
(Pennington et al., 2010; S€arkinen et al., 2012). We then
demonstrate that Andean surface uplift and climate are both
significantly correlated with the rapid radiation of Neotropical
bellflowers. In the context of Andean biodiversity, dramatic
geological and environmental transformations, often resulting
in habitat barriers and steep environmental gradients (e.g. high
ridges and low valleys), characterized the matrix in which plant
lineages and their mutualists diversified. Our results indicate
that key differences in biotic traits, including fruit type and
pollination syndrome, confer enhanced diversification capacity
among closely related species co-occurring in this rapidly
changing environment. We hypothesize that preadaptation to
cooler climates as the tropical Andes rose allowed this clade to
achieve its broad Andean distribution, centered in wet, mid-
elevation cloud forests. This, in turn, precipitated mutualistic
interactions with groups showing similarly high Andean diver-
sity (e.g. hummingbirds), further enhancing diversification.
Within the context of fruit type, limited dispersibility coupled
with rare long-distance dispersal events in berry-producing lin-
eages resulted in increased diversification rates, probably via
allopatric speciation, as shown in the closely related Hawaiian
lobeliads (Givnish et al., 2009). At the same time, an associa-
tion with vertebrate pollinators resulted in increased rates of
speciation via floral isolation. As also demonstrated in bromeli-
ads (Givnish et al., 2014), the repeated evolution of fruit types
and pollination syndromes in the complex landscape of the
Andes led to multiple parallel radiations in Neotropical
bellflowers, which together resulted in a very large, very fast
radiation: the centropogonid clade. We argue that while the
Andes, and the habitats and habitat heterogeneity created by
their orogeny, acted as a montane species pump across many

clades, it is an additive interaction of ecological and environ-
mental factors underlies this region’s megadiversity.

More generally, rapid plant diversification in the world’s mon-
tane regions is frequently a product of island-like ecological
opportunity following mountain uplift, further stimulated by
evolutionary innovation (Hughes & Eastwood, 2006; Hughes &
Atchison, 2015). Our analyses demonstrate that this model
applies to Neotropical bellflowers, and is likely relevant to other
Andean cloud forest clades. However, why are the Andes more
diverse than other montane systems? It is likely that the recency
of Andean mountain building partially explains this phe-
nomenon: many clades may still be in the early phases of explo-
sive radiation and thus are not yet greatly impacted by extinction.
In addition, the Andes are characterized by deeply dissected
topography, including some of the steepest environmental gradi-
ents known (Hughes & Atchison, 2015). These characteristics,
which almost certainly enhance the island-like nature of this sys-
tem and further intensify ecological opportunity, are shared with
the Hengduan Mountains (Favre et al., 2014), another of the
world’s biodiversity hotspots (Myers et al., 2000; Kreft & Jetz,
2007). We are likely to gain insight into why the Andes are so
diverse by comparing their clades’ diversification histories with
those in other species-rich montane regions. Our framework,
including the integration of climatic, paleoaltimetry, and trait
data, can be used towards this end.
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