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Abstract

Background: Gut microbiome dysbiosis has been demonstrated in subjects with newly diagnosed and chronic
inflammatory bowel disease (IBD). In this study we sought to explore longitudinal changes in dysbiosis and
ascertain associations between dysbiosis and markers of disease activity and treatment outcome.

Methods: We performed a prospective cohort study of 19 treatment-naïve pediatric IBD subjects and 10 healthy
controls, measuring fecal calprotectin and assessing the gut microbiome via repeated stool samples. Associations
between clinical characteristics and the microbiome were tested using generalized estimating equations. Random
forest classification was used to predict ultimate treatment response (presence of mucosal healing at follow-up
colonoscopy) or non-response using patients’ pretreatment samples.

Results: Patients with Crohn’s disease had increased markers of inflammation and dysbiosis compared to controls.
Patients with ulcerative colitis had even higher inflammation and dysbiosis compared to those with Crohn’s disease.
For all cases, the gut microbial dysbiosis index associated significantly with clinical and biological measures of
disease severity, but did not associate with treatment response. We found differences in specific gut microbiome
genera between cases/controls and responders/non-responders including Akkermansia, Coprococcus, Fusobacterium,
Veillonella, Faecalibacterium, and Adlercreutzia. Using pretreatment microbiome data in a weighted random forest
classifier, we were able to obtain 76.5 % accuracy for prediction of responder status.

Conclusions: Patient dysbiosis improved over time but persisted even among those who responded to treatment
and achieved mucosal healing. Although dysbiosis index was not significantly different between responders and
non-responders, we found specific genus-level differences. We found that pretreatment microbiome signatures are
a promising avenue for prediction of remission and response to treatment.
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Background
Inflammatory bowel disease (IBD), including Crohn’s dis-
ease (CD) and ulcerative colitis (UC), is characterized by
chronic remitting and relapsing inflammation of the gastro-
intestinal tract. Persistent inflammation and continuing in-
sult lead to fibrosis, scarring, and the need for multiple
surgeries. The pathogenesis of IBD is complex and poorly
understood. A disturbance of intestinal mucosal homeo-
stasis, influenced by genetic factors, the intestinal micro-
biome, the immune system, and environmental exposures,
is believed to underlie IBD [1, 2]. While 200 distinct gen-
etic loci have been associated with IBD in a recent report
[3], many of these genes point to pathways involving
bacterial recognition or host response to microbial in-
fections, both clearly influenced by the environment.
Although the prevalence of adult-onset IBD has plateaued
in the Westernized world, recent population-based studies
on IBD from Canada [4], the USA [5], and Europe [6]
suggest a rapid increase in pediatric-onset IBD, particu-
larly in children younger than 10 years. Genetic causes are
unlikely to account for these epidemiological findings.
The risk of IBD among first-generation immigrants to the
Western world from south Asia and Africa as well as the
prevalence of IBD in native Asia or Africa are exceedingly
low, yet second-generation immigrants have a greatly
increased risk similar to that in the location to which they
immigrated [7]. This emerging global rise of pediatric IBD
incidence has fueled a quest to identify early life exposures
including potential microbiome alterations due to lifestyle
and diet that could explain the increasing risk for IBD
among children [8, 9].
Several studies have described characteristic patterns

within the gut microbiome of patients with IBD [10–13].
In general, shifts in bacterial taxa and decreased commu-
nity diversity have been found in treatment-naïve CD [14]
and in IBD in general [15–17], with the extent of dysbiosis
associated with severity of inflammation [18]; however, it
is not clear whether these changes are a cause or conse-
quence of IBD [2]. In one recent study involving a large
number of subjects, the microbiome of treatment-naïve
pediatric CD patients had a distinct signature compared
to non-IBD subjects, as measured by both fecal and intes-
tinal mucosa bacterial ecosystems [19]. However, this
study used primarily mucosal biopsies and was limited to
a single time point—it did not capture the dynamics of
the gut microbiome over time. One recent study showed
that dysbiosis results from independent effects of inflam-
mation, diet, and antibiotics after selected subjects with
pediatric Crohn’s disease were treated with enteral nutri-
tion and some conventional medications [18]. Although
this study measured the bacterial community before and
after intervention, the study only provided data for an 8-
week study period and only 4 samples per patient. Long-
term data are still lacking regarding dysbiosis subjects

who undergo standard-of-care treatment in clinical
practice. Once IBD is diagnosed, patients undergo a
series of treatments to induce clinical remission, in
which mucosal healing is promoted by controlling
mucosal inflammation. Some patients respond clinically
to treatment with normalization of symptoms and evi-
dence of mucosal healing seen in repeat colonoscopies
(“responders” or “remitters”); other patients continue to
have persistent inflammation or a remitting-relapsing dis-
ease course with a variable degree of mucosal inflamma-
tion (“non-responders” or “non-remitters”). It is critically
important to study the intestinal microbiome over the
course of treatment to identify whether there are micro-
bial signatures that distinguish these different outcomes.
This can be achieved with longitudinal microbiome ana-
lysis, starting at diagnosis and following up throughout
treatment in parallel with clinical characterization. We
hypothesize that distinct signatures of microbiota can be
found and applied in clinical practice to assess ongoing
inflammation and predict response to treatment. An
important study by Kolho et al. examined the treatment
responses using fecal calprotectin in patients with median
disease duration of 3.5 years after diagnosis [20]. Although
our study was similar, our study design differed from that
of Kolho et al. in that we used mucosal healing in addition
to fecal calprotectin as a measure of mucosal inflamma-
tion and used sequencing rather than phylogenetic micro-
arrays to classify species levels.
Here we report the results of a longitudinal investiga-

tion of 19 children diagnosed with IBD, of whom 15 had
a final diagnosis of CD and 4 had a final diagnosis of
UC. All 19 subjects were recruited from a single center,
were treatment-naïve at the time of enrollment, were
treated with current standards of practice guidelines,
and were followed clinically for a median of 8 months.
Treatment regimens were not protocolized, but treatment
was escalated to maximal medical therapy or surgical
resection was recommended if, upon clinical evaluation,
the subject was categorized as a non-responder to previ-
ous treatment. We also recruited and followed 10 un-
affected controls for comparison: 6 family members and 4
unrelated controls. We measured fecal calprotectin in all
samples as an objective measure of inflammation as well
as the subjective clinical disease activity indices (Pediatric
Crohn’s Disease Activity Index [PCDAI] or Pediatric
Ulcerative Colitis Activity Index [PUCAI]). The strength
of our study lies in the dense longitudinal data collection
(217 total visits—a median of 8 time points for both cases
and controls), thorough clinical characterization of our
patients at each visit, measurement of clinical disease
activity indices, and simultaneous use of fecal calprotectin
as an objective measure of mucosal inflammation. We
comprehensively analyzed inflammation, diversity, and
dysbiosis by standard methods including the previously

Shaw et al. Genome Medicine  (2016) 8:75 Page 2 of 13



described dysbiosis index, explored gut microbiome differ-
ences at the genus level among cases and controls and
treatment responders and non-responders, and finally
assessed the ability of pretreatment samples to predict
treatment response.

Methods
Study population
Potential participants were identified from Children’s
Healthcare of Atlanta inpatient wards and outpatient
pediatric IBD clinics based on clinical suspicion of IBD
based on symptoms or lab work. Criteria to participate
in the study included CD or UC diagnosis confirmed by
colonoscopy and/or magnetic resonance enterography,
willingness to participate, and ability to maintain close
follow-up. Patients and families gave informed consent
and assent to participate in the study. Exclusion criteria
included prior diagnosis of IBD, prior therapy with immu-
nomodulators or biologics, or history of non-compliance
with clinical appointments.
A total of 19 pediatric IBD cases (≤17 years old, 15 with

CD and 4 with UC) were enrolled in this longitudinal
prospective study between June 2013 and January 2014.
Participants were followed at regular intervals beginning
at the time of enrollment until the termination of the
study in August 2014. All patients were phenotyped at the
time of enrollment according to the Paris Classification
[21]. Demographic and phenotypic characteristics were
collected via patient interview and chart review at the time
of sample delivery, and an abbreviated PCDAI [22–24] or
PUCAI was obtained at all clinical visits [25]. Medical
treatment was not affected by joining this study. Patients
started to receive treatment between their first and second
clinical visits. Patients were treated with aggressive mono-
therapy of either immunomodulators or biologics with
mucosal reassessment via colonoscopy approximately one
year after diagnosis. Based on the presence or absence of
mucosal healing, we dichotomized patients as responders
(n = 6) or non-responders (n = 13), respectively, inde-
pendent of any knowledge about microbiome compos-
ition. Since subjects received multiple treatments, we
did not categorize based on the particular treatment
exposures. Patients receiving surgery were classified as
non-responders, and only presurgery time points were
used in analyses. Family members of patients were
recruited as related controls (n = 6), and unrelated
controls ≤17 years old with no IBD diagnosis were also
recruited (n = 4). Once enrolled, participants were followed
no more frequently then weekly.

Specimen collection and processing
Fecal samples were obtained at regular intervals begin-
ning at the time of diagnosis and throughout the study
(Fig. 1). Each fecal sample was collected and placed into

two separate Para-Pak Vials: one with 100 % ethanol and
one without ethanol. The specimen with ethanol was
submitted to the study coordinator at room temperature
for processing within 24 hours of collection. The speci-
men was spun down, the ethanol discarded, and the
remaining stool was either stored at –20 °C until ready
for aliquoting or immediately aliquoted to be stored
at –80 °C for fecal microbiome analysis. The specimen
without ethanol was stored at –20 °C until it was
aliquoted and stored at –80 °C for fecal calprotectin
analysis. Fecal calprotectin was measured by Eagle Biosci-
ences Calprotectin Enzyme-Linked Immunosorbent Assay
(ELISA) kits according to the manufacturer’s guidelines.

Bioinformatic processing
In collaboration with the Broad’s Molecular Biology R&D
(MBRD) lab, we sequenced the V4 region of the bacterial
16S rRNA gene using the Illumina MiSeq platform
according to the manufacturer’s specifications. Reads were
demultiplexed into fastq files for each sample using
sequence barcodes. Forward and reverse reads were joined
with PANDAseq [26]. After samples with fewer than 3000
reads were excluded, there was a median of 66,000 reads
per sample used in the study. The joined sequence files
were formatted using a Python script to add QIIME
headers with the respective sample ID to each sequence
before concatenating into one file for input into QIIME
1.8.0 [27]. Operational taxonomic units (OTUs) were
picked using the QIIME pick_closed_reference_otus.py
script with a threshold of 97 % identity to the Greengenes
v13_8 database. A median of 91 % of reads per sample
were classified successfully with this closed-reference OTU
approach. The Shannon alpha diversity was calculated on
the unfiltered biom table using the alpha_diversity.py
script, and weighted UniFrac distances were calculated
with the beta_diversity.py script. The microbial dysbiosis
index (initially described by Gevers et al. [19]) was
calculated in R for each sample. The microbial dysbiosis
index is defined as the log10 of the total abundance in
organisms increased in CD divided by the total abun-
dance of organisms decreased in CD. The increased-
in-CD taxa comprise Enterobacteriaceae, Pasteurellaceae,
Fusobacteriaceae, Neisseriaceae,Veillonellaceae, and Gemel-
laceae. Decreased-in-CD taxa are Bacteroidales, Clostri-
diales (excluding Veillonellaceae), Erysipelotrichaceae, and
Bifidobacteriaceae [19].
To test the robustness of our findings from these

Shannon diversity and dysbiosis calculations, we repeated
association tests between cases and controls using our
data (1) with a de novo OTU clustering approach and (2)
by rarefying to an even sequencing depth. Our de novo
analysis was performed the same as our original closed-
reference analysis with the exception that chimeras were
first removed from each sample using USEARCH v6.1
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[28], then OTUs were picked using the pick_de_novo_o-
tus.py script. Taxonomic classification was performed
using the same Greengenes database. The same median
percentage of sequences was ultimately successfully classi-
fied (91 %) using this de novo approach.
We randomly rarefied each sample in our original

closed-OTU biom table to 3155 sequences, the lowest
sequencing depth observed in our samples, using the
rrarefy function in the R package vegan [29]. We then
measured the Shannon diversity using vegan’s diversity
function and calculated the dysbiosis index using the
same R code described previously. We repeated this
10,000 times and took the median of the results from
these rarefactions for each sample; we then repeated
our regression analyses using these values. For a
complete summary of reads/sample, QC information,
and calculated values, see Additional file 1.
Overall there were 7628 OTUs in our samples. For

our genus-by-genus and random forest analyses we
collapsed data to the genus level (combining OTUs
belonging to the same genus) and converted counts to
frequencies using the summarize_taxa.py QIIME script.
There were 397 genus-level taxa in our 158 microbiome

samples. To test for significance, we required a genus to
be present at greater than 0.15 % abundance in at least
one sample, leaving 134 genera.

Statistical analysis
We performed all data analyses in R. To account for the
correlations within individuals over time, we performed lin-
ear regressions in a generalized estimating equation (GEE)
framework [30] using the R package geepack [31]. We as-
sumed an independent correlation structure and used the
robust (sandwich) estimator for standard error. Subject ob-
servations were additionally inversely weighted by the total
number of observations for that individual to ensure that
results were not driven by individuals who were observed
more frequently [32]. Wald tests were used to assess the
significance of coefficients in our GEE. To compare marker
levels between groups, we modeled markers (calprotectin,
dysbiosis, diversity) as a function of disease status (case
versus control or UC versus CD). To assess differences
between groups at baseline (all clinical outcomes as well as
genus-by-genus analysis), or to measure changes over time,
we considered models with time since study enrollment.
When comparing change over time between CD, UC, and

Fig. 1 Log10(calprotectin + 1) values for all study subjects used in analysis. Larger circle size reflects higher measured calprotectin. Time points
where calprotectin was <100 μg/g are shown in blue; time points where calprotectin was >100 μg/g are shown in red. CD Crohn’s disease, UC
ulcerative colitis, R responder to treatment, NR non-responder to treatment, F, familial control, U unrelated control. (See also Table 1 and Add-
itional file 2: Table S1.)
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controls, time by diagnosis interactions were also consid-
ered. We used the same models without time to assess
average differences between groups over the course of
disease. For associations between pairs of markers (e.g., cal-
protectin and dysbiosis) throughout the course of our
study, we modeled one marker (calprotectin) as a function
of the other marker (dysbiosis).

Predictive modeling
We used the R package randomForest [33] and genus
frequency data from each subject’s first pretreatment
fecal sample (available for 5 responders and 12 non-
responders) to train a random forest with 25,001 trees to
predict response or non-response. Trees were grown to
the maximum size possible; by default, 12 genera (the
square root of the number of input genera) were consid-
ered as candidates at each split, and splitter importance
was calculated as mean decrease in the Gini impurity,
described in the randomForest documentation [33]. Be-
cause of the small sample size, we did not differentiate
between UC and CD patients for this analysis. To assess
if this was reasonable, we calculated the proportion of
the variance in weighted UniFrac distances between pa-
tients’ pretreatment samples explained by response/non-
response status and IBD subtype using permutational
ANOVA (PERMANOVA) as implemented in the adonis
function in the R package vegan [29]. To account for un-
equal sample sizes of responders and non-responders in
our random forest, we used weights equal to the inverse
of the sample size of each class; the cost of misclassifying
responders therefore equaled the cost of misclassifying
non-responders. We also performed the analysis with equal
class sizes (5 each of responders and non-responders) to
ensure that our results were not the result of the class im-
balance of our cohort. The receiver operating characteristic
(ROC) curves and the area under the ROC curves (AUC)
were generated using the ROCR package in R [34]. The
significance of prediction accuracy and AUC was assessed
by permuting the response/non-response status 10,000
times.

Results
Extensive characterization of gut inflammation and
microbiome in a longitudinal cohort of children with IBD
Twenty-nine individuals were included in the longitudinal
analysis, representing four groups: patients with CD (n =
15), patients with UC (n = 4), unaffected controls with a
first-degree genetic relationship to an affected individual
(family members, n = 6), and unaffected controls with no
genetic relationship to any affected individual included in
this study (unrelated, n = 4). Table 1 shows a summary
of clinical characteristics and total number of visits
used in the analyses for all study participants. A more
detailed summary of number of microbiome measures,

calprotectin values, and PCDAI time points by case/
control group is provided in Additional file 2: Table S1.
Figure 1 shows a comprehensive visualization of calpro-
tectin measures for all patient and control time points
used in all analyses. GEE comparison of familial and
unrelated controls showed no significant differences at
baseline and no differences in average fecal calprotectin
or alpha diversity between the two groups. However, on
average unrelated controls had a higher dysbiosis index
than related controls (Additional file 2: Table S2). These
groups were pooled into one group of controls for all sub-
sequent analyses, so our results were not inflated by the
lower dysbiosis index apparent in related controls.

Subjects with IBD have increased markers of
inflammation and dysbiosis compared to controls
We first tested general differences in inflammation, micro-
biome diversity, and microbial dysbiosis between IBD cases
and controls using our weighted GEE approach to properly
control for correlations within individuals. The significance
of these coefficients was assessed via Wald tests. Additional
file 2: Table S3 summarizes beta and p value information
for comparisons of baseline values (including time since
first sample as a covariate) and overall averages. Figure 2
shows calprotectin, alpha diversity, and dysbiosis for all
time points for controls, CD patients, and UC patients
(Additional file 2: Figure S1 shows all time points summa-
rized in box-and-whisker plots; Additional file 2: Figure S2
shows controls, responders, and non-responders over time
with a different color for each individual).
For controls, baseline calprotectin was 42 ± 99 μg/g.

Patients with CD had fecal calprotectin values 313 μg/g

Table 1 A summary of relevant characteristics for study
participants

Cases

Diagnosis Crohn's disease 15 (78.9 %) Count (%)

Ulcerative colitis 4 (21.1 %)

Treatment
outcome

Response/mucosal healing 6 (31.6 %)

Non-response without
surgery

8 (42.1 %)

Non-response with surgery 5 (26.3 %)

Time points Microbiome 6 (1–12) Median
(range)

Calprotectin 6 (1–12)

PCDAI 7 (3–13)

Controls

Relatedness Familial 6 (60 %) Count (%)

Unrelated 4 (40 %)

Time points Microbiome 5 (1-8) Median
(range)

Calprotectin 6.5 (1–9)

PCDAI NA
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higher at baseline than controls (p = 0.0002), and patients
with UC had values 1330 μg/g higher than controls (p =
4E-11; Additional file 2: Table S3 summarizes all CD/UC/
control comparisons). Over the entire course of our study
the average difference in fecal calprotectin for CD and UC
patients compared to controls was 181 μg/g (p = 0.00002)
and 1100 μg/g (p = 4E-10), respectively. As seen in previ-
ous studies, patients with IBD had overall lower alpha di-
versity as measured by the Shannon index. The Shannon
index at baseline for controls was 6.02 ± 0.58. Patients
with CD had Shannon index values 0.94 lower at baseline

(p = 0.00001) and 0.72 lower on average (p = 0.007) rela-
tive to controls. Patients with UC had Shannon values
1.31 lower at baseline (p = 8E-05) and 0.98 lower on aver-
age (p = 0.002).
Our sample of patients with IBD also had significantly

higher scores on the dysbiosis index than controls. At
baseline, the mean control dysbiosis index was –1.85 ±
0.55. Baseline dysbiosis was 0.86 point higher for CD pa-
tients (p = 6E-8) and 1.75 points higher for those with
UC (p = 4E-15). Dysbiosis scores were on average 0.67
point higher in CD (p = 3E-07) and 1.38 points higher in
UC (p = 3E-10).
Our microbiome findings of decreased Shannon diversity

and increased dysbiosis did not change when we calculated
these values after de novo OTU picking or after taking the
median of 10,000 rarefactions to the lowest sequencing
depth seen in our closed biom table (see Additional file 3
for a comparison of these approaches to results of our ori-
ginal closed-reference OTU approach).
Patients with UC had significantly higher calprotec-

tin and dysbiosis indices than those with CD (Fig. 2,
Additional file 2: Table S4). UC patients also had fecal
calprotectin levels 829 μg/g higher at baseline (p = 2E-05)
and 917 μg/g higher on average (6E-06) compared to CD
patients. The dysbiosis index was 0.49 point higher among
UC patients at baseline (p = 0.02) and 0.70 point higher on
average (0.0007) than in CD patients. While the Shannon
diversity was lower in our patients with UC, this difference
was not significant, possibly due to the relatively small
sample size of our cohort.
Our longitudinal samples also show improvements in

outcome measures over time for IBD patients (Fig. 2),
reflecting overall response to treatment, while these mea-
sures did not significantly change for controls over the
course of the study (Additional file 2: Table S3). Calpro-
tectin declined in patients with CD relative to controls
(p = 0.02), and in those with UC, calprotectin declined
at around four times the rate of CD compared to con-
trols (p = 3E-06). An increase in Shannon diversity rela-
tive to controls was not significant for CD patients, but
Shannon diversity did improve over the course of the study
for patients with UC compared to controls (p = 0.002).
Both CD and UC patients showed improvements (de-
creases) in the microbial dysbiosis index compared to
controls (p = 0.03 and p = 1E-13, respectively), with UC
patients having a higher comparative rate of decline.

Dysbiosis associates significantly with clinical and
biological measures of disease severity
Our next aim was to test whether dysbiosis showed an
association with calprotectin in our cohort. Using GEE,
we found that higher dysbiosis associated significantly
with higher calprotectin (Additional file 2: Table S5). In

Fig. 2 Clinical characteristics for all study subjects. a–c Characteristics
for control subjects (black), Crohn’s disease patients (CD, red), and
ulcerative colitis patients (UC, blue) are plotted over time with
unadjusted regression lines in black and 95 % confidence intervals
in gray. For patients with CD and UC, calprotectin decreases (a),
alpha diversity increases (b), and gut microbial dysbiosis decreases
(c) over time, reflecting overall improvement following treatment.
Additionally, calprotectin and microbial dysbiosis were significantly
higher in our UC patients than in CD. (See also Additional file 2:
Figures S1 and S2, Tables S3 and S4.)
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the overall dataset including both cases and controls,
one unit increase in microbial dysbiosis (overall mean –
1.3 ± 0.74) was associated with a 260-point increase in
calprotectin (p = 0.0004). This finding also held true
when examining cases only: a one-unit increase in dys-
biosis (case mean –1.06 ± 0.66) associated with 286 μg/g
higher calprotectin (p = 0.02, Additional file 2: Figure
S3A). This is the first time the dysbiosis characteristic of
the CD gut microbiome has been linked to a clinical
measure of inflammation: fecal calprotectin. In contrast,
we found that the Shannon alpha diversity did not show a
relationship with calprotectin (Additional file 2: Table S5).
Our results were not impacted by using a de novo OTU-
picking approach or rarefying reads from each sample
from the closed-OTU-picking biom file to even depth (see
Additional file 3).
For our Crohn’s patients, dysbiosis also significantly

associated with increased PCDAI, the current clinical
measure of disease activity (p = 0.0001, Additional file 2:
Figure S3B). However, PCDAI did not associate signifi-
cantly with calprotectin (Additional file 2: Table S5,
Additional file 2: Figure S3C), suggesting that PCDAI is
not a good stand-in for a direct measure of inflamma-
tion such as calprotectin.

Gut microbiome differences between groups
While the dysbiosis index has predictive power of whether
an individual has CD [19], we found that the baseline dys-
biosis index was not significantly different (p = 0.3) between
treatment responders, who showed evidence of mucosal
healing (n = 6), and non-responders (n = 13). This finding
suggests that baseline dysbiosis may identify cases, but may
not be the best tool for predicting actual response to treat-
ment. Because the components of the dysbiosis index are
broad categories (i.e., family- and order-level taxa), we next
used GEE (again with Wald tests for coefficient signifi-
cance) to test whether distinct microbiome signatures
could be identified among responders and non-
responders at the genus level. Using GEE allowed us to
leverage the power of all of our time points to test dif-
ferences, both between cases and controls and between
non-responders and responders.
We found that 20 genera had nominally significantly

different abundance (p ≤ 0.05) between cases and con-
trols at baseline. Interestingly, 7 of these 20 genera were
not captured by the dysbiosis index. We also found 18
genera that differed significantly at baseline between re-
sponders and non-responders, 5 of which were not cap-
tured in the dysbiosis index. The taxa that differ between
groups are summarized in Fig. 3 and Additional file 2:
Table S6.
When we compared the list of significantly different

genera between cases and controls to the significant gen-
era from our non-responder/responder comparison, 11

of these taxa overlapped. The direction of effect in all
overlapping taxa was the same in the two comparisons:
if a genus was significantly increased in cases compared
to controls, that genus was likewise increased in our
non-responders compared to responders.
Because of our limited sample size, this analysis was

largely exploratory: only two taxa, Coprococcus and Adler-
creutzia, met the threshold for significance in the case/
control comparison (no taxon met this threshold in our
non-responder/responder comparisons) after conservative
Bonferroni correction for multiple tests, with a significant
p value defined as <0.05/134. Coprococcus was decreased
in cases compared to controls and further decreased in
non-responders compared to responders. Adlercreutzia
was also decreased in cases compared to controls but was
at similar levels in non-responders and responders. While
the association of Coprococcus with IBD has long been
known, the association with Adlercreutzia has not been
previously reported.

Predicting future response to treatment via the gut
microbiome using pretreatment samples
We used a random forest classifier to determine if treat-
ment response among cases could be predicted using
microbiome data from the first pretreatment sample from
each individual. Five responders and 12 non-responders
had pretreatment samples for analysis. We combined pa-
tients with UC and CD because the IBD subtype explained
only 4 % of the variability in the weighted UniFrac dis-
tance between pretreatment samples after accounting for
responder/non-responder status, which explained 23 % of
the variability (p = 0.01 after 10,000 permutations). Our
classifier attained an area under the ROC curve (AUC) of
0.75 (Fig. 4a) and 76.5 % accuracy of prediction (signifi-
cant at p = 0.04 and p = 0.03, respectively, after 10,000 per-
mutations of treatment response/non-response status).
The confusion matrix and precision-recall curves for our
random forest model can be found in Additional file 2:
Table S7 and Additional file 2: Figure S4, respectively. Be-
cause the prediction error among responders in this
model is high (60 %), we were concerned that only non-
responders had a distinctive pattern; this could also lead
to a higher prediction error (lower accuracy) than reported
here among populations having a higher proportion of
responders. To investigate this, we additionally used a sub-
sampling approach to fit our random forest classifier, so
that each tree was fit using 5 responders and 5 non-
responders. This model has the same overall prediction
accuracy (76.5 %), but the prediction error in responders
(20 %) and non-responders (25 %) is more comparable,
suggesting that both responders and non-responders have
distinct OTU profiles. These results also suggest that the
prediction accuracy we report here is achievable even in
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populations with varying proportions of responders. The
confusion matrix for the subsampled model can be found
in Additional file 2: Table S8; the ROC and precision-recall
curves can be found in Additional file 2: Figure S5.
The abundances of genera with the top 15 highest

variable importance scores in our weighted random for-
est (listed with importance scores in Additional file 2:
Table S9) are shown in Fig. 4b. Additional file 2: Figure
S6 shows stacked bar charts for each sample used in the
random forest (categorized by eventual response or non-
response) summarizing those of the top 15 genera that
were found above 1 % average abundance. Four of the
top 15 genera (Coprococcus, Adlercreutzia, Dialister, and
an unnamed genus of Enterobacteriaceae) overlapped
with our GEE results. This overlap is denoted with aster-
isks in Fig. 3a and Fig. 4b. Three of these genera were the
most significant in our GEE groupings, further implicating
their significance in our IBD patients: Coprococcus was
most significant of the genera in both case/control and re-
sponder/non-responder comparisons, Adlercreutzia was
most significant in the case/control comparisons, and
Dialister the most significant in responder/non-responder
comparisons. Furthermore, Coprococcus and Adlercreutzia
were the two genera that remained significant in our case/
control analysis (both with decreased abundance) after

Bonferroni correction of our GEE results. Importantly, 14
of the top 15 most important genera identified are identi-
cal between the weighted and equal sampling analyses
(Additional file 2: Table S10), supporting the conclusion
that these taxa are truly responsible for separating re-
sponders and non-responders in our cohort. Replication
in a larger study will be needed to confirm the role of
these taxa in treatment response.

Discussion
We conducted the largest longitudinal study published to
date following newly diagnosed IBD subjects in real time,
collecting measures of disease activity, mucosal inflamma-
tion, and microbiome composition. Sample collection was
initiated at diagnosis, prior to treatment, and continued
throughout the medical and surgical management of these
patients. Here we show that (1) longitudinal stool sam-
pling was both feasible and robust; (2) microbial dysbiosis
improved from baseline but persisted despite complete
cessation of clinical disease activity among responders; (3)
distinct microbiota signatures emerged among responders
compared with non-responders at the genus level, but not
dysbiosis index; and (4) treatment-naïve analysis of the
microbiome could potentially be used to predict whether
a subject will respond to treatment. Our study was based

Fig. 3 Genera with significant differences between cases and controls, non-responders and responders. a –Log10(p value) from testing difference
in abundance of each genus in cases compared to controls and non-responders compared to responders. Blue bars indicate taxa negatively associated
with case or non-responder status, and red bars indicate a positive association. The line below 2 represents the threshold for nominal significance; the
higher line is the significance level after Bonferroni adjustment for multiple tests. The asterisks denote taxa that also appear in the results of our random
forest classifier. b–d Example patterns representative of each of the three categories: b significant in both comparisons, c significant only between
cases and controls, and d significant only between non-responders and responders. (See also Additional file 2: Table S6.)
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on real day-to-day clinical practice, so the study design did
not impact treatment choices for the subjects. Using this
approach, our patients could be treated in a manner
consistent with standard of care. Our findings may prove
clinically useful in tailoring therapies; if confirmed by a
larger study, clinicians could, in the future, make
microbiome-informed decisions about early escalation of
medical therapies versus timely surgical interventions.
In our study, we focused on following patients over

time using stool samples, because obtaining repeated
biopsy samples in a clinical setting is not feasible—it is
invasive, expensive, and impractical for day-to-day
clinical practice. We show that repeated stool samples
can depict the diversity and dysbiosis of the microbiome.
This is an important implication for future studies, be-
cause it suggests that stool samples, which are relatively
cheap and easy to acquire, are an appropriate substitute
for biopsy samples to monitor the microbiome of pa-
tients with IBD.
In terms of clinical outcomes, we assessed disease activ-

ity with PCDAI/PUCAI, the current standards in clinical
use. These measures largely rely on clinician observation
and patient self-report and are therefore indirect assess-
ments of disease activity. Since inflammation impacts
microbiome indices, many studies have been criticized for
not having an objective measure of inflammation. To ad-
dress this shortcoming, we measured fecal calprotectin as

a proxy for mucosal inflammation [35, 36]. Fecal calpro-
tectin is a quantitative measure of disease activity that is
not affected by self-reporting bias and is a direct bio-
marker of mucosal inflammation, the trademark of IBD.
Previously, Gevers et al. [19] described the gut micro-

biome in treatment-naïve CD patients and created the
dysbiosis index to reflect the distinct alteration of the
microbiome in CD. We applied the dysbiosis index to our
population and further showed it to be a useful and rele-
vant tool: the dysbiosis index was significantly higher (indi-
cating more dysbiosis) in both our CD and UC subjects
compared to our unaffected subjects. Furthermore, the
dysbiosis index decreased over the course of the study,
consistent with treatment and subsequent clinical improve-
ment. When it was created, the dysbiosis index showed a
strong correlation with clinical severity as measured by
PCDAI, which we confirm in our study. We further share
the novel finding that the dysbiosis index associates with
the direct measure of inflammation: calprotectin. Because
PCDAI does not show a similar association with higher
calprotectin, the dysbiosis index may be more reflective of
inflammatory status than the less direct disease activity
measure.
Although our sample size is small, we showed that al-

though the dysbiosis index was developed in patients with
CD, patients with UC had significantly higher dysbiosis
than did those with CD, along with increased calprotectin.

Fig. 4 Use of genera to predict eventual response to treatment in pretreatment samples. a Our classifier classifies response status significantly
better than random guess with AUC = 0.75 and overall accuracy of 76.5 % for predicting treatment response/non-response. b Box plots of the
log10 relative abundance plus pseudocount (1E-05) of the 15 genera with highest importance scores in random forest analysis in responders and
non-responders. The asterisks denote taxa also identified as significant in our generalized estimating equations analysis. (See also Additional file 2:
Figures S4 and S6, Additional file 2: Tables S7 and S9.)
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Further, none of the responders in our study were UC pa-
tients. Additional studies in larger patient cohorts are
needed to clarify any distinct features of the microbiome
among IBD patients.
Our subjects were followed for an average of 8 months

and included patients who both responded and did not
respond to treatment. Although the dysbiosis index im-
proved over time in patients, it did not reach levels seen
in controls. This finding has important implications for
pathogenesis: it suggests that with aggressive treatment
of inflammation and symptoms (as was the case in our
population) disease activity will improve, but the gut
microbiome may remain perturbed. This finding is in
line with a recent paper by Forbes et al., who found that
there was no clear difference between microbiota of in-
flamed and non-inflamed mucosa in either CD or UC,
suggesting that gut dysbiosis is the driver of inflamma-
tion rather than a result of it [37].
This pattern of persistent dysbiosis further emphasizes

the need for prospective, longitudinal tracking with exten-
sive follow-up: microbiome trends, microbiome resilience,
and return to “healthy” composition may all be important
to assess [38]. A larger study to investigate the impact of
different treatments is also needed. Observations from
such studies will open new therapeutic opportunities
aimed at ameliorating dysbiosis in the hope of either pre-
venting disease or limiting future complications.
At the individual genus level, several genera showed

differences between groups in our GEE, random forest
models, or both, with six bearing special mention: Akker-
mansia, Coprococcus, Fusobacterium, Veillonella, Faecali-
bacterium, and Adlercreutzia. In our sample, Akkermansia
had a higher pretreatment abundance in non-responders
compared to responders (Fig. 4b). The genome of Akker-
mansia, identified in our random forest analysis, contains
mucinase genes [39] and is considered to be a mucin-
degrading bacterium [40]. In gnotobiotic mice, Akker-
mansia increases inflammation in mice co-infected
with Salmonella typhimurium [41]. We also found that
Coprococcus (a genus identified in both GEE and ran-
dom forest analyses) was diminished in cases compared to
controls, and was further diminished in non-responders.
In fact, agglutinating antibodies for Coprococcus were
briefly considered as a biomarker for CD screening [42].
We have previously reported significantly higher abun-

dance of Fusobacterium and Veillonella in the stool of
treatment-naïve CD patients [19]. In our GEE analysis
we again identified these two genera at increased abun-
dance in cases, especially in non-responders to therapy.
One recent study by Kelsen et al. identified significantly
increased levels of these two taxa, among others, in the
subgingival microbiome of patients with CD who were
not taking antibiotics [43]. This prompts the hypothesis
that oral cavity microbiota, also seen in the guts of IBD

patients, may play a significant role in the pathogenesis
and progression of IBD. Species of Fusobacterium are
also associated with a wide variety of negative health
outcomes, such as dental plaque, periodontal disease,
Lemierre syndrome [44], head and neck infections [45],
and especially colon cancer [46, 47].
Faecalibacterium, a genus of interest from our random

forest analysis, includes the species F. prausnitzii. One
particular strain of this species—A2-165—was recently
found by Rossi et al. to have an important role in anti-
inflammatory processes. This bacterium was particularly
adept at eliciting high levels of IL-10 production, enhan-
cing ovalbumin-specific T cell proliferation, and reducing
interferon gamma-positive T cells. Treatment with A2-
165 even attenuated inflammation in a murine model
of chronic relapsing colitis [48]. Because Faecalibacter-
ium abundance was found to be decreased in non-
responders compared to responders, our study supports
further investigation into the prognostic and thera-
peutic possibilities of this strain.
Another genus significant in both GEE and random

forest analyses, Adlercreutzia, was found to be decreased
in cases and further decreased in non-responders com-
pared to responders. This genus was originally identified
in human feces and found to play an important role in
the metabolism of isoflavones to equol, a non-steroidal
estrogen [49]. To our knowledge, the role of Adlercreut-
zia in IBD has not yet been explored; however, its ap-
pearance in the significant results of both our GEE and
random forest analyses suggest it may be a future target
of interest.
Genera from the families Lachnospiraceae and Rumino-

coccaceae appear several times in our GEE and random
forest results. Though not included in the dysbiosis index,
members of these families were found to be characteristic
of tissue samples from Crohn’s disease in a recent study
by Tyler et al. [50]. Four of the top 15 most important
genera identified by our classifier belong to the family
Lachnospiraceae, and all are reduced in non-responders
compared to responders. Further research is needed into
the possible contribution of members of this family to
IBD pathophysiology.
Our study has several limitations. Some control sub-

jects were related to affected subjects; however, the
unrelated controls actually had significantly higher mi-
crobial dysbiosis than the related controls, suggesting
shared environment did not overly inflate dysbiosis in
the related study subjects. One factor that may have
contributed to this trend is that some related controls
were parents and were hence older than the affected
subjects. Additionally, there was variation in the number
of samples obtained from each patient. To correct for
this variation, we weighted samples for each study sub-
ject according to the number of samples they
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contributed to the study. Our sample population had a
smaller number of UC subjects than CD subjects; al-
though patients with UC had higher measures of clinical
activity, we combined these patients for predictive model-
ing, because IBD disease type did not explain a large
proportion of the variance between microbiome samples
among IBD cases.
These unique data provide the first glimpse into

the long-term dynamics of the gut microbiome of
subjects with and without IBD. The data show that
the dysbiosis index captures alteration of the micro-
biome in IBD patients relative to controls, and asso-
ciates with clinical and biochemical measures of
disease activity. More importantly, the dysbiosis
index did not decline to levels seen in unaffected
individuals, even when patients were in remission. Distinct
microbial signatures seen at the genus level among
responders and non-responders may have clinical implica-
tions for therapeutics and risk stratification. The potential
impact of this analysis is far-reaching, as it provides
insight into how gut microbial dysbiosis changes with
treatment and remission in patients with IBD. Our results
also lay the groundwork for predicting patients’ ultimate
response to therapy.

Conclusions
New findings

� Markers of inflammation and dysbiosis are increased
in IBD; microbial dysbiosis improves over time but
persists despite cessation of clinical disease activity
and mucosal healing among responders.

� The dysbiosis index does associate with calprotectin,
a measure of inflammation, but it does not distinguish
treatment responders (those with mucosal healing)
from non-responders. Other microbiome signatures
do emerge at the genus level and warrant further
investigation.

Impact on clinical practice

� Treatment-naïve analysis of the microbiome could
potentially be used to predict whether a subject will
respond to treatment.

� Sustained and deep remission may require
normalizing the gut dysbiosis.
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