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We study the problem of rapid change of the interaction parameter (quench) in a many-body low-
dimensional system. It is shown that, measuring the correlation functions after the quench, the information
about a spectrum of collective excitations in a system can be obtained. This observation is supported by
analysis of several integrable models and we argue that it is valid for nonintegrable models as well. Our
conclusions are supplemented by performing exact numerical simulations on finite systems. We propose
that measuring the power spectrum in a dynamically split 1D Bose-Einsten condensate into two coupled
condensates can be used as an experimental test of our predictions.

DOI: 10.1103/PhysRevLett.99.200404 PACS numbers: 03.75.Lm, 03.75.Kk, 03.75.Nt

In many cases interesting quantum phenomena appear
not in properties of the ground states but in the coherent
dynamics of the system away from equilibrium. Canonical
examples from basic quantum mechanics include Rabi
oscillations in two level systems, collapse and revival in
the Jaynes-Cummings model, and Landau-Zener tunnel-
ing. Analysis of nonequilibrium coherent dynamics in a
strongly correlated many-body system is a more challeng-
ing task than in single-particle quantum mechanics; hence,
progress has been made only in a few cases. This includes
changing parameters in the transverse field Ising model [1],
mean field dynamics in systems with BCS pairing of
fermions [2], collapse and revival phenomena [3], and
nonequilibrium superfluid phase oscillations [4] of bosonic
atoms in optical lattices. In this Letter we discuss another
example of nonequilibrium coherent dynamics in strongly
correlated many-body systems. We consider a sudden
quench of interaction parameter in nonlinear interacting
systems and show that the subsequent time dynamics ex-
hibit oscillations with frequencies given by the poles of the
scattering matrix of this many-body system. The sudden
quench can be thus used as a tool for spectroscopy of the
interacting models. We make our analysis by increasing
complexity of examples: we start with a quantum
Josephson junction (QJJ) model then generalize it for a
Gaussian model, and support the main observation on the
quantum sine-Gordon model (QSG). At the end we gen-
eralize the main statement for nonintegrable models and
make supporting arguments in favor of our conclusion for
general models.

The QSG model is a popular prototypical example of a
nonlinear interacting quantum system. This model appears
as an effective description of variety of condensed-matter,
statistical physics, and field theory problems. Thus in con-
densed matter it describes low-dimensional spin and
charge systems, disordered systems (see [5] for a review)
and coupled Bose condensates [6]. Given the large freedom
of tunability of parameters in ultracold quantum gases we

have in mind the test of a theory presented below in these
dynamically decoupled 1D condensates.

The dynamics in the QSG model can be analyzed using
its exact solution. In general, describing dynamical prop-
erties of a many-body system using the exact Bethe ansatz
solution is not a straightforward procedure. In our case,
progress can be made connecting the problem of time
evolution from a certain initial state to the equilibrium
sine-Gordon model with a boundary. For conformally in-
variant models a similar approach of mapping temporal
evolution after a quench to a class of boundary phenomena
was discussed in Ref. [7]. In our case, the system can have
different mass scales corresponding to solitons and their
bound states.

The Hamiltonian of the QSG model is given by

 H SG �
1

2

Z
dx��2�x� � �@x��2 � 4� cos�����: (1)

In applications to split condensates the ��x� � �1 ��2 is
the relative phase between the two of them and ��x� is the
conjugate momentum proportional to the difference be-
tween local densities and � �

�������������
2�=K

p
[6]. The interfer-

ence experiments, such as reported in Ref. [8], measure the
��x� between the two condensates. After the splitting, the
system is in a state which is not an eigenstate; hence, this
initial state will undergo a complicated quantum dynamics
controlled by the many-body Hamiltonian. We assume that
at t � 0 the system is prepared in a state with� � 0 for all
x. In reality � is a wave packet with the width determined
either by the rate with which the condensates were sepa-
rated [9] or by the depletion [10].

The Luttinger parameter K of individual condensates in
Eq. (1) is large for weakly interacting bosons, and ap-
proaches 1 in the hard core repulsion (Tonks-Girardeau)
regime. K � 1 for fermionic and spin systems. Generally
K can be extracted from the microscopics [5].

We concentrate our analysis here on dynamical proper-
ties of one-point correlation function, however, general-
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ization of our approach for the multipoint correlation
functions is straightforward. The one-point correlation
function

R
L
0 dxh �t � 0�j exp�i���x; t�j �t � 0�i corre-

sponds to the amplitude of interference fringes, A�t� [8]
and can be measured as a function of the evolution time t.
To characterize the time evolution of A�t� we analyze the
power spectrum P�!� � limT!1j

R
T
0 dte

i!tA�t�j2.
It is instructive to analyze first a simpler situation, when

the spatial fluctuations of the phase � are energetically
forbidden and the Hamiltonian (1) reduces to the QJJ
model,

 H JJ �
Ec
2

�
@
i@�

�
2
� J cos���; (2)

with Ec � �2
@vs=L and J � 2L�, where vs is a sound

velocity. Following the standard approach for analyzing
sudden perturbations in quantum mechanics we decom-
pose the initial state into eigenstates of the Hamiltonian
(2), j �t � 0�i �

P
nanjni. Eigenstates jni can be found

explicitly using Matthieu’s functions [11]. Only even n’s
are present in decomposition of j �t � 0�i and the occu-
pation probabilities janj2 decrease with increasing n, pro-
vided that the initial state has a finite width. Letting the
system evolve for time t, we find a state j �t�i�P
nane

�i!ntjni. The amplitude A�t� � h��t�j 	
cos���j��t�i �

P
nma



nam�cos��nme�i�!n�!m�t, where

�cos��nm is the matrix element of cos� between the states
n and m. The power spectrum for a specific set of parame-
ters is shown in Fig. 1. The inset on this graph shows the
energy level structure and a couple of possible oscillation
frequencies.

The power spectrum consists of different peaks corre-
sponding to the overlaps between various even energy
levels. The largest (central) peak in the power spectrum
comes from beating of n � 0 and n � 2 states [i.e., the
�cos��20e

i�!2�!0�t � c:c: term]. The dominance of this

peak comes from a combination of the two factors:
(i) The matrix elements �cos��nm are the largest for the
smallest difference between n and m (ii) The state n � 0
has the largest weight in the decomposition of j �t � 0�i.
There are also contributions at frequencies !m �!0 for
m � 4; 6; . . . (only m � 4 is shown), which give rise to
peaks at higher frequencies. For a harmonic potential such
peaks would appear at precise multiples of the frequency of
the central peak. But because of the unharmonicity such
peaks are shifted to lower frequencies. Similarly, other
important contributions to the power spectrum come
from beating between states n and n� 2 with n > 0.
They appear at smaller frequencies than that of the central
peak. Finally, we have contributions from beatings of
various other combinations of states, but they come with
a smaller weight.

We now discuss a case of the full 1D model (1). In the
large K limit, the QSG model can be well approximated by
the Gaussian theory with a massive term �m�2, where
m� J?, instead of the cosine. The initial state is then a
product of squeezed states for all k vectors j 0i �Q
k exp�ayk a

y
�k�j0i, where ayk is the usual bosonic creation

operator for the excitation with the momentum k and the
energy !k �

�����������������
k2 �m2
p

. Expanding it, one observes that
the state j 0i contains various combinations of pairs of
particles with opposite momenta. The leading contribution
to A�t� coming from two-particle excitations behaves at
long times as hcos���x; t��i � sin�2mt�=

��
t
p

. This behavior
leads to the power law singularity in the power spectrum:
P�!� � j!� 2mj�1. Higher harmonics corresponding to
multiparticle excitations correspond to weaker singular-
ities and their weights are suppressed.

With decreasing K, nonlinearities start to play an in-
creasingly important role. As we will show below, the peak
at fundamental frequency !0 splits into a sharp singularity
and a two-particle contribution (see Fig. 2). The two-
particle contribution corresponds to the excitation of a
pair of two lowest energy breathers B1, which are direct
analogues of the massive excitations in the Gaussian
model. The singularity corresponds to the nondecaying
excitation of an isolated B2 breather, which is a bound
state of two B1 breathers (for more explicit notations see
below). In addition to splitting of the fundamental peak one
finds that higher harmonics are shifted to lower frequencies
in a direct analogy with a QJJ. Beatings of different har-
monics lead to the appearance of singular peaks at fre-
quencies smaller than !0, similarly to a QJJ system.

For finite K a convenient complete basis of the QSG
model is provided by the asymptotic scattering states
which can be obtained by the action of the elements
Aak��� of the Zamolodchikov-Faddeev algebra [12] on
the vacuum state: j�1�2 . . . �nia1;a2;...;an � Aya1

��1�	

Aya2
��2� . . .Ayan��n�j0i. Here the operators Aak��k� have

internal index ak (corresponding to solitons (�), antisoli-
tons (�), or breathers (n) [denoted by Bn below)] and
depend on the rapidity variable �k, defining the momentum

FIG. 1 (color online). Power spectrum for a single QJJ con-
sisting of two sites. At t � 0 the tunneling amplitude is suddenly
reduced from a very large value to J � 10, the interaction
strength Ec � 1. The inset shows the energy levels of the QJJ
with the arrows indicating a couple of possible oscillation
frequencies.
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and the energy of a single quasiparticle excitation of mass
Ma: E � Ma cosh���, P � Ma sinh���. The operators are
defined in such a way that Aak��k�j0i � 0, 8 k, ak.
Explicit dependence of Ma��� was found in Ref. [13].

Next we consider the initial condition��t � 0� � 0 as a
boundary-in-time condition of the Dirichlet type. It be-
longs to the class of integrable initial (boundary) condi-
tions, which generically have the following form [14]:

 jBi �N e

P
a;b;n

��g2n=2�By2n�0��
R
1

�1
�d�=4��Kab���Aya ����A

y
b ����

j0i:

(3)

The matrix K is related to the reflection matrix of solitons,
antisolitons, and breathers. These matrices are known [14]
for all integrable boundary conditions. The important fea-
ture of these boundary states is the presence of various
poles in the reflection amplitudes Kab. These poles corre-
spond to bound states of the particles Aa, Ab. In the soliton-
antisoliton channel such bound states are breathers with
masses MBn � 2Ms sin�n�=�8K � 2��, where n �
1; . . . ; 4K � 1 and Ms � Ms��; K� [13].

The poles in the soliton-antisoliton reflection amplitude
K�� imply the possibility of exchanging breathers with
zero momentum, Ba�0�. The corresponding ‘‘�� Ba’’
coupling is denoted by ga. For more discussions and results
on the structure of boundary states see [15]. We note that
the state (3) is a generalization of squeezed states in the
Gaussian theory. The presence of additional breather terms
at zero rapidity is the consequence of unharmonicity of the
underlying model. Another important difference with the
harmonic theory are the unusual commutation relations
between Aa’s which are neither bosons nor fermions. The
state (3) is the initial state in our problem. The Hamiltonian
(1) is diagonal in A’s, which allows us to compute the time
dependence of j Bi

 j �t�Bi �N exp
�X
a;b;n

g2n

2
By2n�0�e

�iMB2n
t �

Z 1
�1

d�
4�

	 exp��iMt cosh����Kab���Aya ����A
y
b ���

�
j0i;

(4)

where M � Ma �Mb. For a translation invariant system
A�t� � Lh �t�jei���x�0�j �t�i, where L is a system size.
We evaluate A�t� by expanding the exponential form of
j �t�Bi and computing terms one by one. We use the form-
factors (FF) technique discussed by us in Ref. [6] for a
related problem (for a general review of the FF approach
see Ref. [12]). Our calculations rely on recent progress in
evaluation of FF for the QSG model [16]. In general, FF are
defined as expectation values of the operators in the asymp-
totic states j�1 . . .�ni, which can always be represented in
the canonical form, FO � h0jOj�1 . . .�nia1...an . It is known
from general principles [12] that the FF expansion con-
verges rapidly with increasing number of the participating
states. We will therefore discuss the most important con-
tributions to the power spectrum, which come from the first
terms in the expansion of Eq. (3). These contributions split
into the following categories: (i) Delta function peaks
corresponding to contributions of individual breathers.
They appear at frequencies !�1� � MB2m

and !�11� �

MB2m
�MB2n

, m  n. The strengths of these peaks are
given by gmFB2m

=2 and gmgnFB2m
FB2n

=4 correspondingly.
Here the single-particle breather FF’s are [6]:

 Fexp�i���
Bn

�
G�

���
2
p

sin��n�� exp�I���n��ei�n=2

tan���2 ��cot���n2 �
Qn�1
s�1 cot2���s2 ��

1=2
; (5)

where �n � i��1� n��, � � 1=�4K � 1�, I��� is given in
[6] and the numerical factor G� was computed in Ref. [17].
These contributions generally decrease with n and de-
crease with K. (ii) Two-particle AaAb � 0 contributions
of excitations with equal masses corresponding to !�2� �
2MAa . They come from a continuum part. Their weights
can be estimated by multiplying corresponding single-
particle FF’s. (iii) Interference contributions involving
more than two particles of equal or unequal masses.

In Fig. 2 we present the results of our calculations for
specific values of K and �. For large K the dominant
contribution comes from beating of the vacuum state and
the B1���B1���� pairs corresponding to the massive pho-
nons. The corresponding contribution is absent for a QJJ.
The reason is that B1 breathers can be excited only with
nonzero momentum. However, the nondecaying peaks,
corresponding to particles excited at strictly zero momen-
tum, have their direct analogues (see Fig. 1). Indeed the
B2 � 0 peak corresponds to the ‘‘central peak’’ in the QJJ
picture. The satellite peaks B4 � B2, B6 � B4, B4 � 0, etc.,
also have their analogues in Fig. 1. Such peaks correspond
to the nondecaying oscillations. Their �-peak nature is a
consequence of the QSG integrability.

FIG. 2 (color online). Power spectrum for K � 1:6 and � �
0:4 including single and two-breather contributions. Many other
contributions are not visible on this scale. Arrows indicate
�-peaks of type (i) (see the text below). The inset shows the
power spectrum from the exact diagonalization on 6	 2 sites for
the bosonic Hubbard model. Note the break in the vertical scale.
Frequency units are defined by Ms��; K� for given � and K.
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Our analytic results are supported by exact numerical
simulations in a system of N � 12 particles in two chains
each of 6 sites. We used the Hubbard model with periodic
boundary conditions and with the interaction U � 1 and
intrachain hopping J � 1 to realize a system with moder-
ate value of K far from the Mott state. At time t � 0 the
interchain hopping J? was abruptly decreased from a very
large value to J? � 0:1. Despite seemingly small size we
point out that this system contains more than 106 states,
which is more than enough to distinguish integrable versus
nonintegrable dynamics (see, e.g., Ref. [18]). The results of
such simulations are in complete qualitative agreement
with the analytic predictions (see the inset in Fig. 2). We
can identify peaks corresponding to various breathers.
There are also two additional two-particle contributions
denoted as B1B1 � 0 and B2B2 � 0 in the inset. These
peaks correspond to excitations with nonzero relative mo-
mentum. However unlike in the true thermodynamic limit,
these oscillations are not broadened, since there is no
continuum of different momentum states.

Previous analysis for the integrable models can be gen-
eralized further for nonintegrable models using the form-
factor perturbation theory [19]. If we consider not-so-
strong deviations from integrability, which means that
there are still no multiple particle production in a theory
(which is equivalent to the absence of a branch-cuts in a
physical strip of a Mandelstam variable), one can argue
that the first effect is the change of the position of the poles
in the scattering matrix. This variation of pole can be
shown to be given by the particle-antiparticle FF F��1 �
�2�, and the change of the particles mass is given by [19]
�m2

a � F
O
a �a�i�� corresponding to perturbing operator O.

Therefore the leading effect of deviation from integrability
is a shift of positions of peaks.

It is possible to argue in general that the time evolution
of expectation values of some local observable operator in
an initial state formed by a sudden quench will provide the
information about the spectrum of the theory after this
transition. One can indeed show [20] that the boundary
reflection amplitude R�k� is related to the bulk Green func-

tion G�x; x0; t� t0� as G�x; x0; t� t0� �
R
d! e�i!�t�t

0 �

4�k�!� 	

�eik�!�jx�x
0j � R�k�eik�!�jx�x

0j� for the field theory with dis-
persion k�!�. This formula is somehow reminiscent of the
T-matrix formulation of the impurity scattering problem.
We therefore observe that the poles structure of the Green
function is encoded in a boundary reflection factor.
Another part of the boundary state is the form factor. The
form factors’ expectation values can be expanded using the
LSZ formula [21], which relates the n-particle form factors
of operator O to a n-point function. All that leads to the
conclusion that spectrum generation during the quench
dynamics is a generic phenomena.

In this Letter we show that the dynamics after quench in
many-body interacting systems can be used for spectros-
copy of collective excitations. We have explicitly demon-
strated this on quantum sine-Gordon type models and

argued that this conclusion is valid for more general, non-
integrable models. We support our statement for general
many-body systems using the connection of the boundary
reflection amplitude to the Green’s functions.
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