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We use the bosonization approach to investigate quantum phases of boson-fermion mixtures (BFM)
of atoms confined to one dimension by an anisotropic optical lattice. For a BFM with a single species of
fermions we find a charge-density wave phase, a fermion pairing phase, and a phase separation regime.
We also obtain the rich phase diagram of a BFM with two species of fermions. We demonstrate that
these phase diagrams can be understood in terms of polarons, i.e., atoms ‘‘dressed’’ by screening clouds
of the other atom species. Techniques to detect the resulting quantum phases are discussed.
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FIG. 1. Phase diagram for a mixture of bosonic and spinless
fermionic atoms. Shading in the f-PP phase describes the
strength of the bosonic screening cloud [2�; see Eq. (4)] around
a pair of fermions. �L and ER are, respectively, the lattice
period and recoil energy. Other parameters used for this figure
are (see the text for notations) �b � 4, �f � 0:5, Vb;? �

Vf;? � 20ER, Vf;k � 2ER, and boson-boson scattering length
abb � 0:01�L.
Mixtures of ultracold bosonic and fermionic atoms,
which have recently become accessible experimentally,
represent a promising new system for studying strongly
correlated many-body physics [1]. In addition, by loading
atoms in anisotropic lattices, several recent experiments
produced 1D systems of ultracold atoms [2]. Several novel
phenomena have been predicted theoretically for boson-
fermion mixtures (BFM) including pairing of fermions
[3], formation of composite particles [4], and spontaneous
breaking of translational symmetry in optical lattices [5].
Most of these theoretical studies relied on a mean-field
approach to investigate many-body states of fermions.
This approach, however, becomes unreliable in the re-
gime of strong interactions. In particular, it fails in low-
dimensional systems due to enhanced fluctuations and
nonperturbative effects of interactions.

In this Letter we use the bosonization method [6,7] to
investigate one-dimensional (1D) BFM. The resulting
quantum phases can be understood by introducing polar-
ons, i.e., atoms of one species surrounded by screening
clouds of the other species. In our analysis the polarons
emerge as the most well-defined quasiparticles in the
interacting system, while quantum phases of the system
arise from a competition of various ordering instabilities
of such polarons. The phase diagrams we obtain show a
remarkable similarity to the Luttinger liquid (LL) phase
diagrams of 1D interacting electron systems [8], suggest-
ing that 1D BFM may be understood as LLs of polarons.

In Fig. 1 we show a typical phase diagram for a BFM as
a function of experimentally controlled parameters: the
scattering length between bosons and fermions (abf) and
the strength of the longitudinal optical lattice for bosonic
atoms (Vb;k) [9]. For relatively weak interactions and slow
bosons (i.e., large Vb;k) the system is in the charge-den-
sity-wave (CDW) phase, in which the densities of fermi-
ons and bosons have a periodic modulation [10]. For very
strong interactions the system is unstable to phase sepa-
ration (PS) [11,12]. The two regimes are separated by a
p-wave pairing phase of fermionic polarons (f-PP). Our
analysis is carried out for the most promising system of
0031-9007=04=93(12)=120404(4)$22.50
atoms in an optical lattice. However, qualitative results
should also apply to atoms in a tight 1D cigar-shaped
magnetic trap [13].

The essence of the bosonization procedure is to diago-
nalize the effective low-energy Hamiltonian, which al-
lows for the exact calculation of all relevant correlation
functions. The phase diagrams are determined by finding
the order parameter which has the most divergent sus-
ceptibility [8]. Bosonization approach has been applied to
BFM in Ref. [11]. This work pointed out some of the
gapped phases but did not consider correlations of polar-
onic degrees of freedom. Including the latter leads to a
much richer phase diagram which we discuss below. The
present system also has a close analogy to 1D electron-
phonon systems discussed previously (see, e.g., Ref. [14]).
A qualitative difference of the electron-phonon system is
 2004 The American Physical Society 120404-1
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that the sound velocity is usually much smaller than the
Fermi velocity, whereas for a BFM the velocity of the
phonon modes (of the bosonic condensate) can be larger
than the Fermi velocity. We also note that the 1D p-wave
superfluid we obtain here may be of relevance to a recent
proposal for quantum computation [15].

We first consider a mixture of spinless fermionic (f)
and bosonic (b) atoms. For sufficiently strong optical
potential the microscopic Hamiltonian is given by a
single band Hubbard model

H � �
X
hiji

�tbb
y
i bj 	 tff

y
i fj
 �

X
i

��fnf;i 	�bnb;i
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2
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nb;i�nb;i � 1
 	Ubf

X
i

nb;inf;i; (1)

where nb=f;i are the boson/fermion density operators with
�b=f being their chemical potentials. The tunneling am-
plitudes tf=b and the particle interactions Ub and Ubf can
be expressed explicitly in terms of the s-wave scattering
lengths, the laser beam intensities, and the atomic masses
[16]. For simplicity we assume that the filling fraction of
fermions �f � hnf;ii is not commensurate with the lattice
or with the filling fraction of bosons �b. The Fermi
momentum and velocity are given by kf � ��f and vf �
2tf sin�kf
, respectively.

In Haldane’s bosonization approach [6,7] 1D fermion
and boson operators can be represented by f�x
 � ��f 	
	f

1=2P1
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�2m	1
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bei�b , where x is a continuous coordinate
that replaces the site index i. The operators 	f=b�x
 and
�f=b�x
 are, respectively, the bosonized density and phase
fluctuation operators. The 
f=b�x
 fields are given by

f=b � ��f=bx	 �

R
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. The low-energy effec-

tive Hamiltonian thus can be written as
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where vb and Kb are the phonon velocity and Luttinger
exponent of the bosons and Kf � 1 for noninteracting
fermion atoms. To obtain the last term of Heff we have
integrated out the high energy (2kf) phonons within the
instaneous approximation (i.e., assuming vb � vf). G �

g22kf=!2kf , where !k is the (Bogoliubov) phonon energy

dispersion [17] and gk � Ubf

����������������������������
�b"b;k=2�!k

q
is the

fermion-phonon (FP) coupling vertex with "b;k being
the noninteracting boson band energy. In the long wave-
length limit we have a conventional FP coupling gk �
gjkj1=2 with g � Ubf

������
Kb

p
=2�. The effective

Hamiltonian, Eq. (2), is quadratic and can be diagonal-
ized [18]. The resulting two eigenmode velocities are
120404-2
given by [11]

v2a;A � 1
2�v

2
b 	 ~v2f
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1
2

�������������������������������������������������
�v2b � ~v2f


2 	 16~g2vb~vf
q
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where ~vf � �v2f � 4G2
1=2 and ~g � ge& with e& � ��vf �

2G
=�vf 	 2G
1=4. When the FP coupling g becomes
sufficiently strong the eigenmode velocity vA becomes
imaginary, indicating an instability of the system. This
instability corresponds to phase separation (global col-
lapse) for positive (negative) Ubf [11].

To understand the nature of the many-body state
of BFM outside of the instability region we analyze
the long-distance behavior of the correlation functions.
For the bare bosonic and fermionic particles we
find hb�x
by�0
i � jxj�

1
2K

�1
' and hf�x
fy�0
i �

cos�kfx
jxj�
1
2�K(	K

�1
) 
 [19]. To describe particles dressed

by the other species we introduce the composite operators

~f�x
 � e�i��b�x
f�x
; ~b�x
 � e�i*�f�x
b�x
; (4)

with � and * being some real numbers. The correlation
functions of these operators are given by h~f�x
~fy�0
i �
cos�kfx
jxj

�1
2�K(	�

2K�1
' 	K�1

) �2�K�1
)' 
 and h~b�x
~by�0
i �

jxj�
1
2�K

�1
' 	*2K�1

) �2*K�1
)' 
 [19]. We observe that the exponents

of the correlation functions are maximized for �c �
K'=K)' and *c � K)=K)'. From now on we use Eq. (4)
with �c and *c to construct polaronic particles. In the
limit of weak interactions we have �c ! Ubf=Ub and
*c ! 2Ubf=�vb. This result can be understood by a
simple density counting argument that a fermionic po-
laron (f-polaron) locally suppresses (enhances) a bosonic
cloud by �c particles, whereas a bosonic polaron
(b-polaron) depletes (enhances) the fermionic system by
*c atoms for positive (negative) g.

The polaronic operators defined in Eq. (4) can also be
introduced via the canonical polaron transformation

(CPT) [20]. The CPT operator is given by U �

e�i�
P

k�0
�Fk(k-

y
k	H:c:
, where (k is the phonon annihilation

operator, -k is the fermion density operator, Fk is some
function of wave vector k, and � specifies the strength of
the phonon dressing. When applied to a fermion operator,
the CPT transforms it to a polaron operator, U�1f�x
U�
f�x
exp��i�

P
k�0�Fk(ke

�ik�x	H:c:
 [20], which is the

same as Eq. (4), provided that one takes Fk ������������
2�

KbjkjL

q
sgn�k
. (Note that in 1D fermionic systems density

operators correspond to Luttinger bosons.) We note, how-
ever, unlike in ordinary polaron theory, where further
approximations after the CPT have to be made [20], in
the 1D BFM system we consider here, the full low-energy
quantum fluctuations have been included via the boson-
ization method and exact diagonalization of the resulting
Hamiltonian Eq. (2). This allows for an essentially exact
determination of the polarization parameter �.
120404-2
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Now we study the many-body ground state phase dia-
gram of a 1D BFM, which is characterized by specifying
the order parameters that have the slowest long-distance
decay of the correlation functions [8]. Two types of order-
ing were found to occur: 2kf ordering due to a Peierls-
type instability and f-polaron pairing due to their effec-
tive attractive interactions induced by the screening
clouds. For the 2kf-CDW order parameter, OCDW �

fyLfR, we find �CDW � 2� 2K(, and for the f-PP field,
Of�PP � ~fL ~fR, we obtain �f�PP � 2� 2��2cK�1

' 	

K�1
) � 2�cK�1

)' . We did not include polaron dressing in
OCDW, since this operator has no net fermionic charge and
the exponent of OCDW does not change if we replace f by
~f. Scaling exponents shown in Fig. 2(a) demonstrate that
divergencies of the CDWand f-PP susceptibilities (corre-
sponding to positive �) are mutually exclusive and cover
the entire phase diagram outside the PS regime. In the
same figure, we also show the scaling exponents calcu-
lated for bare fermion pairing (OBFP � fLfR), bare boson
condensate (OBB � b), and b-polaron condensate
(Ob�P � ~b). It is easy to see that the polaronic order
parameters always have larger exponents than their coun-
terparts constructed with bare atoms, showing the stabil-
ity of a polaronic quasiparticle in a 1D BFM system.
Moreover, the necessity to consider f-polaron pairing
instead of bare fermion pairing is further supported by
considering the stability of superfluidity: we introduce a
single weak impurity potential in the 1D BFM and de-
termine its relevance by a renormalization group (RG)
calculation [21]. We find that the impurity potential is
relevant within the CDW phase and irrelevant outside of
it. This indicates that there should be a superfluid phase
outside of the insulating CDW phase, which supports the
existence of f-polaron pairing instead of bare fermion
pairing according to Fig. 2(a).

In Fig. 2(b) we show a global phase diagram of a BFM
considering the FP coupling (g) and effective fermion-
fermion interaction (G) as independent variables. One can
see that the polaronic effects and the associated pairing
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FIG. 2. Ground state of a BFM with spinless fermions.
(a) Scaling exponents of different order parameters (see the
text). Parameters are chosen to be vb=vf � 3, Kb � 5, and
G=vf � 0:1. (b) Global phase diagram for vb=vf � 5 and
Kb � 10.
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phase are important when FP coupling (g) is large, while
the CDW phase dominates when the effective fermion
interaction (G) is increased. This phase diagram is very
similar to what one finds for spinless electrons in LL
theory [8], where CDW and the pairing phase compete
with each other in the whole phase diagram. Therefore
one can introduce a LL of polarons to describe BFM in
1D. The phase diagram in terms of experimentally con-
trolled parameters was shown in Fig. 1.When considering
finite temperature effects in a realistic experiment, we
note that the correlation function is cut off by thermal
correlation lengths, which are approximately given by
0� vf=kBT. Therefore the zero temperature ground
states should appear when 0 > L with L being the system
size. This corresponds to a temperature regime of 1% of
the Fermi temperature for systems of approximately
100 sites in the longitudinal direction.

Several approaches can be used to detect the quantum
phases discussed above. First, in the CDW phase the
fermion density modulation induces a 2kf density wave
in the boson field in addition to the zero momentum
condensation so that the CDW phase can be observed as
interference peaks at momentum k � 2kf in a standard
time-of-flight (TOF) measurement for bosons [10].
Second, the polaron pairing phase can be observed by
measuring the noise correlation of fermions in a TOF
experiment as proposed in Ref. [22]. Third, a laser stir-
ring experiment [23] can be used to probe the phase
transition between the insulating (pinned by trap poten-
tial) CDW and the superfluid f-PP phase: one can use a
laser beam focused at the center of the cloud and stir such
local potential to measure the response of the BFM. If the
system is in the pairing phase, the laser beam can be
moved through the system without dissipation if only its
velocity is slower than some critical value [23]. At the
f-PP/CDW phase boundary this critical velocity goes to
zero, reflecting a transition to the insulating (CDW) state.
This scenario follows from the above described RG
analysis of a single impurity potential [21]. Finally a
way to probe the PS boundary could be to measure the
dipolar collective oscillations of the system, generated by
a sudden displacement of the harmonic trap potential with
respect to the lattice potential [24]. When the system is
near the PS boundary, the fermion-boson interaction
strongly reduces the frequency of the dipolar mode.

The above analysis can be similarly applied to a BFM
with fermions of two internal hyperfine states, which we
assume to be SU(2) symmetric. Spin symmetry of the
system leads to a separation of the bosonized
Hamiltonian into spin and charge sectors. The charge
part of the Hamiltonian is equivalent to a BFM with
spinless atoms and can be diagonalized analogously.
The spin part of the Hamiltonian has the standard form
of a sine-Gordon model (SGM), H4 � 1

2v4
R
dx��	2

4 	
1
� �@x�4


2 	 2g1?
�2��
2

R
dx cos�

���������
8K4

p

4, where v4 is the

spin velocity, K4 is the spin Luttinger exponent, and
120404-3
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g1? � U"# � 4�G is the effective backward scattering
amplitude for fermions, which has contributions from
the bare fermion-fermion interaction and from integrat-
ing out 2kf phonons. The nature of spin excitations in the
ground state follows from the well-known properties of
the SGM: For K4 > 1 the system has gapless spin wave
excitations (g1? is irrelevant) and for K4 < 1 the system
has a spin gap (g1? becomes relevant) [25]. In Fig. 3 we
show the quantum phase diagram of a BFM with S � 1=2
fermions. Because of the larger number of degrees of
freedom more types of ordering are possible: in addition
to the CDW phase, we have a spin density wave (SDW),
where the spin order parameter at wave vector 2kf
(OSDW �

P
s;s0f

y
s;L4̂s;s0fs0;R with 4̂�( being the Pauli ma-

trix) develops quasi-long-range order. For the polaron
pairing phase, both singlet (SPP, OSPP � ~f";L ~f#;R �
~f#;L ~f";R) and triplet (TPP, OTPP � ~f";L ~f";R) pairing can
be realized in different regimes. Some of these quantum
phases can coexist in certain regimes of the phase dia-
gram (see Fig. 3). The remarkable feature of these dia-
grams is again its similarity to the phase diagram of 1D
interacting electron (LL) systems [8]. These phases can
also be detected by the experimental method suggested
above for a BFM of spinless fermions. Note that in the
regime where CDW or SPP phases dominate, a true long-
distance order and finite spin gap are established due to
the relevance of the backward scattering, g1;?, which is
negative in this regime. Such a gapped pairing phase is
actually the molecule liquid in a 1D system and therefore
should be experimentally observable by the recently de-
veloped techniques of rf photodissociation [26].

In summary, we used the bosonization method to in-
vestigate the quantum phases of 1D BFM involving spin-
less and S � 1=2 fermions. The rich phase diagrams that
we found can be understood in terms of a LL of polarons.
We also described several experimental techniques for
probing these quantum phases.
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