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Prof. Noam D. Elkies†
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Abstract

The ABC conjecture is a central open problem in modern number theory, connecting results, techniques
and questions ranging from elementary number theory and algebra to the arithmetic of elliptic curves
to algebraic geometry and even to entire functions of a complex variable. The conjecture asserts that,
in a precise sense that we specify later, if A,B,C are relatively prime integers such that A + B = C
then A,B,C cannot all have many repeated prime factors. This expository article outlines some of
the connections between this assertion and more familiar Diophantine questions, following (with the
occasional scenic detour) the historical route from Pythagorean triples via Fermat’s Last Theorem to
the formulation of the ABC conjecture by Masser and Oesterlé. We then state the conjecture and
give a sample of its many consequences and the few very partial results available. Next we recite
Mason’s proof of an analogous assertion for polynomials A(t),B(t),C(t) that implies, among other
things, that one cannot hope to disprove the ABC conjecture using a polynomial identity such as the
one that solves the Diophantine equation x2 + y2 = z2. We conclude by solving a Putnam problem
that predates Mason’s theorem but is solved using the same method, and outlining some further open
questions and fragmentary results beyond the ABC conjecture.‡

6.1 Pythagorean triples: x2 + y2 = z2

An ordered triple (x, y, z) of integers is called a Pythagorean triple if and only if it solves the Dio-
phantine equation x2 + y2 = z2; that is, if and only if |x| and |y| are the lengths of the sides, and
|z| the length of the hypotenuse, of a right triangle. (We allow degenerate triangles with a “side” of
length zero.) It is well-known that every such triple is proportional to

(x, y, z) = (m2 − n2, 2mn,m2 + n2) (6.1)

for some integers m,n. Equivalently (dividing by n2 to obtain polynomials in the single rational
variable t = m/n), the solution (x, y, z) is proportional to (t2 − 1, 2t, t2 + 1) for some t ∈ Q, or to
(1, 0, 1) which arises for “t = ∞” (corresponding to (m,n) = (1, 0)). That is, all Pythagorean triples
are accounted for by the single polynomial identity

(t2 − 1)2 + (2t)2 = (t2 + 1). (6.2)

†Noam D. Elkies earned his doctorate in mathematics in 1987 at Harvard, where his advisors where Professors Barry Mazur
and Benedict H. Gross. After three years in Harvard’s Society of Fellows he joined the Mathematics faculty and has remained at
Harvard since. Most of his research is in number theory, usually Diophantine geometry (the combination of algebraic geometry
and Diophantine equations) and/or computational number theory. Other interests include some combinatorial mathematics (lat-
tices and codes, incidence geometry, and combinatorial games) and, outside of mathematics, classical music (mostly composition
and piano) and chess (usually chess problems and endgames).

‡Supported in part by NSF grant DMS-0501029.
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This classical fact can be profitably approached from many points of view.1 In one familiar approach,
illustrating an important method in algebraic geometry, we first divide by z2 to obtain the equivalent
(x/z)2 + (y/z)2 = 1, so we now seek rational solutions of X2 + Y 2 = 1, or geometrically a rational
point (a point with both coordinates rational) on the unit circle. Note that two nonzero solutions
(x : y : z) in integers yield the same solution (X,Y ) in rationals if and only if they are proportional,
so that by going from x2 + y2 = z2 to X2 + Y 2 = 1 we have automatically identified proportional
Pythagorean triples (corresponding to similar right triangles). The unit vector (1, 0) is an obvious
rational point on the circle. This point yields only a degenerate Pythagorean triple, but we can use it to
find any other rational point (X,Y ) using the straight line through (X,Y ) and (1, 0). The general such
line is Y = −t(X − 1), where the slope −t must be rational if X and Y are. (We choose −t rather
than t for consistency with equation (6.2).) Substituting −t(X − 1) for Y in X2 + Y 2 = 1 we get the
quadratic equation X2 + t2(X − 1)2 = 1, one of whose solutions must be X = 1. The other solution
is then the root of

X2 + t2(X − 1)2 − 1
X − 1

= (t2 + 1)X − (t2 − 1),

that is, X = (t2−1)/(t2 +1). Then Y = −t(X−1) = 2t/(t2 +1), so we have recovered the rational
point corresponding to the solution (t2 − 1, 2t, t2 + 1) of x2 + y2 = z2. See Figure 1, which shows
this construction for t = 2.

This procedure readily generalizes: instead of X2 +Y 2− 1 we can use any irreducible polynomial
P (X,Y ) of degree 2, and instead of the initial point (1, 0) we can use any rational solution (X0, Y0)
of P (X,Y ) = 0; the lines through (X0, Y0) not tangent to the curve P (X,Y ) = 0 at that point then
parametrize all other rational points on the curve. [Try X2 + Y 2 = 2 and X0 = Y0 = 1. What goes
wrong if we attempt this for P (X,Y ) = X2 +Y 2 andX0 = Y0 = 0? Note thatX2 +Y 2 is irreducible
over the rationals, but not over C where it factors as (X+ iY )(X− iY ).] The technique even works in
some settings beyond plane curves of degree 2, including notably degree-3 plane curves with a double
point; see Figure 2 for the example of the double point (0, 0) on the curve (X + Y )3 = XY . In
our special case of X2 + Y 2 = 1 and (X0, Y0) = (1, 0) we can make yet another connection: if
(X,Y ) = (cos θ, sin θ) then our line Y = −t(X − 1) makes an angle of θ/2 with the vertical. This
can be seen by elementary plane geometry for 0 < θ < π, starting from the fact that (0, 0), (1, 0)
and (X,Y ) are vertices of an isosceles triangle (this too is shown in Figure 1); in general one must
remember that θ is defined only up to integer multiples of 2π. In any case, this gives t = cot(θ/2),
so our parametrization is equivalent to the trigonometric half-angle formulas that give cot(θ/2) as a
rational function of (sin θ, cos θ) and vice versa:

cot
θ

2
=

sin θ
1− cos θ

; cos θ =
cot2(θ/2)− 1
cot2(θ/2) + 1

, sin θ =
2 cot(θ/2)

cot2(θ/2) + 1
. (6.3)

These formulas reappear in integral calculus in the guise of the universal substitution that con-
verts

∫
f(sin θ, cos θ) dθ (where f is any rational function) into

∫
F (t) dt for some rational function

F ∈ R(t), which can then be expanded in partial fractions to obtain an elementary antiderivative.
Equivalently this lets us integrate any rational function of X and

√
1−X2 with respect to X , and the

generalization to quadratic P (X,Y ) = 0 lets us replace
√

1−X2 by the square root of any quadratic
polynomial.

1Besides the algebro-geometric method we follow, at least four others come to mind, which suggest various perspectives
on and generalizations of the result. The most elementary may be to begin with the trigonometric identities (6.3), or with an
equivalent geometric calculation with isosceles and right triangles. An elementary derivation from unique factorization in Z is
obtained by removing common factors from (x, y, z), switching x, y if necessary to make x odd, and using the factorization
x2 = z2 − y2 = (z − y)(z + y) and the fact that gcd(z − y, z + y) = 1 to write z ± y = (m ± n)2 for some
coprime integers m, n. See for instance [IR, p.23, Exercise 12]. Alternatively, factor z2 = (x + iy)(x − iy) in the ring
Z[i] of Gaussian integers, and use unique factorization in Z[i]; this explains why x and y are the real and imaginary parts of
(m + in)2. Finally, for X, Y ∈ Q we have X2 + Y 2 = 1 if and only if the element X + iY of Q(i) has norm 1, which by
Hilbert’s Theorem 90 is equivalent to X + iY = w/w for some nonzero w ∈ Q(i). Taking t = Re(w)/ Im(w) we recover
X + iY = (t2 − 1 + 2it)/(t2 + 1). See [Ta].
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Figure 1: X2 + Y 2 = 1
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Figure 2: (X + Y )3 = XY

But we have digressed from our main plot, to which we now return by looking at x2 + y2 = z2

and the parametrization (6.1) or (6.2) from another point of view. We ask: How many solutions does
the Diophantine equation x2 + y2 = z2 have in integer triples (x, y, z)? Our parametrizations provide
infinitely many (x, y, z) even when we identify proportional solutions, but we can still ask how common
these solutions are. To make this vague question more precise, for all N > 0 define C(N) to be
the number of solutions of x2 + y2 = z2 in integers such that x2, y2, z2 are relatively prime and of
absolute value at most N . (We give the condition on x, y, z in this form because of the way we intend
to generalize it to other Diophantine equations, though of course for x2 + y2 = z2 the absolute value
condition is equivalent to the single inequality z2 ≤ N .) Then the existence of infinitely many non-
proportional Pythagorean triples is equivalent to the fact that C(N) → ∞ as N → ∞, and we ask:
How quickly does C(N) grow?

Using either of the forms (6.1) and (6.2) of our parametrization of Pythagorean triples we see that
C(N) should grow as some multiple of N1/2. For instance, (6.1) gives points (m,n) in the circle
m2 + n2 ≤ N1/2, whose number is asymptotic to the area πN1/2 of the circle. This is not quite
right because we must count only relatively prime (m,n), and if both m and n are odd then we must
remove a common factor of 2; but each of these corrections changes the asymptotic formula only by a
constant factor. As it happens this factor is 2/(3ζ(2)) = 4/π2, making C(N) ∼ (4/π)N1/2. But it is
the exponent 1/2 that concerns us here, and we could have guessed this exponent much more easily as
follows. Let A = x2, B = y2, and C = z2. Then

A+B = C,

and the number of solutions of A + B = C in relatively prime integers in [−N,N ] is asymptotically
proportional to N2. Of the 2N + 1 integers in [−N,N ], approximately N1/2 are squares (and all but
one are squares in two different ways, but this will not affect the exponent of N , only the coefficient
of that power). So, if we pick A,B,C independently and uniformly at random from the integers in
[−N,N ], the probability that all three will be squares is asymptotically proportional to N−3/2. While
we actually choose A,B,C not at random but subject to A+B = C, it seems a reasonable guess that
the fraction of such (A,B,C) all of which are squares is still roughly N−3/2, giving a total of roughly
N2− 3

2 = N1/2 such triples in that range.
If you think this seems suspiciously easy, you are right: we are only guessing the correct answer

(up to a constant factor), not proving it. This kind of heuristic is quite naı̈ve, and can easily fail.
For instance, for the equations x2 + y2 + z2 = 0 or x2 + y2 = 3z2 we might similarly expect the
number of solutions with all three terms in [−N,N ] to grow at the same N1/2 rate. But neither of
these equations has any solution other than the trivial (0, 0, 0): the first obviously so, because the terms
x2, y2, z2 are all nonnegative; and the second because after removing common factors from (x, y, z)
we get a contradiction mod 3.2 In the other direction, the heuristic might grossly underestimate the

2In fact these two obstructions are more similar than they might seem: x2 + y2 + z2 = 0 has no nontrivial solution in the
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number of solutions. Consider for example solutions in relatively prime integers of (x + y)3 = xyz
(the homogeneous form of the curve (X + Y )3 = XY shown in Figure 2). We might expect very
few solutions, on the grounds that there are about 8H3 triples (x, y, z) of integers in [−H,H], and
in that range (x + y)3 − xyz can be as large as a multiple of H3, so should vanish with probability
only c/H3 for some c > 0, leaving a constant expected number of solutions no matter how large H
is. Somewhat more reasonably, we could start with the number of solutions in max(|x|, |y|, |z|) ∈
(2h−1, 2h] and then sum over h ≤ log2H; but even then we would guess that the number of solutions
with max(|x|, |y|, |z|) ≤ H grows only logarithmically. But in fact the rational parametrization by
lines through the origin shows that the correct order of growth is H2/3. Here the failure of the naı̈ve
heuristic can be attributed to the singularity of our curve at the origin. In higher dimensions, examples
are known where our heuristic fails for other, subtler reasons.

Still, such failures are not surprising. What is remarkable is how often such a naı̈ve heuristic gives
the correct answer when this answer can be established, and an answer consistent with or close to the
predictions of more refined conjectures and heuristics when the correct answer is not known but the
problem fits into a suitable mathematical framework. In the next few sections we illustrate this by
successively generalizing the problem of solving x2 + y2 = z2 until we reach the ABC conjecture.

6.2 Fermat’s “Last Theorem” (FLT): xn + yn = zn

Of the many fruitful generalizations of x2 + y2 = z2, one of the most natural and by far the best
known is the Fermat equation xn + yn = zn for n ≥ 2. Again we seek solutions in nonzero integers,
or equivalently solutions of Xn + Y n = 1 in rational numbers X = x/z, Y = y/z. The locus of
Xn+Y n = 1 is known as the n-th Fermat curve; Figures 3 and 4 show part of the real locus for n = 3
and the entire real locus for n = 4, and are typical of the visual appearance (albeit not necessarily of
the arithmetic or algebraic geometry) of Fermat curves with n ≥ 3 odd or even respectively.
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Figure 3: X3 + Y 3 = 1
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Figure 4: X4 + Y 4 = 1

Fermat’s “Last Theorem” (FLT) is the assertion, recorded by Fermat in 1637 and proved by him at
least for n = 4, that for n ≥ 3 there are no solutions of xn + yn = zn in nonzero integers; equivalently,

real field R, and x2 + y2 = 3z2 has no nontrivial solution in the field Q3 of 3-adic numbers. Since we live in the real world
rather than the 3-adic world, the former obstruction is more intuitive to us, but both R and Q3 (and more generally Qp for any
prime p) are completions of Q with respect to the corresponding valuations on Q, and decades of experience have shown the
advantage of regarding the real and p-adic valuations of Q on as equal a footing as possible.

At this point we cannot resist another digression. Both x2 + y2 + z2 = 0 and x2 + y2 = 3z2 are obstructed not just over R
and Q3 respectively, but also over Q2. It turns out that for any irreducible homogeneous quadratic P (x, y, z) there are at most
finitely many completions of Q in which there are no nonzero solutions of P (x, y, z) = 0, and that the number — call it ν — of
such completions (either real or p-adic) is always even; this is equivalent to Quadratic Reciprocity. Conversely, any finite subset
of {R, Q2, Q3, Q5, Q7, . . .} of even size can arise this way, a fact that ultimately amounts to the determination of the 2-torsion
of the Brauer group of Q. Finally, if ν = 0 then P (x, y, z) = 0 does in fact have nontrivial rational solutions; that is, the Hasse
principle holds for homogeneous quadratics in three variables over Q.
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that the n-th Fermat curve has no rational points other than (±1, 0) and (0,±1) (with minus signs
allowed only when n is even). Why should n ≥ 3 behave so differently from n = 2? Let us consult our
heuristic for estimating the expected number of solutions of xn+yn = zn with max(|xn|, |yn|, |zn|) ∈
(N/2, N ]. (Every solution (x, y, z) will satisfy this condition with N = 2h for a unique nonnegative
integer h.) As before we write (A,B,C) = (xn, yn, zn), and observe that A + B = C, and that
the number of triples (A,B,C) of integers with A + B = C and max(|A|, |B|, |C|) ∈ (N/2, N ]
is asymptotically proportional to N2. But now we want each of them to be not a square but an n-th
power for some n ≥ 3, and n-th powers get rarer as n increases. Indeed the number of n-th powers in
[−N,N ] grows only as N1/n, so the probability that three integers A,B,C chosen independently and
uniformly at random in that range are all n-th powers is asymptotically proportional to N3((1/n)−1).
We thus expect roughly N2+3((1/n)−1) = N (3−n)/n such triples with A + B = C. The exponent
(3 − n)/n is positive, zero, or negative according as n < 3, n = 3, or n > 3. Taking N = 2h

and summing over h, we thus expect the solutions to be plentiful for n < 3 (the number of solutions
up to N growing as a positive power of N ), sparse for n = 3, and finite in number for n > 3. The
same should be true of primitive3 integral solutions of A0x

n + B0y
n = C0z

n for any fixed choice of
A0, B0, C0, corresponding to rational points on the curve A0X

n +B0Y
n = C0.

It turns out that each of these predictions is essentially correct. For n = 1 the result is almost trivial.
For n = 2 we saw that, once the curve A0X

2 +B0Y
2 = C0 has a rational point P , the lines through P

yield the expected plenty of rational points on the curve. For n ≥ 3 we must appeal to more advanced
and recent results on Diophantine equations. When n = 3, the curve E : A0X

3 + B0Y
3 = C0

is a nonsingular cubic plane curve, and thus an elliptic curve assuming it has a rational point P .4

Here it is not so easy to get new rational points, because a typical line through P meets E at two
more points, which in general are not rational. To obtain a new rational point we must use the line
joining two rational points on E, or tangent to one rational point. This is shown in Figure 5 for
the curve with (A0, B0, C0) = (1, 1, 91): the line through the rational points5 (3, 4) and (6,−5)
meets E again at (9/2,−1/2), and the tangent at (6,−5) meets E again at (−204/341, 1535/341).
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Figure 5: some rational points on X3 + Y 3 = 91

3An integer solution (x, y, z) of a homogeneous polynomial equation p(x, y, z) = 0 is said to be primitive if gcd(x, y, z) =
1. Every integer solution other than (0, 0, 0) can be written uniquely as (kx, ky, kz) for some primitive solution (x, y, z) and
some positive integer k.

4It is known that in characteristic zero such a curve is always isomorphic to one of the more familiar form Y 2 = P3(X) for
some polynomial P3 with distinct roots. See [Si1, Chapter III, §3] for such isomorphisms, and [Si1, Chapter III, §1] for standard
formulas for elliptic curves.

5The value C0 = 91 was chosen so that our curve has two simple rational points (3, 4) and (6,−5). This required a simple
but nontrivial solution of X3 + Y 3 = X′3 + Y ′3. It would have been nice to use the famous “Ramanujan taxicab” example
C0 = 1729 = 13 + 123 = 93 + 103; but this would make it hard to draw a clear and accurate Figure 5, because (1, 12) is
too close to an inflection point of E and (10, 9) too close to the middle of the curve. Our example with (3, 4) and (6,−5) relies
instead on another famous identity 33 + 43 + 53 = 63, which is tantalizingly reminiscent of 32 + 42 = 52 but alas does not
generalize further:

Pn+2
m=3 mn 6= (n + 3)n once n > 3.
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By drawing more lines and tangents we can generate infinitely many rational points on X3 +Y 3 = 91,
and it can be shown that every rational point can be obtained this way. As one might guess from the
case of (−204/341, 1535/341), the resulting primitive solutions of x3 + y3 = 91z3 grow rapidly, and
it turns out that the number of primitive solutions with all variables in [−N,N ] is asymptotic only to
R logN for some R > 0. There are similar results for any elliptic curve E. By a famous theorem of
Mordell [Mo] there is a finite list of rational points onE from which all other points can be recovered by
repeatedly drawing chords and tangents through points already known or constructed. More precisely,
Mordell uses the chords-and-tangents construction to give the set E(Q) of rational points on E the
structure of an abelian group,6 and proves that this group is finitely generated. It then follows from
the Néron-Tate theory of canonical heights that the number of rational points (x/z, y/z) with each of
x, y, z in [−N,N ] is asymptotic to R(logN)ρ/2, where ρ is the rank of the abelian group E(Q) and R
is a positive constant depending on E. The curve has finitely many rational points if and only if ρ = 0.
It is known that this happens for the cubic Fermat curve X3 + Y 3 = 1, whose only rational points are
the obvious (1, 0), (0, 1), and the point at infinity (X : Y : 1) = (1 : −1 : 0).

Finally, for n > 3 the curve A0X
n + B0Y

n = C0 is a smooth plane curve of degree at least 4.
Mordell conjectured that (as our heuristics suggest) every such curve has only finitely many rational
points.

At any rate there is no longer a general method for constructing new points out of known ones; even
the line through two known points, or tangent to one known point, meets the curve in n−2 more points
(allowing points with complex coordinates), and those points need not be rational once n− 2 > 1. For
example, the line X + Y = 1 through the rational points (X,Y ) = (0, 1) and (1, 0) on the Fermat
quartic X4 + Y 4 = 1 meets the curve again in a pair of Galois-conjugate points, each defined only
over Q(

√
−7), namely

(
1
2 (1±

√
−7), 1

2 (1∓
√
−7)

)
. More generally, Mordell conjectured that any

algebraic curve of genus at least 2 has only finitely many rational points. (The genus of a curve is
a measure of its complexity7; an irreducible plane curve of degree d has genus (d − 1)(d − 2)/2 at
most, with equality if and only if the curve is smooth; an elliptic curve has genus 1, and rationally
parametrized curves have genus 0.) Mordell’s conjecture was finally proved by Faltings, who gave two
entirely different proofs [F1, F2]. Like Mordell’s proof of the finite generation of E(Q) for an elliptic
curve E, both of Faltings’ proofs are “ineffective”: Mordell’s proof yields an upper bound on the rank,
and either of Faltings’ proofs yields an upper bound on the number of rational points, but in general
there may be no way to find a list of points and prove that it accounts for all the rational points on
the curve. While much more is known now than at the time of Mordell’s or even Faltings’ proof, the
general problems of making those theorems effective remain open.

A final note on Mordell’s and Faltings’ theorems: while they share the mystery of ineffectivity, the
proofs are of quite a different flavor. Mordell’s proof for elliptic curves can be traced back to Fermat’s
proof of the case n = 4 of FLT (showing in effect that the elliptic curves Y 2 = X4 ± 1 associated
to the Diophantine equations x4 ± y4 = z2 have rank zero), and can be regarded as the culmination of
Fermat’s work in this direction. On the other hand, Faltings’ proofs, together with the proof of FLT
by Wiles and Taylor [Wil, TW], depend heavily on some of the most abstract and difficult results and
techniques of late twentieth-century number theory; it would take an expository paper at least as long
as this one to even give a sense of these methods to a reader not already acquainted with them.

6.3 The Darmon-Granville theorem: xp + yq = zr

Another natural way to generalize the Fermat equation is to allow different exponents, changing xn +
yn = zn to xp + yq = zr. Here p, q, r are fixed positive integers that are not necessarily equal, and
x, y, z are integer unknowns. Solving this equation is equivalent to solving A + B = C under the

6While the chord-and-tangent method has been known at least since the time of Fermat, the construction of an abelian group
law from it is not obvious. See [Si1, Chapter III, §2] for the details.

7At this point it is almost obligatory for an expository paper to cite the fact that an algebraic curve of genus g is one whose
graph over C is an orientable surface with g holes; if nothing else, that is one indication that g measures the curve’s complexity.
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condition that A be a p-th power, B be a q-th power, and C be a r-th power. The Fermat equation with
exponent n is the special case p = q = r = n. Applying our heuristic to general (x, y, z), we find that
if A,B,C are random integers with max(|A|, |B|, |C|) ∈ (N/2, N ] then they are respectively p-th,
q-th, and r-th powers with probability asymptotically proportional to N ((1/p)−1)+((1/q)−1)+((1/r)−1),
and thus that of the roughly N2 solutions of A+B = C in that range we might expect about

N ((1/p)−1)+((1/q)−1)+((1/r)−1)N2 = N ((1/p)+(1/q)+(1/r)−1)

to yield solutions of xp + yq = zr. As before, the same analysis applies (to the extent we believe it) to
the equation

A0x
p +B0y

q = C0z
r (6.4)

for fixed nonzero A0, B0, C0. This leads us to introduce

δ = δ(p, q, r) := 1− 1
p
− 1
q
− 1
r
. (6.5)

Our expected number of solutions with max(|A|, |B|, |C|) ∈ (N/2, N ] is now roughly N−δ , and as
before we vary N and expect the solutions to be plentiful, sparse, or bounded according as δ < 0,
δ = 0, or δ > 0. The corresponding values of (p, q, r) are as follows.

Exercise 6.3.1. We have δ(p, q, r) < 0 if and only if one of the following conditions holds: the
smallest of p, q, r equals 1; the two smallest of p, q, r both equal 2; or (p, q, r) is a permutation of
(2, 3, 3), (2, 3, 4), or (2, 3, 5). In this case, if min(p, q, r) = 2 then 1/δ is a negative integer. We
have δ(p, q, r) = 0 if and only if (p, q, r) is a permutation of (3, 3, 3), (2, 4, 4), or (2, 3, 6). Otherwise
δ(p, q, r) ≥ 1/42, with equality if and only if (p, q, r) is a permutation of (2, 3, 7).

The new borderline cases (2, 4, 4) and (2, 3, 6) again yield elliptic curves, with equations Y 2 =
X4 ± 1 and Y 2 = X3 ± 1 in the simplest case A0 = B0 = C0 = 1. It so happens that again each
of these elliptic curves has rank zero, and thus only finitely many rational points. For Y 2 = X4 ± 1
the only rational points not at infinity are obvious ones with XY = 0; this is equivalent to Fermat’s
result that there are no solutions of x4 ± y4 = z2 in nonzero integers. For Y 2 = X3 ± 1 there is one
additional solution8 32 = 23 + 1, giving rise to a single set of equivalent solutions of x2 + y3 = z6

in nonzero integers, namely (x, y) = (3z3,−2z2) for nonzero z ∈ Z. For general A0, B0, C0 there
may be infinitely many such equivalence classes, but again their minimal representatives will be quite
sparse, with the number of representatives in the range max(|A|, |B|, |C|) ≤ N growing only as a
multiple of (log(N)ρ/2) (where as before ρ is the rank of the corresponding elliptic curve).

But for general p, q, r our prediction can be very wide of the mark: there are cases where δ > 0 but
solutions are plentiful. For example, the equation x3 + y4 = z5 has the solution

(x, y, z) = (209952, 11664, 1944) = (2538, 2436, 2335), (6.6)

with (A,B,C) proportional to (1, 2, 3) — and indeed every integer solution of A+B = C is propor-
tional to (x3, y4, z5) for some (and thus for infinitely many) integer triples (x, y, z). More generally
we have:

Exercise 6.3.2. Suppose the natural numbers p, q, r are pairwise relatively prime, and A0, B0, C0 are
any nonzero integers. Then every integer solution ofA+B = C is proportional to (A0x

p, B0y
q, C0z

r)
for some (and thus for infinitely many) integer triples (x, y, z), and given the initial A,B,C (not all
zero) the number of such (x, y, z) with max(|A0x

p|, |B0y
q|, |C0z

r|) ≤ N is asymptotically propor-
tional to N1/(pqr) as N → ∞. Moreover there are triples (p, q, r) of relatively prime numbers for
which δ is arbitrarily close to 1.

8The elliptic curve Y 2 = X3 + 1 still has rank zero, but with six rational points: one at infinity, one with X = −1, and two
each with X = 0 and X = 2. The reader can check that no further points are obtained by intersecting the curve with the tangent
line at any of these points, or the line through any two of them. For instance, (X, Y ) = (2, 3) is the third point of intersection
of Y 2 = X3 + 1 with the line Y = X + 1 through the obvious points (−1, 0) and (0, 1).
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The exponent 1/(pqr), though usually small, is positive for all p, q, r; hence if p, q, r are pairwise
relatively prime our equation A0x

p + B0y
q = C0z

r has “plentiful solutions” by our standards, even
when the value of δ is almost as positive as it can be. This seems to utterly demolish our heuristic,
which suggests that when δ > 0 there should be only finitely many solutions, and moreover that this
tendency should be more pronounced the larger δ gets. But even in favorable cases like the “twisted
Fermat curves” A0x

n + B0y
n = C0z

n our heuristic holds only for primitive solutions, those with
x, y, z pairwise relatively prime. Indeed we should not expect the heuristic to hold when x and y have
a large common factor, say d, because then A = A0x

n and B = B0y
n are both multiples of dn,

which makes A + B much likelier to be of the form C0z
n than a random number of the same size.

Our construction of plentiful solutions such as (6.6) likewise exploits large common factors. We thus
restrict attention to solutions with (A,B,C) = (A0x

p, B0y
q, C0z

r) relatively prime.9,10 In this case
our heuristic agrees precisely with the remarkable theorem of Darmon and Granville (1995):

Theorem 1. [DG]: Let p, q, r be natural numbers such that δ(p, q, r) > 0, and let A0, B0, C0 be
any nonzero integers. Then there are finitely many triples (x, y, z) of integers with gcd(x, y, z) = 1
satisfying the equation (6.4).

As with FLT and Faltings’ theorem, the proof is alas much too advanced for us to be able to even
outline the main ingredients here — though we do note that one key step is an application of Faltings’
theorem itself!

Exercise 6.3.3. The Darmon-Granville theorem may seem a bit stronger than what we suggested, be-
cause (A,B,C) might still have a common factor coming from the coefficients A0, B0, C0. But given
those coefficients there are only finitely many possible values of d := gcd(A,B,C). Use this to show
that there are also only finitely many equations A1x

p
1 + B1y

q
1 = C1z

r
1 whose integer solutions satis-

fying gcd(A1x
p
1, B1y

q
1, C1z

r
1) = 1 account for all solutions of (6.4) with gcd(x, y, z) = 1. Therefore

if we knew Darmon-Granville only under the more restrictive hypothesis that A0x
p, B0y

q, C0z
r be

relatively prime, we could deduce the result in the form quoted above.

Seeing that the Darmon-Granville theorem for equation (6.4) generalizes Faltings’ finiteness result
for the case p = q = r of twisted Fermat curves, can we also generalize FLT to the special case A0 =
B0 = C0 = 1 of (6.4), finding all solutions of xp + yq = zr with δ(p, q, r) > 0 and gcd(x, y, z) = 1?
Our heuristic analysis suggests that there should be only finitely many such triples (xp, yq, zr), but we
have no reason to expect that there should be none at all — and we would not be surprised if some of
them are quite large, especially for those choices of (p, q, r) that make δ positive but small. Note that
the Darmon-Granville theorem gives finiteness for any particular choice of (p, q, r) but (like Faltings’
theorem vis-a-vis FLT) leaves open the possibility of infinitely many solutions with (p, q, r) varying as
well.

The full answer is still beyond reach, so we report on the known partial results and conjectures.
The simplest example is the identity 1 + 8 = 9 already noted in connection with (p, q, r) = (2, 3, 6);
it yields a solution 1r + 23 = 32 for all r, satisfying δ(2, 3, r) > 0 for all r > 6. Computer searches
reveal 9 more solutions: 132 + 73 = 29 with δ(2, 3, 9) = 1/18; two solutions

25 + 72 = 34, 35 + 114 = 1222 (6.7)

with {p, q, r} = {2, 4, 5} and δ = 1/20; two solutions

338 + 15490342 = 156133, 438 + 962223 = 300429072 (6.8)

9We need not specify pairwise relatively prime, because the relation A + B = C forces any factor of two of A, B, C to
divide the third.

10The failure of our naı̈ve heuristic when A, B, C can have large common factors is related to the failure we noted earlier for
a singular cubic curve. Here the surface A0xp + B0yq = C0zr is highly singular at the origin, and a solution with A, B, C all
divisible by a high power of p yields a point (x, y, z) on that surface that is close to that singularity in the p-adic metric.
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with {p, q, r} = {2, 3, 8} and δ = 1/24; and four solutions

27 + 173 = 712, 177 + 762713 = 210639282,
(6.9)

14143 + 22134592 = 657, 92623 + 153122832 = 1137

with {p, q, r} = {2, 3, 7} and the minimal δ value of 1/42. These computations are reported in [DG],
with the discovery of the five large solutions credited to Beukers and Zagier. This list is conjectured to
be complete, based both on further computer searches that revealed no other solutions and on various
partial results that prove special cases of the conjecture. In particular it would follow from this con-
jecture (plus FLT for n = 3) that xp + yq = zr has no solution in integers p, q, r ≥ 3 and relatively
prime integers x, y, z; this is the Tijdeman-Zagier conjecture, for whose solution Andrew Beal offers
a $50,000 prize [Mau].

The most recent of the partial results in the direction of the conjecture that there are no further
solutions with δ(p, q, r) > 0 is [PSS], a tour de force proving that there are no further solutions for
{p, q, r} = {2, 3, 7}. This paper also gives an extensive list (Table 1 at the end of the Introduction) of
triples (p, q, r) for which the corresponding result had been proved earlier, including the triples with
{p, q, r} = {2, 4, 5} and {2, 3, 8} seen in the other known solutions (6.7, 6.8). Another special case
is Catalan’s conjecture that 8 and 9 are the only consecutive powers of integers, recently proved by
Mihăilescu [Mi]; this shows that there are no other solutions with x = 1. The proofs of these partial
results call on a vast range of number-theoretical techniques, including classical methods of elementary,
algebraic, and analytic number theory, Galois representations and modularity as in the proof of FLT,
and algebraic geometry of curves. This huge theoretical arsenal is complemented by sophisticated
computational and algorithmic tools that are often essential for carrying out algebraic manipulations or
for completing a proof that has been reduced to a finite but nontrivial calculation.

What about δ(p, q, r) < 0, when we expect that the number of relatively prime solutions of (6.4)
with max(|A|, |B|, |C|) ≤ N can grow as a multiple ofN−δ asN →∞? We easily dispose of the case
where at least one of p, q, r is 1, when we can simply solve (6.4) for the corresponding variable x, y,
or z in terms of the other two. So we assume that each of p, q, r is at least 2. In Exercise 6.3.1, we saw
that then −δ = 1/d for some integer d > 0. There are choices of the coefficients A0, B0, C0 for which
(6.4) has no solutions at all — we already saw the examples x2 + y2 + z2 = 0 and x2 + y2 = 3z2

with p = q = r = 2. But if we assume that there is at least one solution of (6.4) in relatively prime
integers then Beukers showed [Beu] that the N1/d guess is correct. Moreover, for each A0, B0, C0

there are finitely many polynomial identities in degree 2d that together account for all the relatively
prime solutions, in the same way that the single identity (6.2) accounts for all Pythagorean triples. (In
fact the Pythagorean parametrization illustrates the special case A0 = B0 = C0 = 1, p = q = r = 2
of Beukers’ result; note that here δ = −1/2 and both sides of the identity are polynomials of degree 4.)

Unlike the Faltings and Darmon-Granville finiteness results, Beukers’ is effective: at least in prin-
ciple one can find all the parametrizations by carrying out a computation whose length is bounded
by an explicit function of p, q, r, A0, B0, C0. Doing this in practice still requires some work. For the
three exceptional cases where only one of p, q, r equals 2, this work was recently completed by Ed-
wards [Ed]. In particular he gave for the first time the complete solution for {p, q, r} = {2, 3, 5} in the
case A0 = B0 = C0 = 1. There are 27 inequivalent identities, of which the simplest (which Beukers
had already obtained) is X(t)2 + Y (t)3 = Z(t)5 where

X(t) = (t10 + 124) (t20 − 122522 t15 − 12410006 t10 + 126522 t5 + 128),
Y (t) = −t20 − 122228 t15 − 124494 t10 + 126228 t5 − 128, (6.10)
Z(t) = 12(−t11 + 12211 t6 + 124 t).

For any m,n ∈ Z we recover an integer solution of x2 + y3 = z5 by taking x = n30X(m/n),
y = n20Y (m/n), and z = n12Z(m/n), and these x, y, z are relatively prime if and only if

gcd(m, 6n) = 1 and m 6≡ 2n mod 5. (6.11)
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For example, m = n = 1 yields 369347901658572 + 2405462393 = 2678285. To make it such
that max(|x2|, |y3|, |z5|) less than N it is enough to make both |m| and |n| less than some multiple
of N1/60; the number of such (m,n) satisfying (6.11) is asymptotically proportional to N1/30 =
N−δ(2,3,5) as expected.

We conclude this section with another scenic detour: a view of two surprisingly pertinent alternative
descriptions of the triples (p, q, r) of integers greater than 1 for which δ(p, q, r) < 0. First, p, q, r satisfy
this condition if and only if there exists a spherical triangle ∆ with angles π/p, π/q, π/r on the unit
sphere Σ, in which case the triangle has area π · (−δ). Second, we have δ(p, q, r) < 0 if and only if the
group Γ = Γp,q,r with the presentation

Γp,q,r := 〈α, β, γ | αp = βq = γr = αβγ = 1〉 (6.12)

is finite, in which case it has 2d elements, where d = −1/δ as before. The first equivalence follows
from the well-known fact that the sum of the angles of ∆ exceeds π by an amount equal to the area
of ∆. In this case we can take the generators α, β, γ of Γ to be rotations about the vertices of ∆
through angles 2π/p, 2π/q, 2π/r, or equivalently the products of pairs of reflections in the edges of ∆.
If we identify Σ with the Riemann sphere CP1 and let t be a complex coordinate on Σ then Γ becomes a
finite group of automorphisms of CP1, which is to say a finite group of fractional linear transformations
t 7→ (at+ b)/(a′t+ b′). Then for each of our identities X(t)p+Y (t)q = Z(t)r in degree 2d the ratios
Xp/Zr, Y q/Zr, etc. are invariant under Γ for a suitable choice of spherical triangle ∆! Moreover, by
Galois theory any such ratio T actually generates the field of Γ-invariant rational functions of t; that
is, C(T ) = (C(t))Γ. For example, when p = q = r = 2 our Pythagorean parametrization (6.2) yields
functions such as (t2 − 1)2/(2t)2 and (t2 + 1)2/(2t)2 invariant under the 4-element group isomorphic
with Γ2,2,2 and generated by t↔ −t and t↔ 1/t. For (p, q, r) = (2, 3, 5), we have Γ ∼= A5, the group
of rotational symmetries of a regular icosahedron inscribed in Σ, and the roots of the polynomials11

X,Y, Z of (6.10) are precisely the 30 edge centers, 20 face centers, and 12 vertices of that icosahedron!
When δ(p, q, r) = 0 or δ(p, q, r) > 0 the triangle ∆ is respectively planar or hyperbolic rather

than spherical, and the group Γ = Γp,q,r generated by pairs of reflections in its edges is no longer
finite. But Γ is still intimately connected with xp + yq = zr via automorphisms of Riemann surfaces.
When δ(p, q, r) = 0, we can regard Γ as a group of affine linear transformations t 7→ at + b of C; its
finite-index subgroup of translations (with a = 1) is then a lattice, and the quotient of C by this lattice
is the elliptic curve we obtained from xp + yq = zr. When δ = δ(p, q, r) is positive, ∆ is a hyperbolic
triangle of area πδ and Γ is a discrete group of isometries of the hyperbolic plane H; the quotient H/Γ
can be identified with CP1 via a Γ-invariant meromorphic function on H analogous to the functions T
of the previous paragraph, and quotients of H by subgroups of finite index in Γ yield finite extensions
of C(T ) that are used in the proof of the Darmon-Granville theorem and in the solution of some special
cases such as x2 + y3 = z7.

6.4 The ABC conjecture: A + B = C

Masser and Oesterlé noted that a solution of the Fermat equation, or of a natural generalization such
as the equation (6.4) addressed by Darmon and Granville, yields relatively prime numbers A,B,C
(such as xn, yn, zn for a primitive Fermat solution) such that A + B = C and each of A,B,C has
many repeated prime factors. This inspired them to guess a vastly more general constraint on repeated
prime factors in A,B,A + B for coprime integers A,B, and to formulate a precise conjecture on
the nature of this constraint, now known as the ABC conjecture. This conjecture is stated in terms
of an arithmetic function called (for reasons whose explanation would take us too far afield here) the
“conductor”, defined as follows:

11Note that X, Y, Z are regarded as homogeneous polynomials of degrees 30, 20, and 12 respectively, so we count t = ∞
among the roots of Z. The other roots of Z are 0 and the ten values of %φ where φ is (1 ±

√
5)/2 (the golden ratio or its

algebraic conjugate) and % is one of the five fifth roots of 122 in C.
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Definition 2. The conductor N(D) of a nonzero integer D is the product of the (positive) primes
dividing D, counted without multiplicity. Equivalently, N(D) is the largest squarefree factor of N .

Example 6.4.1. N(D1D2) ≤ N(D1)N(D2) for all nonzero integersD1, D2, with equality if and only
if they are relatively prime; N(Dn) = N(D) for all nonzero integers D and n ≥ 1. The following
brief table gives N(D) for 24 ≤ D ≤ 32:

D 24 25 26 27 28 29 30 31 32
N(D) 6 5 26 3 14 29 30 31 2

The size of the integer |D|/N(D) should be regarded a measure of how farD is from being squarefree,
that is, of how rich D is in repeated prime factors.

Conjecture 3. (Masser-Oesterlé [Oe]): For every real ε > 0 there exists cε > 0 such that

N(ABC) > cεC
1−ε (6.13)

holds for all relatively prime natural numbers A,B,C such that A + B = C; equivalently, for every
real ε > 0 there exists cε > 0 such that

N(ABC) > cε max(|A|, |B|, |C|)1−ε (6.14)

holds for all relatively prime integers A,B,C such that ±A±B ± C = 0.

The equivalence is elementary, and the more symmetrical form ±A±B ± C = 0 will let us avoid
repeating some arguments twice or thrice according to the signs of A,B,C.

In the following exercises, we detail how the ABC conjecture implies “asymptotic FLT” (that is,
FLT for sufficiently large n) as well as its generalizations by Darmon-Granville and Tijdeman-Zagier,
and then give an equivalent formulation in terms of the “ABC exponent”, and explain why the ε in
(6.13,6.14) cannot be removed.

Exercise 6.4.1. The ABC conjecture applied to (A,B,C) = (A0x
p, B0y

q, C0z
r) implies the Darmon-

Granville theorem; moreover, for any p, q, r such that δ = δ(p, q, r) > 0 and any positive ε < δ, the
inequality (6.13) with an explicit value of cε yields an explicit upper bound on relatively prime integers
x, y, z such that A0x

p +B0y
q = C0z

r.

Exercise 6.4.2. The ABC conjecture implies the Tijdeman-Zagier conjecture with at most finitely many
exceptions; moreover, for any positive ε < 1/12 the inequality (6.13) with an explicit value of cε yields
an explicit upper bound on xp, yq, zr in any counterexample to the conjecture.12

Exercise 6.4.3. The ABC conjecture for any ε < 1 implies that Fermat’s Last Theorem holds for all
but finitely many exponents n. Again, an explicit value of cε yields an explicit n0 such that FLT holds
for all n ≥ n0.

Exercise 6.4.4. The ABC conjecture for any ε < 1 implies that any finitely generated multiplicative
subgroupG of Q∗ contains only finitely many solutions (s, s′) of s+s′ = 1. [Choose generators forG,
and let S be the set of primes that divide the numerator or denominator of at least one generator; then
s+ s′ = 1 yields A+B = C with N(ABC) |

∏
p∈S p.]

Remark. For this problem, as with the first exercise in this list, the finitude of solutions is already a
theorem, without assuming ABC or any other unproved conjecture. Better yet, explicit upper bounds
have been given on C as a function of N(ABC) — whereas no such bound is known for the Darmon-
Granville theorem without an ABC hypothesis. Still, the proved bounds are much worse than what
would follow from (6.13); see below.

12The bound 1/12 can be raised to 1/6 because Bruin showed [Br] that there are no solutions of x3+y3 = z4 or x3+y3 = z5

in relatively prime integers.
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Exercise 6.4.5. For relatively prime natural numbers A,B,C such that A + B = C, define the ABC
exponent θ(A,B,C) by

θ(A,B,C) := (logC)
/
(logN(ABC))

(so that C = N(ABC)θ(A,B,C)); for example θ(1, 8, 9) = log 9/ log 6 = 1.226+. Set

Θ := lim sup
(A,B,C)

θ(A,B,C),

the limsup running over all triples (A,B,A + B) of natural numbers. Then the ABC conjecture is
equivalent to Θ ≤ 1. In fact the ABC conjecture is equivalent to Θ = 1, because it is elementary that
Θ ≥ 1 (for instance we may take (A,B) = (1, 2r − 1) with r →∞).

Remark. If it is true that lim sup θ(A,B,C) = 1 then the convergence must be very slow: it is known
that there are infinitely many examples of θ(A,B,C) > 1+c/

√
logC for some universal constant c >

0; and it is expected, based on probabilistic heuristics such as applied earlier to A0x
p +B0y

q = C0z
r,

that in fact θ(A,B,C) − 1 > (logC)−ϑ holds infinitely often for all ϑ > 1/3, but only finitely often
for each ϑ < 1/3. In particular, the ABC conjecture is consistent with those heuristics. The largest
numerical value known for θ(A,B,C) is 1.6299+, for 2 + 310109 = 235 (found by Eric Reyssat in
1987). See [Ni] for other large θ(A,B,C).

Exercise 6.4.6. The inequality (6.13) cannot hold for ε = 0 and any positive value of c0. (One way to
prove this is to find for each α > 0 a natural number r such that 3α|2r − 1.)

The ABC conjecture, like FLT, is formulated over Z but has an equivalent statement over Q obtained
by considering ratios of the variables. If A + B = C, consider F = A/C, so 1 − F = B/C. Both
fractions are in lowest terms because A,B,C are assumed relatively prime. The conductor N(A) is
the product of the primes p such that F ≡ 0 mod p, and likewise N(B) is the product of the primes p
such that F ≡ 1 mod p. As for N(C), that is the product of primes p for which F mod p cannot be
found in Z/pZ because the denominator C vanishes mod p. Since in this case p - A, we say that these
are the primes such that “F ≡ ∞ mod p”. Hence N(ABC), the LHS of the ABC conjecture (6.13),
is the product of primes p such that F mod p is one of 0, 1,∞. The RHS is cεC1−ε, in which C is
simply the denominator of F . This assumes that A,B,C are positive, that is, that 0 < F < 1; in
the general case we replaced C by max(|A|, |B|, |C|) (see (6.14)), so now we replace the denominator
of F by the height h(F ). By definition, the height of a rational number m/n with gcd(m,n) = 1 is
max(|m|, |n|). This need not exactly equal max(|A|, |B|, |C|), but is within a factor of 2, which can
be accommodated by changing the constant cε of (6.14). Thus the ABC conjecture is equivalent to the
assertion that for every ε > 0 there exists cε > 0 such that, for all F ∈ Q, the product of the primes at
which F reduces to 0, 1, or ∞ is at least cεh(F )1−ε.

Geometrically, the reduction of FLT to ABC in Exercise 6.4.3 amounts to applying the ABC con-
jecture to the value of the rational function F = (x/z)n = Xn on the n-th Fermat curve. This succeeds
because F and 1 − F have multiple poles and zeros (some defined only over an algebraic closure Q)
— that is, the preimages of 0, 1,∞ under F have large multiplicities, which makes the total number of
preimages counted without multiplicity small compared to the degree of F as a rational function on the
curve. It turns out that here the degree is n2, and the number of preimages is 3n, which is less than n2

once n > 3, and indeed less than δn2 once n > 3/δ. When we try to generalize this argument to ra-
tional points on a general algebraic curve X , we find that it is rare for there to be a rational function F
onX whose degree exceeds the size of F−1({0, 1,∞}) by a large factor, so we cannot usually expect to
deduce Mordell’s conjecture (finiteness of rational points) for X from an ABC inequality with ε near 1.
But Belyi [Bel] shows how to construct a function F satisfying deg(F ) > #

(
F−1({0, 1,∞})

)
when-

ever X is a curve of genus at least 2 defined by an equation with coefficients in Q, and then Mordell’s
conjecture follows from ABC with ε sufficiently small [El1]. Recall that Faltings already proved this
conjecture twice without any unproved hypothesis, but the proofs are ineffective; the argument in [El1]
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shows that the ABC conjecture with effective constants cε would yield a completely effective finiteness
result for rational points on X .

Many other consequences of the ABC conjecture are known, ranging from elementary special cases
(there are only finitely many integers N such as N = 4, 5, 7 for which N ! + 1 is a perfect square) to
applications that give unexpected connections with other problems in number theory. A striking ex-
ample is Silverman’s application to Wieferich primes, that is, primes p for which 2p−1 ≡ 1 mod p2,
such as 1093 and 3511. (Note that the congruence always holds mod p by Fermat’s little theorem. In
1909 Wieferich proved [Wie] that a FLT counterexample xp + yp = zp with p - xyz for some prime p
would imply 2p−1 ≡ 1 mod p2.) Such primes are expected to be very rare; indeed none is known other
than 1093 and 3511, and any further such prime must exceed 1.25 · 1015 according to computations re-
ported by Richard McIntosh (http://www.loria.fr/∼zimmerma/records/Wieferich.
status). But it is not even known that the set of non-Wieferich primes is infinite! Silverman [Si2]
proves the infinitude of non-Wieferich primes under the hypothesis of the ABC conjecture, and shows
further that this conjecture implies that for every integer α 6= 0,±1 there exist constants cα, xα such
that for all x > xα there are at least cα log xα primes p < x satisfying αp−1 6≡ 1 mod p2.

Unfortunately a proof of the ABC conjecture still seems a very distant prospect; it is even much
too hard to prove the existence of any ε < 1 for which the inequality (6.13) holds for some cε > 0. To
show just how far we are, consider the situation suggested by Exercise 6.4.4: we knowN = N(ABC),
and want all possible (A,B,C). Let S be the set of primes dividing N . Then the inequality (6.13) for
any ε < 1 gives an upper bound on solutions of A + B = C in relatively prime integers all of whose
prime factors are contained in S. (This is often called the “S-unit equation”, because it is equivalent
to solving a + b = 1 in rational numbers (a, b) = (A/C,B/C) that are units in the ring Z[1/N ]
obtained from Z by inverting all the primes in S.) In particular, there should be only a finite number
of solutions. This result is known [La1], but already far from trivial. It was not much harder to give
an explicit bound on the number of solutions [LM], and by now there are bounds depending only on
the size of S, as in [Ev]. But that still gives no control over the size of the largest solution, which is
what the ABC conjecture addresses. Stewart and Tijdeman gave such a bound in [ST], and the bound
was recently improved by Stewart and Yu [SY]. But even the best bounds remain exponential: the
logarithm of C is only known to be bounded by a multiple of N1/3(log(N))3. Even these results can
be useful; for instance the Stewart-Tijdeman bound logC = O(N15) is already enough to compute in
practice the full solution of the S-unit equation when S is not too large (see for instance [dW]). But
the known results are still very weak compared with the inequalities that the ABC conjecture predicts
and that we need for applications such as the Tijdeman-Zagier conjecture and explicit upper bounds in
the Darmon-Granville theorem.

6.5 Mason’s theorem: A(t) + B(t) = C(t)

A curious feature of the ABC conjecture is that not only does it seem very hard to prove but it is not at
all obvious how one might try to disprove the conjecture. If FLT were false, a single counterexample
would expose the falsity; likewise for the Catalan and Tijdeman-Zagier conjectures, or the Riemann
hypothesis and its variants. But there can be no single counterexample for the ABC conjecture, even
for a specific value of ε, because the inequality (6.13) can accommodate any given triple (A,B,C)
by simply decreasing cε. Likewise for the formulation of the conjecture in terms of ABC exponents
θ(A,B,C): a single example may break the record for the maximal θ, but has no bearing on Θ which is
defined as a lim sup of θ(A,B,C). Proving that the conjecture is false would require the existence of an
infinite family of (A,B,C)’s whose ABC exponents approach a limit greater than 1 (or approach ∞),
just as we had to construct an infinite family such as {(1, 2r − 1, 2r)}∞r=1 to prove Θ ≥ 1.

The most natural families to try arise from identities A(t) + B(t) = C(t) relating polynomials
A,B,C ∈ Z[t], not all constant. Recall that we already used such polynomials to construct infinitely
many Pythagorean triples, or relatively prime solutions of x2 + y3 = z5; in effect we solved these
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Diophantine equations in Z[t], then specialized to t ∈ Q and multiplied by powers of the denominator
of t to recover integer solutions. Similarly, from polynomials A(t),B(t),C(t) satisfying A+B = C for
which D := max(deg(A),deg(B),deg(C)) is positive we get a family of integer solutions A,B,C as
follows: for any pair (m,n) of relatively prime integers we take

(A,B,C) = nD(A(m/n),B(m/n),C(m/n)). (6.15)

Thus A,B,C are homogeneous polynomials of degree D in (m,n). If A,B,C have repeated factors
then so do A,B,C, and with enough repeated factors we can hope to get a sequence with

lim sup θ(A,B,C) > 1.

We must assume that A(t),B(t),C(t) are relatively prime as polynomials, else A,B,C will have
a common factor for most choices of (m,n). This also means that D is the degree of the quotient
F = A/C ∈ Q(t) as a rational function of t. Conversely, if the polynomials have no common factors
then gcd(A,B) is bounded above,13 so dividing each of our triples (A,B,C) of (6.15) by its greatest
common divisor yields relatively prime solutions of A + B = C with asymptotically the same ABC
exponent as the ratio

log max(|A|, |B|, |C|)
logN(ABC)

=
log max(|A|, |B|, |C|)
log(N(A)N(B)N(C))

(6.16)

that we would compute if A,B,C were relatively prime.
The numerator of this ratio is easy to estimate: it is D log h(m,n) + e, where

D = max(deg(A),deg(B),deg(C))

as above, h(m,n) is the height |max(m,n)| of (m,n) (or of the rational number m/n as before), and
e is an error of bounded absolute value. What of the denominator? Let us try some examples using
polynomial identities that we have already encountered. If

(A,B,C) =
(
(t2 − 1)2, (2t)2, (t2 + 1)2

)
as in (6.2), then D = 4 and we get (A,B,C) = ((m2 − n2)2, (2mn)2, (m2 + n2)2) (the squares of
the entries of the Pythagorean triple (6.2)), and then N(ABC) is a factor of (m2−n2)2mn(m2 +n2).
Hence N(ABC) is bounded above by a multiple of h(m,n)6. We can save two factors of h(m,n)
in various ways, for instance by making (m,n) = (1, 2r) as in Exercise 6.4.5; but that still leaves
both numerator and denominator of (6.16) asymptotic to 4 log h(m,n), giving the same lower bound
of 1 on Θ that we obtained in that Exercise. Might we do better with the more complicated example
(A,B,C) = (X(t)2, Y (t)3, Z(t)5), where X,Y, Z are the polynomials of (6.10)? Now D = 60 and
A,B,C are respectively a square, a cube, and a fifth power, so N(ABC) is bounded by a multiple of
h(m,n)30+20+12 = h(m,n)62. Again we can save a factor h(m,n)2 thanks to the factor mn of C, but
that still brings our bound on N(ABC) only down to a multiple of h(m,n)60 = h(m,n)D, and again
we fail to improve on Θ ≥ 1.

In general, suppose A factors as A0

∏
i x
ei
i where A0 is a scalar and the xi are distinct irreducible

polynomials. Let xi = ndeg xixi(m/n). Then A = nDA(m/n) = A0n
e∞
∏
i x

ei
i , where e∞ := D −∑

i ei deg(xi) is the multiplicity of n as a factor of the homogeneous polynomial nDA(m/n) (which
may also be regarded as the “order of vanishing at t = ∞” of A when A is regarded as a polynomial
of degree D). Hence N(A) is bounded by a constant multiple of

∏
i xi or n

∏
i |xi| according as

e∞ = 0 or e∞ > 0. Each |xi| is in turn bounded by a constant multiple of (h(m,n))deg xi , and of
course |n| ≤ h(m,n). It follows that N(A) ≤ h(m,n)νD(A) where νD(A) = νD,∞(A) +

∑
i deg xi

13By the Euclidean algorithm for polynomials there exist X, Y ∈ Z[t] such that AX − BY = d for some nonzero d ∈ Z,
and then gcd(A, B) | nDd for all m, n ∈ Z. Repeating this argument with A, B replaced by the relatively prime polynomials
tDA(1/t), tDB(1/t) yields a nonzero integer d′ such that gcd(A, B) | mDd′. Thus if gcd(m, n) = 1 then gcd(A, B) | dd′.
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and νD,∞(A) = 0 or 1 according as e∞ = 0 or e∞ > 0. More succinctly, νD(A) is the number
of solutions of F(t) = 0 in CP1, counted without multiplicity (note in particular that e∞ > 0 if and
only if F(∞) = 0). We define νD(B) and νD(C) likewise, and observe that they are the numbers
of solutions in CP1 of F(t) = 1 and F(t) = ∞. Putting these together we find that N(A,B,C)
is bounded by a constant multiple of h(m,n)ν where ν = νD(A) + νD(B) + νD(C) is the size of
F−1({0, 1,∞}). Moreover, if at least two points in F−1({0, 1,∞}) are rational then we can save an
extra factor of h(m,n)2 as we did before; in fact we expect to save this factor in any case, because
there are about H2 choices of (m,n) with h(m,n) ∈ (H/2,H], and it is not too hard to show that in
fact this h(m,n)2 saving is available for all nonconstant rational functions F. In other words, we can
make the denominator of (6.16) no larger than (ν − 2) log h(m,n) + e′, where e′ is another bounded
error.

Combining our estimates and letting h(m,n) →∞, we find that the polynomial identity A+B = C
will yield a disproof the ABC conjecture if ν < D + 2. We have already given several examples of
ν = D + 2, and there are many others, some of which are very easy to construct (try (A,B,C) =
(1, tD − 1, tD) for instance). Might we attain ν < D + 2 if we are just a little more clever, or look
harder? This is where Mason’s theorem enters:

Theorem 4. [Mas]: If F ∈ C(t) is a rational function of degree D > 0 on CP1 then F−1({0, 1,∞})
has cardinality at least D + 2.

This ruins our hope for an easy refutation of the ABC conjecture. Viewed more positively, it is
evidence for the truth of the conjecture, and indeed can be viewed as an “ABC theorem” for polynomials
or rational functions. To make the comparison explicit, we again take logarithms in the conjectured
inequality (6.13) to write it as logN(ABC) > (1− ε) logC− log(1/cε). We saw that for polynomials
ν and D play the roles of logN(ABC) and logC respectively. Thus Mason’s theorem is an even
stronger statement, because the troublesome terms −ε logC and − log(1/cε) in the lower bound for
logN(ABC) have been replaced by the helpful +2 in the lower bound on ν.

Moreover, while the ABC conjecture seems intractable at present, Mason’s theorem can be proved
easily. There are several related routes, all exploiting the idea of detecting multiple roots of a polyno-
mial or rational function using its derivative — a tool not available for integers or rational numbers.
The route we choose uses the logarithmic derivative, for which it will be convenient to assume that ∞
is not a preimage of 0, 1, or ∞. We ensure this by applying to t a fractional linear transformation that
moves all the preimages of {0, 1,∞} away from infinity.

Proof. Fix a number t0 not in F−1({0, 1,∞}), and let F1(t) = F(t0 + (1/t)), a rational function also
of degree D and with the same number of preimages of {0, 1,∞} as F, none of which are at infinity.
Let ν0 , ν1 , ν∞ be the number of preimages of 0, 1,∞ respectively. Let Λ be the logarithmic derivative
F′1/F1. Then Λ is not identically zero because F1 is nonconstant, and Λ has a simple pole (that is, has
a denominator with a simple root) at each preimage of 0 or ∞, regardless of its multiplicity. Hence
the denominator of Λ has degree ν0 + ν∞. Any root of F′1 − 1 of multiplicity e is a root of Λ of
multiplicity e− 1. Summing over the roots, we find the the numerator of Λ has at least D − ν1 roots
counted with multiplicity, and therefore has degree at least D − ν1 . But the difference between the
denominator’s and numerator’s degrees is the order of vanishing of Λ at infinity, which is at least 2 (to
see this, expand F1 at infinity as

∑∞
i=0 ait

−i = a0 + a1t
−1 + a2t

−2 + a3t
−3 + · · · with a0 6= 0, and

calculate F′1 = −a1t
−2− 2a2t

−3− 3a3t
−4−· · · ). Hence D− ν1 ≤ ν0 + ν∞− 2, which is equivalent

to the desired inequality ν0 + ν1 + ν∞ ≥ D + 2.

Since the numerator of the derivative or the logarithmic derivative of A/C is (up to sign) the Wron-
skian

W2(A,C) = det
∣∣∣∣ A C

A′ C′

∣∣∣∣ = AC′ − A′C,

the proof can also be formulated in terms of Wronskians. The key fact that F and F− 1 have the same
derivative then corresponds to the identityW2(A,C) = W2(A− C,C), which holds becauseW2(·, ·) is
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bilinear and alternating, and forces W2(A,C) to vanish at multiple zeros of B. Also equivalent, though
not as transparently so, is the proof obtained by applying the Riemann-Hurwitz formula to F. This
approach explains the “+2” in Mason’s inequality as the Euler characteristic of CP1, and generalizes
to rational functions F of degree D > 0 on other compact Riemann surfaces, for which Mason finds
the inequality #

(
F−1({0, 1,∞})

)
≥ D + χ = D + 2− 2g, where g is the genus and χ the Euler

characteristic of the surface. This is why the rational functions F constructed by Belyi cannot satisfy
deg(F ) > #

(
F−1({0, 1,∞})

)
unless g ≥ 2. For an elliptic curve we have g = 1, so deg(F ) =

#F−1 ({0, 1,∞}) is possible, and if the elliptic curve has positive rank then its rational points yield
another kind of infinite family of (A,B,C) triples with lim sup θ(A,B,C) ≥ 1 (such as (x3, y3, 91z3)
for primitive solutions of x3 + y3 = 91z3); but the points are too sparse for us to prove that the limsup
strictly exceeds 1, and again we come just short of a disproof of the ABC conjecture.

6.6 A Putnam problem: minding our P ’s and Q’s

The last problem of the 1956 William Lowell Putnam Mathematical Competition asks [GGK, p.47]:

The polynomials P (z) and Q(z) with complex coefficients have the same set of numbers
for their zeros but possibly different multiplicities. The same is true of the polynomials
P (z) + 1 and Q(z) + 1. Prove that P (z) ≡ Q(z).

As noted in [GGK, p.431], it must be assumed that at least one of P and Q is not constant, else the
claim is false. We thus assume max(deg(P ),deg(Q)) > 0, and by symmetry may takem = deg(P ) ≥
deg(Q) = n. The claim is clearly true if P has distinct roots, because then Q = cP for some c ∈ C,
and if λ is any root of P + 1 then 0 = Q(λ) + 1 = cP (λ) + 1 = −c + 1 implies c = 1. Likewise
if P + 1 has distinct roots. We must then contend with the case that P and P + 1 both have multiple
roots — and we know already that the derivative P ′ = (P + 1)′ detects multiple roots of either P or
P + 1. We proceed as in [GGK, p.431–432]. Let λ1, . . . , λr be the distinct roots of P (and thus also
of Q), and µ1, . . . , µs the distinct roots of P + 1 (and thus also of Q+ 1). By an argument we can now
recognize as the special case of Mason’s theorem in which F is a polynomial — and which would fail
if m = 0 were allowed — we have m− 1 = deg(P ′) ≥ 2m− r− s, whence r+ s ≥ m+ 1. But each
root of P or P + 1 is also a root of P −Q, a polynomial of degree at most m. Therefore P −Q is the
zero polynomial, and we are done.

The corresponding statement for integers instead of polynomials would be that a positive integer n
is determined uniquely by the sets (without the multiplicities) of prime factors of n and of n + 1, that
is, by the conductors N(n) and N(n+1). We might expect that this should be false, because the proof
in the polynomial case hinges on an inequality stronger than can be true for integers. Indeed there are
infinitely many counterexamples, the smallest with natural numbers being n = 2 and n′ = 8 (this is yet
another appearance of 1 + 8 = 9), which begins the infinite family {n, n′} = {2m − 2, 2m(2m − 2)}
(m = 2, 3, 4, . . .). Still, such examples seem quite rare; an exhaustive search finds that the only case
with 0 < n, n′ < 108 not of the form {2m−2, 2m(2m−2)} is {75, 1215} (withN(75) = N(1215) =
15 and N(76) = N(1216) = 38). When we allow also negative integers, the identity N(−n) = N(n)
gives an involution {n, n′} ↔ {−1− n,−1− n′} on the set of solutions. Modulo this involution, we
find one more infinite family {2m + 1,−(2m + 1)2} (m = 1, 2, 3, . . .), and one more sporadic pair in
(−108, 108), namely {35,−4375}. The infinite families intersect at {2,−4, 8} and {−3, 3,−9}, which
may be the only three-element subsets of Z mapped to a single point under n 7→ (N(n), N(n+ 1)).

Might we generalize the Putnam problem to rational functions F ? Since a polynomial is just a
rational function with F−1({∞}) = {∞}, we might guess that more generally if F and G are non-
constant rational functions with complex coefficients that, when considered as maps from the Riemann
sphere CP1 to itself, satisfy F−1({w}) = G−1({w}) for each of w = 0, 1,∞, then F = G. (In the
Putnam problem, F and G would be the polynomials P +1 and Q+1.) Alas this natural guess is false.
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An explicit counterexample is14

F (z) =
(z − 1)3(z + 3)

16z
, G(z) = h(−3/z) =

(z − 1)(z + 3)3

16z3
,

with F (z) − 1 = (z − 3)(z + 1)3/16z and G(z) − 1 = (z − 3)3(z + 1)/16z3. Here F and G are
rational functions of degree 4. Is this the smallest possible? It is probably much harder to completely
describe all counterexamples, or even to decide whether there any with deg(F ) 6= deg(G).

6.7 Further problems and results
In number theory most things that can be done in Q or Z generalize, with some additional effort, to
number fields K (finite-degree field extensions of Q) and their rings OK of algebraic integers. This is
true of the ABC conjecture, which can be naturally formulated over any K or OK , and has much the
same consequences there as we saw over Q or Z. Much of the extra effort in making this generalization
arises because OK need not have unique factorization, so some solutions in K of A+B = C may not
be proportional to any solution in relatively prime elements ofOK . Thus it is more natural to formulate
the conjecture in terms of the ratio F = A/C, which is invariant under scaling (A,B,C). Briefly, we
replace N(ABC) in the LHS of (6.13) or (6.14) by the product of the norms of all prime ideals of OK
at which F is congruent to one of 0, 1,∞, and in the RHS we take the (1− ε)-th power of the height
of F , appropriately defined, rather than of C or of max(|A|, |B|, |C|). See [Vo, p.84] for the details.
Mason’s theorem still defeats attempts at easy disproofs — recall that the coefficients of the rational
function F were allowed to be arbitrary complex numbers.

More subtle is the question of how the constant cε in the ABC conjecture should depend on K. In
the context of Mason’s theorem, if we replace C(t) by a finite-degree extension we get the function
field of a compact Riemann surface of some genus g, and then the lower bound D + 2 on the size
of F−1({0, 1,∞}) is lowered by 2g. Granville and Stark [GS] propose an anologous “uniform ABC
conjecture”, in which the LHS of (6.13) or (6.14) is multiplied by |disc(K/Q)|1/[K:Q] and then the
constant cε in the RHS is independent of K. Remarkably, they then show that this uniform ABC
conjecture implies the long-standing conjecture that the class number of an imaginary quadratic field
Q(
√
−d) (with d > 0 a squarefree integer) is bounded below by a constant multiple of d1/2/ log d, and

thus that the Dirichlet L-function attached to an odd character has no “Siegel-Landau zero” (a zero s
with 1 − s � 1/ log(d); the nonexistence of such zeros is an important special case of the Riemann
Hypothesis for such L-functions). The proof uses special values of modular functions arising from
elliptic curves with complex multiplication by the ring of algebraic integers in Q(

√
−d).

Finally we consider the generalization to more than three variables, to integers satisfying ±A ±
B ± C ± D = 0 and beyond. In each case we ask: Given max(|A|, |B|, |C|, . . .), how small can
the product N(A)N(B)N(C) · · · get? As before we must assume that the integers have no common
factor. With more than three variables, it no longer follows that they are relatively prime in pairs,
but we must at least assume that no proper sub-sum of ±A ± B ± C ± · · · vanishes, to avoid such
trivialities as 2r + 1 − 2r − 1 = 0. It is then known that an upper bound on N(A)N(B)N(C) · · ·
implies an upper bound on max(|A|, |B|, |C|, . . .), but again this known bound is much too large for
our purpose. Even in the special case A = A0w

n, B = B0x
n, etc. we have a difficult question: How

14The reader who got this far may well wonder where this counterexample comes from. It arises naturally in the theory of
elliptic modular functions. For τ in the upper half-planeH, let η(τ) be the Dedekind eta function eπi/12

Q∞
n=1(1−e2πinτ )24,

and define λ(τ) = 16(η2
2 η

1/2
/η3

1)8 = 16q
Q∞

n=1(1 + q2n)/(1 + q2n−1) where ηk = η(kτ) and q = eπiτ . Then λ

generates the field of modular functions invariant under the ideal hyperbolic triangle group Γ(2), and takes the values 0, 1,∞ at
the cusps of that group. The function F expresses λ in terms of the generator −3(η3/η1)

10(η
1/2

η
2
/η

3/2
η
6
)4 of the modular

functions for Γ(2)∩Γ0(3), and thus gives explicitly the map from the corresponding modular curve to the modular curve X(2)
corresponding to Γ0(2). The coordinate λ of X(2) parametrizes elliptic curves E : Y 2 = X(X − 1)(X − λ) with all their
2-torsion points rational; z parametrizes 3-isogenies E → E′ between pairs of such curves; and the involution z ↔ −3/z takes
the isogeny E → E′ to the dual isogeny E′ → E. See [El2].
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are the nontrivial primitive solutions of A0w
n + B0x

n + C0y
n = D0z

n distributed? Our heuristics
suggest that solutions should be plentiful for n < 4 (if there is a nonzero solution to begin with), sparse
for n = 4, and bounded for n > 4. Likewise for N variables, with critical exponent n = N .

Unfortunately this guess is at best close to the truth. Euler already found a polynomial solution for
w4+x4 = y4+z4, giving plentiful solutions for that equation, starting with 1334+1344 = 594+1584.
There is even a polynomial family of solutions of w5 + x5 = y5 + z5, though sadly not over Q:

w, x = 2t± (t2 − 2), y, z = 2t± i(t2 + 2). (6.17)

For n = 6 one can still obtain infinitely many primitive solutions for some choices of (A0, B0, C0, D0),
using the polynomial identity

(t2 + t− 1)3 + (t2 − t− 1)3 = 2t6 − 2.

Indeed let (A0, B0, C0, D0) = (α3, β3, 2, 2). Then if there are infinitely many rational solutions
(t, u, v) of

t2 + t− 1 = αu2, t2 − t− 1 = βv2 (6.18)

then each yields a rational solution (u, v, 1, t) of A0w
6 +B0x

6 + C0y
6 = D0z

6, and thus a primitive
integer solution by clearing common factors. Now it can be shown that (6.18) is an elliptic curve,
which has positive rank if it has a single rational point with t /∈ {0,±1,∞}. The simplest such (α, β)
is (5, 1) with t = 2, giving 125+1+2 = 2 · 26. The next few t values for (α, β) = (5, 1) are −82/19,
−148402/91339, and −10458011042/1213480199, giving the solutions15

(31, 19, 89, 82), (5009, 91339, 165031, 148402),

(4363642319, 1213480199, 10981259039, 10458011042).

Note that, unlike the ABC conjecture, our naı̈ve guess for A0w
n + B0x

n + C0y
n = D0z

n was
disproved by polynomial identities. Thus even Mason’s theorem has no good analogue here. One can
use a 3×3 Wronskian to get an “ABCD theorem”, and likewise for more variables, but these inequalities
are no longer sharp. For example, if (w, x, y, z) is a nontrivial solution in C[t] of wn + xn = yn + zn

then one can show that n < 8 by counting roots of W3(wn, xn, yn), but it is not known whether n = 6
or n = 7 can occur, nor whether all nontrivial solutions for n = 5 are equivalent with (6.17).

Can we salvage from our predicament a conjecture that is both plausible and sharp? Lang [La2]
suggested that such conjectures should still be true “on a nonempty Zariski-open set”, that is, when we
exclude variables that satisfy some algebraic condition. This may well be true, though the possibility
of an unpredictable exceptional set makes Lang’s conjectures even harder to test. As an indication of
the power of these conjectures, we conclude by citing one striking application. Recall that Mordell
conjectured, and Faltings proved, that an algebraic curve of genus g > 1 over Q has only finitely many
rational points. The conjecture and proofs are silent on how the number of points can vary with the
curve. But Caporaso, Harris, and Mazur showed [CHM] that Lang’s conjectures imply a uniform upper
bound B(g), depending only on g, on the number of rational points of any genus-g curve over Q!

References
[Bel] G[ennadii] V[ladimirovich] Belyi: On the Galois extensions of the maximal cyclotomic field (in Russian),

Izv. Akad. Nauk. SSSR 43 (1979), 267–276.

[Beu] Frits Beukers: The Diophantine Equation Axp + Byq = Czr , Duke Math. J. 91 (1998), 61–88.

[Br] Nils Bruin: On powers as sums of two cubes, pages 169–184 in Algorithmic Number Theory (Leiden,
2000), Berlin: Springer, 2000 (Wieb Bosma, ed.; Lecture Notes in Computer Science 1838).

15I do not know where this construction originated. I must have noticed it by 1988, because my computer files include a listing
of these solutions dated May 1988.

74



[CHM] Lucia Caporaso, Joe Harris, and Barry Mazur: Uniformity of rational points, J. Amer. Math. Soc. 10
(1997) #1, 1–35.

[DG] Henri Darmon and Andrew Granville: On the equations xp + yq = zr and zm = f(x, y), Bull. London
Math. Soc. #129 (27 part 6, Nov.1995), 513–544.

[Ed] Johnny Edwards: A Complete Solution to X2 + Y 3 + Z5 = 0, J. f. d. reine u. angew. Math. 571 (2004),
213–236 (also online at http://www.math.uu.nl/people/edwards/icosahedron.pdf).

[El1] Noam D. Elkies: ABC implies Mordell, International Math. Research Notices 1991 #7, 99–109 [bound
with Duke Math. J. 64 (1991)].

[El2] Noam D. Elkies: Wiles minus epsilon implies Fermat, pages 38–40 in Elliptic Curves, Modular forms,
and Fermat’s Last Theorem (J. Coates and S.-T. Yau, eds.; Boston: International Press, 1995; proceedings
of the 12/93 conference on elliptic curves and modular forms at the Chinese University of Hong Kong).

[Ev] Jan-Hendrik Evertse: On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984),
561–584 (1994).

[F1] Gerd Faltings: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349–
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