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Dissipation and quantum phase transitions of a pair of Josephson junctions
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A model system consisting of a mesoscopic superconducting grain coupled by Josephson junctions to two
macroscopic superconducting electrodes is studied. We focus on the effects of Ohmic dissipation caused by
resistive shunts and superconducting-normal charge relaxation within the grain. As the temperature is lowered,
the behavior crosses over from uncoupled Josephson junctions, similar to situations analyzed previously, to
strongly interacting junctions. The crossover temperature is related to the energy-level spacing of the grain and
is of the order of the inverse escape time from the grain. In the limit of zero temperature, the two-junction
system exhibits five distinct quantum phases, including a novel superconducting state with localized Cooper
pairs on the grain but phase coherence between the leads due to Cooper pair cotunneling processes. In contrast
to a single junction, the transition from the fully superconducting to fully normal phases is found to be
controlled by an intermediate-coupling fixed point whose critical exponents vary continuously as the resis-
tances are changed. The model is analyzed via two-component sine-Gordon models and related Coulomb gases
that provide effective low-temperature descriptions in both the weak and strong Josephson coupling limits. The
complicated phase diagram is consistent with symmetries of the two component sine-Gordon models, which
include weak- to strong-coupling duality and permutation triality. Experimental consequences of the results and
potential implications for superconductor to normal transitions in thin wires and films are discussed briefly.
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I. INTRODUCTION

Understanding the effects of dissipation on quant
phase transitions has proved to be a challenging problem
many contexts including quantum Hall transitions1 and quan-
tum critical points in antiferromagnets.2 Transitions from su-
perconductor to ‘‘normal’’ metal or insulator in thin wire
and films have been extensively studied,3–10 as well as in
Josephson junction arrays11–19 and superconducting
nanowires.20–27 One of the most intriguing aspects of the
transitions is the role of dissipation.28–33Theoretically, there
has been extensive work on the effects of dissipation o
single resistively shunted Josephson junction~RSJJ!. The re-
sistor can be modeled theoretically as a Caldeira-Leg
Ohmic heat bath,34–42 and precise predictions for the tran
port properties can be worked out~see Ref. 43 for a review!.
The system undergoes a superconductor-to-normal trans
at zero temperature when the shunt resistance incre
through a critical value equal to the quantum of resista
RQ5h/4e256.53 kV. Recent experiments by Pentti¨
et al.44 showed good agreement with the theoretical analy

Arrays of RSJJ’s have been studied in the same fra
work in terms of the local physics of the individual
junctions.43,45–52By percolation arguments, this local physi
has been argued to apply to granular films and wires with
superconductor-to-normal transition in these extended
tems occurring when theindividual shunting resistance
along a critical percolation path become equal toRQ .46

The prediction for destruction of superconductivity v
this local mechanism is in striking contrast to what o
would expect in the absence of dissipation: domination n
to the quantum phase transition bycollective long-
wavelength quantum fluctuations rather than local phys
0163-1829/2003/68~21!/214515~34!/$20.00 68 2145
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In addition to the nature of the transition,whereit would be
expected to occur as parameters of the system are varie
strikingly different for the two pictures. The long-waveleng
quantum fluctuations should be controlled by the interp
between the Josephson couplings among grains and the
lomb interactions, the former acting to decrease the ph
fluctuations and the latter to decrease the charge fluctuati
If long-wavelength physics dominates, the location of t
transition would thus be expected to depend markedly on
strength of the Josephson couplings. In contrast, for a sin
junction and by naive extension for a network of junction
the location of the dissipation induced transition would
entirely determined by the shunting resistances, indepen
of the Josephson couplings.

The primary purpose of this paper is to begin to reconc
these two approaches by studying a deceptively simple
tem: two resistively shunted Josephson junctions couple
series through a superconducting grain. This system, in
dition to its intrinsic interest,53 provides a simple paradigm
for the competing effects of dissipation and quantum fluct
tions on superconductivity.

An important simplification in all previous theoretica
studies of JJ arrays is the assumption that the supercond
ing grains are sufficiently large that they can effectively
treated as macroscopic. In the case of several junction
series, such an assumption leads to a result that
superconductor-to-normal transition occurs on each junc
separately and takes place when the values of the individ
shunting resistances are equal to the quantum of resist
RQ5h/(2e)2. In this paper we take into account the effec
of finite-size grains, specifically by considering two bulk s
perconducting leads connected by a pair of Josephson j
tions in series through amesoscopicgrain. We show that the
©2003 The American Physical Society15-1
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REFAEL, DEMLER, OREG, AND FISHER PHYSICAL REVIEW B68, 214515 ~2003!
quantum dynamics of the two junctions, which are indep
dent over a wide range of temperatures, become stro
coupled below a characteristic crossover temperature. In
low-temperature regime, this simple system exhibits surp
ingly rich behavior, including two distinct superconductin
phases. In some regimes of parameter space,
superconductor-to-normal transition between the two ma
scopic leads is determined by thetotal shunting resistance o
the system, rather than individual resistances of the ju
tions, while in other regimes its location depends on
strengths of the Josephson couplings as well as the shu
resistances. In this latter case, the corresponding critical
havior becomes very different from the single junction ca

The basic system is shown in Fig. 1. Dissipation occurs
Ohmic shunts between the superconducting contacts and
grain. Such systems may be understood in terms of a t
fluid model in which Cooper pairs tunneling across Jose
son junctions represent the superfluid and electrons flow
through the shunt resistors represent the normal fluid.54–56

The presence of two fluids in the middle grain suggests c
sidering it as a double grain with a superconducting part
a normal part as shown in Fig. 2. We assume for simplic
that the normal and superconducting charges of the two p
experience the same electrostatic potential as they overla
space. The chemical potentials of the two parts, however
not have to be the same. When these differ, the resul
electrochemical potential difference can cause charge re
ation within the grain that will act to equilibrate its norm
and superfluid components. In this paper we assume a sim

FIG. 1. A mesoscopic superconducting grain connected to
perconducting leads via Josephson junctions and resistive shu

FIG. 2. Effective circuit consisting of two Josephson junctio
(J1 ,J2) connecting the macroscopic electrodes (f1 ,f2) to a meso-
scopic grain. The grain is modeled in a two-fluid manner, a
superconducting grain (fg) connected through a phenomenologic
resistancer to a normal-fluid grain (c). R1 ,R2 are the shunt resis
tors connecting the normal fluid of the grain to the superconduc
contacts, in which the normal-superconducting relaxation is fas
21451
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Ohmic model of this relaxation with conversion current

I ns5
Vn2Vs

r
, ~1!

where Vn and Vs are the electrochemical potentials of th
normal and superconducting fluids on the grain. The coe
cient r is a phenomenological parameter of our model t
we will call the conversion resistance. Decoupling of the tw
chemical potentials is similar to the nonequilibrium state
the superconducting and normal fluids, as discussed
phase slip centers at finite current.57–59 We assume that the
two leads are macroscopic, so that there is perfect coup
between the superconducting and normal fluids in each
them ~this corresponds to the conversion resistances in
leads being negligible!.

The model we arrive at using the arguments above is q
general. One could also obtain it by considering the elec
magnetic modes that Cooper-pair tunneling events excit
discussed in Appendix B. This alternative approach does
require a two-fluid picture.

It is worth pointing out that our system bears some rese
blance to Cooper-pair box systems studied recently in
context of quantum computing and mesoscopic qubits.60–63

The charge on the grain could be used as the quantum n
ber of a qubit. The biggest obstacle to quantum computa
is then the limited lifetime of the quantum state of the qub
Quantum fluctuations and interactions with the environm
limit the lifetime of such a state, so practical realizations
qubits require systems with low dissipation. In this paper,
contrast, we study the Cooper-pair box system in a hig
dissipative environment. Another system that resembles
2 was studied in Ref. 64 in the classical regime and w
shown to exhibit interesting effects that are reminiscent
the effects we find in our model.

This paper is organized as follows. In Sec. II we presen
microscopic Hamiltonian and derive the quantum action.
ascertain the consistency of this derivation we demonst
in Appendix A that the classical equations of motion obtain
from the action correspond to the electrodynamics of
circuit in Fig. 2. From the analysis of the quantum model
show the existence of a new temperature scaleT* set by the
level spacing in the grain. At temperatures higher thanT*
the two junctions are decoupled and can be considered s
rately. If the grain is macroscopic,T* →0 and the system is
always in the decoupled regime. This is the case conside
in the literature thus far.46–52For temperatures belowT* one
cannot neglect interactions between the junctions, and
effective low-temperature description is given by tw
coupled quantum sine-Gordon models.

In Sec. III we use renormalization group~RG! methods to
analyze the two-component sine-Gordon theory in the li
of weak Josephson coupling and obtain its phase diagr
We show that the system can have five distinct phases: f
superconducting~FSC! where both junctions are superco
ducting; normal~NOR! where both junctions are normal an
there is no phase coherence between the leads; N1-S2, w
junction 1 is normal and junction 2 is superconducting; S
N2, where junction 1 is superconducting and junction 2

u-
s.

a
l

g
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DISSIPATION AND QUANTUM PHASE TRANSITIONS . . . PHYSICAL REVIEW B 68, 214515 ~2003!
normal; and SC!, in which Cooper pairs are localized on th
grain, so individual junctions are insulating, but there is
perconducting coherence between the leads due to cotu
ing processes. We provide simple arguments for the ph
boundaries based on electrical circuit considerations of
effective shunting resistances for various Cooper-pair tun
ing events.

In Sec. IV we analyze the system in the opposite regi
of strong Josephson couplings using a dual two-compon
sine-Gordon model and considerations of quantum ph
slips. The RG analysis is again supplemented by effec
shunting resistance arguments which determine the actio
the various quantum phase slip processes. It is found tha
phase diagrams obtained in the weak- and strong-coup
limits differ in the location of the NOR to FSC phase boun
ary.

In Sec. V we show that the difference between strong-
weak-coupling phase diagrams signals the existence
novel regime with the fully normal to fully superconductin
transition controlled by a critical fixed point at intermedia
Josephson coupling. We analyze the appropriate fixed p
whose properties depend continuously on the resistan
and discuss the RG flow in its vicinity.

In Sec. VI we explore the surprisingly rich symmetries
the two-junction system. In addition to a weak-to-strong d
ality, the system also exhibits a permutation triality that i
plies that aspects of the phase diagram are invariant u
interchange of any of the three resistances involved in
dissipative transport.

In Sec. VII we review some experimental implications
our work and discuss such questions as observation of
crossover temperature scaleT* , experimental identification
of the novel superconducting phase SC!, and universality of
the resistance at the superconductor-to-normal transition
also suggest that our results may be relevant for underst
ing some puzzling experimental results on superconduc
to-normal transitions in thin wires and films.

Finally, in Sec. VIII we summarize the main results. T
maintain the coherence of the presentation we delegate
of the technical calculations to appendixes. In particular,
renormalization group analysis of the two-component si
Gordon model and the relations to classical Coulomb ga
are given in Appendixes D~weak coupling!, and E~strong
coupling!.

II. MICROSCOPIC MODEL

A. Hamiltonian of the two-junction system

The system we wish to describe consists of a mesosc
superconducting grain situated between two macroscopic
perconducting leads~Fig. 2!. The grain interacts with the
leads both electrostatically and through a weak link. T
electrostatic interaction is capacitative while the weak l
allows the flow of both Cooper pairs and normal electro
Cooper pairs flow through a Josephson junction from
superconducting part of the grain to the leads. Normal e
trons flow from the normal part of the grain to the lea
through what we model as a shunt resistor.
21451
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In order to understand the quantum dynamics of this s
tem we must first obtain an appropriate low-energy effect
Hamiltonian. This should include the charging energy for t
grain and leads, the Josephson coupling energies for
junctions, and appropriate Hamiltonians for the shunt re
tors which can be approximated by heat baths.34,35

The charging energy of the system includes both elec
static and electrochemical capacitances. All the islands~here
we use the term island to denote either the electrodes or
grain! have part of their chargeQSi in the form of supercon-
ducting Cooper pairs and part of their chargeQNi in the form
of normal fluid. Both kinds of charge contribute to the ele
trostatic potential and have their own compressibility. T
electrochemical potentials for the superconducting and n
mal electrons on islandi are

VSi5w i1DSiQSi ,

VNi5w i1DNiQNi . ~2!

The indexi is summed over electrodes 1, 2, and the graing,
w i is the electric potential,Di ’s are the inverse of the com
pressibilities of the fluidsS and N in a noninteracting ap-
proximation, ande2DNi is the level spacings of the norma
electrons in the islandi.65 The electrostatic potential on is
land i is related to the charges on all the islands via
capacitance matrixCi j :

w i5(
j

Ci j
21~QS j1QN j!. ~3!

Hence, for the electrochemical potentials we have

VSi5(
j

~kSi j
21QS j1Ci j

21QN j!,

VNi5(
j

~Ci j
21QS j1kNi j

21QN j!, ~4!

where we defined

kSi j
215Ci j

211DSid i j ,

kNi j
215Ci j

211DNid i j , ~5!

with d i j a Kronecker delta. By integrating out the electr
chemical potentials in Eqs.~4! we find the charging part o
the Hamiltonian

HQ5
1

2 (
i j

kSi j
21QSiQS j1

1

2 (
i j

kNi j
21QNiQN j

1(
i j

Ci j
21QSiQN j . ~6!

At this point we introduce superconducting phasesf i on the
islands and ‘‘normal phases’’c i , which we define formally
to be conjugate toQNi ~Ref. 43!:
5-3
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REFAEL, DEMLER, OREG, AND FISHER PHYSICAL REVIEW B68, 214515 ~2003!
@QNi ,c j #52 ied i j @QSi ,f i #522ied i j ,

@QNi ,f i #50, @QSi ,c j #50. ~7!

By using Eqs.~6! and~7!, it is easy to verify that the Heisen
berg equations of motion for the two phases give the cor
Josephson relations

\

2e

df i

dt
5

i

2e
@HQ ,f i #5VSi ,

\

e

dc i

dt
5

i

e
@HQ ,c i #5VNi . ~8!

The other important energies involving the superconduc
degrees of freedom are the Cooper-pair tunnelings, with

HJ52J1cos~fg2f1!2J2cos~f22fg!. ~9!

The dissipation in the ohmic shunts,R1 , R2, and the internal
charge relaxationr are modeled following Caldeira and Leg
gett ~see Refs. 36,42, and 43 for a review!. In this approach,
the shunting resistances are replaced by collections of
monic oscillators~heat baths!, with appropriately chosen
spectral functions:

Hdis5Hbath~R1,2c122cg!1Hbath~R2,2c222cg!

1Hbath~r ,fg22cg!. ~10!

We will not give the explicit form of the appropriate Hami
tonians here, but in the next subsection we give the effec
actions obtained after integrating out the heat-bath degree
freedom. The heat-bath model is the simplest quantum m
that gives the correct classical equations of motion for s
tems with dissipation. Later in this paper we will discu
some of its drawbacks; however, we believe that it give
qualitatively correct picture for a general mechanism of d
sipation.

Collecting all the terms, we obtain an effective Ham
tonian that describes the system shown in Fig. 2:

H~QNi ,QSi ,f i ,c i !5HQ1HJ1Hdis . ~11!

B. Imaginary-time action

From the Hamiltonian~11! and commutation relations~7!,
we can construct the imaginary time action and partit
function for the system in Fig. 2:

Z5E DQNiDQSiDf iDc iexp~2S!,

S52
i

2e (
i
E

0

b

dtQSiḟ i2
i

e (
i
E

0

b

dtQNiċ i

1E
0

b

dtH~QNi ,QSi ,f i ,c i !. ~12!

It is important to point out that in the presence of Ohm
dissipation the phase variablesf i andc i should be periodic
21451
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at t50 andt5b with no phase twistsby multiples of 2p
allowed. This follows from the fact that a 2p phase twist
causes dissipation and is thus measurable. The Ohmic d
pation allows continuous charge transfer~as opposed to
transfer of multiples ofe) from the shunting resistors to th
grain. Therefore any noninteger charge induced by the g
voltage can be screened out.~For a more detailed discussio
see Refs. 43 and 66!. This potential drawback of the
Caldeira-Leggett model of dissipation may be overcome
one introduces a more complicated form of dissipation, s
as via quasiparticle tunneling~see, e.g., Ref. 43!.

The quantum action in Eqs.~12! is quadratic inQSi and
QNi , so they may be integrated out~for details, see Appen-
dix A1!. The electrochemical contribution is~in terms of the
electrochemical potentials!

SQ5E
0

b

dt
1

2~2e!2 S (
i

CQi~VSi2VNi!
2

1(
i j

~siVSi1h iVNi!Ci j ~sjVS j1h jVN j! D . ~13!

This is very easy to interpret. The level spacings give rise
the first term in the brackets, making a potential differen
between the two fluids on one island energetically cos
The second term in the brackets is the charging energy
would expect from a conventional system of islands, but
potential on each island is replaced by a weighted averag
the normal-fluid potential and the superfluid potential:V̄i
5siVSi1h iVNi .

In terms of the phase variables, the full action can
written as

Z5E Df iDc iexp~2SQ2SJ2Sdis!

SQ5E
0

b

dt
1

2~2e!2 S (
i

CQi~ḟ i22ċ i !
2

1(
i j

~siḟ i1h i2ċ i !Ci j ~sj ḟ j1h j2ċ j ! D ,

SJ5E
0

b

dt@2J1cos~fg2f1!2J2cos~f22fg!#,

Sdis5b(
vn

RQ

4p S uvnu
R1

u2c1,(vn)22cg,(vn)u21
uvnu
R2

u2c2,(vn)

22cg,(vn)u21
uvnu

r
ufg,(vn)22cg,(vn)u2D , ~14!

where the Matsubara frequencies arevn52pTn, and we
have defined CQi5(DSi1DNi)

21, si5DNi /(DSi1DNi),
andh i5DSi /(DSi1DNi).

An important consequence of the domain of the ph
fieldsfg andc being the real line rather than a circle is th
the Berry phase has no effect on the behavior of the syst
5-4
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A Berry phase could arise if we included the gate volta
effects in Eqs.~2! and~6! by shiftingQSg→QSg2Q0, which
would lead to additional terms in the action~13! of the form
iQ0*0

bḟg . But because 2p phase twists are not allowed, th
additional action vanishes due to the periodic boundary c
ditions in imaginary time.

As a consistency check of the action~14!, we demonstrate
in Appendix A2 that its real-time equivalent gives rise
equations of motion that coincide exactly with the basic el
trodynamic equations for the circuit in Fig. 2.

In this paper we consider the limit of macroscopic ele
trodes, so we can set the correspondingD15D250 on these.
The first term in Eq.~13! then imposes perfect coupling be
tween the superconducting and normal fluids in the e
trodes, i.e.,f152c1 and f252c2. Note that this assump
tion does not restrict us to taking an infinite capacitance
the electrodes: the inverse of the level spacing grows as
volume of the grains, whereas capacitances increase
linearly with the dimensions. We restrict our discussion
the case when the largest capacitances in the system ar
mutual capacitancesbetween the electrodes and the gra
C1 andC2, for electrodes 1 and 2 respectively. In Append
A3 we show that in this case the charging part can be s
plified if we introduce the phase difference variables

D15fg2f1 ,

D25f22fg ,

Dg5fg22cg , ~15!

and the center-of-mass variableF,

F5
C111C121C1g

Ctot
f11

C221C121C2g

Ctot
f2

1
C1g1C2g1Cgg

Ctot
sgfg1

C1g1C2g1Cgg

Ctot
hg2cg ,

~16!
21451
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where

Ctot5(
i j

Ci j ~17!

~note thatCtot is not affected by the mutual capacitancesC1
andC2 but is determined by the capacitance of the system
the ground!. We thus have

SQ5
1

2~2e!2E0

b

dt@C1~2Ḋ11hgḊg
2

1C2~Ḋ21hgḊg!21CQḊg
21CtotḞ

2. ~18!

The center-of-mass coordinateF completely decouples from
the phase differences in the charging part of the action, an
is not present inSJ andSdis ; these can be written as

SJ5E
0

b

dt@2J1cos~D1!2J2cos~D2!#,

Sdis5b(
vn

RQ

2p S uvnu
R1

uD1,(vn)1Dg,(vn)u21
uvnu
R2

uD2,(vn)

1Dg,(vn)u21
uvnu

r
uDg,(vn)u2D . ~19!

Therefore the center-of-mass coordinateF factors out in the
partition function. From Eqs.~18! and ~19! we see thatDg
appears quadratically in the action and can be integrated
After this integration and also after neglecting terms invo
ing C1 /CQ ,C2 /CQ!1, we obtain
S5
RQ

2p
b(

vn
F uD1,(vn)u2S uvnu

2R1

F \

CQ
S 1

r
1

1

R2
D1uvnu1C1R1vn

2/\G
F \

CQ
S 1

R1
1

1

R2
1

1

r D1uvnuG D
1uD2,(vn)u2S uvnu

2R2

F \

CQ
S 1

r
1

1

R1
D1uvnu1C2R2vn

2/\G
F \

CQ
S 1

R1
1

1

R2
1

1

r D1uvnuG D
1D1,(vn)D2,(2vn)

uvnu
R1R2

\/CQ~11uvnuhgC1R1 /\!~11uvnuhgC2R2 /\!

F \

CQ
S 1

R1
1

1

R2
1

1

r D1uvnuG G1SJ . ~20!
5-5
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Looking at the ubiquitous denominators of Eq.~20! we no-
tice the expression

\

CQ
S 1

r
1

1

R1
1

1

R2
D1uvnu.

The scale for the Matsubara frequenciesvn is set by tem-
perature; hence a new temperature scale emerges from
~20!:

T* 5~2e!2~DS1DN!RQS 1

r
1

1

R1
1

1

R2
D . ~21!

This is the level spacing on the grain (1/CQ5DS1DN)
times a dimensionless resistance-dependent factor, and
also of the order of the inverse escape time from the gra

High-temperature limit.WhenT@T* the denominator in
Eq. ~20! is dominated byuvu@T* , and the effective action
for high temperatures is

S'
RQ

2p
b(

vn
F1

2
uD1,(vn)u2S uvnu

R1
1C1vn

2/\ D
1

1

2
uD2,(vn)u2S uvnu

R2
1C2vn

2/\ D1D1,(vn)D2,(2vn)

uvu
R1R2

3S \/CQ~11uvnuhgC1R1 /\!~11uvnuhgC2R2 /\!

uvu D G
1SJ . ~22!

In this limit we see that the interaction term between the t
junctions ~which is T independent to leading order i
C1 /CQ , C2 /CQ) is negligible compared to the other resi
tive and capacitative parts of the action; the two junctions
thus effectively decoupled forT@T* . The dissipations for
the two junctions in this limit are set simply by the individu
shunt resistancesR1 andR2. This is the limit that has been
discussed in the literature; its validity at low temperatu
relies on the basic assumption ofmacroscopicgrains, for
which T* 50.

Low-temperature limit.At temperaturesT below T* @we
assume thatT* ,\/(R1C1) and T* ,\/(R2C2)] a qualita-
tively different picture emerges in which the coupling b
tween the two junctions becomes important. The low-ene
effective theory is

Z'E DD1DD2e2Sd2SC2S̃J,

S̃J5E
0

b

dt@2J1cos~D1!2J2cos~D2!2J1cos~D11D2!#,

SC5b(
vn

S CQ

2~2e!2 U rR2D11rR1D2

rR11rR21R1R2
U2

vn
2D ,

Sd5b(
vn

uvnu
2

DW †ĜDW , ~23!

with
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DW [~D1 ,D2! ~24!

and the matrix

Ĝ5
RQ

2pY S r 1R2 r

r r 1R1
D , ~25!

where

Y[rR11rR21R1R2 . ~26!

In the equations above we have added, for future purpose
lead-to-lead Josephson coupling term representing cotun
ing processes via the grain. This term describes a Coo
pair tunneling~pair-tunnel event! from the left electrode to
the right electrode~see Fig. 3! via a virtual intermediate state
with an additional pair on the grain. Such processes app
perturbatively at second order inJ1 andJ2 and will be gen-
erated in the RG flows for the action~23! @see discussion
below Eq.~27!#.

It is important to note that level spacingDg5Dsg1Dng

only appears inSC via the quantum capacitanceCQ5Dg
21 ,

whose precise form will not matter except to yield a hig
frequency cutoff. By the same token, a different form of t
capacitative energy of the leads and grains would o
modify SC and not change any of the analysis presented
this paper.

Action ~23! is one of the main results of this paper, and
the following sections we will mostly be concerned wi
studying its properties.

III. WEAK-COUPLING ANALYSIS

In this section we analyze the low energy properties of
system in the weak-Josephson-coupling limit.

A. Renormalization group equations

In the limit of weak Josephson couplings$Ji%, the quan-
tum action~23! can be analyzed directly in the generaliz

FIG. 3. Physical interpretation of expanding theJicosDi terms
in the action ~23!. The weak Josephson coupling action can
mapped to a theory of interacting Cooper-pair tunneling eve
~Coulomb-gas representation! with each pair-tunnel ‘‘charge’’ cor-
responding to a Cooper pair transferred through one of the ju
tions. The cotunneling events which transfer Cooper pairs from l
to lead are also shown; in the Coulomb-gas representation t
correspond to pair-tunnel dipoles.
5-6
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sine-Gordon representation. In Appendix D2, RG flow eq
tions are derived to second order in the Josephson coupl

dJ1

dl
5J1S 12

R11r

RQ
D1

R2

RQ
J2J1 ,

dJ2

dl
5J2S 12

R21r

RQ
D1

R1

RQ
J1J1 ,

dJ1

dl
5J1S 12

R11R2

RQ
D1

r

RQ
J1J2 . ~27!

In writing these we have set a combination of the short-ti
cutoffs to be equal to 1. In physical units, the energy cutof
of the order of the charge relaxation rate of the junctions
units of which we are here measuring the$Ji%. The first-
order terms in the RG flows arise, as usual, from integra
out fast modes in the quadratic part of action~23!. The
second-order terms are obtained from recombinant term
the expansion in powers ofJ’s of Eq. ~23!. These can be
understood physically; pair-tunnel events on junctions 1
2 can combine to form a cotunneling event between the
leads, while a cotunneling event plus a pair tunnel in
opposite direction across one of the junctions is equivalen
pair tunneling across the other junction~for details see Ap-
pendix!. From Eqs.~27! we see that, as claimed in the pr
vious section,J1 gets generated at low energies even if
start with a model in whichJ150.

B. Weak-coupling phase diagram

Surprisingly, the simple flow equations~27! give rise to
five different regimes. When allJ’s are irrelevant about the
uncoupled fixed line so that they flow to zero, the system
in the normal state with no supercurrents between the le
or between either lead and the grain. Thisnormal ~NOR!
phase occurs ifR1 andR2 are both sufficiently large. When
all J’s are relevant and grow under the RG flows, the syste
is in a fully superconducting phase that we denote FSC. T
occurs if all the resistances are sufficiently small. For int
mediate ranges of the resistances, the situation is more c
plicated.

When only one out of the threeJ’s is relevant while the
other two flow to zero at low energies, the system is in
‘‘mixed phase’’; as we shall see, there are three such pha
When the only relevant coupling isJ1, junction 1 is super-
conducting, and junction 2 is normal, we call this phase
N2. With respect to lead-to-lead transport this is like t
normal phase. Analogously we will have an N1-S2 pha
when J2 is relevant butJ1 and J1 are not. Rather surpris
ingly, there can also be a situation in whichJ1 is relevant
but J1 and J2 are not. This is a phase in which individu
junctions are normal, but the circuit as a whole is superc
ducting and Cooper pairs can flow freely between the lea
We denote this phase SC!. Physically, it corresponds to Coo
per pairs being localized on the grain, so that the individ
junctions are normal; however, the cotunneling proces
via virtual Cooper-pair excitations on the grain, induce s
perconducting coherence between the leads. A similar ph
21451
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was discussed by Korshunov50,51 and Bobbertet al.52 in the
context of one-dimensional Josephson junction arrays.

Inspection of the flow equations shows that as long
R1 ,R2 ,r .0 there cannot be phases in which two of the
three J’s grow while the third flows to zero: the couplin
terms in Eqs.~27! from the two growing ones will drive the
third J to grow as well. The system will then be in thefully
superconducting~FSC! phase.

To lowest order for smallJ’s, the phase boundaries be
tween these phases are set by the relevance ofJ1 , J2, andJ1

about the decoupled~normal! fixed line; these are deter
mined by the combinationsR11r , R21r , and R11R2 re-
spectively.

This simple analysis, however, is not sufficient to obta
the correct phase diagram. In the regions where one of
three couplingsJ1 , J2, or J1 is relevant, Eqs.~27! no longer
apply, since they are derived for smallJ’s.

For instance, the N1-S2-to-FSC transition line needs to
calculated bearing in mind thatJ2 is relevant. A better ap-
proximation for this transition is obtained by noting that t
fluctuations in phase difference across junction 2,D2, will be
small in the N1-S2 phase. Thus in this regime we can
proximately setD250 in Eq. ~23!. This modifies the RG
flow for J1 to

dJ1

dl
5J1

S 12

R11
rR2

r 1R2

RQ

D . ~28!

@We will see later that in the Coulomb gas language, Eq.~28!
corresponds to including the screening effects of unbo
type 2 charges when considering the unbinding transition
charges of type 1~see Appendix D2 for details!.# From Eq.
~28! we find that the N1-S2-to-FSC boundary gets shifted

R11
rR2

r 1R2
5RQ . ~29!

Similar modifications of the phase boundaries appear for
transitions that involve ordering of one field in the presen
of order in another: S1-N2 to FSC~ordering ofD2 whenD1
is ordered! and SC! to FSC ~ordering ofD1 and D2 when
D11D2 is ordered!.

The correct—and rather complicated—weak-coupli
phase diagram is shown in Fig. 4. A particularly interesti
regime occurs forr .RQ . In this regime the two junctions
cease to behave as such; instead, they behave much l
single junction shunted by the total resistance,R11R2,
which therefore determines the location of th
superconducting-to-normal transition between the two lea
This will be discussed further in Sec. VII.

C. Circuit theory for weak coupling

In this subsection we show how the phase diagram of F
4 can be obtained by simple physical arguments. Before p
ceeding it is useful to recall such an argument for a sin
junction.

We want to investigate the stability of the supercondu
ing state of a single Josephson junction with an Ohmic sh
5-7
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FIG. 4. Weak-Josephson
coupling phase diagram. Phas
boundary formulas apply every
where, although they are eac
given in only one graph.~a! When
r ,0.5RQ four of the five phases
are present; each junction is eithe
normal or superconducting.~b!
For larger r, the shape of the
phase boundary between the FS
and NOR phases changes.~c!
When 0.75,r /RQ,1 the SC! ap-
pears and all five phases ar
present. ~d! When r .RQ only
SC! survives of the mixed phases
and FSC disappears.
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In the superconducting phase, Cooper-pairs are deloca
between the leads. Each Cooper-pair tunneling event cha
the charge on the junction by 2e. This charge needs to b
screened by the normal electrons in the shunt, thereby c
ing a voltage drop to appear across the junction. By the
sephson relation, this voltage drop induces a change in
phase difference across the junction. The superconduc
phase with delocalized Cooper pairs will survive only wh
the phase change due to one Cooper-pair tunneling eve
less than 2p ~otherwise the phase becomes delocalize!.
From circuit equations and the Josephson relation we fin

2e5E I Ndt5E DV

RS
dt5

\

2eRS
E df

dt
dt5

\

2eRS
Df,

~30!

whereI N is the normal screening current,DV is the voltage
difference across the junction, andDf is the phase chang
due to a Cooper tunneling. Rewriting the last relation as

Df

2p
5

RS

RQ
, ~31!

we obtain the usual condition; the shunted Josephson j
tion is superconducting whenRS,RQ . We can summarize
this argument by saying that a Cooper-pair tunneling ev
provides a current source with a magnitude that depend
the shunting resistance. By the Josephson relation, this l
to a phase fluctuation across the junction, and the super
ducting phase is only stable when this phase fluctuatio
less than 2p. ~Note that this argument does not really yie
the exact condition: a multiplicative factor of order uni
could have arisen. A fuller analysis, as from the RG flows
needed to obtain the correct coefficient.!
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Applying this approach to the two-junction system of Fi
2 effectively reduces the problem to determining the eff
tive shunting resistance associated with Cooper-pair tun
ing events in various situations. As in the single juncti
case, a Cooper-pair tunneling can be simply modeled a
current source.

~i! To find the transition between S1-N2 and the NO
phase, consider a Cooper-pair tunneling across junctio
with junction 2 insulating and acting as a circuit disconne
The effective resistance that makes a circuit with the curr
source is thenR11r @see Fig. 5~a!#, and the phase boundar
is at R11r 5RQ . Analogously for the N1-S2 to NOR tran
sition we have the circuit shown in Fig. 5~b! and a phase
boundary atR21r 5RQ .

~ii ! The SC! to NOR transition is marked by the prolif

FIG. 5. Effective circuits for pair tunneling events. A pair tunn
corresponds to a current source, whereas a junction without
tunneling acts as an open circuit.~a! Effective circuit for a pair
tunneling through junction 1.~b! Effective circuit for a pair tunnel-
ing through junction 2.~c! Effective circuit for a coherent lead-to
lead pair tunneling event. Since the current through junctions 1
2 is the same, the resistancer is effectively disconnected in this
case.
5-8
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DISSIPATION AND QUANTUM PHASE TRANSITIONS . . . PHYSICAL REVIEW B 68, 214515 ~2003!
eration of cotunneling processes in which a Cooper p
moves between the leads, but with both junctions individ
ally insulating. The circuit describing this case is depicted
Fig. 5~c!, with the cotunneling process described as two c
rent sources forcing the same current through both Josep
junctions. The cotunneling process leaves no charge on
grain and is hence screened only by normal currents flow
in the resistorsR1 andR2. The effective shunting resistanc
in this case isR11R2 and the phase boundary is atR11R2
5RQ .

~iii ! The transition between N1-S2 and FSC occurs wh
junction 2 is already superconducting and can hence be
placed by a short in the circuit@see Fig. 6~a!#. The effective
shunting resistance across junction one then involvesr and
R2 in parallel, as well asR1; therefore the phase bounda
for this transition occurs atR11rR2 /(r 1R2)5RQ . By the
same token the transition between S1-N2 and FSC ta
place whenR21rR1 /(r 1R1)5RQ .

~iv! To understand the FSC-to-SC! transition we need to
consider the regime in which cotunneling maintains coh
ence between the leads; therefore these are effectively
nected by a short in the circuit as shown in Fig. 6~b!. Now
consider a Cooper-pair tunneling from the grain to one of
leads—say, 2. The effective resistance seen by a tunne
Cooper pair isr 1R1R2 /(R11R2) and the phase boundary
hence atr 1R1R2 /(R11R2)5RQ . The effective shunt resis
tance for tunneling from the grain to lead 1 is the same. T
nature of the SC! phase is as follows: Cooper-pair tunnelin
events scramble phases across junctions 1 and 2 too m
for the junctions to be coherent, so Cooper pairs beco
localized on the grain. Nevertheless, cotunneling events
low Cooper pairs to move between the leads, so there
well-defined phase difference between them that acts

FIG. 6. ~a! Effective circuit for a pair tunneling through junctio
1 when junction 2 is superconducting (J2 is relevant about the
weak-coupling limit!. ~b! Effective circuit for a pair tunneling even
through junction 1~or 2! whenJ1 is relevant and coherent lead-to
lead pair tunneling events proliferate.
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short between the two macroscopic leads as far as dissipa
across the individual junctions.

~v! The FSC to NOR transition line is, naively, a contin
ation of the S1-N2-to-NOR and N1-S2-to-NOR lines. Th
suggests that when considering fluctuations of the phase
ference across junction 1, we assume junction 2 to be in
lating and vice versa. The consistency of such an approxi
tion is highly questionable and reflects the limit of smallJ’s
as our starting point: by a weak-coupling analysis: for
weak-coupling limit to be valid, we should only approac
phase boundaries from normal phases of the junction un
consideration.

It is worth pointing out that in all cases described abo
the effective dissipation isdecreasedrelative to that in the
high-temperature action~22!. The most extreme case hap
pens for the SC!-to-NOR transition which is determined b
the total shunting resistance at low temperatures rather t
individual resistancesR1 andR2, which would determine the
transitions between macroscopic grains. In the SC! phase the
whole system behaves as a single junction, and the diss
tion is determined by the resistance across the whole of
system.

IV. STRONG-COUPLING ANALYSIS

We have seen that much can be concluded from the we
Josephson-coupling analysis, in particular the nature of
five possible phases and some of the transitions betw
them. Yet some of the transitions could only be understo
via a hybrid analysis involving some large and some sm
couplings, and as pointed out above, the FSC to NOR tr
sition cannot be analyzed in a controlled manner from
weak-coupling analysis. Even to solidify the identification
all of the superconducting phases, we really need to go
yond weak coupling: as soon as one or more of theJ’s grows
without bound, the system flows out of the regime of valid
of the RG flow equations used thus far and we must
where it flows to.

In this section we turn to the limit of large Josephs
coupling and attempt to analyze the phases, phase diag
and transitions in that limit.

A. Sine-Gordon action for quantum phase slips

When the Josephson couplings are large, the system
usually in the vicinity of one of the classical minima of th
Josephson potentials so thatD1'2pn1 , D2'2pn2 with n1
andn2 integers. Only rarely does the system undergo a t
neling event in which one or both of the phases winds
2p. Such phase tunneling processes between minima of
classical potential arequantum phase slips~QPS’s!.43 When
QPS’s across it are suppressed at low temperatures a Jo
son junction is superconducting, but when they prolifer
the junction is incapable of supporting supercurrents and
comes normal.

In weak coupling we analyzed the low-energy action
terms of Cooper-pair tunneling events. As discussed in A
pendix B, this is equivalent to a classical Coulomb gas w
two types of charges corresponding to pair tunneling eve
5-9
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REFAEL, DEMLER, OREG, AND FISHER PHYSICAL REVIEW B68, 214515 ~2003!
through the two junctions; dissipation gives rise to effect
logarithmic interactions among these. Various of t
superconductor-to-normal transitions can be described
binding-unbinding transitions of this two component plasm

In the strong-coupling case we can write a Coulomb
representation for the quantum phase slips instead of
Cooper-pair tunneling events. The phase slips also behav
a two-component gas—phase slips on the two junction
with logarithmic interactions between them. When the ph
slips across a junction proliferate, it becomes normal; if
stead their fugacity tends to zero at low-energy-scales,
junction is superconducting. Mathematically, the stron
coupling case can be analyzed by performing a Villain tra
formation to represent the partition function~23! in terms of
two types of interacting phase slips. This classical Coulo
gas can then be transformed into a new sine-Gordon m
that isdual to Eqs.~23!. Appendix C describes the details o
such transformations. We find

Z5E D@u1#E D@u2#exp~2S!,

with

S5b(
vn

uvnuuW 2vn

T M̂uW vn
2E

0

b

dt@z1cos~u1!

1z2cos~u2!1z2cos~u12u2!#, ~32!

whereuW 5(u1 ,u2) and

M̂5Ĝ215
1

2pRQ
S r 1R1 2r

2r r 1R2
D ~33!

is the scaled resistance matrix. The variablesz1 ,z2 ,z2 are
the fugacities corresponding to the three types of phase s
z1 across junction 1,z2 across junction 2, andz2 , a combi-
nation of these that corresponds to a phase slip across 1
a simultaneous antiphase slip across 2, thereby slipping
phase on the grain with respect toboth of the superconduct
ing leads.

B. Phase diagram

Following the steps leading to Eq.~27! we readily obtain
the flow equations for the phase slip fugacitiesz1 ,z2, and
z2 :

dz1

dl
5z1S 12

RQ

R11
R2r

R21r
D 1

R1

Y
z2z2 ,

dz2

dl
5z2S 12

RQ

R21
R1r

R11r
D 1

R2

Y
z1z2 ,

dz2

dl
5z2S 12

RQ

r 1
R1R2

R11R2

D 1
r

Y
z1z2 , ~34!
21451
as
.
s
he
as

e
-
e

-
-

b
el

s:

nd
he

where we useY[R1R21rR11rR2. These flow equations
are correct to second order in thez ’s, being simply the ana-
log of Eqs.~27! for the weak-coupling limit. We again work
in units in which the short-time cutoff—here related to t
‘‘transit time’’ for a least-action phase slip—is unity.

Growth under renormalization of a fugacityz i corre-
sponds to proliferation of the corresponding QPS’s a
hence destruction of superconductivity across the respec
junction in the case ofz1 or z2 or between the grain and th
rest of the system in the case ofz2 .

Equation~34! gives rise, as did the weak-coupling anal
sis, to five phases. When allz ’s are irrelevant and flow to
zero, the system is in the fully superconducting state~FSC!
since isolated phase slips all cost infinite action. Convers
if all z ’s are relevant, we expect the normal state~NOR! to
obtain. As in the weak-coupling case, three mixed pha
appear when onlyoneof the fugacities is relevant. Whenz1
is relevant andz2 andz2 are not, the system is in the N1-S
phase; analogously a relevantz2 and irrelevantz1 and z2

signal the S1-N2 phase.
If z2 is relevant butz1 and z2 are not, the special SC!

phase occurs. In this phase only QPSdipoles proliferate;
these consist of a phase slip across one junction and anan-
tiphaseslip across the other. Isolated phase slips across i
vidual junctions will not occur in the SC! phase. Supercon
ducting phase coherence between the two leads is
maintained, since the phase difference between them is
sum of the phase differences for the two junctions, an
phase slip on junction 1 gets canceled by its accompany
antiphase slip on junction 2. But the phase difference
tween the leads and grain is ill defined in SC! as a result of
the proliferated QPS dipoles. We thus see that proliferat
of the QPS dipoles induces charge localization on the gr

The transition between the two superconducting pha
SC! and FSC is, from the point of view of phase slips on t
individual junctions, a transition between a dipole-free sta
FSC, in which all the phase slips will be bound in quadr
poles, and a phase, SC!, in which dipoles proliferate but
single quantum phase slips still do not occur. Because of
free dipoles in the SC! phase, a single quantum phase s
between the two leads can consist of any combination
phase slips across the two junctions that add up to a t
phase difference between the leads of 2p.

As in the weak-coupling limit~Sec. III B!, we could at-
tempt to construct a naive phase diagram showing all
phases from thefirst-order strong-coupling flow equations
This approach would give phase boundaries that depend
R11R2r /(R21r ),R21R1r /(R11r ), and r 1R1R2 /(R1
1R2). But such an analysis, as in the weak-coupling limit,
not sufficient: when one type of phase slip proliferates it w
partially screen the interactions between the other types
phase slips.

To do better we must consider the effects of the releva
of a z cosu term: this will cause the dual phaseu associated
with the proliferating phase slips to become localized at
integer multiple of 2p. As theu will then not fluctuate ap-
preciably about this at low energies, we can set it to zero.
for weak coupling, this suppression of some of the fluctu
tions will change the flows of the remaining fugacities a
5-10



ia-
ry-
ne

t,

r

DISSIPATION AND QUANTUM PHASE TRANSITIONS . . . PHYSICAL REVIEW B 68, 214515 ~2003!
FIG. 7. Strong-Josephson-coupling phase d
gram. Phase boundary formulas apply eve
where, although they are each given in only o
graph.~a! r 50 for which the two junctions are
effectively independent,~b! range 0,r /RQ

,2/3, ~c! range 2/3,r /RQ,3/4, ~d! range
3/4,r /RQ,1 where all five phases are presen
and ~e! ranger .RQ for which the two junctions
act like a single junction with a shunt resisto
R11R2.
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thereby modify the phase diagram. The complete phase
gram from such a strong-coupling analysis is shown
Fig. 7.

C. Circuit theory for strong coupling

The strong-coupling phase diagram of Fig. 7 can be s
ply interpreted in terms of the effective electronic circui
Although these arguments are dual to the ones used for w
coupling, we present them here for completeness.

Again it is useful to start by considering the case o
single junction, now starting from the superconducting
gime. The normal state occurs when quantum phase s
proliferate. When a QPS occurs, the phase difference ac
the junction changes by 2p. By the Josephson relation, th
generates both a voltage drop and charge flow through
normal shunt. In the normal state the Cooper pairs should
localized; therefore, such a state can only be stable if
charge fluctuation caused by an individual QPS is less t
2e ~again, the justification of the factor being exactly 2 rea
needing a fuller analysis!. From Kirkhoff’s laws and the Jo-
sephson relation we have

2p5E df

dt
dt5

2e

\ E Vdt5
2e

\
RsE Idt5

2e

\
Dq.

~35!
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Here Dq is the amount of charge that passes through
shunt resistor as a result of the QPS. In units of the charg
a Cooper pair, 2e, this is

Dq

2e
5

RQ

RS
. ~36!

We thus guess that the normal state is stable whenRS
.RQ . The basic physics is that fluctuating QPS’s act
voltage noise that gives rise to charge fluctuations on
junction. The insulating state is only stable when the
charge fluctuations are sufficiently small: less than 2e.

The generalization of the single-junction argument to
system in Fig. 2 requires analysis of the effective shunt
resistances for the various QPS configurations. The quan
phase slips are effectively voltage sources. The phase
dipole corresponding toz2 is thus equivalent to two equa
but opposite voltage sources across the two junctions so
there is no voltage between the two leads, but the grain i
a different voltage than the leads.

~i! The FSC-to-N1-S2 transition is determined by the c
cuit in Fig. 8~a!. In this case junction two can be replaced
a short as it is superconducting on both sides of the tra
tion. This gives an effective shunting resistanceR1
1rR2 /(R21r ) for the phase slip, so the transition occurs
R11rR2 /(R21r )5RQ . Similarly, the transition between
5-11
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REFAEL, DEMLER, OREG, AND FISHER PHYSICAL REVIEW B68, 214515 ~2003!
S1-N2 and FSC is determined by the circuit in Fig. 8~b!, with
the effective shunting resistance at the transition beingR2
1rR1 /(R11r )5RQ .

~ii ! To understand the FSC-to-SC! transition we need to
consider a dipole consisting of a QPS on junction 1 an
simultaneous anti-QPS on junction 2, corresponding to ap
phase twist on the intervening grain. In particular, we need
know how much charge flows from the super electrons
the grain to the normal electrons on the grain during suc
phase twist. An equivalent circuit is shown in Fig. 8~c!, and
we conclude that the phase boundary should occur ar
1R1R2 /(R11R2)5RQ , as the charge must flow throughr
and eitherR1 or R2.

~iii ! The transition between S1-N2 and the NOR phas
determined by the relevance of the QPS on junction 1 w
junction 2 is insulating. The corresponding circuit is show
in Fig. 9~a!; since the effective shunting resistance isR1
1r, we find a phase boundary atR11r 5RQ . Similarly, the
N1-S2-to-NOR transition is atR21r 5RQ .

FIG. 8. Effective circuits for transitions to the FSC phase in
phase-slip picture. Phase slips correspond to a voltage source a
the corresponding junction.~a! Phase slip on junction 1,~b! phase
slip on junction 2, and~c! slip-antislip pair which corresponds t
slipping the phase of the grain relative to both leads.

FIG. 9. Effective circuits for transitions to the NOR phase in t
phase-slip picture.~a! Phase slip on junction 1 when junction 2
insulating (z2 is relevant! and ~b! phase slip on junction 1~or 2!
whenz2 is relevant and slip-antislip pairs proliferate.
21451
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~iv! The transition between SC! and NOR is determined
by the effective circuit in Fig. 9~b!. In the SC! phase the
component that is incoherent with the rest of the system
the grain. Since phase coherence between the leads is m
tained, charge can flow freely from lead to lead via virtu
superconducting electrons on the grain unhindered by
phase fluctuations on the grain. But if some charge flo
through r to the normal electrons on the grain, this curre
will couple to the phase-slip dipoles and induce a large v
age drop; hencer becomes effectively a disconnect in th
SC! phase. The destruction of lead-to-lead superconducti
that characterizes the SC!-to-NOR transition thus occurs a
R11R25RQ .

~v! The FSC-to-NOR line is naively a continuation of th
S1-N2 and N1-S2 lines. This suggests that to approach
transition line from the superconducting side, when we c
sider a QPS in junction 1 we assume junction 2 to be sup
conducting and vice versa. This highly questionable appro
mation reflects the limitations of our strong-couplin
analysis for the FSC-to-NOR transition; we will analyze
more carefully below.

V. INTERMEDIATE-COUPLING FIXED POINT

In the previous two sections we have analyzed the ze
temperature states and transitions between them in both
weak- and strong-Josephson-coupling limits. In both ca
we found that there were some regimes that could not
adequately analyzed. In this section analyze
intermediate-coupling behavior, finding that transitions oc
whose locations and properties are not given correctly
either the weak- or strong-coupling approaches.

A comparison of Fig. 4 and Fig. 7 reveals that there i
difference between weak- and strong-coupling phase
grams for r ,RQ . In particular, the inferred phase boun
aries between the FSC and NOR phases differ in these
limits. This transition is special in thatboth junctions go
from superconducting to normal, but the transition is driv
by the dynamics of just one of them. In the weak-coupli
limit, when we analyzed the superconductor-to-normal tr
sition of junction 1, our underlying assumption was th
junction 2 was normal. By contrast, for the same transition
the strong-coupling case, junction 2 was assumed to be
fectively superconducting. This distinction between the a
proximate descriptions accounts for the difference in infer
phase diagrams. What is the actual behavior in this regim
Does it, in contrast to the other regimes, depend on the m
nitudes of the Josephson couplings as well as the resistan

In Fig. 10 we indicate parts of the phase diagram
which weak- and strong-coupling analyses suggest diffe
natures of the ground state. These regimes of the resista
would be fully superconducting~FSC! in the strong-coupling
approximation and normal~NOR! in the weak-coupling ap-
proximation: the FSC fixed manifold is stable to sm
fugacities of the phase slips, and the NOR fixed manifold
stable to small Josephson couplings. This suggests tha
such regimes, there should be a transition from NOR to F
as theJ’s are varied at a finite nonzero value of the Jose
son couplings. Specifically, if an appropriate combination

oss
5-12



e-

r
-
r
.

d

o

t

DISSIPATION AND QUANTUM PHASE TRANSITIONS . . . PHYSICAL REVIEW B 68, 214515 ~2003!
FIG. 10. Intermediate-
coupling fixed-point regions of the
phase diagram. The shaded r
gions surrounded by a bold line lie
in a superconducting phase fo
strong coupling and in an insulat
ing phase for weak coupling. Fo
r .RQ there are no such regions
For intermediate J the phase
boundaries will be in the shade
regions. The pointsA0 , A1, and
A2 mark where the critical fixed
point, J* goes to zero, and the
pointsB0 ,B1, andB2 mark where
z* goes to zero corresponding t
J* →`. Near these multicritical
points the RG analyses in the tex
become exact.
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the Josephson couplings is greater than some~resistance de-
pendent! critical value, then the system will be in the FS
state, while if this combination is less than the critical valu
the system will be in the normal state. As such a transitio
presumably controlled by an intermediate-coupling fix
point, it will have very different character than the oth
transitions; from now on we will refer to regimes in whic
such critical fixed points occur as simplyintermediatere-
gimes.

It is useful to remember that the original microscop
model hadJ150, so for fixed resistances in the intermedia
regime, on theJ1 ,J2 plane there will be a manifold below
which the system flows to the normal fixed point and abo
which it flows to the FSC fixed point; this is the critica
manifold of the FSC-to-NOR transition. Alternatively, th
microscopic model could be defined in terms of the pha
slip fugacitiesz1 ,z2 with z250. For fixed resistances in th
intermediate regime, the critical manifold would show
here too, separating the FSC and normal phases in, for fi
resistances, thez1 ,z2 plane.

In general, an analysis of the critical behavior in the
termediate regime is beyond the methods of this paper,
we can make use of the weak- and strong-coupling limits
analyzeparts of this regime: specifically, when the critica
values of either the Josephson couplings or the QPS fug
ties, respectively, are small.

A. Weak-coupling limit

We first study the weak-coupling limit. In order to find th
critical values ofJ1 ,J2 ,J1 in the intermediate regime, w
need to analyze the effects of the nonlinear terms in the
flow equations~27! and, if there is indeed a perturbative
accessible critical fixed point, find it and the correspond
critical manifold. Truncating at second order, we indeed fi
a fixed point
21451
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~J1* !25
~R21r 2RQ!~R11R22RQ!

rR1
,

~J2* !25
~R11r 2RQ!~R11R22RQ!

rR2
,

~J1* !25
~R21r 2RQ!~R11r 2r Q!

R2R1
, ~37!

with an overall cutoff-dependent proportionality coefficie
having been set equal to unity when the RG equations w
first derived. As we see below, this fixed point can be sho
to be critical provided each of the three resistance comb
tions in parentheses are positive. These factors, which
will call

u[R21r 2RQ , v[R11r 2RQ , w[R11R22RQ ,
~38!

are the negatives of the eigenvalues of the three coupl
along the normal fixed manifold so that the normal phase
stable to smallJ’s in this regime as indicated by the wea
coupling phase diagram. Naively, one might have expec
the nonlinear perturbative analysis to be valid only when
three of these eigenvalues are small, but we see that in
all that is needed istwo of the three eigenvalues small an
negative with the third being arbitrarily negative. Corre
spondingly, we require that all three ofu, v, andw be posi-
tive with two of them being small.

By rescaling theJ’s appropriately, the RG flows can b
put in a simple symmetric form in terms ofu, v, andw, and
the fixed point values written as

J1* 5Auw

rR1
, J2* 5Avw

rR2
, J1* 5A uv

R1R2
. ~39!
5-13
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The linearized flows around this intermediate-coupling fix
point yield the eigenvalues which are given by

l i'L i~u1v1w!, ~40!

with the $L i% being the three roots of

L31L25m ~41!

in terms of the dimensionless combination of the resistan

m[
4uvw

~u1v1w!3
. ~42!

We see immediately that form positive, as it must be, there i
always a unique positive eigenvaluel1 , which controls the
growth of deviations from the critical manifold; the two oth
ers have negative real parts and are hence irrelevant a
intermediate-coupling critical fixed point. Note that if on
two of u, v, andw are small, with, say,w being much larger
than the other two, thenL1'A4uv/w2!1 so that l1

'2Auv. If all three are small and comparable,l1 will be of
the same order but depend in a somewhat complicated
on their ratios.

B. Strong-coupling limit

It is clear by examining the limits of validity of the weak
coupling expansion above that we cannot extract the crit
behavior throughout the intermediate regime from this ana
sis. Fortunately, we can access another part of this reg
from the strong-coupling direction.

Using the second-order RG flows in terms of the fuga
ties of phase slips, we find a critical fixed point at

~z1* !25S 1

RQ
2

R21R1

Y D S 1

RQ
2

r 1R1

Y D Q2

rR2
,

~z2* !25S 1

RQ
2

R21R1

Y D S 1

RQ
2

r 1R2

Y D Q2

rR1
,

~z2* !25S 1

RQ
2

R21r

Y D S 1

RQ
2

r 1R1

Y D Q2

R1R2
, ~43!

with Y5r (R11R2)1R1R2. As for weak coupling, it is con-
venient to work in terms of the negatives of the eigenval
of the three fugacities about the FSC fixed manifold, defin

ū[
R21r

Y
2RQ ,

v̄[
R11r

Y
2RQ ,

w̄[
R11R2

Y
2RQ , ~44!

with the condition for the validity of the expansion being th
all these must be positive with at least two of them sm
The expansion is carried out in exactly the same manne
for the weak-coupling limit and the eigenvalues about
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intermediate-coupling critical fixed point determined by e
actly the same conditions as in Eqs.~40!–~42!, with simply
u, v, and w replaced by their~overbared! strong-coupling
equivalents.

C. Superconducting-normal critical manifold

From the above discussion we see that direct transiti
between the FSC and NOR phases will always be contro
by intermediate-coupling fixed points. Although we thus ca
not find the full phase boundary exactly in the intermedi
region of the resistance space, we can use the weak-
strong-coupling analysis to find it in some regimes of t
intermediate region. Equations~37! and ~43! apply in the
weak- and strong-Josephson-coupling limits, respectively
that we can locate the phase boundaries accurately in
intermediate region from the flow equations provided th
both the bare and fixed-point values of the Josephson c
plings are either all large or all small. In particular, we ha
found that theJ* go to zero along certain lines in ther , R1,
andR2 space which intersect the constantr surfaces shown
in Fig. 10 at the pointsA0 , A1, andA2; our weak-coupling
analysis is controlled in their vicinity providing the bareJ’s
are small. Analogously, the fixed-point valuesz i* vanish at
pointsB0 , B1, andB2 of the constant-r surfaces as shown in
Fig. 10 and the strong-coupling analysis is controlled in th
vicinity provided the bareJ’s are large.

The finite values of theJ* ’s at the fixed point on the
critical lines have interesting implications for the pha
boundaries in the fullR andJ parameter space as sketched
Fig. 11. If we cross from the FSC to NOR phase by chang
resistances and keepingJ’s fixed, the exact location of the
transition will generally depend on the values of theJ’s.
However, there is a whole range of smallJ’s ~which we can
schematically denote as 0,J,J* ) for which, in the second-
order RG approximation, this transition occurs exactly at
FSC-to-intermediate-region boundary; if we consider high
order terms in the RG, the location of the transition in th
range will be modified slightly. Analogously there is a ran
of large J’s for which the FSC-to-NOR transition happen
very close to the intermediate-region-to-NOR line~in strong
coupling this occurs for 0,z,z* ).

For illustrative purposes we calculate explicitly the pha
boundary as a function of weakJ1,2 in the part of the inter-
mediate regime of resistances in which the fixed point is
small but nonzero coupling. In particular, we consider t
FSC-to-NOR transition for

r ,0.5, R2512r 1u, R1512r 1v, ~45!

with u andv small, and for convenience, we setRQ51 for
this section. The third parameter

w5R11R2215122r 1u1v'122r ~46!

is generallynot small. It is convenient to define rescale
couplings by

K1[Ar ~12r !

122r
J1 , K2[Ar ~12r !

122r
J2 , ~47!
5-14
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which have fixed-point valuesK1* 'Au andK2* 'Av. From
the RG flow equations, it can be seen thatJ1 rapidly ap-
proaches its nullcline valueJ1

n (K1 ,K2) and then evolves
slowly with the other variables. SubstitutingJ1

n for J1 in the
flow equations forK1,2, we can find the invariant manifold
on which the critical fixed point lies. This is parametrized

K1
22u@11 ln~K1

2/u!#'K2
22v@11 ln~K2

2/v !#, ~48!

which has two branches of solutions: the branch with one
K1 or K2 larger than its fixed-point value and the oth
smaller is the desired critical manifold. Note that asJ1 in-

FIG. 11. Example of phase diagram in vicinity of a transiti
between the FSC and NOR phases for fixedr ,1/2. The critical
manifold in the intermediate regime depends on the Josephson
pling strengths.~a! Schematic cross section of the phase diagr
along the line withR2512r ~this line is the bold line indicated by
an arrow in the inset! showing the jump inJc suggested by the
truncated second-order RG analysis for crossing the phase boun
from R2,12r to R2.12r . The arrows indicate the RG flow o
the Josephson couplings. Higher-order terms in RG flows are lik
to drive the criticalJc to zero on the lineR2512r . ~b! Three-
dimensional view of the phase diagram, focusing on the FSC-N
transition. The solid lines in thex-y plane mark the phase bounda
between the mixed phases and the insulating and the FSC ph
These phase boundaries are independent ofJ.
21451
f

creases above its fixed-point value, the critical value ofJ2
decreases exponentially and vice versa. Although we h
taken the bareJ150, even aJ1 of the order of the fixed-
point values of the otherJ’s will not appreciably change thei
critical values in this regime withw@u,v.

A similar analysis can be done with either of the oth
pairsu, w or v, w both small and the third of order unity. In
these cases, however, the smallness of the bareJ1 means
that the early stages of the renormalization will give rise t
nonzero value ofJ1 at intermediate scales whose value
needed to estimate the critical condition that relates the o
J’s. An example of the RG flow of theJ’s near the boundary
of the intermediate coupling region is shown in Fig. 12.

Symmetric case.Although unrealistic for the physica
model of two junctions, it is instructive to consider the ca
in which there is a symmetry between the three superc
ducting components and the Josephson couplings link
them. In this case we take

r 5R15R25R and J15J15J25J, ~49!

and the RG flow equations become simply

dJ

d,
'J~122R!1RJ2, ~50!

u-

ary

ly

R

es.

FIG. 12. RG flows in the intermediate region withR1

50.51,R250.5001, andr 50.5. Note the typical flow pattern in
the vicinity of the unstable critical fixed point marked by an ast
isk. ~a! Projection of the RG flow trajectories on theJ1 ,J2 plane.
~b! A 3D flow diagram for near-critical trajectories.
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with

w5u5v52R21, ~51!

so that the weak-coupling part of the intermediate reg
occurs forR slightly bigger than1

2 RQ . The critical value of
J is then simply

Jc'J* '4S R2
1

2D , ~52!

and the RG eigenvalue controlling flows away from this

l'2S R2
1

2D . ~53!

In the strong-coupling limit, we can similarly use a sing
QPS fugacityz and write

dz

d,
'zS 12

2

3RD1
1

R
z2, ~54!

so that the intermediate region occurs for

1

2
,R,

2

3
. ~55!

Near the upper end of this range,R is slightly less than2
3 , the

critical value of the fugacity is small, and the RG eigenva
for deviations from criticality becomes

l'
3

2 S 2

3
2RD . ~56!

Comparing the two limiting expressions forl, we see that,
for the symmetric case, it is unlikely to get above a sm
value of order 0.2 anywhere in the intermediate region.

VI. SYMMETRIES OF THE TWO-JUNCTION SYSTEM

From the microscopic model of Fig. 2, the only obvio
symmetry—more properly a simple duality—is the exchan
of the two junctions,R1↔R2 andJ1↔J2. The analysis pre-
sented in this section uncovers additional symmetries in
phase diagram of the system at zero temperature; indee
the analysis of the previous section we have already s
evidence of these. Here we will show more generally that
junction interchange is only one part of a larger permutat
symmetry, or triality, that involves the interchange of all r
sistorsr, R1, andR2 and the corresponding Josephson co
plings. We also show how the familiar weak- to stron
coupling duality of a single shunted Josephson junction43,67

can be generalized to the two-junction system. These s
metries allow one to relate in a nontrivial way many of t
phase boundaries shown in Fig. 10.

A. Permutation triality

The two-junction system exhibits three normal phases
two superconducting ones. The simplest insulating phase
volves proliferations of all three kinds of phase slips. Co
versely, the simplest superconducting phase, the fully su
conducting one, FSC, has none of the phase s
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proliferating. Of the three remaining phases, two are norm
as far as interlead properties are concerned, because of p
slips that proliferate inone of the two junctions. The las
phase is the SC! phase, which is superconducting becaus
exhibits dissipationless lead-to-lead transport due to Coo
pair cotunneling processes. This phase, however, also
signatures of normal phases, in particular localized char
on the middle grain and the proliferation of QPS–anti-Q
pairs that decouple the phase of this grain from the link
superconductivity of the two leads.

An alternative way to group the five phases is thus as
purely normal phase, one purely superconducting phase,
three mixed phases, in which part of the system is norm
and part is superconducting. In terms of phase-slip fuga
ties, these correspond, respectively, to one phase in whic
fugacities grow under the RG transformation, one phase
which all fugacities renormalize to zero, and three phase
which only one of the fugacitiesz1 , z2, andz2 grows under
RG, while the remaining two renormalize to zero. Su
grouping is very suggestive of a permutation symmetry
the full phase diagram in which the phases N1-S2, S1-
and SC! are transformed into each other, and phases F
and NOR are invariant. In this section we show that su
triality is indeed present in the low-energy properties of t
microscopic models~23! and ~32! describing the system
Note that other systems possessing triality have been
cussed earlier Shankar in Ref. 68; as in our case, these
nontrivial in some representations but easy to see in oth

To demonstrate the triality in the original quantum acti
we consider the strong coupling representation of Eq.~32!,
although equivalent arguments can be made for the we
coupling representation described by Eq.~23!. Let us begin
with the mathematical formulation of this symmetry.

The action in Eq.~32! reads

Z5E D@u1#E D@u2#expS 2b(
vn

uvnuuW 2vn

T R̂uW vn

1E
0

b

dt@z1cos~u1!1z2cos~u2!1z2cos~u12u2!# D ,

~57!

where the resistance matrix is

R̂5S r 1R1 2r

2r r 1R2
D , ~58!

and the vectoruW has componentsu1,2. An interchange of the
two junctions,R1↔R2 andz1↔z2, will leave the phase dia-
gram invariant, exchanging the two mixed states in wh
one junction is superconducting and the other is norm
~N1-S2 and S1-N2!. In Eq. ~58! this interchange of junctions
corresponds to transforming the fields,u1↔u2, or

S u1

u2
D 5S 0 1

1 0D S u18

u28
D . ~59!

In terms of the new variablesuW 85Ŝ21uW ,
5-16
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Z5E D@u18#E D@u28#expS 2b(
vn

uvnuuW 2vn

8T R̂8uW vn
8

1E
0

b

dt@z1cos~u18!1z2cos~u28!1z2cos~u182u28!# D ,

~60!

where

R̂85ŜTR̂Ŝ5S r 1R2 2r

2r r 1R1
D ,

z185z2 z285z1 z28 5z2 . ~61!

This new action~60! and ~61! hasR1↔R2 and z1↔z2 but
otherwise exactly the same physics with simply relabel
the fieldsu i .

A less trivial symmetry involves the transformation

S u1

u2
D 5S 1 0

1 21D S u18

u28
D , ~62!

leading to the action~60! with

R̂85S R11R2 2R2

2R2 r 1R2
D ,

z185z1 z285z2 z28 5z2 . ~63!

This new symmetry is surprising as it swapsR2 with r. One
way of understanding this is as a change of basis for
quantum phase slips. Earlier we took QPS’s on junction
and 2 as a basis@schematically, we can label them as (1,
and (0,1)] and considered a QPS dipole as their compo
(1,21)5(1,0)1(0,21). An equivalent basis set, howeve
can be obtained by taking one of the QPS’s and the dipol
the basic objects, and viewing the other QPS’s as th
composite—e.g., (0,1)5(1,0)1(21,1). The corresponding
transformation~62! maps phases S1-N2 and SC! into each
other, while leaving the other ones intact.

Using transformations~59! and ~62! one can construc
transformations that permuteanyof the three resistances an
connect any of the phases N1-S2, S1-N2, and SC!. The
physical basis of this symmetry follows from the observat
that the circuits corresponding to the three kinds of ph
slips are similar; one resistor is connected in series to the
other resistors, which are connected in parallel.~The strong-
coupling representation we are using here implies star
from the FSC phase as in Sec. IV C!. From the circuit dia-
grams in Fig. 8 we see the origin of the permutation symm
try: circuits associated with all three kinds of phase sl
differ only in the exchange of resistors. The strong-coupl
permutation triality thus generally corresponds to

z i85zp( i )
,

Ri5Rp( i )
, ~64!
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with i 51,2,2, where we have paired the fugacities with th
corresponding resistance, so thatR15r andp is a permuta-
tion of the three indices.

In the weak-coupling regime, the nature of the triality
the same: the circuits corresponding to the three Cooper-
tunneling events are similar with two resistors in series an
third taken out of the circuit.~Use of the weak-coupling rep
resentation implies starting from the NOR phase; see S
III C.! If we now pair the Josephson couplings with the co
responding missing resistor in the equivalent circuits,r 1
5R2 ,r 25R1, and r 15r , the permutation symmetry in th
weak-coupling limit becomes

Ji85Jp( i )
,

r i85r p( i )
, ~65!

with i 51,2,1, wherep is again a permutation.

B. Weak- to strong-coupling duality

The similar form of the strong-coupling and wea
coupling representations of the quantum actions~23! and
~32! suggests that there is a duality between the two regim

The duality we find is a generalization of that of a sing
resistively shunted Josephson junction~see, e.g., Ref. 69!.
For the single junction the duality is equivalent to the obs
vation that quantum phase slips in a junction with shunt
sistanceR behave similarly, as far as their quantum statisti
mechanics, to Cooper-pair tunneling events in a junct
with shunt resistanceR̃5RQ

2 /R. In the two-junction problem
discussed in this paper we expect that Cooper-pair tunne
events across any of the junctions in weak coupling sho
be dual to quantum phase slips on the same junction
strong coupling, and Cooper pair cotunneling proces
across the two junctions should be dual to QPS dipoles
the two junctions. But a complication is that the effecti
resistance for a Cooper-pair tunneling event~or a QPS! in
one of the junctions depends on the state of the other ju
tion ~see Secs. III C and IV C!.

The duality transformation maps Cooper pairs into QP
and superconducting phases into normal ones. Hence, w
we discuss the duality between Cooper tunneling events
QPS’s on any given junction, we need the duality transf
mation to change thestate of the other junction. For ex-
ample, consider a Cooper-pair tunneling through junctio
with junction 2 normal. The dual of this will be a QPS o
junction 1, with junction 2 superconducting. Comparison
the effective shunting resistances in the two cases imm
ately gives the duality relation

R̃11 r̃ 5
RQ

2

R11
rR2

r 1R2

. ~66!

Analogous arguments give
5-17
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R̃21 r̃ 5
RQ

2

R21
rR1

r 1R1

,

R̃11R285
RQ

2

r 1
R1R2

R11R2

. ~67!

An alternative way of seeing the duality is to takeu1→D18
andu2→2D28 in action~32!. The cosine terms of the resul
ing action in terms of (D18 ,D28) and those of the weak
coupling action~23! then have the same form. If we compa
the quadratic terms in these actions, we find the same du
relations~66! and ~67!.

We can solve the duality relations~66! and~67! for r̃ ,R̃1,
and R̃2:

r̃ 5RQ
2 r

Y
,

R̃15RQ
2 R2

Y
,

R̃25RQ
2 R1

Y
, ~68!

with Y[rR11rR21R1R2. This mapping of the resistors t
dual resistors may seem rather unintuitive; however, E
~68! coincides with the well-known ‘‘Y-D ’’ transformation of
resistor networks. The Y-D transformation is depicted in Fig
13. By comparing the Y-D transformation equations in Fig
13 we see that the duality transforms the system in Fig. 1~a!
to the system in Fig. 14~b!. In Fig. 14~a! the resistorsR1 ,R2,
andr are connected in a ‘‘Y’’ pattern; the transformed syste
has the resistancesRQ

2 /R2 ,RQ
2 /R1, andRQ

2 /r connected aD
pattern.

This statement of the duality is simple; pair-tunneli
events~current sources! with a Y resistance network and re
sistorsr ,R1, andR2 @Fig. 14~a!# are dual to quantum phas
slips ~voltage sources! with a D network of resistances
RQ

2 /r ,RQ
2 /R1, andRQ

2 /R2 @Fig. 14~b!#. This is a simple gen-
eralization of the single junction duality. From Fig. 14 we s
that asr→0 the duality reduces to

FIG. 13. Y↔D transformation. ‘‘Y’’ resistor network on left is
mapped toD network on right via Z1Za5Z2Zb5Z3Zc5Z1Z2

1Z2Z31Z3Z1. The inverse transformation (D→Y) is ZbZc /Z1

5ZcZa /Z25ZaZb /Z35Za1Zb1Zc .
21451
ity

s.

r̃ 50,

R̃15
RQ

2

R1
,

R̃25
RQ

2

R2
,

which is simply the duality of a single junction applied to th
two uncoupled junctions, as should be expected in this li
in which the middle grain is macroscopic.

C. Phase boundaries controlled by weak or strong coupling

The weak-to-strong coupling duality yields a mapping b
tween several of the phase boundaries in Fig. 10 onto e
other. The nature of this mapping is such that weak-coup
transitions will be mapped to strong-coupling ones; e.g.,
NOR-to-N1-S2 boundary gets mapped into the FSC-
S1-N2 boundary. Here NOR to N1-S2 corresponds to
weak-coupling transition, since it involves ordering ofD2
with D1 remaining disordered on both sides of the transitio
i.e.,J2 becomes relevant, whileJ1 andJ1 stay irrelevant. By
contrast S1-N2 to FSC is really a strong-coupling transit
because it involvesJ2 becoming relevant withJ1 already
relevant. This latter transition is simple in terms of the Q
fugacities, corresponding toz2 becoming relevant about th
FSC manifold withz1 andz2 irrelevant on both sides of the
phase boundary.

FIG. 14. ~a! Original circuit of Fig. 2 in the weak-coupling limit
showing a ‘‘Y’’ resistor network.~b! Strong-coupling dual of the
circuit showing a ‘‘D ’’ shaped network. The network in~b! captures
the duality, Eqs.~68!.
5-18



DISSIPATION AND QUANTUM PHASE TRANSITIONS . . . PHYSICAL REVIEW B 68, 214515 ~2003!
FIG. 15. Weak-strong duality:
~a! mapping of the strong-
coupling critical lineR21r 51 to
the weak-coupling regime and~b!
mapping of the strong-coupling
critical line R11R2r /(R21r )51
to the weak-coupling regime.
t

he

C
al.

the
is
First, we map the phase boundaryR21r 5RQ via Eqs.
~68!. After substitutingr 5RQ2R2 this yields

r̃ 5
RQ

2

R11R21
R1R2

RQ2R2

5RQ

RQ2R2

R11R22R2
2/RQ

,

R̃15
RQ

2

RQ1R12R21
R1~RQ2R2!

R2

5RQ

R2

R11R22R2
2/RQ

,

R̃25
RQ

2

RQ1
R2~RQ2R2!

R1

5RQ

R1

R11R22R2
2/RQ

. ~69!

These apparently complicated expressions are simply
boundary of the FSC phase, since

11
R̃1

r̃

R̃11R̃21
R̃1R̃2

r̃

5
1

R̃21
r̃ R̃1

r̃ 1R̃1

5
1

RQ

R11R22R2
2/RQ

R11~RQ2R2!R2 /RQ
5

1

RQ
,

~70!

as shown in Fig. 15~a!. As a second example, consider t
21451
he

critical line R11R2r /(R21r )51, which separates the FS
phase from the mixed phase in which junction 1 is norm
The duality equations yield

r̃ 5
RQ

2

R11R21
R1R2~R11R22RQ!

R2~RQ2R1!

5RQ

RQ2R1

R2
,

R̃15
RQ

2

R11
R2~RQ2R1!

R11R22RQ
1

R1R2~RQ2R1!

~R21R12RQ!R2

5RQ

R11R22RQ

R2
,

R̃25
RQ

2

R21
R2~RQ2R1!

R11R22RQ
1

R2
2~RQ2R1!

~R21R12RQ!R1

5RQ

R1~R11R22RQ!

R2
2

, ~71!

so that

R̃11 r̃ 5RQ , ~72!

which is the condition for the phase boundary between
normal phase and the mixed phase in which junction 1
superconducting, as in Fig. 15~b!.
5-19
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D. Duality in the intermediate region

In the intermediate regime of the resistance param
space, the behavior under duality is more complicated. S
the controlling critical fixed point that determines the ful
normal to fully superconducting phase boundary is at n
zero Josephson coupling in this regime, the early stage
the renormalization will affect thelocation of the critical
manifold in the full parameter space. Thus duality cannot
used to locate the phase boundaries. Nevertheless, dual
still useful in this intermediate region.

The low-energy properties of the system will be given
the effective actions thatdo exhibit duality. Thus universa
properties near the transitions at pairs of points in resista
space should be dual even when the location of the tra
tions as functions of the Josephson couplings are not
particular, as we have seen in the explicit perturbative ca
lations of the critical behavior in the intermediate region
the regimes in which the critical fixed point is at either ve
strong or very weak coupling, the critical exponents, such
the RG eigenvaluel, which controls deviations from criti-
cality, will be universal functions of the resistances with v
ues on 12-member sets of points being the same by the
ality and the threefold permutation symmetry.

For the highly symmetric caseR15R25r 5R, the duality
is simply

R̃5
RQ

2

3R
, ~73!

so that there is a self-dual point atR51/A3 at which we
expect the eigenvaluel to attain its maximum and the ass
ciated correlation time exponent that controls the scaling
the temperature at which crossover will occur from critical
noncritical to be minimum

More generally, the fact that the duality of Eqs.~68! in-
volves the combinationY in a simple way enables us t
immediately find a self-dual condition

Y5rR11rR21R1R25RQ
2 . ~74!

When this condition is satisfied, the system will be on t
self-dual surface. In the intermediate region, we thus exp
the exponentl to be maximal on this surface and decrease
both directions away from it. On this surface, it will presum
ably vary.

VII. DISCUSSION

A. Relation to experiments

We now consider the consequences of the results obta
in this paper for the two junction system shown in Fig. 2

Existence of the SC! phase. One new prediction is the
SC! phase that is superconducting for lead-to-lead trans
but has localized Cooper pairs on the middle grain. A sim
phase has been discussed previously in the context of
dimensional Josephson junction arrays.50–52

To observe the difference between the SC! and the fully
superconducting phase in the transport between the two l
~labeled byf1 and f2 in Fig. 16!, one must consider the
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nonlinear behavior, as in both phases there is no interl
resistance at zero current. But the transition SC! to FSC will
be characterized by a discontinuous jump in theexponentof
the nonlinear current-voltage characteristics, reflecting
change in the nature of the quantum phase slips in the
phases. In the SC! phase the system behaves essentially
one junction, and current is carried by lead-to-lead Coop
pair cotunneling processes that are shunted by the effec
resistanceR11R2. At T50, for small currents we thus ex
pect

V}I a1, ~75!

where

a152@RQ /~R11R2!21#. ~76!

This form will also obtain at low temperatures and fixe
current as long askBT,hI/e. But at low currents for posi-
tive temperature we expect

V}Ta1 ~77!

~see Ref. 43!.
In the FSC phase both junctions are superconducting

quantum phase slips can appear in each of the junctions.
shunting resistances for QPS’s in junctions 1 and 2 areR1
1rR2 /(r 1R2) and R21rR1 /(r 1R1), respectively, so we
expect atT50 and small currents

V}@max~T,I /e!#a2, ~78!

with

a252~RQ /~Rmax
e f f 21! ~79!

in terms of

Rmax
e f f 5max„R11rR2 /~r 1R2!,R21rR1 /~r 1R1!….

~80!

Another way to distinguish the FSC and SC! phases is to
measure resistances directly between the leads and grai

FIG. 16. Detection of the FSC to SC! phase transition. The
transition between FSC and SC! will induce a jump in the effective
resistance between the leads and grain. This can be observe
measuring the resistance between the lead 1 and the normal p
the grain. The resistance measured byV will increase from (1/R1

11/R211/r )21 in the FSC phase toR1R2 /(R11R2) in the SC!

phase. A similar discontinuity in the resistance will also occur
other phase boundaries; see the discussion in Sec. VII A.
5-20
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shown in Fig. 16. The effective resistances between the g
and leads should jump at the transition between the FSC
SC! phases. In order to measure this jump, consider add
to the circuit an ohm meterV measuring the resistance b
tween the~normal! grain and lead one. The transition b
tween FSC and SC! will be characterized by the measure
resistance increasing from (1/R111/R211/r )21 to
R1R2 /(R11R2) which is a large change ifr is small. This
occurs because in the SC! phase the superconductivity on th
grain is effectively decoupled to that current cannot flo
throughr.

The ohm meter could also probe other phase transitio
For instance, in the NOR and N1-S2 phases, the meas
resistance would beR1, while in the S1-N2 phase, it would
be R1r /(R11r ).

Observation of T* . Another result of our analysis is th
existence of a new temperature scaleT* set by the grain
level-spacing-like parameterd. At high temperaturesT
@T* , the Josephson junctions are effectively decoupled w
the dissipation set by individual shunt resistancesR1 andR2
@see discussion below Eq.~22!#. At temperatures belowT* ,
in contrast, we have a system of strongly coupled Joseph
junctions with the dissipation determined by the whole c
cuit. For example, in the caser .RQ , the effective dissipa-
tion is the total shunting resistanceR11R2. One possible
way to observe the crossover atT* is to choose parameter
so thatr .RQ , R1,2,RQ but R11R2.RQ . For T.T* dis-
sipation is then strong enough to stabilize superconducti
on the individual junctions and we expect that the measu
resistance of the system will decrease with decreasing t
perature. But belowT* the dissipation is no longer sufficien
to stabilize phase coherence between the leads asR1
1R2)/RQ.1. At this point the phase slip fugacities becom
relevant, and we expect an upturn in the linear resistanc
the temperature is lowered further. The basic reason for
is that at lower temperatures, the superconductivity is de
mined by longer length-scale fluctuations that involve le
dissipation; the superconductivity is more vulnerable to th
than the higher temperature more dissipative fluctuations

Universal vs nonuniversal behavior of the resistance
the transition. An interesting feature of the zero-temperatu
phase diagram, which contrasts with that of a single junct
is the occurrence of some of the normal-to-supercondu
transitions at nonuniversal values of thetotal resistance.
Other transitions will occur at universal values of the app
priate resistance.

~i! In the mixed phase S1-N2, the linear resistance of
whole circuit isR21rR1 /(r 1R1) @junction 1 is supercon-
ducting, and junction 2 is insulating; see Fig. 8~b!#. When
this resistance becomes equal to the quantum of resist
RQ there is a transition into the superconducting state F
That this transition occurs at a universal value of the to
resistance is not surprising: it is due to the ordering of
‘‘last’’ nonsuperconducting junction in the otherwise supe
conducting circuit.
~ii ! In the fully normal phase, the system has resistanceR1
1R2. At the transition point into the superconducting SC!

phaseR11R25RQ , so we again have a universal total r
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sistance. This transition into the SC! phase is like a global or
‘‘long-wavelength’’ one: it involves superconducting fluctu
tions of the longest length scale available: lead-to-lead
tunneling of Cooper pairs.
~iii ! At the direct transition from NOR to FSC,R11R2 does
not assume a universal value. For example, in the limit
small r the transition takes place when both resistances
close toRQ ~see Figs. 4 and 7!, so the total resistance will be
around 2RQ at the transition. Whenr→0 the two junctions
are decoupled even at zero temperatures@see Eq.~25!#. This
limit is an example of a ‘‘local’’ superconductor-to-norma
transition in which theresistance per junctionis equal toRQ
at the transition point. This is the limit that has been exte
sively considered in the literature.37,46

Tuning the superconductor-to-normal transition b
changing the Josephson couplings. We have shown that the
superconductor-to-normal transition in a two-junction syst
may be tuned by changing the Josephson couplingsJ1 or J2
as well as by changing the shunting resistancesR1,2. The
former may be easier to control in experiments as dem
strated recently in Refs. 12–15.

Nonuniversality of the critical exponents.In Sec. VI we
showed that the transition between the fully superconduc
and fully normal phases is controlled by a fixed point
intermediate values of the Josephson couplings. The crit
exponents of this transition are nonuniversal and vary c
tinuously as the three resistances in the system change.
universality of the critical exponents at superconduct
normal transitions in the presence of dissipation has a
been discussed in Refs. 29,30, and 70.

Symmetries of the two-junction system. In Sec. VI we dis-
cussed the rich symmetries of the two-junction system.
addition to the usual weak–strong-coupling duality43,67 it ex-
hibits a permutation triality. Exchanging the three resistan
R1 ,R2, andr leaves the action and phase diagram essenti
unchanged. These symmetries provide a powerful tool
studying the two-junction system; one need only investig
one corner of the phase diagram to be able to construct
its entirety. The boundaries of the region in which there is
intermediate coupling fixed point~see Fig. 15! can be found
from the triality and weak-strong duality transformations.

B. Broader relevance and open questions

The results obtained in this paper should provide hi
that may help understand other superconductor-to-nor
transitions, such as in thin wires20,21and in films.4,5 It is often
conjectured that such transitions can be described in term
models of resistively shunted Josephson junctions. For
ample, in wires one might perhaps think of segments of w
of length j0 ~i.e., the superconducting coherence length
phase slip core size! as individual grains. Then to estimat
the crossover temperature analogous to ourT* one could
take bothR andr of the order of the normal-state resistan
of a single segment. This would yield a superfluid-to-norm
relaxation rate that is of the order ofTc . The crossover tem-
peratureT* is related to the energy level separation para
eter d in such a segment of wire of lengthj0. Using dirty
5-21
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limit expressionsTc51.8\D/j0
2, R5j0 /(e2N0DA), and d

5(N0Aj0)21, in terms ofD, the diffusion coefficient,N0,
the density of states per unit volume, andA, the wire’s cross
section, we findT* 'Tc . So at all temperatures one shou
consider the effects of interactions between the effective ‘‘
sephson junctions’’ that link the ‘‘grains’’; i.e., effects anal
gous to those discussed in this paper.

One possibility is that for wires much longer thanj0, the
superconductor-to-normal transition will be determined
by the resistance per coherence length, but by thetotal
normal-state resistance. Such behavior has been observe
cently in experiments of Bezryadin and Lan20 where wires as
long as 15 timesj0 had a normal-to-superconductor tran
tion when their total normal-state resistance was close toRQ
~see, however, Refs. 21 and 71–73#!.

There is, however, another effect that must be conside
in the long-wire regime. When normal metallic wires a
long enough that their resistance is of order\/e254RQ ,
localization effects start to be important at low temperatur
specifically below the temperature at which the inelas
mean free path of the normal electrons is of the order of
length over which the wire has resistance of order 4RQ . It is
thus not clear that there is a regime in which the dissipa
effects discussed here can affect the superconductivity w
out localization effects also becoming important. At least
ively, however, sections of lengthj0 cannot have resistanc
RQ for T,Tc , and the inelastic scattering length is smal
than the coherence length nearTc . Thus there may well be
temperature regimes in which these collective effects are
portant but localization effects not. This clearly requires s
stantial further thought. Alternate geometries, such as c
figurations with a metal layer underlying th
superconducting wire, may be the best candidates for av
ing some of these complications.

In the previous subsection we discussed the possibility
a surprising phenomenon in the two-junction system: a m
mum of the resistance at a crossover temperatureT* with an
upturn at lower temperatures. Qualitatively similar behav
has already been observed in experiments on Josep
junction arrays and superconducting films. It is likely that t
disorder plays an important role in such systems—espec
in granular films such as InO.4,5 Close to superconductor-to
normal transitions in disordered materials, the behavior m
be dominated by weak links that involve connections
mesoscopic-size grains. As the temperature is lowered be
the local T* , the effective dissipation shunting these lin
will change in a manner analogous to that of the pair
junctions in series through a small grain discussed in
paper. This could potentially account for the observed sa
ration of the resistance at low temperatures in systems
would appear to be becoming superconducting on the b
of their behavior at higher temperatures. Understanding
such systems would benefit from generalizing the analysi
the two-junction system presented here to arrays of su
conducting grains and Josephson junctions in both one
two dimensions.

An important issue that we have not addressed is the
croscopic nature of the charge relaxation between nor
and superconducting fluids that we have introduced phen
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enologically. We have assumed that at low frequencies th
Ohmic even in the limit of zero temperature, but even if th
is indeed the case,r should certainly depend on details of th
experimental system. If, in fact, the relaxation is sub-Ohm
or super-Ohmic in the low-temperature limit, this will b
roughly equivalent to ther→` of r→0 cases discusse
here. However, taking into account charge quantization
fects on the super-to-normal fluid relaxation and the role
quasiparticles and their nonconservation may lead to qua
tively new effects. One question that must be considere
whether there will be enough low-energy excitations
scales belowT* to give rise to the dissipative effects that a
crucial for the logarithmic dependence of the effective act
of quantum phase slips on temperature. We leave these is
for future research.

VIII. SUMMARY

In this paper we have analyzed Cooper-pair tunneling
tween two macroscopic leads via a mesoscopic super
ducting grain in the presence of Ohmic dissipation. W
treated this system in terms of a two-fluid description to
grain by effectively splitting it into normal and superco
ducting parts with capacitative and galvanic couplings
tween the Cooper pairs and normal electrons. A phenome
logical Ohmic resistancer was introduced to describe th
charge relaxation between the superconducting and no
parts of the grain. The corresponding microscopic Ham
tonian was used to derive the quantum action in terms
which the analysis was carried out. We showed that there
new temperature scaleT* that separates two very differen
regimes. For macroscopic grains,T* 50, so that the system
is always in the high-temperature regime in which the t
junctions are decoupled. In contrast, for small grains at te
peratures belowT* there is strong coupling between th
junctions and the system can be described by a t
component sine-Gordon model. We analyzed this mode
the limit of weak Josephson coupling and showed tha
leads to a rich quantum phase diagram with two superc
ducting and three nonsuperconducting phases. The most
prising result is the appearance of a novel superconduc
phase SC! that has localized Cooper pairs on the grain b
phase coherence between the leads due to Cooper-pair c
neling processes.

The limit of strong Josephson coupling was studied us
a dual two-component sine-Gordon model. Simple circ
theory for the two-junction system enabled us to derive
phase diagram for both the weak- and strong-Joseph
coupling limits. In contrast to the single-junction case, w
demonstrated that the strong- and weak-coupling analy
predict different locations of the transition between the fu
superconducting and fully normal phases, implying the ex
tence of an intermediate-coupling fixed point controlling th
transition. We analyzed the renormalization group flows
this intermediate regime and found nonuniversal critical
havior with the exponents depending continuously on
resistances involved, The rich symmetries of the tw
component sine-Gordon model include weak- to stro
coupling duality and permutation triality of the shunting r
5-22



e
-

an
ul
op
re

-
.
.

lp
on

t
a-

m
a
. 2
o

its

e

ti
d

s are
o-
as

-

ipa-

uch
ition
, we

e
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sistorsR1,2 and relaxation resistancer.
Experimental implications of our model, including th

crossover temperatureT* , the identification of the novel su
perconducting phase SC!, and the lack of universality of the
measured resistance at the superconductor-to-normal tr
tion, were discussed briefly. Finally, we noted that our res
may be useful for understanding some of the puzzling pr
erties of superconductor to normal transitions in thin wi
and films.
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APPENDIX A: MICROSCOPIC MODEL

1. Microscopic model for a two-fluid network

In this appendix we provide the derivation of several i
portant results used in Sec. II B. For generality, the first p
of our analysis is not restricted to the system shown in Fig
but applies to any two-fluid network. The network consists
superconducting islands~which may be electrodes or grains!.
Each islandi in this network is assumed to have part of
charge in the form of superconducting Cooper pairs,QSi ,
and part of the charge,QNi , in the form of normal fluid. The
Hamiltonian of the system consists of three pieces:

H~QNi ,QSi ,f i ,c i !5HQ1HJ1Hdis . ~A1!

The charging partHQ is given by Eq.~6!, with k i j defined as
in Eq. ~5!. The Josephson energy of the Cooper-pair tunn
ing between the grains is

HJ52
1

2 (
i j

Ji j cos~f i2f j !. ~A2!

Dissipation between the islands, as well as charge relaxa
between the Cooper pairs and normal fluid inside the islan
is described using the Caldeira-Leggett heat-bath model~see
discussion in Secs. II A and II B! with resistancesRi j andr i ,
respectively:

Hdis5
1

2 (
i j

Hbath~Ri j ,2c i22c j !

1(
i

Hbath~r i ,f i22c i !. ~A3!
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The commutation relations between charges and phase
given by Eq.~7!. Note that the Heisenberg equations of m
tion onf i andc i correctly reproduce Josephson relations
in Eqs.~8!.

We use the Hamiltonian~A1! and the commutation rela
tions ~7! to construct the imaginary-time quantum action

Z5E DQNiDQSiDf iDc iexpS 2ie(
i
E

0

b

dtQSiḟ i

1 ie(
i
E

0

b

dtQNiċ i2E
0

b

dtH~QNi ,QSi ,f i ,c i ! D .

~A4!

We remind the reader that in the presence of Ohmic diss
tion the phase variablesf i and c i should be periodic att
50 andt5b ~no phase twists by multiples of 2p are al-
lowed!.

After integrating outQNi andQSi in Eq. ~A4! we find

Z5E Df iDc iexp~2SQ2SJ2Sdis!,

SQ5E
0

b

dtS 1

2~2e!2 (
i j

ḟ iMSi jḟ j1
1

2e2 (
i j

ċ iMNi j ċ j

1
1

~2e2!
(
i j

ḟ iMSNi jċ j D ,

SJ52
1

2 (
i j

E
0

b

dtJi j cos~f i2f j !,

Sdis5b(
vn

S 1

2 (
i j

RQuvnu
2pRi j

u2c i ,(vn)22c j ,(vn)u2

1(
i

RQuvnu
2pr i

u2c i ,(vn)2f i ,(vn)u2D , ~A5!

where the matricesM satisfy the equation

S k̂S
21 Ĉ21

Ĉ21 k̂N
21 D S M̂S M̂SN

M̂SN
T M̂N

D 5S 1̂ 0

0 1̂
D , ~A6!

where we defined@Eq. 5!#

kSi j
215Ci j

211DSid i j ,

kNi j
215Ci j

211DNid i j . ~A7!

DSi andDNi are the level spacings of the islandi, andCi j is
the capacitance of the island network.

In mesoscopic grains, level spacings are already m
smaller than the electrostatic capacitances, and this cond
is even better satisfied in macroscopic electrodes. Hence
can expand Eq.~A6! in DS,N . It is useful to point out that
this approximation does not require that everyDS,Ni be
smaller than any island of theCi j

21 matrix, but only that
DS,Ni be smaller thanCii

21 . Hence, this expansion can b
5-23
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applied even when we have a combination of macrosco
electrodes and mesoscopic grains. We obtain

MSi j5
d i j

DSi1DNi
1siCi j sj ,

MNi j5
d i j

DSi1DNi
1h iCi j h j ,

MNSi j52
d i j

DSi1DNi
1h iCi j sj , ~A8!

where

si5
DNi

DSi1DNi
,

h i5
DSi

DSi1DNi
. ~A9!

Therefore, we can use the following simple expression:

SQ5E
0

b

dtS 1

2~2e!2 (
i

~ḟ i22ċ i !
2

~DSi1DNi!

1
1

2~2e2!
(
i j

~siḟ i1h i2ċ i !Ci j ~sj ḟ j1h j2ċ j !D .

~A10!

The first term in Eq.~A10! tends to equilibrate the norma
and superconducting fluids by introducing an energetic p
alty for having different chemical potentials. For macr
scopic grains level spacings are zero, so this term requ
ḟ52ċ, which is the case considered in the literature pre
ously. The second term in Eq.~A10! describes the usual Cou
lomb interaction between the islands, but the potential
each island is now give by the weighted average of the
tentials of the two fluids:

V̄i5~siVSi1h iVNi!. ~A11!

2. Equations of motion

As a consistency check on the quantum action~A5!, it is
useful to show that its equations of motion reproduce
familiar equations of electrodynamics. After taking fun
tional derivatives of Eqs.~A5! with respect tof i andc i and
analytically continuing into real time, we have

1

~2e!2 (
j

MSi jf̈ j1
1

2e2 (
j

MSNi jc̈ j2(
j

Ji j sin~f i2f j !

1
r i

~2e!2
~ḟ i22ċ i !50,
21451
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1

2e2 (
j

MSNi j
T f̈ j1

1

e2 (
j

MNi j c̈ j

2(
j

1

e2Ri j

~ ċ i2ċ i !1
1

~2e!2r i

~ḟ i22ċ i !

50. ~A12!

From Eqs.~5!, ~8!, and~A6! we have

QSi5
1

2e (
j

MSi jḟ j1
1

e (
j

MSNi jċ j ,

QNi5
1

e (
j

MSNi j
T ḟ j1

1

e (
j

MNi j ċ j . ~A13!

Equations~A12! may be written then as

dQSi

dt
2

1

2e (
j

Ji j sin~f i2f j !1
VSi2VNi

r i
50,

dQNi

dt
1(

j

VNi2VN j

Ri j
2

VSi2VNi

r i
50. ~A14!

These are the usual charge conservation equations: the
sephson form of the Cooper-pair tunneling current a
Ohm’s laws for the normal currents and the ‘‘conversion c
rents’’ between the Cooper pairs and the normal fluid.

3. Two leads Josephson coupled via a mesoscopic
superconducting grain

We now apply our general discussion from Appendix A
to the system shown in Fig. 1, a single mesoscopic gr
between two superconducting electrodes. We assume tha
electrodes are sufficiently large, so the superconducting
normal fluids are perfectly coupled in them,f152c1 and
f252c2. From Eq.~A10! the charging part of our system
can be written as

SQ5
1

2~2e!2E0

b

dt(
i j

ẋ iCi j
0 ẋ j , ~A15!

wherexT5(f1 ,f2 ,fg,2cg) and

Ĉ05S C11 C12 C1gsg C1ghg

C12 C22 C2gsg C2ghg

C1gsg C2gsg Cggsg
21CQ Cggsghg2CQ

C1ghg C2ghg Cggsghg2CQ Cgghg
21CQ

D ,

~A16!

where CQ
215DSg1DNg , sg5DNg /(DSg1DNg), and hg

5DSg/(DSg1DNg). It is convenient to change variables
the phase differences and the center-of-mass phaseF, de-
fined as

D15fg2f1 ,

D25f22fg ,
5-24



a
he
w
n,

e

d
t-
h

uc

nd
s
in

l
ai

dix

tri-
c-

ors
is-
ins,
ef-

er-
per-

. In
/
of

opic

al

o-

e-
ins:
d a
al

tial,

aci-

DISSIPATION AND QUANTUM PHASE TRANSITIONS . . . PHYSICAL REVIEW B 68, 214515 ~2003!
Dg5fg22cg ,

F5
C111C121C1g

Ctot
f11

C221C121C2g

Ctot
f2

1
C1g1C2g1Cgg

Ctot
sgfg1

C1g1C2g1Cgg

Ctot
hg2cg ,

~A17!

with Ctot5C1112C121C2212C1g12C2g1Cgg . We have

SQ5
1

2~2e!2E0

b

dtS (
ab

ḊaC̃abḊb1CtotḞ
2D , ~A18!

where the indicesa andb are summed over 1, 2, andg. It is
useful to observe that the center-of-mass phaseF is decou-
pled from the phase differences in Eq.~A18! and can be
integrated out in the partition function.

We do not discuss the most general case of the cap
tance matrixCi j , but concentrate on the situation when t
dominant capacitances are the mutual capacitances bet
electrode 1 and the grain,C1, and electrode 2 and the grai
C2. This corresponds to takingC115C11DC1 , C1250,
C1g52C1 , C225C21DC2 , C2g52C2, and Cgg5C1
1C21DCg . After some straightforward manipulations, w
get

SQ5
1

2~2e!2E0

b

dt@C1~2Ḋ11hgḊg!21C2~Ḋ21hgḊg!2

1CQḊg
21CtotḞ

2#. ~A19!

4. Circuit-theory approach to the two-fluid model

We can gain more intuition about the analysis presente
Sec. II A by considering effective circuits for the island ne
work. As a first example, let us take a freestanding grain. T
electrochemical potentials for the normal and supercond
ing electrons on the grain can be written in the form

Vg,N5
QN1QSC

C
1DNQN ,

Vg,SC5
QN1QSC

C
1DSQSC. ~A20!

HereC is the capacitance of the grain relative to the grou
and theDi ’s are the inverses of the corresponding compre
ibilities. Equation~A20! describes the electrical system
Fig. 17. In addition toC, there are two more ‘‘effective’’
capacitors 1/DSC,1/DN , which describe the extra potentia
drop produced by the level spacings in each part of the gr
As can be seen in Fig. 17, the charge on the capacitorC has
to be equal to the total charge on the grain,QN1QSC.

The electrochemical potentials in Eqs.~A20! yield the
charging part of the Hamiltonian:

HQ5
1

2C
~QN1QSC!21

1

2
DNQN

2 1
1

2
DSQSC

2 . ~A21!
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From here on we could proceed along the lines of Appen
A1 to obtain the action for this circuit.

The general principal behind Eqs.~A20! is that the poten-
tial on each island consists of a sum of the electrical con
bution,VE , due to Coulomb interactions, and the level spa
ing contribution:

Vg,N5VE1DNQN ,

Vg,SC5VE1DSCQSC. ~A22!

If we construct a circuit for an island network, Eqs.~A22!
indicate that we need to put the extra effective capacit
1/DNi , 1/DSi between the point at which a macroscopic
land would be and the normal and superconducting gra
respectively. Let us demonstrate this by constructing the
fective circuit of the two-junction system.

The two-junction system consists of a mesoscopic sup
conducting grain situated between two macroscopic su
conducting leads~Fig. 18!. The capacitorsC1 and C2 de-
scribe the ‘‘bare’’ interaction between the leads and grain
addition to them, there are also the effective capacitors 1DN
and 1/DS , which describe, respectively, the level spacing
the normal part and superconducting part of the mesosc
grain ~Fig. 18!. These capacitors connect the pointV0, at
which a macroscopic grain would have been, to the norm
and superconducting parts of the mesoscopic grain.

The electrostatic part of the Hamiltonian of the tw
junction system as shown in Fig. 18 is given by

HQ5
1

2C1
Q1

21
1

2C2
Q2

21
1

2
DNQN

2 1
1

2
DSQSC

2 ,

~A23!

with the constraint

FIG. 17. The two-fluid model description of a freestanding, m
soscopic, superconducting grain. The grain is split into two gra
a superconducting-fluid grain, which contains Cooper pairs, an
normal-fluid grain, which contains the normal electrons. Norm
electrons can become superconducting by flowing throughr. The
potential on the grains is given by a sum of the electrical poten
(QN1QSC)/C, and a chemical contribution,DNQN , andDSQSC.
The finite level spacings are modeled as capacitors with cap
tances 1/DN,1/DS .
5-25
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Q11Q21QN1QSC50. ~A24!

This constraint merely reflects the fact that the capaci
1/DSC and 1/DN are not real capacitors, but an electric
analogy to the effects of the level spacings in the mesosc
grain. The charge on the grain is2Q12Q2 ~where the mi-
nus sign is due to the convention in Fig. 18!, and it is split
into a superconducting partQSC and a normal partQN . In
turn, QSC and QN increase the electrochemical potential
the grain, which is taken into account using the fictitio
capacitors 1/DSC,1/DN .

We can use the constraint~A24! to eliminate the charge o
the normal grain:

HQ5
1

2C1
Q1

21
1

2C2
Q2

21
1

2
dN~Q11Q21QSC!2

1
1

2
dSCQSC

2 . ~A25!

One can now proceed by defining the phasesf1 ,f2, and
fg , which obey the commutation relations

@Q1 ,f1#522ie,

@Q2 ,f2#522ie,

@QSC,fg#522ie, ~A26!

and following steps presented in Appendix A1.

APPENDIX B: LOW-TEMPERATURE DISSIPATION

In the discussion in Sec. II we introduced the normal flu
of gapless quasiparticles as the origin of the dissipation
the junctions. This is not, however, a unique way of gett
dissipation, including its Ohmic variety. From the vario
possibilities, let us mention exciting electromagnetic wav
in the environment by fluctuations of the voltage and cha
on the junctions. A well-studied example is a junction co

FIG. 18. The effective circuit of the two-Josephson-juncti
system. The mesoscopic grain is connected to the leads thr
Josephson junctions and resistors. It also interacts capacitat
with the leads. This interaction is modeled by the capacitorsC1 ,C2

which connect to the two parts of the grain through additional
pacitors 1/DN,1/DS . The additional capacitors account for the fini
level spacings in the grain. The ‘‘bare’’ electrical potential on t
grain ~the electrochemical potential without the level-spacing c
tribution! is given byV0, as noted in this figure.
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nected to anLC line @see Fig. 19~a!#. Sudden changes of th
voltage in the junction excite plasmons, which carry the e
ergy off to infinity ~away from the junction!, leading to dis-
sipation. It can be described using effective impedan
formalism74

Sdis5b(
vn

ReF RQ

Z@v#G uvnuuDfvn
u2, ~B1!

where Df is the phase difference across the junction a
Z(v) is the impedance of the environment seen by the ju
tion. In the case of an infiniteLC line Z5(L0 /C0)1/2, where
L0 and C0 are inductance and capacitance per unit leng
respectively, so we arrive at the Caldeira-Leggett-ty
Ohmic dissipation given in Eq.~14!. For the system consid
ered in this paper~see Fig. 1! suchLC line ~or its analogs!
may come from the edges of the electrodes or the connec
wires. The crucial observation is that different Cooper-p
tunneling processes~between the two electrodes and th

gh
ly

-

-

FIG. 19. An infinite transmission line as a source of dissipati
~a! A line of coils and capacitorsL0 , C0 has an effective real im-
pedanceZ5AL0 /C0 at low frequencies. This line could describ
electromagnetic modes that are excited by tunneling of Coo
pairs across junctionJ. ~b! The two-junction system may have mor
than one transmission line. These lines are reduced in the figu
the effective impedancesZA , ZB , andZC . The schematic circuit
shown has three effective shunt resistors, as in the model in
~23!. This configuration of effective impedances is the same as
‘‘ D ’’ resistors network shown in Fig. 13. This will translate~using
the Y-D transformation, Fig. 13! to the model in Eq.~23!, with
R15ZAZC /(ZA1ZB1ZC), R25ZBZC /(ZA1ZB1ZC), and r
5ZAZB /(ZA1ZB1ZC).
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grain, and the cotunneling process! should in general excite
different electromagnetic waves. This can be seen from
schematic circuit shown in Fig. 19~b!. The effective trans-
mission lines in the figure give rise to three different res
tors, which are related toR1 , R2, and r from the model in
Eq. ~23!, as discussed in the caption of Fig. 19. It is useful
point out that in this model we can relax the assumption
the small size of the grain, since the electromagnetic inte
tions discussed here, as well as the Josephson couplings
present at all temperatures. In that case wires can be
nected to each of the superconductors separately, allow
direct measurement of the rich phase diagram discusse
the bulk of the text, and effects related to charge discreten
are expected to be less significant. Dissipation due to o
low-energy degrees of freedom in the system75 is also pos-
sible.

It is worth emphasizing that the precise form of the qua
tum model for dissipation depends crucially on its nature
common choice of the Caldeira-Legget Ohmic heat-b
model comes from the fact that it is the simplest quant
model consistent with the classical equations of motion. O
expects that many effects of the dissipation would be at le
qualitatively independent of its nature,76 although consider-
able differences may also be present.

APPENDIX C: FREQUENCY SHELL RG

In order to find the phase diagram of a resistively shun
Josephson junction in the weak- or strong-coupling regim
is best to employ a frequency shell RG. Generally we s
with a sine-Gordon partition function such as

Z5E D@u#expS 2E dv

2p
u2

Ruvu
2pRQ

1E dt
z

a
cos~u! D ,

~C1!

where we have taken theT→0 limit and changed thev
sums into integrals. It is useful to redefine the amplitude
the anharmonic term using the short-time cutoffa;1/vp ,
wherevp is the plasma frequency of the junction. The sha
high-frequency cutoff we use is

L[
p

a
. ~C2!

As is well known,77 the partition function~C1! is also the
partition function of an interacting Coulomb gas in one
mension, with fugacityz and interaction

Si j (t)522s is j

RQ

R
lnUtaU, ~C3!

where s i is the charge of thei th particle. In the weak-
coupling limit ~Sec. III A! the ‘‘particles’’ are pair-tunnel
events andz5J. In the strong-coupling limit Sec. IV the
‘‘particles’’ are quantum phase slips.

Presently we would like to integrate out the ‘‘fast’’ de
grees of freedom associated with the fieldu in Eq. ~C1!. This
has the physical meaning of reducing the frequency cutofL
and can be thought of asincreasingthe effective size of a
21451
e

-

f
c-
are
n-

ng
in
ss
er

-

h

e
st

d
it
rt

f

p

particle and eliminating all particle-antiparticle pairs who
separation is lower than this size. We write the action~C1! as

Z5E D@u,#expS 2E
uvu,L2dL

dv

2p
u2

Ruvu
2pRQ

D
3E D@u.#expS 2E

L2dL,uvu,L

dv

2p
u2

Ruvu
2pRQ

D
3S 11

z

2aE dt~eiu,eiu.1e2 iu,e2 iu.!1••• D ,

5Z,CS 11E dt

zexpS 2E
L2dL

L

dv
1

Ruvu D
2a

3~eiu,1e2 iu,!1•••

D
5CE D@u,#expS 2E

uvu,L2dL

dv

2p
u2

Ruvu
2pRQ

1

zexpS 2dL
1

RL D
a E dt cos~u!D . ~C4!

From this we obtain the RG flow

z

a
→ z

a S 12
RQ

R

dL

L D . ~C5!

We still need to restore the variables to their original scale
that Eq. ~C2! is fulfilled. Since L→L2dL, a→a1da.
This leads to

z

a
→ z

a1da

a1da

a S 12
RQ

R

dL

L D
→ z

a1da S 12
RQ

R

dL

L
1

dL

L D , ~C6!

which we can write as

z→zS 12
RQ

R

dL

L
1

dL

L D dz

dl
52L

dz

dL
5zS 12

RQ

R D ,

~C7!

where the minus sign on the left-hand side of the mid
equation denotes the fact thatL is decreasing, anddl
[2d ln L with l the differential logarithmic flow scale pa
rameter,L5L0e2 l .

From Eq.~C7! we see that whenR.RQ z is relevant and
the particles proliferate. WhenR,1 the opposite happens
all particles form dipoles that disappear when the scale
creases.
5-27
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APPENDIX D: COULOMB GAS REPRESENTATION
OF THE WEAK-COUPLING LIMIT

In Appendix D2 we will derive the RG equations to se
ond order of the two-component sine-Gordon model of E
~23!. Before doing that, we will derive the Coulomb ga
representation of this model~Appendix D1!. This represen-
tation shows that the model~23! describes a gas of interac
ing pair-tunnel events. The Coulomb gas representa
makes it conceptually easier to derive the second-order
equations. In Appendix we use the Coulomb gas descrip
to demonstrate how proliferated pair-tunnel events~or their
strong-coupling counterparts, phase slips! screen other
events. This adds to the discussion of the mixed phase
Secs. III B and IV B.

1. Coulomb gas representation

To analyze the two-junction system we use the mapp
of the partition function~23! to a partition function of a
Coulomb gas. The starting point for this investigation is t
free energy that appears in Eq.~23!:

S'E dv

2p

RQ

2p S D1
2

uvuS 11
R2

r D
R11R21

R1R2

r

1D2
2

uvuS 11
R1

r D
R11R21

R1R2

r

12D1D2

uvu

R11R21
R1R2

r

D 1E dt

a
@J1cosD1

1J2cosD21J1cos~D11D2!#, ~D1!

where we have redefined the anharmonic terms by a facto
a;vp

21 .
The first step is to make use of the weak-coupling sta

mentJ1,2!1 and expand the exponent in a power law in t
J’s. Following that, an integration over the fieldsD1,2 re-
duces action~D1! to a partition function of an interacting ga
with two kinds of charges,m51,2, corresponding to
exp(iDm):

Z5 (
n1 ,n2

J1
2n1

~n1! !2

J2
2n2

~n2! !2E P i 51
2n1 dt i

(1)P j 51
2n2 dt j

(2)

3expS 2
1

2E dt1dt2 (
m1 ,m251

2

r (t1)
(m1)

r (t2)
(m2)S(t12t2)

(m1 ,m2)D ,

~D2!

wherer (t)
(m)5( i 51

nm s id (t2t i )
is the density of the gas, ands i

is the charge of thei th particle.J1 and J2 play the role of
fugacities for the two types of gas particles.

The interaction actions are

S(t)
(11)522

~R11r !
lnUtU,
RQ a
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S(t)
(22)522

~R21r !

RQ
ln UtaU,

S(t)
(12)52

r

RQ
ln UtaU, ~D3!

whereSi j is the interaction energy between type-i particles
and type-j particles. As we can see, the logarithmic diverge
interactions impose the neutrality condition satisfied in E
~D2!. Notice that gas particles of type 1 and type 2 of t
same charge actually attract.

The meaning of each of the particles is very simple
particle represents aCooper-pair tunnelingevent through the
corresponding junction~see Fig. 3!.43 To see this recall that
for example,D15fg2f1 and thef ’s are conjugate to the
number of Cooper pairs on the corresponding grain or lea
hence the expansion in powers ofJ’s leads to products of
terms like exp@i(fg2f1)#, which are translation operators fo
the charge difference between the middle grain and lead

2. Two-component gas RG

To find the phase diagram of the two-junction system,
need to use both the mapping to a Coulomb gas from and
angular-frequency RG as described in Appendix C, exten
to include second-order contributions. In order to make
discussion general, we will treat the following form of th
action ~23!:

Z5E DD1DD2e2Sd2S̃J,

S̃J5E
0

bdt

a
@2J1cos~D1!2J2cos~D2!2J1cos~D11D2!#,

Sd5E
uvu,L

dv

2p
uvuDW (2v)

T ĜDW (v) , ~D4!

with the capacitative part omitted, the sums overvn approxi-
mated by integrals, and the upper frequency cutoffL5p/a
introduced. The first-order contributions to the RG flo
equations come from the terms linear in theJ’s and exactly
following Appendix C, but using

^D iD j&v5
1

2p
Gi j

21 , ~D5!

we get the following first-order RG equations:

dJ1

dl
5J1S 12

1

2p
G11

21D ,

dJ2

dl
5J2S 12

1

2p
G22

21D ,

dJ1

dl
5J1S 12

1

2p
~G11

211G22
2112G12

21! D . ~D6!
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The interactions between the two gas components give
to second-order contributions to the RG equations. In ad
tion, the second-order terms in the power-law expansion
J’s of Eqs.~D4! produce corrections to the plasma frequen
of the problem and other irrelevant operators.

First we will demonstrate how to derive all second-ord
contributions to the flow equations by deriving one such c
tribution. Let us consider an example for a second-or
term. Then we will proceed to derive the unimporta
plasma-frequency corrections.

Consider the term that results from the product ofJ1 and
J2 first-order terms In a power-law expansion of Eqs.~D4!,

Z5•••1E D@DW ,#D@DW .#expS 2E dv

2p
DW †GDW D

3E dt1E dt2

J1J2

4a2
@ei (D1(t1)1D2(t2))1ei (D1(t1)2D2(t2))

1c.c.!] 1•••. ~D7!

At this point we would like to integrate out the fast modes
the fieldsD1 ,D2 as in Eq.~C4!. But we need to be carefu
since ift15t2 the suppression resulting from the contracti
of the fast modes isnot the product of the two factors ob
tained from the first-order terms inJ1 andJ2:

^cos~D11D2!&D
1
. ,D

2
.

5expS 2
1

2Ev.L

dv

2p
^~D1

.1D2
.!2& D cos~D11D2!
co

ro
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r
-
r

t

f

5expS 2
1

2Ev.L

dv

2p
~G11

211G22
2112G12

21! D
3cos~D11D2!. ~D8!

The renormalized second-order term, as in Eq.~D7!, will
only contain the self-interaction of a Cooper-pair tunneli
event in junctions 1 and 2, completely dropping t
exp(2G12

21). This difference produces aJ1 renormalization
term. To calculate this term we first need to separate
contribution to the partition function that comes from th
term ~D7! to same time and different time contributions. D
fine t5(t11t2)/2,x5t22t1, and write

E dt1E dt25E dtE dx5E dtE
uxu.a1da

dx

1E dtE
uxu,a

dx1E dtE
a,uxu,a1da

dx.

~D9!

The first integral is unaltered in the RG step~except for the
influence onJi of the integration of fast modes as in fir
order! and can be reexponentiated. The second term re
sents two gas particles of types 1 and 2 occurring at the s
time, with the resolution of this RG step. This event t
should be reexponentiated since it is also obtained a
second-order event in the renormalized variables. Howe
as pointed out in the previous paragraph, there is a disc
ancy in the RG suppression coming from the fast mode c
traction. Hence we write
E dt

a E
uxu,a1da

dx

a

J1J2

4
^~ei (D1(t1x/2)1D2(t2x/2))1ei (D1(t1x/2)2D2(t2x/2))1c.c.!&D

1
. ,D

2
.'E dt

a

a1da

a
J1J2

3expS 2
1

2Ev.L

dv

2p
~G11

À11G22
À1! D Xcos~D1(t)2D2(t)!H 11FexpS 2

1

2Ev.L

dv

2p
~22!G12

21D 21G J
1cos~D1(t)1D2(t)!H 11FexpS 2

1

2Ev.L

dv

2p
~2!G12

21D 21G J C
5E dt

a1da

J18J28

2 F S 11
2

2p
G12

21 udLu
L D cos~D1(t)2D2(t)!1S 12

2

2p
G12

21 udLu
L D cos~D1(t)1D2(t)!G . ~D10!
The second term in each of the brackets multiplying the
terms are the corrections that feed intoJ2cos(D12D2) and
J1cos(D11D2).

Equation~D10! leads to an additionalJ1J2 in dJ2,1 /dl.
The same could be done to second-order terms that are p
ucts of J1 and J1,2. For instance, in the case ofJ1 the
complete flow equation to second order would be
s

d-

dJ1

dl
5J1S 12

1

2p
~G11

211G22
2112G12

21! D1
1

2p
G12

21J1J2 .

~D11!

The same equation with the sign ofG12
21 reversed applies to

J2 . Similarly, the flow equation forJ1 (J2) would have a
contribution proportional toJ2J1 (J1J1) andJ2J1 (J1J1).
5-29



n
w
h
a

er
he

f

a

th

.

ow

RG
e

lings
pec-
t to
nd
this
f one

as-

REFAEL, DEMLER, OREG, AND FISHER PHYSICAL REVIEW B68, 214515 ~2003!
The third term in Eq.~D9! leads to terms in the actio
proportional tov2 and hence are unimportant. To see this
will use two examples that exhaust all possibilities. As t
first case, let us look at the term in the second-order exp
sion ~D7! proportional toJ1

2:

Z5•••1E D@D#expS 2E dv

2p
DW †GDW D

3E dt1E dt2

J1
2

8a2
~ei (D1(t1)1D1(t2))1ei (D1(t1)2D1(t2))

1c.c.!1•••. ~D12!

We ignore the first term in the brackets as it implies a v
costly configuration of two particles very close to each ot
and concentrate on the second:

E D@D#expS 2E dv

2p
DW †GDW D

3E dtE
a,uxu,a1da

dx
J1

2

8a2
~ei (D1(t1x/2)2D1(t2x/2))1c.c.!.

~D13!

Now

E
a,uxu,a1da

~ei (D1(t1x/2)2D1(t2x/2))1c.c.!

'2~ei Ḋ1(t)a1e2 i Ḋ1(t)a!

'2~22Ḋ1(t)
2 a2!, ~D14!

but this can be reexponentiated to give a correction piece
the action:

DS5E dtda
J1

2

4
Ḋ1(t)

2 5E dv

2p
da

J1
2

4
v2D1

2 , ~D15!

which is just av2 contribution that renormalizes the plasm
frequency of the model.

A more complicated case would be considering again
term that mixes the two components of the gas:

Z5•••1E D@D#expS 2E dv

2p
DW †GDW D

3E dtE
a,uxu,a1da

dx
J1J2

4a2
~ei (D1(t1x/2)1D2(t2x/2))

1ei (D1(t1x/2)2D2(t2x/2))1c.c.!1••• . ~D16!

Here we use the following derivation:
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E
a,uxu,a1da

~ei (D1(t1x/2)1D2(t2x/2))1c.c.!

'da@ei (D1(t)1D2(t))~ei (Ḋ1,(t)2Ḋ2,(t))a

1e2 i (Ḋ1,(t)2Ḋ2,(t))a!1c.c.#

'2da cos~D1(t)1D2(t)!S 22
a2

4
~Ḋ1,(t)2Ḋ2,(t)!

2D .

~D17!

This results then in the introduction of a term

DS5E dtda
J1J2

2
cos~D1(t)1D2(t)!

~Ḋ1,(t)2Ḋ2,(t)!
2

4
,

~D18!

once again, proportional tov2, and hence, unimportant
Similarly,

E
a,uxu,a1da

~ei (D1(t1x/2)2D2(t2x/2))1c.c.!

'da@ei (D1(t)2D2(t))~ei (Ḋ1,(t)1Ḋ2,(t))a

1e2 i (Ḋ1,(t)1Ḋ2,(t))a!1c.c.#

'2da cos~D1(t)2D2(t)!S 22
a2

4
~Ḋ1,(t)1Ḋ2,(t)!

2D ,

~D19!

yielding

DS5E dtda
J1J2

2
cos~D1(t)2D2(t)!

~Ḋ1,(t)1Ḋ2,(t)!
2

4
.

~D20!

This exhausts all second-order contributions to the RG fl
equations.

3. Screening of pair tunneling events

When discussing the phase diagram obtained from the
flow Eqs.~27! in Sec. III, we had to account to parts of th
phase diagram in which one of the three Josephson coup
is relevant; then we used the procedure of setting the res
tive phase-difference variable to zero, which is equivalen
starting from a new fixed point. Here we review this step a
show that in the language of the Coulomb gas analogy,
procedure may be understood as screening of charges o
type by proliferated charges of the other type.

Let us start by considering the case ofJ2 being relevant.
The simplest approach to the strong-coupling limit is to
sume thatD250. This can be done because ifJ2@1; then
the termJ2cosD2 in the action~23! constrainsD2 to be 0.
The kinetic part of the action becomes
5-30
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S15E dv

2p

RQ

2p
D1

2

uvuS 11
R2

r D
R11R21

R1R2

r

, ~D21!

and hence the flow forJ1 ~or J1) would become

dJ1

dl
5J1S 12

R11R21
R1R2

r

RQS 11
R2

r D D , ~D22!

shifting the phase boundary S1-N2 and the FSC phase t

R11R21
R1R2

r

11
R2

r

5RQ . ~D23!

The above calculation is a very straightforward way of o
taining the phase diagram; however, to understand the p
ics behind it let us take a step back. WhenJ2 is relevant,
pair-tunnel events in junction 2 will proliferate. This mea
that any field felt by the gas particles of type 2~correspond-
ing to the pair-tunnel events in junction 2! will be screened
by type-2 particles attracted to the source of the field.
every type-1 gas particle will acquire ascreening cloudof
particles of type 2, so that no field from the original type
particle is felt in junction 2. To make this a quantitative sta
ment, a type-1 gas particle with chargeq1 exerts the field

q1S(t)
(12)52q1

r

RQ
lnUtaU

on the type-2 particles. Type-2 particles will then form
screening cloud of chargeq2 so that

q1S(t)
(12)52q1

r

RQ
lnUtaU52q2S(t)

(22)52q2

~R21r !

RQ
lnUtaU,

which leads to

q25q1

r

R21r
.

Now, the field that a test charge of type-1 would feel is

q1S8(t)
(11)5q2S(t)

(12)1q1S(t)
(11)

522q1

1

RQ
S R11r 2r

r

R21r D lnUtaU

522q1

1

RQS R11R21
R1R2

r

11
R2

r

D lnUtaU,
~D24!
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which we see gives exactly the same result as Eq.~D23!.
Indeed this way is more complicated; however, it could a
be employed in more complicated setups, and it gives so
insight as to what physically happens to the system. In
case, the charge tunneling from lead 1 to the grain parti
relaxes through the superconducting junction 2. The phys
interpretation of the above results is also discussed in S
III C.

Next, let us consider the case of relevantJ1 . Here we
need to setD152D2[D. This gives a free energy kineti
part

S15E dv

2p

RQ

2p
D2

uvuS R1

r
1

R2

r D
R11R21

R1R2

r

, ~D25!

and hence the flow forJ1 ~or J2) would become

dJ1

dl
5J1F12

1

RQ
S r 1

R1R2

R11R2
D G . ~D26!

This shifts the phase boundary between the SC! phase and
FSC phase to

r 1
R1R2

R11R2
5RQ . ~D27!

Here too, we can follow the screening principal to get t
answer. The idea would be that a pair-tunnel event wo
acquire a pair-tunnel couple screening cloud so that o
pair-tunnel couples will not feel any field.

This method along with the self-consistent harmon
approximation77 can be used to obtain more insight about t
behavior of the system.

APPENDIX E: COULOMB GAS OF THE
PHASE-SLIP REPRESENTATION OF THE

STRONG-COUPLING CASE

1. Villain transformation: Phase slips

To treat the strong-coupling limitJ1 ,J2@1, we need to
derive a description of the two-junction system in terms
phase slips: events in which the phase of one of a Josep
junction tunnels from one trough of the Josephson cos
potential into an adjacent trough. This event leads to a v

age drop across the junction~from \ḟ/2e5V) and hence to
dissipation. To derive this action, we make use of the Villa
transformation.52,69,78
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Starting with the action~23!

S'E dv

2p

RQ

2p S D1
2

uvuS 11
R2

r D
R11R21

R1R2

r

1D2
2

uvuS 11
R1

r D
R11R21

R1R2

r

12D1D2

uvu

R11R21
R1R2

r

D 1SC1SJ , ~E1!

with

SJ5E d
t

a
~2J cosD12J cosD2!. ~E2!

Here too we modified the sum over frequencies into an in
gral and introduced a high-frequency cutoff.

The assumption of strongJ allows us to perform a Villain
transformation

expS E dtJ@cos~D i !21# D
'(

h(t)
i

expS 2E dt
J

2
~D i12ph (t)

i !2D , ~E3!

whereh (t)
i maps imaginary time to the integers, and the s

on the right-hand side is over all these functions. The fu
tion h (t)

i specifies in which trough of the potentialJicosDi

the i th junction is. The essence of the Villain transformati
is that it completely eliminates the dynamics of intratrou
motion and only considers the tunneling between troug
The intratrough near-minimum motion is encoded into w
will become the fugacity of a phase slip,z i .

It is actually better to use the Fourier transform of t
time derivative: FT(ḣ (t)

i )52 ivh (v)
i [r (v)

i . Incorporating
this allows us then to write

exp~2SJ!'(
r(t)

1,2
expF2E dv

2p

J

2 S UD112p
r (v)

1

2 iv
U2

1UD212p
r (v)

2

2 iv
U2D G . ~E4!

Expanding the square and putting it all in the action~23!
gives
21451
-

-

s.
t

S'E dv

2p F D1
2S J

2
1

uvuS 11
R2

r D
R11R21

R1R2

r

D
1D2

2S J

2
1

uvuS 11
R1

r D
R11R21

R1R2

r

D
12D1D2

uvu

R11R21
R1R2

r

1D1J
2pr1

iv
1

J~2pr1!2

v2

1D2J
2pr2

iv
1

J~2pr2!2

v2 G . ~E5!

RecallingZ5(r
(t)
1,2*D@D1#D@D2#exp(2S), we are ready to

integrate outD1 ,D2 and get the partition function for the
phase-slip gas. After doing this and taking the limit of lar
J we get the following partition function:

Z5(
r(t)

1,2
expS RQ

2pE dv

2p H ~2pr1!2
1

uvu

11
R2

r

R11R21
R1R2

r

1~2pr2!2
1

uvu

11
R1

r

R11R21
R1R2

r

12~2pr1!

3~2pr2!
1

uvu
1

R11R21
R1R2

r

J D . ~E6!

This is a partition function for a gas that consists of tw
kinds of particles, withr1 ,r2 being the densities of the two
gasses. When carrying out thev integrals we get the inter
action between the gas particles. They are (S( i j ) is the inter-
action between two positive particles, one of species i a
the other from speciesj )

S(t)
(11)522

11
R2

r

R11R21
R1R2

r

lnS utu
a D

522
1

R11
R2r

R21r

lnS utu
a D ,
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S(t)
(22)522

11
R1

r

R11R21
R1R2

r

lnS utu
a D

522
1

R21
R1r

R11r

lnS utu
a D ,

S(t)
(12)522

1

R11R21
R1R2

r

lnS utu
a D . ~E7!

As in the weak-coupling limit, here too we derived a Co
lomb gas description of the action~23!. However, in the
strong-coupling limit the gas particles are phase slips, wh
produce a voltage drop over the junction.
m

06

v,

s.

hi

T

21451
-

h

2. From the Coulomb gas to sine-Gordon

The interacting gas of phase slips described in Eq.~E1!
can be encoded into a new sine-Gordon theory, conjugat
the original theory~23!. It is given by

Z5E D@u1#E D@u2#expS 2E dv

2p

uvu
2pRQ

@~r 1R1!u1
2

1~r 1R2!u2
222ru1u2#1E dt

a
@z1cos~u1!

1z2cos~u2!1z2cos~u12u2!# D
5E D@u1#E D@u2#expS 2E dv

2p
uW †GuW

1E dt

a
@z1cos~u1!1z2cos~u2!# D , ~E8!

wherez1,2 play the role of fugacities of the phase slips o
junctions 1 and 2. By expanding this sine-Gordon theory
the z ’s and following the steps of Appendix D1 we recov
the Coulomb gas described in Eqs.~E7!.
.
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