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Compiling Polymorphism Using Intensional Type Analysis�Robert Harpery Greg MorrisettzSchool of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213-3891
AbstractTraditional techniques for implementing polymorphism usea universal representation for objects of unknown type. Of-ten, this forces a compiler to use universal representationseven if the types of objects are known. We examine an al-ternative approach for compiling polymorphism where typesare passed as arguments to polymorphic routines in order todetermine the representation of an object. This approachallows monomorphic code to use natural, e�cient represen-tations, supports separate compilation of polymorphic de�-nitions and, unlike coercion-based implementations of poly-morphism, natural representations can be used for mutableobjects such as refs and arrays.We are particularly interested in the typing propertiesof an intermediate language that allows run-time type anal-ysis to be coded within the language. This allows us tocompile many representation transformations and many lan-guage features without adding new primitive operations tothe language. In this paper, we provide a core target lan-guage where type-analysis operators can be coded within thelanguage and the types of such operators can be accuratelytracked. The target language is powerful enough to code avariety of useful features, yet type checking remains decid-able. We show how to translate an ML-like language intothe target language so that primitive operators can analyzetypes to produce e�cient representations. We demonstratethe power of the \user-level" operators by coding attenedtuples, marshalling, type classes, and a form of type dynamicwithin the language.1 IntroductionMany compilers assume a universal or \boxed" represen-tation of a single machine word if the type of a value isunknown. This allows the compiler to generate one simple�This work was sponsored by the Advanced Research ProjectsAgency, CSTO, under the title \The Fox Project: Advanced De-velopment of Systems Software", ARPA Order No. 8313, issued byESD/AVS under Contract No. F19628{91{C{0168.yE-mail: rwh@cs.cmu.eduzE-mail: jgmorris@cs.cmu.edu

piece of code to manipulate the value. But boxed represen-tations often require more space and provide less e�cientaccess than natural representations. For example, an arrayof small unknown objects, such as booleans or characters,is represented as an array of words, wasting the majority ofthe space. An object larger than a word, such as a double-precision oating-point value, is allocated and a pointer isused in place of the value. Consequently, accessing the valuerequires an additional memory access. As word sizes in-crease from 32 to 64-bits, and memory latencies increase, itbecomes increasingly important to minimize boxing.In modern programming languages such as Modula-3,Standard ML (SML), and Haskell, unknown types and thusboxed representations arise because of two key language fea-tures: types imported from a separately compiled programunit and types within polymorphic routines. Polymorphicvalues are particularly troublesome because we can simulta-neously view them as having any one of an in�nite numberof monomorphic types. For example, a polymorphic routinethat maps a function across the elements of an array canbe simultaneously seen as a function that works on booleanarrays and a function that works on real arrays. The routinecan thus be used in place of a function that was compiledknowing whether the argument array contains booleans orreals. Consequently, monomorphic routines are forced touse the same representations as polymorphic routines andthe entire program pays the price of the increased space andexecution-time overheads of the universal representations.1.1 Coercion ImplementationsThe problem with polymorphism stems from the assumptionthat viewing a polymorphic value as a monomorphic valueshould have no computational e�ect. Recent work by Leroy[30] and others [41, 24, 43] has suggested that the instantia-tion of a polymorphic value should correspond to a run-timecoercion from the universal representation to the appropri-ate specialized representation. At function types, this re-quires the dual coercion (for the function argument) thatconverts specialized representations to the universal repre-sentation. For example, when the identity function of type8�:� ! � is instantiated to have type int ! int, a coer-cion is generated that takes an integer argument, boxes it,passes it to the identity function, and unboxes the result.This approach allows monomorphic code to use the natural,e�cient representations.Leroy's coercions produce an isomorphic copy of a datastructure. For example, to coerce a tuple, we project the



components of the tuple, box/unbox them, and then form anew tuple. Unfortunately, copying coercions are impracticalfor large data structures since the cost of making the copy of-ten outweighs the bene�ts of the unboxed representation (aspointed out by Leroy [30, page 184]). More problematically,copying coercions do not work for mutable data structuressuch as arrays. If we make a copy of the value to box thecomponents then updates to the copy will not be reectedin the original array and vice versa.1.2 Type PassingAn alternative approach to coercions, �rst suggested by theNapier '88 implementation [37], is to pass the types that areunknown at compile-time to primitive operations at link-time or even run-time. Then the primitive operations cananalyze the type in order to select the appropriate code tomanipulate the natural representation of an object. For ex-ample, a polymorphic subscript function for arrays might becompiled into the following pseudo-code:sub = ��:typecase � ofbool ) boolsubj real ) realsubj � ) boxedsub[� ]Here, sub is a function that takes a type argument (�), anddoes a case analysis to determine the appropriate special-ized subscript function that should be returned. For exam-ple, sub[bool] returns the boolean subscript function thatexpects an array of bits, while sub[real] returns the oatingpoint subscript function that expects a double-word alignedarray of oating point values. For all other types, we assumethe array has boxed components and thus return the boxedsubscript function.If the sub operation is instantiated with a type that isknown at compile-time (or link-time), then the overhead ofthe case analysis can be eliminated by duplicating and spe-cializing the de�nition of sub at the appropriate type. Forexample, the source expression \subhx; 4i + 3:14" will becompiled to the target expression \sub[real]hx; 4i + 3:14"since the result of the sub operation is constrained to bea real. If the de�nition of sub is inlined into the targetexpression and some simple reductions are peformed, thisyields the optimized expression \realsubhx; 4i+3:14". Thus,parameterizing the primitive operations by type provides asingle, consistent methodology for type analysis at compile-time, link-time, and run-time.In languages where polymorphic de�nitions are restrictedto \computational values" (essentially constants and func-tions), polymorphic de�nitions can always be duplicated andspecialized or even inlined. Lazy languages such as Haskellsatisfy this constraint, and Wright has determined empir-ically that such a restriction does not e�ect the vast ma-jority of SML programs [52]. Languages like core-SML andHaskell only allow polymorphic values to arise as the resultof a \let" binding and restrict the type of such values tobe prenex-quanti�ed. That is, the type must be of the form8�1; : : : ; �n:� where � contains no quanti�er. Thus, the onlything that can be done to a polymorphic value is to instan-tiate it. Since the scope of a let is closed, it is possible todetermine all of the instantiations of the polymorphic valueat compile time and eliminate all polymorphism through du-plication andd specialization. Such an approach is used, forinstance, by Blelloch et al. in their NESL compiler [6] and

more recently by Jones to eliminate Haskell overloading [27].Furthermore, Jones reports that this approach does not leadto excessive code-blowup.Unfortunately, eliminating all of the polymorphism in aprogram is not always possible or pratical. In particular,there is no way to eliminate the polymorphism when sepa-rately compiling a de�nition from its uses because it is im-possible to determine the types at which the de�nition willpotentially be used. This prevents us from separately com-piling polymorphic libraries or polymorphic de�nitions en-tered at a top-level loop. Furthermore, in languages that al-low polymorphic values to be \�rst-class" such as XML [21]and Quest [9], it is impossible to eliminate all polymorphismat compile-time. Therefore, we view duplication and spe-cialization as an important optimization, but consider somerun-time type analysis to still be necessary for practical lan-guage implementation.1.3 Type-Checking Type AnalysisIn this paper, we show how to compile ML-like polymorphiclanguages to a target language where run-time type anal-ysis may be used by the primitive operations to determinethe representation of a data structure. We are particularlyinterested in the typing properties of a language that al-lows run-time type analysis. The sub de�nition above isill-typed in ML because it must simultaneously have thetypes boolarray � int ! bool, realarray � int ! real, aswell as 8�:(�)boxedarray � int ! �. Since boolarray andrealarray are nullary constructors and not instantiations of(�)boxedarray, it is clear that there is no ML type thatuni�es all of these types.Our approach to this problem is to consider a type sys-tem that provides analysis of types via a type-level \Type-case" construct. For example, the sub de�nition above canbe assigned a type of the form:8�:SpclArray[�] � int! �where the specialized array constructor SpclArray is de�nedusing Typecase as follows:SpclArray[�] = Typecase � ofbool ) boolarrayj real ) realarrayj � ) (� )boxedarrayThe de�nition of the constructor parallels the de�nition ofthe term: If the parameter � is instantiated to bool, thenthe resulting type is boolarray and if the parameter is instan-tiated to real, the resulting type is realarray.In its full generality, our target language allows types tobe analyzed not just by case analysis, but also via primitiverecursion. This allows more sophisticated transformationsto be coded within the language, yet type checking for thetarget language remains decidable. An example of a moresophisticated translation made possible by primitive recur-sion is one where arrays of tuples are represented as tuples ofarrays. For example, an array of bool�real is represented asa pair of a boolarray and a realarray. This representation al-lows the boolean components of the array to be packed andallows the real components to be naturally aligned. Thesubscript operation for this representation is de�ned usinga recursive typecase construct called typerec in the following



manner:typerec sub [bool] = boolsubj sub [real] = realsubj sub [�1 � �2] =�hhx; yi; ii:hsub[�1] hx; ii; sub[�2] hy; iiij sub [� ] = boxedsub[� ]If sub is given a product type, �1 � �2, it returns a functionthat takes a pair of arrays (hx; yi) and an index (i) andreturns the pair of values from both arrays at that index,recursively calling the sub operation at the types �1 and �2.The type of this sub operation is:8�:RecArray[�] � int! �where the recursive, specialized array constructor RecArrayis de�ned using a type-level \Typerec":Typerec RecArray [bool] = boolarrayj RecArray [real] = realarrayj RecArray [�1 � �2] =RecArray[�1] �RecArray[�2]j RecArray[� ] = (� )boxedarrayAgain, the de�nition of the constructor parallels the de�ni-tion of the sub operation. If the parameter is instantiated tobool, then the resulting type is boolarray. If the parameteris instantiated with �1 � �2, then the resulting type is theproduct of RecArray[�1] and RecArray[�2].Run-time type analysis can be used to provide other use-ful language mechanisms besides e�cient representations.In particular, ad hoc polymorphic operators, such as theequality operator of SML, or an overloaded operator ex-ported from a Haskell type class, can be directly imple-mented in our target language without the need to tag val-ues. Furthermore, the static constraints of SML's equalitytypes and Haskell's type classes may be coded using ourTyperec construct. Our target language is also able to ex-press \marshalling" of data structures and a form of typedynamic.In Section 2 we describe the type-analysis approach tocompilation as a type-based translation from a source lan-guage, Mini-ML, to our target language, �MLi . The keyproperties of �MLi are stated, and a few illustrative exam-ples involving typerec and Typerec are given. In Section 3 weshow how many interesting and useful language constructscan be coded using typerec, including attened representa-tions, marshalling, type classes, and type dynamic. In Sec-tion 4 we discuss related work, and in Section 5 we summa-rize and suggest directions for future research.2 Type-Directed CompilationIn order to take full advantage of type information duringcompilation, we consider translations of typing derivationsfrom the implicitly-typed ML core language to an explicitly-typed target language, following the interpretation of poly-morphism suggested by Harper and Mitchell [20]. The sourcelanguage is based on Mini-ML [11], which captures many ofthe essential features of the ML core language. The tar-get language, �MLi , is an extension of �ML, also known asXML [21], a predicative variant of Girard's F! [16, 17, 42],enriched with primitives for intensional type analysis.

2.1 Source Language: Mini-MLThe source language for our translations is a variant of Mini-ML [11]. The syntax of Mini-ML is de�ned by the followinggrammar:(monotypes) � ::= t j int j �1 ! �2 j �1 � �2(polytypes) � ::= � j 8t:�(terms) e ::= x j �n j he1; e2i j �1 e j �2 e j�x: e j e1 e2 j letx = v in e(values) v ::= x j �n j hv1; v2i j �x: eMonotypes (� ) are either type variables (t), int, arrow types,or binary product types. Polytypes (�) (also known as typeschemes) are either monotypes or prenex quanti�ed types.We write 8t1; : : : ; tn:� to represent the polytype 8t1: � � � :8tn:� .The terms of Mini-ML (e) consist of identi�ers, numerals(�n), pairs, �rst and second projections, abstractions, appli-cations, and let expressions. Values (v) are a subset of theterms and include identi�ers, integer values, pairs of values,and abstractions.The static semantics for Mini-ML is given in Figure 1 asa series of inference rules. The rules allow us to derive ajudgement of the form �; � . e : � where � is a set of freetype variables and � is a type assignment mapping identi�ersto polytypes. We write [�=t]� 0 to denote the substitution ofthe type � for the type variable t in the type expression � 0.We use � ] �0 to denote the union of two disjoint sets oftype variables, � and �0, and �]fx : �g to denote the typeassignment that extends � so that x is assigned the polytype�, assuming x does not occur in the domain of �.Let-bound expressions are restricted to values so that ourtranslation, which makes type abstraction explicit, is correct(see below).2.2 Target Language: �MLiThe target language of our translations, �MLi , is based on�ML [20], a predicative variant of Girard's F! [16, 17, 42].The essential departure from the impredicative systems ofGirard and Reynolds is that the quanti�er 8t:� ranges onlyover \small" types, or \monotypes", which do not includethe quanti�ed types. This calculus is su�cient for the inter-pretation of ML-style polymorphism (see Harper andMitchell[20] for further discussion of this point.) The language �MLiextends �ML with intensional (or structural [19]) polymor-phism, that allows non-parametric functions to be de�nedby intensional analysis of types.The four syntactic classes for �MLi , kinds (k), construc-tors (�), types (�), and terms (e), are given below:(kinds) � ::= 
 j �1 ! �2(con's) � ::= t j Int j !(�1; �2) j �(�1; �2) j�t::�:� j �1[�2] jTyperec � of (�ij�!j��)(types) � ::= T (�) j int j �1 ! �2 j �1 � �2 j8t::�:�(terms) e ::= x j �n j �x:�: e j @� e1 e2 jhe1; e2i�1;�2 j ��1;�21 e j ��1;�22 e j�t::�: e j e[�] jtyperec � of [t:�](eije!je�)Kinds classify constructors, and types classify terms. Con-structors of kind 
 name \small types" or \monotypes".The monotypes are generated from Int and variables by the



(var) FTV([�n=tn](� � � ([�1=t1]� ) � � �)) � ��;� ] fx : 8t1; : : : ; tn:�g . x : [�n=tn](� � � ([�1=t1]� ) � � �) (int) �; � . �n : int(pair) �; � . e1 : �1 �;� . e2 : �2�; � . he1; e2i : �1 � �2 (�) �; � . e : �1 � �2�;� . �i e : �i (i = 1; 2)(abs) �; � ] fx : �1g . e : �2�;� . �x: e : �1 ! �2 (app) �; � . e1 : � 0 ! � �;� . e2 : � 0�; � . e1 e2 : �(let) � ] ft1; : : : ; tng; � . v : � 0�;� ] fx : 8t1; : : : ; tn:� 0g . e : ��;� . letx = v in e : �Figure 1: Mini-ML Typing Rulesconstructors! and�. The application and abstraction con-structors correspond to the function kind �1 ! �2. Typesin �MLi include the monotypes, and are closed under prod-ucts, function spaces, and polymorphic quanti�cation. Wedistinguish constructors from types, writing T (�) for thetype corresponding to the constructor �. The terms are anexplicitly-typed �-calculus with explicit constructor abstrac-tion and application forms.The o�cial syntax of terms shows that the primitive op-erations of the language are provided with type informationthat may be used at run-time. For example, the pairingoperation is he1; e2i�1;�2 , where ei : �i, reecting the factthat there is (potentially) a pairing operation at each pairof types. In a typical implementation, the pairing operationis implemented by computing the size of the componentsfrom the types, allocating a suitable chunk of memory, andcopying the parameters into that space. However, there isno need to tag the resulting value with type informationbecause the projection operations (��1;�2i e) are correspond-ingly indexed by the types of the components so that the ap-propriate chunk of memory can be extracted from the tuple.Similarly, the application primitive (@� e1 e2) is indexed bythe domain type of the function1 and is used to determinethe calling sequence for the function. Of course, primitiveoperations can ignore the type if a universal representationis used. Consequently, the implementor can decide whetherto use a natural or universal representation. We use a sim-pli�ed term syntax without the types when the informationis apparent from the context. However, it is important tobear in mind that the type information is present in the fullyexplicit form of the calculus.The Typerec and typerec forms provide the ability tode�ne constructors and terms by structural induction onmonotypes. These forms may be thought of as eliminatoryforms for the kind 
 at the constructor and term level. (Theintroductory forms are the constructors of kind 
; there areno introductory forms at the term level in order to preservethe phase distinction [8, 21].) At the term level typerec maybe thought of as a generalization of typecase that providesfor the de�nition of a term by induction on the structureof a monotype. At the constructor level Typerec provides asimilar ability to de�ne a constructor by induction on the1In general, application could also depend upon the range type,but our presentation is simpli�ed greatly by restricting the depen-dency to the domain type.

structure of a monotype.The static semantics of �MLi consists of a collection ofrules for deriving judgements of the following forms, where� is a kind assignment, mapping type variables (t) to kinds,and � is a type assignment, mapping term variables to types.� . � :: � � is a constructor of kind �� . �1 � �2 :: � �1 and �2 are equivalent constructors� . � � is a valid type� . �1 � �2 �1 and �2 are equivalent types�; � . e : � e is a term of type �The formation rules for constructors are largely stan-dard, with the exception of the Typerec form:� . � :: 
 � . �i :: �� . �! :: 
! 
! �! �! �� . �� :: 
! 
! � ! � ! �� . Typerec � of (�ij�!j��) :: �The whole constructor has kind � if the constructor to beanalyzed, �, is of kind 
 (i.e., a monotype), �i is of kind �,and �! and �� are each of kind 
! 
! �! � ! �.The constructor equivalence rules (see Figure 2) axiom-atize de�nitional equality [47, 31] of constructors to consistof �-conversion together with recursion equations governingthe Typerec form. Conceptually, Typerec selects �i, ��, or�! according to the head-constructor of the normal form of� and passes it the components of � and the \unrolling" ofthe Typerec on the components. The level of constructorsand kinds is a variation of G�odel's T [18]. Every construc-tor, �, has a unique normal form, NF(�), with respect tothe obvious notion of reduction derived from the equivalencerules of Figure 2 [47]. This reduction relation is conuent,from which it follows that constructor equivalence is decid-able [47].The type formation, type equivalence, and term forma-tion rules for �MLi are omitted due to lack of space, but canbe found in a previous report [22]. The rules of type equiv-alence de�ne the interpretation T (�) of the constructor �as a type. For example, T (Int) � int and T (!(�1; �2)) �T (�1)! T (�2). Thus, T takes us from a constructor whichnames a type to the actual type. The term formation rulesare standard with the exception of the typerec form, which



� ] ft :: �0g . �1 :: � � . �2 :: �0� . (�t :: �0:�1)[�2] � [�2=t]�1 :: � � . �i :: �� . �! :: 
! 
! �! � ! �� . �� :: 
! 
! � ! �! �� . Typerec Int of (�ij�!j��) � �i :: �� . �1 :: 
 � . �2 :: 
 � . �i :: �� . �! :: 
! 
! � ! �! � � . �� :: 
! 
! � ! �! �� � . Typerec (!(�1; �2)) of (�ij�!j��) � �! �1 �2 (Typerec �1 of (�ij�!j��)) (Typerec �2 of (�ij�!j��)) :: �� . Typerec (�(�1; �2)) of (�ij�!j��) � �� �1 �2 (Typerec �1 of (�ij�!j��)) (Typerec �2 of (�ij�!j��)) :: � �Figure 2: Constructor Equivalenceis governed by the following rule:� . � :: 
 � ] ft::
g . � �;� . ei : [Int=t]��;� . e! : 8t1; t2::
:[t1=t]� ! [t2=t]� ! [!(t1; t2)=t]��;� . e� : 8t1; t2::
:[t1=t]� ! [t2=t]� ! [�(t1; t2)=t]��; � . typerec � of [t:�](eije!je�) : [�=t]�The argument constructor � must be of kind 
, and the re-sult type of the typerec expression is determined as a func-tion of the argument constructor, namely the substitutionof � for t in the type expression �. The \[t:�]" label pro-vides the type information needed to check the constructwithout infererence. Typically the constructor variable toccurs in � as the argument of a Typerec expression so that[�=t]� is determined by a recursive analysis of �. Similarto normalization of a Typerec constructor, the evaluation ofa typerec expression selects ei, e�, or e! according to thehead constructor of the normal form of � and passes it thecomponents of � and the \unrolling" of the typerec on thecomponents.Type checking for �MLi reduces to equivalence checkingfor types and constructors. In view of the decidability ofconstructor equivalence, we have the following importantresult:Proposition 2.1 It is decidable whether or not �; � . e : �is derivable in �MLi .To �x the interpretation of typerec, we specify a call-by-value, natural semantics for �MLi as a relation of the forme ,! v where v is a closed (with respect to both type andvalue variables), syntactic value. Values are derived fromthe following grammar:v ::= �n j �x:�: e j hv2; v2i�1;�2 j �t::�: eType abstractions are values, reecting the fact that evalu-ation does not proceed under �.Figure 3 de�nes the evaluation relation with a series ofaxioms and inference rules. The semantics uses an auxiliaryjudgment, � ,! �0, (not formally de�ned here) that deter-mines the normal forms of constructors. During evaluation,we only need to determine normal forms of closed construc-tors of kind 
. This amounts to evaluating constructors ofthe form Typerec(:::) and (�1[�2]) by orienting the equiva-lences of Figure 2 to the right and adding the appropriatecongruences.The rest of the semantics is standard except for the eval-uation of a typerec expression which proceeds as follows:

First, the normal form of the constructor argument is deter-mined. Once the normal form is determined, the appropriatesubexpression is selected and applied to any argument con-structors. The resulting function is in turn applied to the\unrolling" of the typerec at each of the argument construc-tors. Some simple examples using typerec may be found atthe end of this subsection.The semantics uses meta-level substitution of closed val-ues for variables and closed constructors for type variables.In a lower-level semantics where substitution is made ex-plicit, an environment would be needed not only for valuevariables, but also for type variables. Tolmach [51] describesmany of the issues involved in implementing such a language.Proposition 2.2 (Type Preservation) If ;; ; . e : �and e ,! v, then ;; ; . v : �.By inspection of the value typing rules, only appropriatevalues occupy appropriate types and thus evaluation willnot \go wrong". In particular, it is possible to show thatwhen evaluating well-typed programs, we only use the projevaluation rule when �01 � �1 and �02 � �2 and we only usethe app rule when �0 � �. Furthermore, programs writtenin pure �MLi (i.e., without general recursion operators orrecursive types) always terminate.Proposition 2.3 (Termination) If e is an expression suchthat ;; ; . e : �, then there exists a value v such that e ,! v.A few simple examples will help to clarify the use oftyperec. The function sizeof of type 8t::
:int that computesthe \size" of values of a type can be de�ned as follows.sizeof = �t::
:typerec t of [t0:int](eije!je�)where ei = �1e! = �t1::
:�t2::
:�x1:int:�x2:int:�1e� = �t1::
:�t2::
:�x1:int:�x2:int:x1 + x2(Here we assume that arrow types are boxed and thus havesize one.) It is easy to check that sizeof has the type 8t::
:int.Note that in a parametric setting this type contains onlyconstant functions.As another example, Girard's formulation of System F [16]includes a distinguished constant 0� of type � for each type� (including variable types). We may de�ne an analogue ofthese constants using typerec as follows:zero = �t::
:typerec t of [t0:T (t0)](eije!je�)



(val) v ,! v (pair) e1 ,! v1 e2 ,! v2he1; e2i�1;�2 ,! hv1; v2i�1;�2 (proj) e ,! hv1; v2i�01;�02��1;�2i e ,! vi (i = 1; 2)(app) e1 ,! �x:�0: e e2 ,! v0[v0=x]e ,! v@� e1 e2 ,! v (tapp) e ,! �t::�: e0[�=t]e0 ,! ve[�] ,! v (trec-int) � ,! Int ei ,! vtyperec � of [t:�](eije!je�) ,! v
(trec-fn) � ,! !(�1; �2)typerec �1 of [t:�](eije!je�) ,! v1typerec �2 of [t:�](eije!je�) ,! v2@[�2=t]�(@[�1=t]�(e![�1][�2]) v1) v2 ,! vtyperec � of [t:�](eije!je�) ,! v (trec-pair) � ,! �(�1; �2)typerec �1 of [t:�](eije!je�) ,! v1typerec �2 of [t:�](eije!je�) ,! v2@[�2=t]�(@[�1=t]�(e�[�1][�2]) v1) v2 ,! vtyperec � of [t:�](eije!je�) ,! vFigure 3: Operational Semantics for �MLiwhereei = �0e! = �t1::
:�t2::
:�z1:T (t1):�z2:T (t2):�x:T (t1):z2e� = �t1::
:�t2::
:�z1:T (t1):�z2:T (t2):hz1; z2iIt is easy to check that zero has type 8t::
:T (t), the \empty"type in System F and related systems. The presence oftyperec violates parametricity to achieve a more exible pro-gramming language.To simplify the presentation we usually de�ne terms suchas zero and sizeof using recursion equations, rather than asa typerec expression. The de�nitions of zero and sizeof aregiven in this form as follows:sizeof[Int] = �1sizeof[�(�1; �2)] = sizeof[�1] + sizeof[�2]sizeof[!(�1; �2)] = �1zero[Int] = �0zero[�(�1; �2)] = hzero[�1]; zero[�2]izero[!(�1; �2)] = �x:T (�1):zero[�2]Whenever a de�nition is presented in this form we tacitlyassert that it can be formalized using typerec.2.3 Translating Mini-ML into �MLiA compiler from Mini-ML to �MLi is speci�ed by a relation�; � . es : � ) et that carries the meaning that �; � . es : �is a derivable typing in Mini-ML and that the translation ofthe source term es determined by that typing derivation isthe �MLi expression et. Since the translation depends uponthe typing derivation, it is possible to have many di�erenttranslations of a given expression. However, all of the trans-lation schemes we consider are coherent in the sense thatany two typing derivations produce observationally equiva-lent translations [7, 26, 20].2Here, we give a straightforward compiler whose purposeis to make types explicit so that the primitive operationssuch as pairing and projection can potentially analyze theirtypes at run-time. This simple translation does not utilize2We omit explicit consideration of the coherence of our translationshere.

typerec or Typerec, but subsequent translations take advan-tage of these constructs.We begin by de�ning a translation from Mini-ML typesto �MLi constructors, written j� j:jtj = tjintj = Intj�1 ! �2j = !(j�1j; j�2j)j�1 � �2j = �(j�1j; j�2j)The translation is extended to map Mini-ML type schemesto �MLi types as follows:j� js = T (j� j)j8t:�js = 8t::
:j�jsFinally, we write j�j for the kind assignment mapping t tothe kind 
 for each t 2 �, and j�j for the type assignmentmapping x to j�(x)js for each x 2 dom(�).Proposition 2.4 The type translation commutes with sub-stitution:j[�n=tn](� � � ([�1=t1]� ) � � �)j = [j�nj=tn](� � � ([j�1j=tn]j� j) � � �)The term translation is given in Figure 4 as a series ofinference rules that parallel the typing rules for Mini-ML.The var rule turns Mini-ML implicit instantiation of typevariables into �MLi explicit type application. Operationally,this corresponds to passing the types to the polymorphicvalue at run-time. The let rule makes the implicit typeabstraction of the bound expression explicit. The trans-lation of �-abstraction, application, pairing, and projectionis straightforward except that these primitive operations arelabelled with their types.The translation may be characterized by the followingtype preservation property.Theorem 2.5 If �;� . e : � ) e0, then j�j; j�j . e0 : j� j.Given a standard, call-by-value operational semantics forMini-ML with the value restriction, and given the strati�-cation between monotypes and polytypes in both Mini-MLand �MLi , it is possible to modify a standard binary log-ical relations-style argument for the simply-typed lambdacalculus [48, 15, 40, 45, 46] to show the correctness of the



(var) FTV([�n=tn](� � � ([�1=t1]� ) � � �)) � ��;� ] fx : 8t1; : : : ; tn:�g . x : [�n=tn](� � � ([�1=t1]� ) � � �)) x[j�1j] � � � [j�nj] (int) �; � . �n : int) �n(pair) �; � . e1 : �1 ) e01 �;� . e2 : �2 ) e02�;� . he1; e2i : �1 � �2 ) he01; e02ij�1js;j�2js (�) �; � . e : �1 � �2 ) e0�;� . �i e : �i ) �j�1js;j�2jsi e0 (i = 1; 2)(abs) �; � ] fx : �1g . e : �2 ) e0�; � . �x: e : �1 ! �2 ) �x : j�1js: e0 (app) �; � . e1 : � 0 ! � ) e01 �;� . e2 : � 0 ) e02�;� . e1 e2 : � ) @j� 0js e01 e02(let) � ] ft1; : : : ; tng; � . v : � 0 ) e01�;� ] fx : 8t1; : : : ; tn:� 0g . e : � ) e02�;� . letx = v in e : � )@j8t1;:::;tn:� 0js (�x : 8t1::
; : : : ; tn::
:j� 0js: e02) (�t1::
; : : : ; tn::
: e01)Figure 4: Translation from Mini-ML to �MLitranslation. That is, we may show that at base type, if aMini-ML program computes a value, then its �MLi transla-tion computes the same value.In the presence of computational e�ects such as non-termination, if we did not restrict the bound expressionin a let to be a value, then the translation would be in-correct since evaluation in �MLi does not proceed under �-abstractions. In other words, the expression might diverge(or print \hello") while its translation would not.3 Applications of Type AnalysisIn this section, we show how to implement a variety of usefuland interesting constructs by extending the simple transla-tion from Mini-ML to �MLi to take advantage of typerec andTyperec. We have already shown how simple operations likesizeof and zero can be de�ned in �MLi . These operationscan be exported directly to Mini-ML as constants of theappropriate type. In the following subsections, we de�nenew operations that may be exported to Mini-ML and mod-ify the standard translation to change the representation ofvarious types.3.1 FlatteningWe consider the \at" representation of Mini-ML tuplesin which nested tuples are represented by a sequence of\atomic" values (for the present purposes, any non-tupleis regarded as \atomic"). To simplify the development wegive a translation in which nested binary tuples are repre-sented in right-associated form, so that, for example, theMini-ML type (int� int) � int will be compiled to the �MLitype int� (int� int). The compilation makes use of inten-sional type analysis at both the term and constructor levels.We begin by modifying the type translation on Mini-MLtuples: j�1 � �2j = Prod[j�1j][j�2j]Here Prod is a constructor of kind 
 ! 
 ! 
 de�nedbelow as: Prod[Int][�] = �(Int; �)Prod[!(�a; �b)][�] = �(!(�a; �b); �)Prod[�(�a; �b)][�] = �(�a;Prod[�b][�])

Informally, the constructor Prod computes the right-associatedform of a product of two types. For example,j(int� int)� intj = Prod[Prod[Int][Int]][Int]and jint� (int� int)j = Prod[Int][Prod[Int][Int]]and the equation. Prod[Prod[Int][Int]][Int] � Prod[Int][Prod[Int][Int]] :: 
is derivable in �MLi .The term translation is modi�ed by changing the behav-ior of the pair and � rules:�; � . e1 : �1 ) e01 �;� . e2 : �2 ) e02�;� . he1; e2i : �1 � �2 ) mkpair[j�1j][j�2j] e01 e02�;� . e : �1 � �2 ) e0�; � . �i e : �i ) proji[j�1j][j�2j] e0 (i = 1; 2)The modi�ed translation makes use of three auxiliary func-tions, mkpair, proj1 and proj2, with the following types:mkpair : 8t1; t2 :: 
:T (t1)! T (t2)! T (Prod[t1][t2])proj1 : 8t1; t2 :: 
:T (Prod[t1][t2])! T (t1)proj2 : 8t1; t2 :: 
:T (Prod[t1][t2])! T (t2)The mkpair operation is de�ned as follows, using the \unof-�cial" syntax of the language:mkpair[Int][�] = �x:T (Int): �y:T (�): hx; yimkpair[!(�a; �b)][�] = �x:T (!(�a; �b)):�y:T (�): hx; yimkpair[�(�a; �b)][�] = �x:T (�(�a; �b)): �y:T (�):h�1 x;mkpair[�b][�](�2 x) yiThe veri�cation that mkpair has the required type proceedsby case analysis on the form of its �rst argument, relyingon the de�ning equations for Prod. For example, we mustcheck that mkpair[Int][�] has typeT (Int)! T (�)! T (Prod[Int][�])



which follows from the de�nition of mkpair[Int][�] and thefact that T (Prod[Int][�]) � int� T (�):Similarly, we must check that mkpair[�(�a; �b)][�] has typeT (�(�a; �b))! T (�)! T (Prod[�(�a; �b)][�]which follows from its de�nition, the derivability of the equa-tion T (Prod[�(�a; �b)][�]) � T (�a)� T (Prod[�b][�]);and, inductively, the fact thatmkpair[�b][�] has type T (�b)!T (�)! T (Prod[�b][�]).The operations proj1 and proj2 are de�ned as follows:proj1[Int][�] = �x:T (Prod[Int][�]): �1 xproj1[!(�a; �b)][�] = �x:T (Prod[!(�a; �b)][�]): �1 xproj1[�(�a; �b)][�] = �x:T (Prod[�(�a; �b)][�]):h�1 x;proj1[�b][�](�2 x)iproj2[Int][�] = �x:T (Prod[Int][�]): �2 xproj2[!(�a; �b)][�] = �x:T (Prod[!(�a; �b)][�]): �2 xproj2[�(�a; �b)][�] = �x:T (Prod[�(�a; �b)][�]):proj2[�b][�](�2 x)The veri�cation that these constructors have the requiredtype is similar to that of mkpair, keeping in mind the equa-tions governing T (�) and Prod[�][�].One advantage of controlling data representation in thismanner is that it becomes possible to support a type-safeform of casting that we call a view. Let us de�ne two Mini-ML types �1 and �2 to be similar, �1 � �2, i� they have thesame representation | i.e., i� j�1j is de�nitionally equivalentto j�2j in �MLi . If �1 � �2, then every value of type �1 is also avalue of type �2, and vice-versa. For example, in the case ofthe right-associative representation of nested tuples above,we have that �1 � �2 i� �1 and �2 are equivalent moduloassociativity of the product constructor, and a value of a(nested) product type is a value of every other associationof that type.In contrast to coercion implementations of type equiva-lence, such an approach to views is compatible with mutabletypes (i.e., arrays and refs) in the sense that �1 ref is equiv-alent to �2 ref i� �1 is equivalent to �2. This means that wemay freely intermingle updates with views of complex datastructures, capturing some of the expressiveness of C castswithout sacri�cing type safety.The right-associated representation does not capture allaspects of \atness". In particular, access to components isnot constant time, given a standard implementation of thepairing and projection operations. This may be overcomeby extending �MLi with n-tuples (tuples of variable arity),and modifying the interpretation of the product type appro-priately. A rigorous formulation of the target language ex-tended with n-tuples is tedious, but appears to be straight-forward.3.2 MarshallingOhori and Kato give an extension of ML with primitives fordistributed computing in a heterogeneous environment [39].Their extension has two essential features: one is a mech-anism for generating globally unique names (\handles" or

\capabilities") that are used as proxies for functions pro-vided by servers. The other is a method for representingarbitrary values in a form suitable for transmission througha network. Integers are considered transmissible, as are pairsof transmissible values, but functions cannot be transmitted(due to the heterogeneous environment) and are thus repre-sented by proxy using unique identi�ers. These identi�ersare associated with their functions by a name server thatmay be contacted through a primitive addressing scheme.In this section we sketch how a variant of Ohori and Kato'srepresentation scheme can be implemented using intensionalpolymorphism.To accommodate Ohori and Kato's primitives the �MLilanguage is extended with a primitive constructor Id of kind
 ! 
 and a corresponding type constructor id(�), linkedby the equation T (Id[�]) � id(T (�)). The Typerec andtyperec primitives are extended in the obvious way to ac-count for constructors of the form Id[�]. For example, thefollowing constructor equivalence is added:� . � :: 
 � . �i :: 
� . �!; �� :: 
! 
! � ! �! �� . �id :: 
! �! �Typerec Id[�] of (�ij�!j��j�id) ��id � (Typerec � of (�ij�!j��j�id))The primitives newid and rpc are added with the follow-ing types:newid : 8t1; t2::
:(T (Tran[t1])! T (Tran[t2]))!T (Tran[!(t1; t2)])rpc : 8t1; t2::
:(T (Tran[!(t1; t2)]))!T (Tran[t1])! T (Tran[t2])where Tran is a constructor coded using Typerec as follows:Tran[Int] = IntTran[!(�1; �2)] = Id[!(Tran[�1];Tran[�2])]Tran[�(�1; �2)] = �(Tran[�1];Tran[�2])Tran[Id[�]] = Id[�]The constructor Tran[�] maps � to a constructor where eacharrow is wrapped by an Id constructor. Thus, values oftype T (Tran[�]) do not contain functions and are thereforetransmissible. It is easy to check that Tran is a constructorof kind 
! 
.From an abstract perspective, newid maps a function ontransmissible representations to a transmissible representa-tion of the function and rpc is its (left) inverse. Opera-tionally, newid takes a function between transmissible val-ues, generates a new, globally unique identi�er and tells thename server to associate that identi�er with the function onthe local machine. For example, the unique identi�er mightconsist of the machine's name paired with the address ofthe function. The rpc operation takes a proxy identi�er of aremote function, and a transmissible argument value. Thename server is contacted to discover the remote machinewhere the value actually lives. The argument value is sentto this machine, the function associated with the identi�eris applied to the argument, and the result of the function istransmitted back as the result of the operation.The compilation of Ohori and Kato's distribution prim-itives into this extension of �MLi relies critically on a \mar-shalling" operationM that converts a value to its transmissi-ble representation and an \unmarshalling" operation U that



converts a value from its transmissible representation. Thetypes of these operations can be easily expressed in terms ofTran: M : 8t::
:T (t)! T (Tran[t])U : 8t::
:T (Tran[t])! T (t)The operations themselves can be de�ned as follows usingthe uno�cial syntax of typerec:3M[Int] = �x:int:xM[!(�1; �2)] = �f :T (!(�1; �2)):newid[�1][�2](�x:T (Tran[�1]):M[�2](f (U[�1] x)))M[�(�1; �2)] = �x:T (�(�1; �2)):hM[�1](�1 x);M[�2](�2 x)iM[Id[�1]] = �x:T (Id[�]):xU[Int] = �x:int:xU[!(�1; �2)] = �f :T (Id[!(Tran[�1];Tran[�2])]):�x:T (�1):U[�2](rpc[�1][�2] f (M[�1] x))U[�(�1; �2)] = �x:T (�(Tran[�1];Tran[�2])):hU[�1](�1 x);U[�2](�2 x)iU[Id[�]] = �x:T (Id[�]):xAt arrow types, M converts the function to one that takesand returns transmissible types and then allocates and asso-ciates a new identi�er with this function via newid. Corre-spondingly, U takes an identi�er and a marshalled argument,performs an rpc on the identi�er and argument, takes theresult and unmarshalls it.The M and U functions are used in the translation ofclient phrases that import a server's function and in thetranslation of server phrases that export functions. Thereader is encouraged to consult Ohori and Kato's paper [39]for further details.3.3 Type ClassesThe language Haskell [25] provides the ability to de�ne aclass of types with associated operations called methods.The canonical example is the class of types that admit equal-ity (also known as equality types in SML [33, 19]).Consider adding a distinguished type void (with associ-ated constructor Void) to �MLi in such a way that void is\empty". That is, no closed value has type void. We canencode a type class de�nition by using Typerec to map typesin the class to themselves and types not in the class to void.In this fashion, Typerec may be used to compute a predi-cate (or in general an n-ary relation) on types. De�nitionalequality can be used to determine membership in the class.For example, the class of types that admit equality canbe de�ned using Typerec as follows:Eq :: 
! 
Eq[Int] = IntEq[Bool] = BoolEq[�(�1; �2)] = �(Eq[�1]; Eq[�2])Eq[!(�1; �2)] = VoidEq[Void] = Void3To compute M and U using the o�cial syntax, we have to use asingle typerec that returns a pair holding the two functions for thattype.

Here, Eq serves as a predicate on types in the sense that anon-Void constructor � is de�nitionally equal to Eq[�] onlyif � is a constructor that does not contain the constructor!(�;�).The equality method can be coded using typerec as fol-lows, where we assume primitive equality functions for intand bool and omit some type labels for simplicity:eq[Int] = eqinteq[Bool] = eqbooleq[�(�1; �2)] = �x:�y:eq[Eq[�1]](�1 x)(�1 y) andeq[Eq[�2]](�2 x)(�2 y)eq[!(�1; �2)] = �x:void:�y:void:falseeq[Void] = �x:void:�y:void:falseIt is straightforward to verify that:eq : 8t::
:T (Eq[t])! T (Eq[t])! boolConsequently, eq[�] e1 e2 can be well typed only if e1 and e2have types that are de�nitionally equal to T (Eq[�]). The en-coding is not entirely satisfactory because eq[!(�1; �2)] canbe a well-typed expression. However, the function resultingfrom evaluation of this expression can only be applied tovalues of type void. Since no such values exist, the functioncan never be applied.3.4 DynamicsIn the presence of intensional polymorphism a predicativeform of the type dynamic [2] may be de�ned to be the exis-tential type 9t::
:T (t). The typing rules for existential typesare as follows: � ] ft::�g . � � . � :: ��;� . e : [�=t]��;� . pack ewith� as 9t::�:� : 9t::�:�� . � �;� . e1 : 9t::�:�0� ] ft::�g; � ] fx:�0g . e2 : ��;� . abstype e1 is t::�; x:�0 in e2 end : �The pack operation introduces existentials by packaging atype with a value. The abstype operation eliminates exis-tentials by allowing the type and value to be unpacked andused within a certain scope.Under this interpretation, the introductory form dynamic[� ](e)stands for pack ewith � as 9t::
:T (t). The eliminatory form,typecase d of (eije!je�), where d : dynamic, ei : �, ande!; e� : 8t1; t2::
:�, is de�ned as follows:abstype d is t::
; x:T (t) in typerec t of [t:�](eije0!je0�) endHere e0! = �t1::
:�t2::
:�x1:�:�x2:�:e![t1][t2], and simi-larly for e0�.This form of dynamic type only allows values of monomor-phic types to be made dynamic, consistent with the sepa-ration between constructors and types in �MLi . The possi-bilities for enriching �MLi to admit impredicative quanti�ers(and hence account for the full power of dynamic typingincluding non-termination) are discussed in the conclusion.



4 Related WorkThere are two traditional interpretations of polymorphism,the explicit style (due to Girard [16, 17] and Reynolds [42]),in which types are passed to polymorphic operations, andthe implicit style (due to Milner [32]), in which types areerased prior to execution. In their study of the type the-ory of Standard ML Harper and Mitchell [20] argued thatan explicitly-typed interpretation of ML polymorphism hasbetter semantic properties and scales more easily to coverthe full language. Harper and Mitchell formulated a pred-icative type theory, XML, a theory of dependent types aug-mented with a universe of small types, adequate for captur-ing many aspects of Standard ML. This type theory was re-�ned by Harper, Mitchell, and Moggi [21], and provides thebasis for this work. The idea of intensional type analysis ex-ploited here was inspired by the work of Constable [12, 13],from which the term \intensional analysis" is taken. Therules for typerec, and the need for Typerec, are derived fromthe \universe elimination" rules in NuPRL (described onlyin unpublished work of Constable).The idea of passing types to polymorphic functions isexploited by Morrison et al. [37] in the implementation ofNapier '88. Types are used at run-time to specialize datarepresentations in roughly the manner described here. Theauthors do not, however, provide a rigorous account of thetype theory underlying their implementation technique. Thework of Ohori on compiling record operations [38] is sim-ilarly based on a type-passing interpretation of polymor-phism, and was an inspiration for the present work. Ohori'ssolution is ad hoc in the sense that no general type-theoreticframework is proposed, but many of the key ideas in hiswork are present here. Jones [28] has proposed a generalframework for passing data derived from types to \quali-�ed" polymorphic operations, called evidence passing. Hisapproach di�ers from ours in that whereas we pass types topolymorphic operations, that are then free to analyze them,Jones passes code corresponding to a proof that a type sat-is�es the constraints of the quali�cation. From a practicalpoint of view it appears that both mechanisms can be usedto solve similar problems, but the exact relationship betweenthe two approaches is not clear.Recently Duggan and Ophel [14] and Thatte [50] haveindependently suggested semantics for type classes that aresimilar in spirit to our proposal. In particular both ap-proaches represent the restriction of a class as a user-de�ned,possibly recursive, kind de�nition in a predicative language.Both sets of authors are concerned with providing a source-level overloading facility and consequently examine hard is-sues such as type inference and open-scoped de�nitions thatdo not directly concern us, since we are primarily concernedwith a target-level type-analysis facility. The implementa-tion technique proposed by Duggan and Ophel is similar toours in that polymorphic routines are passed type names atrun-time and a typecase construct is used to determine thebehavior of an overloaded operation. As with type classesand Jones's quali�ed types, it appears that we can codemany of their kind de�nitions using Typerec with the ap-proach sketched in Section 3.3. However, Typerec can alsobe used to transform types { a facility crucial for represen-tation transformations such as attening and marshalling.That is, neither Duggan and Ophel nor Thatte provide a fa-cility for coding constructors such as Prod or Tran that maptypes to types.A number of authors have considered problems pertain-

ing to representation analysis in the presence of polymor-phism. The boxing interpretation of polymorphism has beenstudied by Peyton Jones and Launchbury [29], by Leroy [30],by Poulsen [41], by Henglein and J�rgensen [24], and byShao [43] with the goal of minimizing the overhead of box-ing and unboxing at run-time. All but the �rst of theseapproaches involve copying coercions. Of a broadly similarnature is the work on \soft" type systems [3, 10, 23, 49, 53]that seek to improve data representations through globalanalysis techniques. All of these methods are based on theuse of program analysis techniques to reduce the overhead ofbox and tag manipulation incurred by the standard compi-lation method for polymorphic languages. Many (includingthe soft type systems, but not Leroy's system) rely on globalanalysis for their e�ectiveness. In contrast we propose a newapproach to compiling polymorphism that a�ords controlover data representation without compromising modularity.Finally, a type-passing interpretation of polymorphismis exploited by Tolmach [51] in his implementation of a tag-free garbage collection algorithm. Tolmach's results demon-strate that it is feasible to build a run-time system for MLin which no type information is associated with data in theheap4. Morrisett, Harper, and Felleisen [36] give a semanticframework for discussing garbage collection, and provide aproof of correctness of Tolmach's algorithm.5 Summary and Future DirectionsWe have presented a type-theoretic framework for express-ing computations that analyze types at run-time. The keyfeature of our framework is the use of structural induction ontypes at both the term and type level. This allows us to ex-press the typing properties of non-trivial computations thatperform intensional type analysis. When viewed as an inter-mediate language for compiling ML programs, much of thetype analysis in the translations can be eliminated prior torun-time. In particular, the prenex quanti�cation restrictionof ML ensures good binding-time separation between typearguments and value arguments and the \value restriction"on polymorphic functions, together with the well-founded-ness of type induction, ensures that a polymorphic instan-tiation always terminates. This provides important oppor-tunities for optimization. For example, if a type variablet occurring as the parameter of a functor is the subject ofintensional type analysis, then the typerec can be simpli�edwhen the functor is applied and t becomes known. Similarly,link-time specialization is possible whenever t is de�ned ina separately-compiled module. Inductive analysis of typevariables arising from let-style polymorphism is ordinarilyhandled at run-time, but it is possible to expand each in-stance and perform type analysis in each case separately.The type theory considered here extends readily to in-ductively de�ned types such as lists and trees. However,extending typerec and Typerec to handle generally recursivetypes is problematic because of the negative occurrence of
 in a recursive constructor. In particular, termination canno longer be guaranteed, which presents problems not onlyfor optimization but also for type checking.The restriction to predicative polymorphism is su�cientfor compiling ML programs. More recent languages suchas Quest [9] extend the expressive power to admit impred-icative polymorphism, in which quanti�ed types may be4However, types are passed independently as data and associatedwith code.



instantiated by quanti�ed types. (Both Girard's [16] andReynolds's [42] calculi exhibit this kind of polymorphism.)It is natural to consider whether the methods proposed heremay be extended to the impredicative case. Since the uni-versal quanti�er may be viewed as a constant of kind (
!
) ! 
, similar problems arise as for recursive types. Inparticular, we may extend type analysis to the quanti�edcase, but only at the expense of termination, due to thenegative occurrence of 
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