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Abstract 

 We have isolated the effect of kinetic energy of depositing species during pulsed 

laser deposition (PLD) on surface morphology evolution of Ge(001) homoepitaxy at low 

temperature (100 °C). Using a dual molecular beam epitaxy (MBE)-PLD chamber, we 

compare morphology evolution from three different growth methods under identical 

experimental conditions except for the differing nature of the depositing flux: (a) PLD 

with average kinetic energy 300 eV (PLD-KE); (b) PLD with suppressed kinetic energy 

comparable to thermal evaporation energy (PLD-TH); and (c) MBE. The thicknesses at 

which epitaxial breakdown occurs are ranked in the order PLD-KE > MBE > PLD-TH; 

additionally, the surface is smoother in PLD-KE than in MBE. The surface roughness of 

the films grown by PLD-TH cannot be compared due to the early epitaxial breakdown. 

These results convincingly demonstrate that the enhancement of epitaxial growth – the 

reduction in roughness and the delay of epitaxial breakdown – are due to the high kinetic 

energy of depositing species in PLD. 

PACS code: 81.15.Fg; 68.55.-a; 61.14.Hg; 81.15.Hi 
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I.  INTRODUCTION 

 Pulsed laser deposition (PLD) has emerged as an important growth technique as it 

can offer far-from-the-equilibrium growth conditions not readily accessible by 

conventional thermal deposition techniques such as molecular beam epitaxy (MBE).1,2 

Two major fundamental differences are generally believed to distinguish PLD and MBE. 

In PLD, deposition occurs in short pulses resulting in a high instantaneous flux typically 

several orders of magnitude larger than the steady-state flux in MBE, although the time-

averaged deposition fluxes can be similar. Additionally, the kinetic energy of depositing 

species in PLD can be as large as a few hundred eV, in contrast to the thermal energy of 

< 1 eV in MBE.2,3 In order to understand PLD growth and its relationship to MBE, it is 

essential to learn the relative roles of the pulsed and energetic nature of the PLD flux in 

determining the growing structure and morphology.  

 Extensive studies over the past two decades have led to a good understanding of 

kinetic processes in MBE. Based on this understanding, manipulated processes, such as 

modulated flux4,5 or ion-beam assisted growth,6-8 have been met with some success in 

obtaining a desired surface morphology. These manipulated processes bear some 

similarities to PLD. Therefore, the same reasoning to explain the improvements in 

epitaxial growth by the manipulated processes is worthy of consideration for PLD as well. 

For example, flux modulation has been shown to enhance layer-by-layer growth due to an 

increased island density and a concomitant decreased average island size formed during 

the period of high deposition rate.5,9 Correspondingly, layer-by-layer growth might be 

improved by the high-flux bursts in PLD even without the energetic characteristic of 

depositing species. In contrast to this expectation, kinetic Monte-Carlo (KMC) 
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simulations10,11 have shown that PLD without high kinetic energy (referred to as pulsed 

thermal deposition in general or PLD-TH in this article) yields a greater surface 

roughness than MBE. In their KMC studies, Hinnemann et al.11 suggested that the 

improved layer-by-layer growth by PLD over MBE should be attributed to the energetic 

effect. Experimentally, PLD has been demonstrated to produce smoother films in 

growing metal12 or semiconductor3 materials than a thermal deposition technique under 

otherwise identical growth conditions. However, the relative contributions of the 

energetic and the pulsed natures of PLD in improving the smoothness remain 

undetermined.  

 Previously we performed a comparative study of morphology evolution of 

Ge(001) homoepitaxy at low temperatures by PLD and MBE using a dual MBE-PLD 

ultrahigh vacuum (UHV) chamber that provides identical growth conditions (e.g., 

substrate temperature calibration, background gas composition, substrate surface 

preparation) except for the different nature of the deposition flux.3 We found that in 

Ge(001) homoepitaxy at 150 °C, PLD yields films as smooth as or smoother than MBE, 

depending on the kinetic energy of PLD. It was also shown that epitaxial breakdown, 

where epitaxial growth is no longer sustained and the growing phase becomes amorphous, 

is considerably postponed in the case of PLD. We argued that these differences between 

PLD and MBE are due mainly to the energetic effect of PLD. Here we report the first 

experimental results definitively isolating the role of kinetic energy in PLD.  We compare 

the growth morphology in Ge(001) homoepitaxy at 100 °C by PLD with high kinetic 

energy (referred to as PLD-KE in this article), PLD-TH, and MBE. We find that PLD-KE 

produces smoother films compared to MBE. The epitaxial breakdown is delayed in PLD-
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KE, but in PLD-TH it occurs earlier than MBE. We also address the relaxation kinetics 

during the growth interruptions between laser pulses by varying the repetition rate in 

PLD. 

 

II. EXPERIMENTS 

 Both MBE and PLD growth have been conducted in a dual MBE-PLD UHV 

chamber with a base pressure of mid 10-11 Torr. The details of the sample preparation and 

growth by MBE and PLD-KE have been reported elsewhere.3 For PLD-TH, we 

deliberately introduce high purity He gas (99.999%) into the chamber prior to PLD-TH 

growth. With a target-substrate separation of 6 cm approximately 0.3 Torr of He gas is 

sufficient to dissipate the kinetic energy of the plume to less than 0.1 eV as measured by 

an ion probe residing on the sample holder.  The average kinetic energy of PLD-KE is ~ 

300 eV.13 The kinetic energy distributions of PLD-KE and PLD-TH are shown in Fig. 

1(a) and 1(b), respectively. Because trace contamination can significantly degrade the 

crystalline quality of Ge(001) films, we take extreme care to improve the purity of the He 

gas. A Ti getter operating at ~200 °C is used to eliminate impurities from the inlet gas 

stream and a portion of the stainless steel tubing containing the gas flow both upstream 

and downstream of the Ti getter is immersed in liquid nitrogen to trap any moisture. With 

these precautions, no noticeable change in the reflection high energy electron diffraction 

(RHEED) pattern is detected over several hours of exposure to He gas, indicating that the 

surface is impervious to the gas introduction. For RHEED intensity measurements, a 

beam incidence angle of 0.64o and azimuth 7o off <110> are chosen to prevent 

interference of the specular spot by the Kikuchi features.14 The film thickness is 
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determined by Rutherford Backscattering Spectrometry (RBS) on a companion sample of 

Ge grown simultaneously on Si. 

 

III. RESULTS AND DISCUSSION 

 In Figs. 2(a) – 2(c) we show atomic force microscopy (AFM) topographs of the 

surface morphology of ~30 nm films grown at 100 °C by MBE, PLD-KE, and PLD-TH. 

The morphology of low-temperature Ge(001) homoepitaxy is known to evolve from an 

array of irregularly shaped islands to well-defined pyramidal growth mounds.3,15 The 

surface morphology shown in Figs. 2(a) and 2(b) are in mid transition to the pyramidal 

mounds morphology. In the case of PLD-TH, shown in Fig. 2(c), the surface consists of 

irregularly shaped smaller islands and large surface features (LSFs) marked by the arrows 

near the bottom of Fig. 2(c), of 3-5 nm height. The areal density of the LSFs is roughly 

10%; figure 2(c) is from one of a few areas with a relatively low density of such features. 

Figure 2(d) shows a RHEED pattern taken at the surface of Fig. 2(c). It contains a set of 

transmission diffraction spots and amorphous rings indicating the occurrence of epitaxial 

breakdown at this thickness. In contrast, the films grown by MBE and PLD-KE well 

beyond this thickness are still fully epitaxial as confirmed by RHEED patterns not shown.  

 In films grown by PLD are often observed particulates, which are believed to be 

directly ejected from a roughened target.1 Particulates are much larger than the LSFs – 

typically on the order of a micron. We observe micron-sized particulates as well as the 

LSFs in PLD-TH. Furthermore, we see micron-sized particulates but no LSFs in other 

PLD-TH films with thickness < 27 nm. Hence we suggest that the LSFs are the 

amorphous phase accounting for the amorphous rings in Fig. 2(d). 
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 For quantification of the evolution of the surface morphology, a plot of root-

mean-square (rms) roughness vs. film thickness for PLD-TH, PLD-KE, and MBE is 

shown in Fig. 3. In the case of PLD-KE, we have varied the repetition rate from 5 to 20 

Hz while keeping the instantaneous flux the same (thereby varying the time-averaged 

deposition rate) to observe the influence of relaxation during the interruptions between 

deposition pulses in PLD. One can see that PLD-KE produces smoother films than MBE. 

Due to the epitaxial breakdown occurring at ~27 nm in PLD-TH, we cannot compare the 

roughness in PLD-TH to the other methods.  

 Most noteworthy is a different onset of epitaxial breakdown for different growth 

methods as indicated by the dotted vertical arrows in Fig. 3. For PLD-KE, all the data 

presented in the figure are free of epitaxial breakdown. Different epitaxial thicknesses 

between PLD-TH (27 nm) and PLD-KE (> 270 nm) directly suggest that the kinetic 

energy of depositing species is the most crucial factor in determining the epitaxial 

thickness. However, before drawing conclusions about the role of the kinetic energy, we 

must address three additional differences among our growth conditions — other than the 

pulsed and energetic nature of the deposition flux — that might affect epitaxial 

breakdown.  

 First, in PLD-TH, the average deposition rate is an order of magnitude smaller, 

~0.003 nm/sec, than in the other cases (MBE and PLD-KE with 20Hz), ~0.03 nm/sec —

presumably due to the scattering-induced divergence of the plume. It is generally 

believed that decreasing the deposition rate should help to delay epitaxial breakdown as it 

permits a longer time for deposited species to travel to “correct” sites. This is the opposite 

of the effect we observe.   
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 Second, RHEED is turned off during PLD-TH whereas in MBE and PLD-KE the 

electron beam is incident on the growing surface continuously for in-situ monitoring of 

crystalline quality. Because the impingement of high energy electrons can generate 

surface defects such as vacancies.16 it is possible that the RHEED beam during growth 

alters the surface structure by creating surface defects. However, the estimated defect 

generation rate is extremely low compared to the deposition rate owing to a very small 

flux of the RHEED beam on the sample.17 To support this argument we performed the 

following control experiments. We performed two MBE growths — one with a low 

deposition rate comparable to that of PLD-TH and the other with the RHEED beam off 

during deposition – and compared the epitaxial thickness with that of “normal” MBE 

(higher deposition rate and RHHED on). It turns out that the epitaxial thickness in both 

control experiments is ~80 nm, which falls within the range of epitaxial thickness by 

"normal" MBE, 70 nm (determined by RBS channeling) – 80 nm (determined by the 

RHEED pattern). We conclude that an order of magnitude difference in deposition rate 

and the incident RHEED beam during growth hardly affect the breakdown. 

 Third, in addition to particulate formation, in PLD in an ambient gas the 

formation of nanometer-sized clusters has been reported.18,19 The ambient gas opposes 

rapid expansion of the PLD plume and confines it to a smaller region. As a result the 

concentration of the ablated species increases leading to a higher probability of cluster 

nucleation. Additionally, these nanoclusters are stabilized via collisional “cooling” by 

transfer of the latent heat of condensation to ambient gas molecules and stable 

nanoclusters can be transported to a substrate.20 It is conceivable that such nanoclusters 

form in our PLD-TH experiments and they may catalyze the transition to amorphous 
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growth, thereby explaining the earlier epitaxial breakdown in PLD-TH. During ablation 

of Si under He gas, the typical range of He background gas pressure to form nanoclusters 

is reported to be 0.2 – 10 Torr.18 Considering the difference between the mass of Si and 

Ge, it is reasonable to assume that a higher pressure of He would be needed for the 

nanocluster formation in the case of Ge. Therefore, our He pressure of 0.3 Torr during 

PLD-TH appears to be a very marginal condition to form nanoclusters. Furthermore, 

nanoclusters arriving on a substrate are expected to have different crystallographic 

orientations from that of the substrate due to the lack of kinetic energy to rearrange 

themselves on the surface and should consequently give rise to additional peaks other 

than those from the substrate in x-ray diffraction (XRD) measurements.19 XRD θ-2θ 

scans on our samples reveal no additional peaks observed from PLD-TH when compared 

to PLD-KE and MBE. Furthermore, RHEED patterns collected from PLD-TH films 

exhibit no signature of diffraction from other surface orientations except that from (001) 

plane. So it is unlikely that nanoclusters are on the surface under our PLD-TH conditions.  

 From the evidence above we conclude that the delay of epitaxial breakdown in 

PLD-KE is predominantly due to the high kinetic energy of depositing species. Our 

conclusion is further supported by a set of data obtained from growth at 150 °C, which 

demonstrates that epitaxial breakdown is delayed in PLD-KE but it occurs earlier in 

PLD-TH when compared to MBE, just like in the case of 100 °C. Table I summarizes the 

epitaxial thickness of PLD-KE, PLD-TH, and MBE at both 100 °C and 150 °C. A 

generally accepted mechanism for epitaxial breakdown is that defects such as stacking 

faults or twins nucleate at deep trenches between mounds developed due to kinetic 

roughening, and the accumulation of these defects results in the transition to the growth 
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of the amorphous phase.21 It has been proposed that incoming atoms with high kinetic 

energy may generate mobile surface defects that then migrate into the troughs between 

the mounds preventing the formation of the deep trenches.3,6 Also the impact of energetic 

species has been proposed to locally deliver momentum to atoms non-epitaxially 

deposited or overhung within the trenches, pushing them to epitaxial sites near the bottom 

of the trenches; this collision-induced filling makes it more difficult for the defects to 

nucleate, thereby delaying epitaxial breakdown.7  

 Finally we consider the relaxation kinetics during PLD-KE. As shown in Fig. 3, 

the roughness evolution of PLD-KE appears to follow a single trend irrespective of the 

repetition rate. In other words, varying the time available for relaxation between 

deposition pulses from ~1/20 sec to ~1/5 sec seems to have no systematic effect on the 

surface roughness. To gain more insight to this matter, we focus on the early stage of 

PLD-KE by monitoring the intensity variations of the RHEED specular spot, as shown in 

Fig. 4. Two different repetition rates – 1 Hz and 2 Hz – are used to offer different 

relaxation times. Note that the time axes in Figs. 4(a) and 4(b) are adjusted such that the 

intensity minima and maxima are aligned at the same positions on the abscissa but the 

time axes are not related by exactly a factor of two due to the decreased deposition rate 

from target aging for the run with 2 Hz. Figure 4(a) demonstrates that within the 

experimental fluctuations the curves are almost identical to each other. Furthermore, as 

shown in Fig. 4(b), the intensity between pulses remains nearly constant within the noise 

level of RHEED signal. In PLD, intensity modulations of specularly reflected RHEED22 

and XRD23,24 spots similar to our results, have been reported. Some of those 

measurements exhibit intensity recovery between pulses; this has been attributed to 
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interlayer transport23,24 or reduction of adatom density22. Our observation of an 

insignificant intensity change during the growth interruptions between pulses following 

each abrupt change during a burst of deposition suggests that the surface is effectively 

frozen during the inter-pulse periods. However, we believe that very fast athermal 

transport mechanisms such as adatom insertion25, island breakup23, or transient enhanced 

mobility of small-sized clusters on the surface26 may still operate during or immediately 

following a deposition pulse in our PLD-KE. Any structural rearrangement on the surface 

by athermal mechanisms, as well as by thermal transport if it also operates,27 is 

completed within ~1/30 second — which is the sampling rate of our RHEED intensity 

measurements — after a laser pulse. Therefore, varying the repetition rate from 5 to 20 

Hz should have a negligible effect on the surface morphology, which is consistent with 

the observations in Fig. 3.  

 In our argument given in the previous paragraph in explaining a similar roughness 

evolution of PLD-KE with repetition rates varying from 5 to 20 Hz, we implicitly 

assumed that there is no recovery between deposition pulses at all coverages. However, 

we should admit that our RHEED intensity variation spectra between pulses tend to 

become noisier near full coverage than at lower coverages such as shown in Fig. 4(b), so 

we cannot be certain that there is absolutely no recovery near full coverage. It has been 

shown that sometimes24, but not always25, recovery between pulses is observable only 

near full coverage while there is no apparent recovery at lower coverages. However, the 

observation of the nearly identical intensity variations between 1 Hz and 2 Hz [shown in 

Fig. 4(a)] and the similar roughness evolution regardless of the repetition rate (5 – 20 Hz, 

shown in Fig. 3) as well as the successful scaling of the epitaxial thickness with 
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instantaneous growth rate, as discussed in the next paragraph, are consistent with our 

hypothesis that there is no recovery between pulses at all coverages. 

 The RHEED intensity measurements shown in Fig. 4 can also help us to 

understand the earlier epitaxial breakdown in PLD-TH. Because there is insignificant 

structural change between deposition pulses during PLD-KE, it is fair to assume that the 

same is true for PLD-TH. Additionally, because the fast athermal transport mechanisms 

are absent in PLD-TH we can consider PLD-TH to be the kinetic equivalent of “MBE” 

with a very high deposition rate: all processes are simply “turned off” during the interval 

between pulses.  Assuming a pulse duration of 10 μs, the instantaneous deposition rate in 

our PLD-TH runs is ~15 nm/sec, which is 500 times that of our MBE runs. In low 

temperature Si(001) homoepitaxy by MBE28, the epitaxial thickness hepi at 260 °C 

exhibits a logarithmic or a weak power-law dependence on the deposition rate such as hepi 

~ F-n, where F is the deposition rate and the power n is 0.22. Assuming a power-law 

dependence were also to relate our measurements of hepi in MBE and PLD-TH (with 

PLD-TH treated as MBE with a deposition rate 500 times as fast) yields a power of n = 

0.16 – 0.18 and 0.20 for 100 °C and 150 °C, respectively, which is close to 0.22 from low 

temperature Si(001) homoepitaxy. This supports our speculation that PLD-TH behaves 

like MBE. We conclude that the energetic nature of the flux in PLD is the most 

prominent feature that distinguishes PLD from MBE in low temperature Ge(001) 

homoepitaxy. 

 

IV. SUMMARY 
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 In summary, we have isolated the effect of the kinetic energy of depositing 

species during PLD by comparing the surface morphology of PLD-TH, PLD-KE, and 

MBE under identical experimental conditions except for the differing nature of the 

depositing flux. We find that the epitaxial thicknesses are ranked in the order of PLD-KE 

> MBE > PLD-TH and the surface roughness in PLD-KE is much less than in MBE. The 

dependence of roughness on laser pulse repetition rate is negligible and is consistent with 

the negligible relaxation observed between pulses by time-resolved RHEED.  Our results 

convincingly demonstrate that the enhancement of epitaxial growth – the reduction in 

roughness and the delay of epitaxial breakdown – are due to the high kinetic energy of 

depositing species in PLD. 
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FIGURE CAPTIONS 

 

Fig. 1. Kinetic energy distribution of (a) PLD-KE and (b) PLD-TH. Note the difference 

in scale of x-axis between (a) and (b). 

 

Fig. 2.  (Color online) AFM images of films grown at 100 °C by (a) MBE, (b) PLD-KE, 

and (c) PLD-TH, and (d) RHEED pattern taken from surface shown in (c). Scan size and 

vertical scale of (a) – (c) are 0.25 x 0.25 μm2 and 5 nm, respectively. Thickness of films 

in (a) – (c) is shown in the left bottom corner of each image.       

 

Fig. 3.  Log-log plot of rms roughness vs film thickness.  Vertical dotted lines at 27 nm 

and at 70 nm (determined by RBS channeling) – 80 nm (determined by RHEED pattern) 

indicate the epitaxial thickness of PLD-TH and MBE films, respectively, grown at 

100 °C.  

 

Fig. 4.  (a) RHEED specular intensity variations during PLD-KE with 1 Hz (dashed line) 

and 2 Hz (solid line) of repetition rate while keeping instantaneous flux the same in both 

cases. Time axes are adjusted such that intensity minima and maxima for both cases are 

aligned at the same positions on abscissa. (b) First 20 seconds of RHEED intensity 

variation of PLD-KE with 1 Hz from (a). Modulations from individual laser pulses are 

visible. 
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Fig. 1                  B. Shin and M. J. Aziz 
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Fig.1. Kinetic energy distribution of (a) PLD-KE and (b) PLD-TH. Note the difference in 
scale of x-axis between (a) and (b). 
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 Fig. 2                   B. Shin and M. J. Aziz 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. (Color online) AFM images of films grown at 100 °C by (a) MBE, (b) PLD-KE, 
and (c) PLD-TH, and (d) RHEED pattern taken from surface shown in (c). Scan size and 
vertical scale of (a) – (c) are 0.25 x 0.25 μm2 and 5 nm, respectively. Thickness of films 
in (a) – (c) is shown in the left bottom corner of each image. 

 18



PLD with without KE… 4/1/07 p.19  

Fig. 3                   B. Shin and M. J. Aziz 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.  Log-log plot of rms roughness vs film thickness.  Vertical dotted lines at 27 nm 
and at 70 nm (determined by RBS channeling) – 80 nm (determined by RHEED pattern) 
indicate the epitaxial thickness of PLD-TH and MBE films, respectively, grown at 
100 °C.  
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Fig. 4                   B. Shin and M. J. Aziz 
 

 

Fig. 4.  (a) RHEED specular intensity variations during PLD-KE with 1 Hz (dashed line) 
and 2 Hz (solid line) of repetition rate while keeping instantaneous flux the same in both 
cases. Time axes are adjusted such that intensity minima and maxima for both cases are 
aligned at the same positions on abscissa. (b) First 20 seconds of RHEED intensity 
variation of PLD-KE with 1 Hz from (a). Modulations from individual laser pulses are 
visible. 
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Table I                   B. Shin and M. J. Aziz  
 

Growth Temperature PLD-KE PLD-TH MBE 
100 °C > 270 nm 27 nm 70 – 80 nm 
150 °C > 410 nm 60 nm 210 nm 

   
Table I. Epitaxial thickness of PLD-KE, PLD-TH, and MBE at 100 °C and 150 °C. In the 
case of PLD-KE, the thickest samples – 270 nm at 100 °C and 410 nm at 150 °C – are 
still fully epitaxial. 
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