The Tetrahedral Motif in Metal Structures

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>http://knowledge.tms.org/home.aspx</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:2796949</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
THE TETRAHEDRAL MOTIF IN METAL STRUCTURES

David Turnbull and Michael J. Aziz
Division of Engineering and Applied Sciences
Harvard University
Cambridge, MA 02138

Abstract

F.C. Frank's demonstration of the stability of the icosahedral configuration to either of the close packed ones in thirteen-atom clusters of mutually attracting hard spheres renewed interest in the occurrence of tetrahedral configurations in metal alloy structures. This paper reviews some of these developments.

Consider the packing of mutually attracting, by central forces of hard spheres. In two dimensions the densest, and presumably lowest energy, packing unit is an equilateral triangular configuration which, when replicated, can fill space to form a hexagonal structure.

In contrast, in three dimensions, the configuration with lowest energy and highest density is a regular tetrahedron which, by itself, cannot be replicated to fill space and form a close-packed crystalline structure. The problem then arises of how these tetrahedral configurations, energetically preferred at short range, are incorporated in, or affect, three-dimensional structures. In this paper, various ways of including tetrahedral configurations into liquid, glass, and crystalline structures will be reviewed. Some excellent earlier treatments of this topic are:

M. Hoare [1]
F.C. Frank and J. Kasper [2]
F. Yonazawa [3]
J.F. Sadoc and R. Mosseri [4]
L. Bartell [5]
D.R. Nelson and F. Spaesen [6]
Hume-Rothery-Anderson model would predict. The melting temperature of the ordered intermetallic phase with composition Au4Si is only 5 K below that of the actual eutectic.

Deposition from the pure metal vapor or dilute solution onto cold substrates might, initially, result in the formation of icosahedral, or other polytetrahedral, clusters (these have been labeled “amorphons”). These amorphons would continue to enlarge, and upon mutual impingement form a microquasicrystalline or, perhaps, a glassy structure. There is the intriguing possibility that below a certain thickness a quasicrystalline structure might be preferred, thermodynamically, to a microcrystalline one at the same atomic density. However, we know of no experimental evidence of a direct transformation from a micro-crystalline to a quasi-crystalline state.

A considerable number of metal alloys form structures in which icosahedral groups of atoms, as defined by Dirichlet constructions, are prominent components of the overall structure. Kasper also noted other coordination polytetrahedra which often appear in these structures. Frank and Kasper then examined these phases and outlined the general principle for inclusion of tetrahedral configurations in alloy structures. These alloys have come to be known as “Frank-Kasper phases”.

Since icosahedral configurations appear to be important components of liquid structure, it seems that their resistance to nucleation of crystals with major polytetrahedral groups might be much lower than that to simple close-packed structures. This comparison can be made roughly in terms of the scaled, with thermodynamic melting temperature, T_m, undercooling at the onset of measurable crystal nucleation, $(T_m-T_n)/T_m = a$. For most pure metals, a is of order 0.2 to 0.25. At this time, information on those metals in which polytetrahedral groupings are prominent in their structures is rather sparse. However, recent studies at the Institut für Raumsimulation in Cologne by D. Holland-Moritz, D.M. Herlach and their coworkers, have indicated that a, for phases with major icosahedral or other polytetrahedral configurations in their structures, do indeed exhibit a values (~0.10) substantially below those with crystalline close-packed structures. The Cologne results were obtained by observation of droplets which were levitated electromagnetically. Earlier observations by Bendersky and Ridder [9] on the formation
formed by one-to-one interactions. However, if the ns may be major clusters and liquids or

F.C. Frank's
then central forces operate, ed ones. The icosahedral ra. Frank pointed out that nic size is left on the inner al units should be major
ig exhibited by these distance of icosahedral frustrate" crystallization

icoledal over cubic that this preference must
s of clusters formed by tetrahedral configurations

metalloid (B) liquid alloys thery and Anderson [8] must hold energetic ordinarily deep eutectic at natur is roughly 540°C accord with what the

Hume-Rothery-Anderson model would predict. The melting temperature of the ordered intermetallic phase with composition Au₄Si is only 5°K below that of the actual eutectic.

Deposition from the pure metal vapor or dilute solution onto cold substrates might, initially, result in the formation of icosahedral, or other polytetrahedral, clusters (these have been labeled "amorphons"). These amorphons would continue to enlarge, and upon mutual impingement form a microquasicrystalline or, perhaps, a glassy structure. There is the intriguing possibility that below a certain thickness a quasicrystalline structure might be preferred, thermodynamically, to a microcrystalline one at the same atomic density. However, we know of no experimental evidence of a direct transformation from a micro-crystalline to a quasi-crystalline state.

A considerable number of metal alloys form structures in which icosahedral groups of atoms, as defined by Dirichlet constructions, are prominent components of the overall structure. Kasper also noted other coordination polytetrahedra which often appear in these structures. Frank and Kasper then examined these phases and outlined the general principle for inclusion of tetrahedral configurations in alloy structures. These alloys have come to be known as "Frank-Kasper phases".

Since icosahedral configurations appear to be important components of liquid structure, it seems that their resistance to nucleation of crystals with major polytetrahedral groups might be much lower than that to simple close-packed structures. This comparison can be made roughly in terms of the scaled, with thermodynamic melting temperature, Tm, undercooling at the onset of measurable crystal nucleation, (Tm-TN)/Tm = a. For most pure metals, a is of order 0.2 to 0.25. At this time, information on those metals in which polytetrahedral groupings are prominent in their structures is rather sparse. However, recent studies at the Institut für Raumsimulation in Cologne by D. Holland-Moritz, D.M. Herlach and their coworkers, have indicated that a, for phases with major icosahedral or other polytetrahedral configurations in their structures, do indeed exhibit a values (~0.10) substantially below those with crystalline close-packed structures. The Cologne results were obtained by observation of droplets which were levitated electromagnetically. Earlier observations by Bendersky and Ridder [9] on the formation
of quasicrystals from suspended droplets of Al-Mn alloy indicated in the condensed structure an extremely high concentration (∼10¹⁸/cm³) of microquasicrystallites.

This research was sponsored by NASA grant NAG8-1256.

References

PHYSICS AND METALLURGY

W.L. Johnson, 138-78 Keck

The basic factors governing the development of complex multicoherent systems are outlined. The key kinetic and these systems are outlined. Fina unique properties is described.

Glass Formation in Metals

The early work of Turnbull demonstrated that a thermodynamic analysis of the rate of crystal nucleation if the rate formation of stable crystalline materials forms a critical nucleus and a rearrangement in the molten alloy (nuc)

\[R = \text{nucleation rate} / \text{unit} \]

where \(\nu \sim n^3 \) is the rearrangement decreases with undercooling. In Turnbull:

\[W \sim (16\pi/3)(\Delta g^2 - \Delta s_c) \]

where \(\Delta s_c \) is the specific enthalpy of crystallization (both per unit \(\nu \) as a constant, and \(T_0 \) the mean approximation). The rate of atomic rearrangement in the melt is

through the Stokes-Einstein relation dating the early 20th century, the temperature dependence: