Estradiol, estrogen receptor alpha, and osteogenic responses to mechanical loading

Citation

Published Version
http://dx.doi.org/10.1002/ajpa.20217

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2797433

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Abstract:
Despite evidence that mechanical loads can induce diaphyseal bone growth, there is little consensus about how, and to what extent, strain affects human skeletal phenotype. This project tests a mechanism of mechanotransduction in bone that may underlie variation in human skeletal robusticity. One hypothesis of particular relevance to humans is that hormones, particularly estradiol (E$_2$) and its receptor, estrogen receptor alpha (ER-a), affect mechanotransduction in osteoblasts. Previous experiments demonstrate that E$_2$ increases osteogenic responses to loading, but the mechanism involved is unclear. This project tests the hypothesis that E$_2$ affects osteogenesis by upregulating ER-a, making osteoblasts more sensitive to mechanical loading.

To test this hypothesis, 36 ovariectomized C57BL/6J mice were divided into normal, high, and low E$_2$ treatment groups implanted with 0.25 mg, 2.5 mg, or placebo E$_2$ pellets. Half of the mice in each E$_2$ group were fed normal mouse pellets, while half were fed a soft paste made from the same pellets. Results indicate that in the lateral mandibular corpus, hard diet animals exhibit 260% (high E$_2$), 21% (low E$_2$), and 82% (placebo) more growth than soft diet animals (p=0.01 to 0.03). In situ hybridization shows that ER-a is expressed in mandibular osteoblasts and hypertrophic chondrocytes, and expression appears to increase with increasing E$_2$ dose. Evidence that E$_2$ level affects diaphyseal bone growth via regulation of ER-a may help explain patterns of variation in human skeletal robusticity.