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We discuss possible patterns of electron fractionalization in strongly interacting electron systems. A popular
possibility is one in which the charge of the electron has been liberated from its Fermi statistics. Such a
fractionalized phase contains in it the seed of superconductivity. Another possibility occurs when the spin of
the electron, rather than its charge, is liberated from its Fermi statistics. Such a phase contains in it the seed of
magnetism, rather than superconductivity. We consider models in which both of these phases occur and study
possible phase transitions between them. We describe other fractionalized phases, distinct from these, in which
fractions of the electron themselves fractionalize, and discuss the topological characterization of such phases.
These ideas are illustrated with specific models of p-wave superconductors, Kondo lattices, and coexistence
between d-wave superconductivity and antiferromagnetism.
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I. INTRODUCTION

Electron fractionalization in strongly interacting electron
systems in dimensions larger than 1 has been an important
subject of study since spin-charge separation was suggested
as a mechanism of high-Tc superconductivity1,2 in the cu-
prates. In particular, it was suggested that the electron is
splintered into a spin-carrying neutral excitation !‘‘spinon’’"
and a charge-carrying spinless excitation !‘‘holons’’ or
‘‘chargons’’". There have been different proposals in regard
to this possibility, but the existence of such phases in the
cuprates is still controversial.
On the other hand, there exist clear experimental ex-

amples of phases in the quantum Hall regime of two-
dimensional electron systems where quantum number frac-
tionalization has been well established. The low-energy
excitations !quasiparticles" in these two-dimensional strongly
interacting electron systems carry fractions of the quantum
numbers of the original electrons. Different quantum Hall
liquid states can be characterized by different varieties of
topological order. The transitions between different quantum
Hall states can be understood as topological-order-changing
transitions which occur even in the absence of conventional
broken symmetries. The Hall conductance is but one of the
topological quantum numbers which characterize a given
phase. Another important property of a topologically ordered
state is the ground-state degeneracy of the system on higher
genus manifolds such as tori. For each topologically ordered
state, there are corresponding sets of characteristic excita-
tions with different quantum numbers.
It has become clear3,4 that the notion of topological order

also provides a precise characterization of spin-charge sepa-
rated and other fractionalized phases in spatial dimensions
higher than one even in situations of zero or weak magnetic
fields. One of the remarkable features of the quantum Hall

effect is the enormously rich number of exotic phases which
display different patterns of fractionalization of the electron
and associated topological orders. In view of the similarity
between the theoretical characterization of quantum Hall
states and fractionalized states in zero magnetic field, it is
tempting to investigate a similar possibility of a variety of
fractionalization patterns in other strongly correlated sys-
tems. We explore this possibility in this paper. We describe
theoretically a few of the several different possible fraction-
alized phases that may exist in various different models of
strongly interacting electron systems.
Following the introduction of the Schwinger boson de-

scription of the Heisenberg model of quantum
antiferromagnets,5 slave fermion6 formulations of doped an-
tiferromagnets were introduced. In these formulations, it is
assumed that the electron decays into a Bosonic, spin-1/2
spinon and a fermionic, charge-e holon. We will call this
phase CFSB !charged fermion, spinful boson".
On the other hand, a phase with Bosonic holons and fer-

mionic spinons – which we will call CBSF !charged boson,
spinful fermion"—naturally leads to superconductivity
through the Bose condensation of Bosonic holons in the
presence of Fermionic spinon pairing. Consequently, much
attention has been focused on the description of such a frac-
tionalized phase, especially in the context of the slave boson
description of the t-J model. The pairing symmetry of the
resulting superconductor is dictated by the underlying sym-
metry of the spinon pairing.
A Z2 gauge theory of Fermionic spinons and Bosonic ho-

lons was developed in the context of superconductivity in the
cuprates7 !see also Refs. 8–10". Spinons and holons are
coupled by an Ising gauge field. The deconfined phase of this
theory corresponds to the CBSF phase. Most importantly, the
deconfinement-confinement transition of spinons and holons
occurs through the condensation of vortices in the Z2 gauge
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field, or visons. In the deconfined phase, the visons exist as
gapped excitations; when visons condense, the spinons and
holons are confined within electrons. The existence of
gapped visons is crucial for the robustness of the topological
order of the deconfined fractionalized phase.11,4 Although
this formalism was introduced in the context of cuprate su-
perconductivity, it is sufficiently flexible to permit a descrip-
tion of other types of fractionalized phases including CFSB.
These ideas have a physical manifestation in the context

of quantum disordered magnets and superconductors. In this
picture, one visualizes fractionalized states in terms of
nearby ordered states. In a broken !continuous" symmetry
state, Goldstone modes can screen the associated quantum
number!s".12 Thus it is possible for quasiparticles to be
stripped of some of their quantum numbers. One might
imagine that the destruction of order by quantum fluctuations
can preserve this screening of quasiparticle quantum num-
bers. This occurs when those topological defects of the or-
dered state which braid nontrivially with the quasiparticles
persist as gapped excitations even after the demise of the
order.13 Indeed, this is precisely what happens when the state
is topologically ordered. The neutral, spin-1/2 fermion of the
CBSF state is viewed as the descendent of the
Bogoliubov–de Gennes quasiparticle; the vison, of the hc/2e
vortex. When considered in the context of spin-triplet super-
conductors and their rich order-parameter structure, this im-
mediately suggests exotic phases such as CBSF, CFSB, and
even a third phase CBSBNF !charged boson, spinful boson,
neutral fermion", in which the charge- and spin-carrying ex-
citations are bosons and there is a neutral, spinless Fermionic
excitation. Since these superconductors can break both
charge and spin symmetries—as do states in which singlet
superconductivity and magnetism coexist – one can envision
the screening of both quantum numbers of a quasiparticle. If
!the minimal" topological defects in the charge sector survive
into a disordered state, then this disordered state has neutral,
spin-1/2 Fermionic excitations !CBSF"; if topological defects
in the spin sector survive into a disordered state, then this
disordered state has charge-e spinless Fermionic excitations
!CFSB"; if topological defects in the both sectors survive
into a disordered state, then this disordered state has neutral,
spinless Fermionic excitations !CBSBNF".
The analysis of quantum dimer models2 and resonating

valence-bond1,14,15 ground states led to conflicting claims
that the CBSF !Ref. 15" or CFSB !Refs. 16 and 17" scenario
is realized in these models. These models have a Z2 vortex
excitation17,18—which are precisely the visons described
above—which are relative semions with spinons and holons.
Thus a spinon or holon can change between Bosonic and
Fermionic statistics by forming a bound state with a vison.
This begs the question whether the CBSF phase discussed in
the context of superconductivity is the same as the CFSB
phase considered in relation to magnetism. We reconsider
this question in the context of recent progress in the under-
standing of fractionalized phases described above. One
might worry that the apparent differences between these
phases is an artifact of the formalisms employed. One might
also wonder if there are any further fractionalized phases. In
this paper, we discuss the questions raised above using three

different models: p-wave superconductors, Kondo lattices,
and XY magnets coupled to d-wave superconductors.
The main results can be summarized as follows.
!i" Both CBSF and CFSB phases can arise in a variety of

different models.
!ii" Upon accepting the possibility of electron fractional-

ization, one is led to consider a wide variety of fractionalized
phases. In the higher-level fractionalized phases, electrons
can be fractionalized in many different ways. For example,
spinons and holons can be further fractionalized. Apart from
the CBSF and CFSB phases, we discuss two others. One is
the CSBNF !charge- and spin-carrying boson, neutral fer-
mion" phase, in which the electron breaks up into a boson
which carries both the spin and charge quantum numbers and
a neutral fermion. This phase is at the first level of fraction-
alization along with the CBSF and CFSB phases. The other
is the CBSBNF phase, in which there exist spin-carrying
neutral bosons, charge-carrying spinless bosons, and
‘‘statistics-carrying’’ neutral spinless fermions. The CBSBNF
phase is at the second level of fractionalization. In principle,
higher-level fractionalized phases exist.

!iii" We demonstrate the existence of some of these exotic
phases in the context of the three different systems men-
tioned above—Kondo lattices, p-wave superconductors, and
models with both strong spin and d-wave pairing fluctua-
tions. For the p-wave superconductor, the four fractionalized
phases discussed here arise naturally and the order parameter
has a rich spectrum of topological defects which can con-
dense in a variety of ways, thereby giving rise to an array of
fractionalized nonsuperconducting phases.

!iv" The question of whether CBSF and CFSB are
smoothly connected to one another or whether they are nec-
essarily separated by a phase transition is a subtle and deli-
cate issue for reasons that will be discussed at length later.
While we do not provide a definitive conclusion, we outline
a possible scenario in which the distinction between CBSF
and CFSB is similar to that between liquid and gas phases.
These phases are separated by a first-order transition line
which terminates at a critical point. In principle, one can go
around the critical point from one phase to the other without
encountering a phase transition. This scenario is supported
by a number of suggestive !though certainly not conclusive"
arguments.
On the other hand, the transition between the two phases

can occur through another fractionalized phase with a higher-
level fractionalization pattern. In this case, each transition in
the process could be a continuous transition. We demonstrate
that the transition between CBSF phase and CFSB phase can
occur through the CBSBNF phase.

!v" In order to examine whether one can go from CBSF to
CFSB through further fractionalized phases like CBSBNF,
one can design a gedanken flux trapping experiment similar
to the one proposed in Ref. 19. This gedanken experiment
clearly demonstrates the existence of a phase boundary be-
tween CBSF and CFSB when these phases are close to
CBSBNF.
Topological order is robust against local perturbations

such as impurities. Thus we will concentrate on general uni-
versal properties of the fractionalized phases. One of our
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goals will be to give a precise characterization of these
phases which is independent of the underlying microscopic
models where they may occur. We believe that these exotic
phases could play a role in the physics of 3He !Ref. 20" and
the ruthenates21 as well as the cuprates,22 organic
superconductors,23 heavy fermion superconductors,24 spinor
Bose-Einstein condensates,25 and the crusts of neutron
stars.26
The rest of the paper is organized as follows. In Sec. II,

we consider a Kondo lattice model and how the CFSB frac-
tionalized phase can occur in this model using the language
of a Z2 gauge theory. Some details are given in Appendix A.
In Sec. III, we suggest how this analysis can be generalized
and discuss a hierarchy of fractionalized phases. Here we
provide an overview of our results. In Sec. IV, we discuss
how this hierarchy can be realized in p-wave superconduct-
ing systems when the superconducting and spin order are
quantum disordered. This is done using the vortex conden-
sation formalism. In Appendix B, the same ideas are shown
to apply to an XY magnet which is coupled to a d-wave
superconductor. In Sec. V, the fractionalized phases of Sec.
IV are further discussed in the framework of a Z2#Z2 gauge
theory. In Sec. VI, we consider the question of the distinction
in principle between the putatively different fractionalized
phases constructed in this paper. In Appendix C, we give
some technical details of an argument using Z2#Z2 gauge
theory which supports our picture of the phase diagram. In
Sec. VII, we show how flux-trapping experiments !of the
variety suggested by Senthil and Fisher19" can be used to
shed further light on the phase boundaries between these
phases and could be used to detect them. We conclude in
Sec. VII. Appendix D contains an aside in which we discuss
various interesting properties of unfractionalized phases oc-
curring in the models considered in this paper.
For other perspectives on fractionalization, see Refs.

1–4,7,8,12,13,15,17–19, and 27–33.

II. FRACTIONALIZATION IN SPIN MODELS:
SPIN-STATISTICS SEPARATION

In principle, there are several possible ways in which the
electron can fractionalize in a strongly correlated system. In
the context of the cuprates, attention has been focused on the
situation in which the electron splinters into two separate
excitations—a charged spinless boson, and a neutral spinful
fermion. In this case, the charge of the electron is liberated
from its Fermi statistics.
In this section, we will briefly discuss another possible

fractionalization pattern in which the spin, rather than the
charge, of the electron is liberated from its Fermi statistics.
The electron splinters into a charged spinless fermion, and a
spinful boson. As we will see, this phenomenon also requires
the presence of a gapped topological Z2 vortex excitation.
The issue of whether such a fractionalized phase is distinct
from one in which the charge is liberated from the Fermi
statistics is a delicate one, and shall be discussed in Sec. VI.
To motivate the discussion, consider a ‘‘Kondo lattice’’

model with the Hamiltonian

H$Ht!HK!Hex , !1"

Ht$" #
$rr!%

trr!!cr&
† cr!&!H.c.", !2"

HK$JK#
r

!Sr
!cr↓

† cr↑!H.c. ", !3"

Hex$#
rr!

"
J
2 !Sr

!Sr!
"!H.c."!JzSr

zSr!
z . !4"

Here the ci& represent ‘‘conduction’’ electrons with spin & at
site i. The operators S! i are spin operators representing mag-
netic moments localized at the lattice sites. The first term is
the usual conduction electron hopping, described in a tight-
binding approximation. The second term is a ‘‘Kondo’’ cou-
pling between the conduction electrons and the local mo-
ments. The third term is an explicit exchange interaction
between the local moments. For simplicity, we have assumed
that system only has a U!1" spin symmetry for rotations
about the z axis of spin 'we will comment on situations with
full SU!2" spin symmetry later(. We are interested not so
much in establishing the exact phase diagram of this particu-
lar model; rather our main interest here is in establishing the
possible existence and stability in models of this kind of
quantum phases where the electron is fractionalized. To that
end, we will think more generally about a class of models
which may be obtained from the model above by adding
other local interactions which share its symmetries. If the
system is in a quantum phase in which both the symmetry of
rotations about the z direction of spin and the charge conser-
vation symmetry is unbroken, the excitations may be labeled
by their Sz and charge !Q" quantum numbers. Clearly, we can
visualize two qualitatively different possibilities. First, the
system may be in a phase in which the excitations are elec-
trons (Q$1,Sz$ 1

2 ) or composite objects made from elec-
trons !such as, for instance, a magnon which has Q$0,Sz
$1). This is a conventional phase of the kind familiar from
textbooks !for instance, a Fermi liquid or a band insulator".
On the other hand, one could also imagine phases in which
there are excitations which carry quantum numbers which
are fractions of those of an electron. The simplest possibility
!the one we will focus on" is that there are excitations which
carry Sz$1/2,Q$0 !spinons" and others which carry Sz
$0,Q$1 !holons". In such a phase, the electron has been
fractionalized. In what follows, we will discuss several ways
of thinking about such phases. Our focus will be on general
universal properties of such phases. In particular, we will be
interested in obtaining robust precise characterizations of
fractionalized phases that are independent of the particular
microscopic models in which they possibly occur.
It is extremely instructive to begin by just considering the

physics of the local moments alone as described by the ex-
change part of the Hamiltonian Hex . This Hamiltonian is
clearly invariant under a global spin rotation about the z axis
of spin. For technical simplicity, we will assume J ,Jz)0.
The physics of this particular Hamiltonian is well under-
stood: when Jz /J is small, there is long-range order in S!.
When Jz /J is large, the system breaks translational symme-
try with $Sz% being larger in one sublattice of the square
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lattice than the other, but the U!1" spin rotation symmetry is
unbroken. The point Jz$J can be mapped to the nearest-
neighbor antiferromagnetic Heisenberg model with full
SU!2" spin symmetry on a bipartite lattice by rotating the
spins on one sublattice by * about the z axis. In the specific
case of a square lattice !which we assume through out our
discussion", this is known to develop Néel long-range order
in two spatial dimensions. Our interest here is not so much in
the properties of this particular Hamiltonian as in the prop-
erties of an entire class of systems with the same symmetry,
and with short-ranged interactions between the spins. In par-
ticular, we will be interested in fractionalized phases in
which the excitations are spinons with quantum number Sz
$1/2. To that end, we will reformulate the Hamiltonian di-
rectly in terms of spinon fields which carry spin Sz$1/2.
This naturally introduces a Z2 gauge symmetry. The result is
a theory of Bosonic spinon fields coupled to a Z2 gauge field
which can then be used to analyze the possibility of fraction-
alized phases and their universal properties.
We may think of S!,S" as the creation and destruction

operators, respectively, of a hard-core boson on the sites of
the lattice. Specifically, write Sr

!+bsr
† , Sr!

"+bsr , and Sr
z

$1/2"bsr
† bsr . Note that there is half a boson for each site

on average. Now imagine relaxing the hard-core constraint
on the bosons, and instead add a term

U
2 #

r
!2nr"1 "2 !5"

at each lattice site. Here nr is the boson number at each site.
In the limit U→, , we recover the spin model exactly. For
large but finite U, however, relaxing the hard-core constraint
is expected to be innocuous. It is now convenient to go to a
number-phase representation for the bosons: we write bsr
-ei.r with '.r ,nr!($i/rr! . For simplicity, we also special-
ize to the limit where Jz$0. The Hamiltonian then becomes

H$ #
$rr!%

"J cos!.r".r!"!
U
2 #

r
!1"2nr"2. !6"

This is clearly closely related to the original spin Hamil-
tonian in Eq. !4". Now consider a formal change of variables
which involves splitting the boson operator bsr into two
pieces:

bsr$ei.r$zr
2 , !7"

zr+ei0r$srei(.r/2) !sr$%1 ". !8"

We will refer to zr as the spinon destruction operator. Note
that with these definitions, both .r and 0r are defined in the
interval '0,2*). It is also convenient to define a number
operator for the spinons Nr$2nr which is conjugate to 0r .
In terms of the spinon operator, the Hamiltonian becomes

H$ #
$rr!%

"J cos!20r"20r!"!
U
2 #

r
!Nr"1 "2. !9"

The change of variables above must be supplemented with a
constraint—clearly the physical Hilbert space consists only

of states where Nr is even. Therefore we need to impose the
operator constraint ("1)Nr$1 at each site of the lattice. For-
mally this may be implemented through the projection op-
erator

P$1
r

Pr , !10"

Pr$
1
2 '1!!"1 "Nr( . !11"

Note that 'P,H($0. It is now convenient to pass to a func-
tional integral formulation. We follow Refs. 7 and 27 closely
to obtain for the partition function

Z$#
2r3

! D0e"S, !12"

S$S3!Sr!SB , !13"

S3$#
3 ,r

J32r3cos!0r ,3!4"0r3", !14"

Sr$4 #
$rr!%3

J cos!20r3"20r!3", !15"

where 2r3$%1 may be interpreted as the time component of
a Z2 gauge field that imposes the constraint on the Hilbert
space, and 4 is the lattice spacing along the time direction.
The constant J3 is determined by the original interaction
strength U. The term in the action Sr involving the spatial
coupling may be decoupled by a Hubbard-Stratanovich
transformation:

e"Sr$! D5e"4J#$rr!% ,35rr!(3)
2!24J5rr!(3)[zr

†(3)zr!(3)!c.c.].
!16"

Here 5rr!(3) is a real-valued field. We have omitted an un-
important overall constant.
We now proceed exactly as in Refs. 7 and 27, and replace

the integral over the continuous variable 5 by a sum over a
discrete field 2rr!(3)$%1. As discussed in Refs. 7 and 27,
this approximation respects all the symmetries of the action,
and is expected to be innocuous. The resulting partition func-
tion becomes

Z$#
2 i j

! D0e"S, !17"

S$Ss!SB , !18"

Ss$"#
$i j%

Ji j2 i jcos!0 i"0 j". !19"

Here the i , j label the sites of a space-time lattice in three
dimensions. The constants Ji j$J3 for temporal links, and
equals 4J for spatial links. SB is the Berry phase action
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SB$
*i
2 #

i , j$i! 3̂
!1"2 i j". !20"

Note that the action !18"–!20" respects all the symmetries of
the original model. The discrete field 2 i j$%1 may be
viewed as a Z2 gauge field. At this stage, this field does not
have any dynamics. However, it is natural to expect that
upon coarse graining, some dynamics will be generated. The
simplest such term allowed by symmetry is

SK$"K#
!

1
!

2 i j . !21"

We will therefore consider the full action

S$Ss!SK!SB . !22"

What we have achieved so far is an approximate reformula-
tion of spin models with XXZ symmetry. This reformulation
is extremely useful to explore the various possible allowed
phases in such models. However, the approximations made
in obtaining this reformulation are severe enough that it is
not easy to see which one of these allowed phases will be
obtained in any particular microscopic model.
Consider the possible phases when the parameter K is

very large. When K$, , the Z2 flux through each plaquette
is constrained to be 1. We may then choose a gauge in which
2 i j$1 on every link. In this limit therefore, the action re-
duces to

S$"#
$i j%

Ji jcos!0 i"0 j". !23"

This simply describes a quantum XY model in two spatial
dimensions. Note that the Berry phase term simply vanishes
when all the 2 i j$1. There clearly are two possible
phases—an XY ordered phase in which zi$ei0 i has con-
densed, and a paramagnetic phase in which the excitations
created by zi are gapped. Note that these excitations in the
paramagnetic phase carry spin Sz$1/2. Thus the spin has
been fractionalized in this phase.
Now consider moving away from the limit K$, by mak-

ing K large but finite. For finite K, as can be seen from the
arguments advanced in Ref. 7, the XY ordered phase where
the spinon field has condensed is indistinguishable from a
conventional XY ordered XXZ magnet. The paramagnetic
phase in which the spinons are uncondensed and deconfined
survives for large but finite K. When K is finite, it becomes
clear that this phase has another distinct excitation which
carries the flux of the Z2 gauge field. This Z2 vortex—
dubbed the vison—does not carry any physical spin, and has
an energy gap of order K for large K. It has the important
property that when a spinon is taken around it, the wave
function of the system acquires a phase of * .
Upon decreasing K, at some critical value, the vison gap

goes to zero. For smaller K, the visons condense leading to
confinement of the spinons. The resulting phase is a conven-
tional quantum paramagnet with gapped Sz$1 excitations.
In this phase, the Berry phase term becomes important and
leads to a breaking of translational symmetry—the paramag-

net is therefore expected to develop spin-Peierls order. We
will not discuss such conventional phases very much in this
paper.
Much further insight into the physics of the fractionalized

phases may be obtained by the following considerations. We
begin by first considering ordered phases in which the sym-
metry of rotations about the z direction of spin has been
broken spontaneously. For simplicity, we consider a phase in
which the spins have all lined up along some direction in the
xy plane. The general properties of such a phase are well
known. There are two distinct kinds of excitations. First,
there is a gapless spin-wave mode with linear dispersion.
Apart from these, there are also topological vortex excita-
tions. On moving along any circuit that encloses a vortex, the
direction of the spin in the xy plane winds by an integer
multiple of 2* . This integer winding number—the
vorticity—is conserved, and may be used to label the spec-
trum of excited states. States with different total vorticity
belong to different topological sectors and are not mixed by
the dynamics generated by the Hamiltonian. Note that in this
ordered phase we can no longer label states by their Sz quan-
tum number.
These familiar properties of the XY ordered phase must

be contrasted with those of the quantum paramagnet. First
consider a conventional paramagnet !i.e., one with no frac-
tionalization". Clearly in this phase Sz is conserved, and is a
good quantum number to label the excitation spectrum. On
the other hand, the vorticity loses its meaning in the para-
magnetic phase, and is no longer a good quantum number.
This suggests that one may view the paramagnet as a phase
in which the vortex excitations have themselves condensed.
Condensation of the vortices implies that the vorticity is no
longer a good quantum number !just like condensation of
spin implies that Sz is no longer a good quantum number".
Indeed, these observations may be formalized precisely by
means of a duality transformation which reformulates the
system in terms of the vortex fields rather than the spins. In
this dual formulation, the paramagnet is described as a vor-
tex condensate, and the XY -ordered phase as a vortex insu-
lator !in which the vortices are gapped". The physical exci-
tations of the paramagnet which carry the Sz quantum
number appear as dual flux tubes of the vortex condensate in
this language.
How are we to view the fractionalized quantum paramag-

net in this dual language? As the phase in question is a para-
magnet, it is clear that the vorticity has no meaning, imply-
ing that the vortices must have condensed. As pointed out in
Ref. 13, we may view the fractionalized phase as a conden-
sate of paired vortices. This has the immediate consequence
of halving the dual flux tube, i.e., of fractionalizing Sz as
required. Furthermore, note that the unpaired !and uncon-
densed" single vortex is still an excitation in the system. Its
vorticity is screened by the !double strength" vortex conden-
sate as is required in the paramagnet. However, its parity is
still a good quantum number. Thus the unpaired vortex,
though a legitimate excitation of the fractionalized paramag-
net, carries only a Z2 quantum number—it is clear that it is
the vison excitation discussed previously.
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The discussion above provides a description of a fraction-
alized quantum paramagnet in the context of spin models
with XXZ symmetry. We now return to the full model which
includes coupling to the ‘‘conduction’’ electron degrees of
freedom. As above, we first replace the operator Sr

" in the
Kondo coupling at each site by the boson operators bsr
-ei.r !and similarly for Sr

!). The Kondo coupling term then
becomes

HK$JK#
r

!bsr
† cr↓

† cr↑!H.c." !24"

$JK#
r

!zr
2†cr↓

† cr↑!H.c.". !25"

In going to the second equation, we have introduced the
spinon operators zr defined in Eq. !7". The Kondo coupling
can be further simplified by another change of variables,

6r↑+zrcr↑ , !26"

6r↓+zr
†cr↓ . !27"

We will call the 6 operators the holon operators. In terms of
the holons, the Kondo coupling becomes

HK$JK#
r

!6r↑
† 6r↓!H.c.". !28"

Note that the holons are actually spinless charge e fields
despite the presence of the label ↑ ,↓ . This is obvious from
their definition in terms of the spinon and electron operators
above: the holon operators do not transform under spin rota-
tions about the z axis. Explicitly, the Kondo term mixes up
and down holons so that their label ↑ ,↓ is changed by the
dynamics. Therefore their spin label has no great signifi-
cance, and they are correctly viewed as spinless fermions.
We may use the following physical picture: the Kondo spins
screen the spin of the conduction electrons.
Under these changes of variables, the electron hopping

term becomes

Ht$" #
$rr!%

trr!'zr
†zr!!6r!↑

† 6r!↑!6r↓
† 6r!↓"!H.c.( .

!29"

We now make approximations very similar to those used
above for the exchange part of the Hamiltonian. They allow
us to reformulate the system in terms of the spinons, holons,
and a Z2 gauge field. Some of the details are outlined in the
Appendix. The resulting action can essentially be guessed on
symmetry grounds, and takes the form

S$Sc!Ss!SB!SK , !30"

Sc$"#
$i j%

2 i jt i j
c !6 i↑

† 6 j↑!6 i↓
† 6 j↓!c.c."

!JK#
i

!6 i↑
† 6 j↓!c.c.". !31"

The other terms of the action are as given before.
Following the discussion above, for large K, we expect to

have a phase in which the holons and spinons are liberated
from each other. In such a phase, the electron is fractional-
ized. However, in contrast to the fractionalized phase that is
most popular in the context of the cuprates, here the spin of
the electron has been liberated from its Fermi statistics. Are
these two phases actually the same? We will address this
issue in subsequent sections.
Though we have based our discussion on models with

XXZ symmetry, we expect the fractionalized quantum para-
magnetic phase to exist even in systems with full SU!2" spin
symmetry. Indeed, in the context of frustrated quantum
Sp(n) spin models in the large-n limit, Read and Sachdev8
have argued for the stability of fractionalized paramagnetic
phases with properties similar to that discussed above.

III. A HIERARCHY OF FRACTIONALIZED PHASES

In Sec. II, we primarily discussed fractionalized phases in
which the electron splinters into a spin-1/2 neutral boson and
a charged spinless fermion. For future convenience, we will
refer to this as the CFSB !charged fermion, spinful boson"
phase. This is to be contrasted with the fractionalized phases
which are popular in the context of cuprate physics in which
the electron splinters into a spin-1/2 neutral fermion and a
charged spinless boson !see also Secs. IV and V". We will
refer to this as the CBSF phase. In both cases, there is, in
addition, a Z2 vortex excitation !the vison" such that taking
either the holon or spinon around it produces a phase change
of * .
Having accepted the possibility of quantum number frac-

FIG. 1. Hierarchy of fractionalized phases.
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tionalization, one can imagine a wide variety of possible
phases apart from the two mentioned above. In particular,
one may consider exotic possibilities where the fractions of
the electron in any given fractionalized phase themselves
fractionalize. Such phases may be considered to have a
higher level of fractionalization. To see how these may be
described in the same kind of formulation as discussed in
this section, consider the following action:

S$S f!Sc!Ss!S23 ,

S f$"#
i j ,&

2 i j3 i j7t i j
n f̄ i& f j&! t̃8ai j' f i↑ f j↓"!↑→↓ "(!c.c.9

"#
i&

f̄ i& f i& ,

Sc$"#
i j

t i j
c 3 i j!bci*bc j!c.c.",

Ss$"#
i j

t i j
s 2 i j!zi*z j!c.c.",

S23$"K21
!

2 i j"K31
!

3 i j"K231
!

2 i j3 i j . !32"

Here bc is a charge e spinless boson and z is a spin-1/2
chargeless boson. The f field represents a spinless, neutral
fermion !the spin index is just a label with no special signifi-
cance". The 2 i j and 3 i j are two independent Z2 gauge fields.
The physical electron ci&$bcizi f i& . Clearly if the 3 field is
confining, the f & and bc get confined to form a Fermionic
holon—we then recover the action discussed earlier in this
section. On the other hand, if the 2 field is confining, the
Fermi statistics gets glued to the spinon (zi)—the resulting
theory is essentially that introduced in Ref. 7 in the context
of cuprate physics and involves Bosonic holons and Fermi-
onic spinons coupled to a Z2 gauge field. If both gauge fields
2 and 3 are deconfining, however, we have an exotic phase
in which the fields bc ,z , f are all liberated. This phase will
also have two distinct vison excitations corresponding to the
fluxes of the two Z2 gauge fields. We may view this phase as
a higher-level fractionalized phase as compared to the one
discussed in Ref. 7 or that discussed earlier in this section.
The connection between various fractionalized phases is
shown in Fig. 1. We use symbols ba and f a to label bosons
and fermions that carry quantum numbers a$n ,c ,s ,cs !neu-
tral, charge, spin, charge, and spin" and show the existence of
appropriate Z2 vortices in each phase !for more details see
Sec. V".
In the sections which follow, we will show how an effec-

tive action such as that of Eq. !32" can arise in the context of
p-wave superconducting systems and systems which feature
interplay between magnetism and superconductivity.

IV. FRACTIONALIZATION OF ELECTRON QUANTUM
NUMBERS WITH p-WAVE PAIRING

A. Order parameters and symmetries

Spin-triplet superconductors and their rich order-
parameter structure offer the prospect of various exotic
phases. Since they break both charge and spin symmetries,
triplet superconductors exhibit features of both singlet super-
conductors and of spin models. In particular, we can envision
the restoration of the the UC(1) charge symmetry by quan-
tum fluctuations, thereby resulting in a spin-triplet insulating
state. Alternatively, the spin symmetry !we will make the
simplifying assumption that the system has only an easy-
plane US(1) spin symmetry" can be restored, resulting in a
spin-singlet superconducting state. Finally, both symmetries
can be restored, leading to a singlet insulating state. We be-
lieve that the gapped, symmetry-restored states will not be
very sensitive to the precise symmetry of the spin sector, so
we believe that our results apply to systems with full SU!2"
spin symmetry as well. In particular, when the symmetry is
increased !while keeping the size of the representation fixed",
fluctuations are enhanced, and a system is more likely to be
in a disordered state. In order for these symmetries to be
restored separately, it will be necessary, as we discuss below,
for a type of topological ordering to occur. This topological
ordering is essentially spin-charge separation of the charge
2e , spin-triplet Cooper pairs. Depending on the way in
which the symmetries are restored, it is possible for further
topological ordering to take place, in which case the quan-
tum disordered states may support excitations with exotic
quantum numbers. In such states, the spin and/or charge of
the quasiparticles is screened by the Goldstone modes
!which are themselves separated from each other by the
higher-level topological ordering". As we describe in this pa-
per, there are no fewer than nine phase which can result in
this way.
To be concrete, let us consider the following p-wave su-

perconducting state of electrons on a square lattice:

8&:$80ei.!cos ;2&:
z !i sin ;/&:"sin kya . !33"

This is the most general unitary triplet state in two
dimensions20 if we assume that there is only the U!1" spin
symmetry of rotations about the z axis, rather than the full
SU!2". In Eq. !33", only 8↑↑ and 8↓↓ are nonzero. The lower
symmetry could be the result of spin-orbit coupling. The
symmetry-breaking pattern associated with this order param-
eter is: UC(1)#US(1)#D4→Z2#Z2#D2. The UC(1)
charge symmetry is broken to Z2 by the condensation of a
charge 2e order parameter. The US(1) spin-rotational sym-
metry is completely broken. The square lattice point group,
D4, is broken to D2 by the orbital symmetry of 8 . Finally,
there is an additional Z2 since the order parameter is left
invariant by .→.!* , ;→;!* . As we discuss later, this
can be understood as a Z2 gauge symmetry. From ei. and ei;
we can construct the following Z2-invariant order parameters
whose presence or absence characterizes the phases which
we consider. In the absence of the triplet p-wave supercon-
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ducting order parameter !33", we can characterize states by
the charge-4e order parameter,

84e$!ei."2, !34"

and the spin nematic order parameter,

Q$cos 2; . !35"

These order parameters define the following quantum-
disordered states of triplet p-wave superconductors.

• Charge-4e singlet superconductor: 84e<0, Q$0.
• Charge-4e nematic superconductor: 84e<0, Q<0.
• Spin-nematic insulator: 84e$0, Q<0.
• Spin-singlet insulator: 84e$0, Q$0.

B. Topological defects

The quantum-disordered and topologically ordered states
which we will consider can be understood in terms of the
condensation or suppression of various topological excita-
tions. The most basic and fundamental topological excitation
is a composite formed of a flux hc/4e vortex together with a
* disclination.34–36
Along a circuit about such an excitation, both . and ;

wind by * so that any Z2-invariant combination is single-
valued. If such an excitation is at the origin, and r, 0 are
polar coordinates in the plane, then the order parameter is of
the form

8&:!r ,0"$8!r "ei410/2" cos02 2&:
z !i42sin

0

2 /&:# sin kya ,
!36"

where 8(0)$0 and 8(,)$80. The flux is into or out of the
plane, respectively, for 41$%1; the spins wind clockwise or
counterclockwise, respectively, for 42$%1. It is instructive
to write this as

8↑↑!r ,0"$8!r "ei4!0sin kya ,
!37"

8↓↓!r ,0"$"8!r "ei4"0sin kya ,

where 4%$(41%42)/2. Hence, *-disclination–hc/4e vortex
composites are vortices in 8↑↑ or 8↓↓ alone !see Fig. 2".
These excitations can be combined to form an hc/2e vor-

tex which is nontrivial in the charge sector but trivial in the
spin sector,

8&:!r ,0"$8!r "ei0!cos ;02&:
z !i sin ;0/&:"sin kya

!38"

with constant ;0. Alternatively, we can form merons, which
are trivial in the charge sector but not the spin sector,

8&:!r ,0"$8!r "ei.0!cos02&:
z !i sin0/&:"sin kya

!39"

with constant .0. Finally, there are various composites
formed from the above. A composite formed by n hc/2e
vortices and m merons takes the form

8&:!r→, ,0"$80ein0!cosm02&:
z !i sinm0/&:"sin kya .

!40"

If flux hc/4e vortex-* disclination composites condense,
then UC(1) and US(1) are restored. The system will be in a
singlet insulating state and all excitations will have conven-
tional quantum numbers. If, on the other hand, hc/4e vortex-
* disclination composites are gapped and only complexes
consisting of multiples of hc/4e vortex-* disclinations !e.g.,
n hc/2e-m meron composites" are condensed, then quantum
number separation is possible. If complexes consisting of a
multiple of four hc/4e vortex-* disclinations condense, then
we will have the various versions of quantum number sepa-
ration summarized in Figs. 3 and 4.

FIG. 2. *-disclination–hc/4e vortex composite.

FIG. 3. Order parameter for a sin ky p-wave superconductor.
Gapless excitations exist at k!F$(%kF,0).

FIG. 4. Phases of quantum-disordered p-wave superconductor.
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C. Quantum number separation

The effective action of a p-wave superconductor may be
written in the form

S tot$S f!Sc!S2 , !41"

where S f is the action for the Fermionic quasiparticles and
their interactions with the Goldstone modes, and Sc and S2
are the actions for the charge and spin Goldstone modes.
Depending on the topology of the Fermi surface, the low-

energy spectrum of a p-wave superconductor may include
gapless Fermionic quasiparticles. Let us assume that the to-
pology is such that the gap has nodes on the Fermi surface.
Focusing on the nodes, as shown in Fig. 5. We linearize the
action

S f$! d2x d3 5†'=3"A3
c3z"vF3zi=x!vFAx

c"A3
22z

!vFAx
22z3z"v83seis.!cos ; 2&:

x !i sin ; 2&:
y "

#! i=y"(5 . !42"

s$% and 5 has a particle-hole index, acted on by Pauli
matrices 3! ; and a spin index, acted on by Pauli matrices 2! ,

5a&!k! "$$ 511
521
512
522

%$$ ck!F!k!↑

c"k!F"k!↓
†

ck!F!k!↓

"c"k!F"k!↑
†

% . !43"

In action !42" we have included the electromagnetic field A>
c

and spin vector potential A>
2 which couple to the conserved

electric and Sz currents.
When hc/4e vortex-* disclination composites are

gapped, the Z2 symmetry .→.!* , ;→;!* plays no
role, and the other terms in Eq. !41" may be written in the
form

Sc$
1
2 ?c! d2x d3!=>."A>

c "2 !44"

and

S2$
1
2 ?2! d2x d3!=>;"A>

2 "2. !45"

The conserved electric and Sz currents are given by

j>
c ,2$

/S tot
/A>

c ,2 . !46"

Conservation of charge and the z component of spin require

=> j>
c ,2$0. !47"

The interactions between the Goldstone fields and the
quasiparticles are highly nonlinear in Eq. !42". This interac-
tion can be made more tractable, following Ref. 28, if we
define new fermion fields @:

5$ei.3z/2ei;2z/2@ . !48"

With this change of variables, we have defined a neutral,
spinless fermion @ , which is governed by the action

S f$! d2x d3" @†'=3"vF3zi=x"v83x2x! i=y"(@

!
1
2 @†'3z=3."2A3

c3z"vF=x.!2vFAx
c(@

!
1
2@†'2z=3;"2A3

23z"vF3z2z=x;!2vF3z2zAx
2(@ # .

!49"

The couplings between the Goldstone modes and the qua-
siparticles are now either trilinear or biquadratic,

S f$S f
0!
1
2! d2x d3'J0

c!=3."2A3
c"!Jx

c!=x."2Ax
c"

!J0
2!=3;"2A3

2"!Jx
2!=x;"2Ax

2"( !50"

with

J0
c$@†3z@ , Jx

c$"vF@†@
!51"

J0
2$@†2z@ , Jx

2$"vF@†2z3z@ .

The price that must be paid is that the change of variables
!48" is not single valued about a topological defect. In par-

FIG. 5. Phases of quantum-disordered p-wave superconductor.
Note that the phase in which hc/2e vortices and merons are con-
densed may be described as having hc/4e-vortex-* composites
condensed.
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ticular, the charge part, exp(i.3 z/2), is double valued under
transport about a flux hc/2e vortex since . winds by 2* ,
while the spin part, exp(i;2z/2), is double valued under
transport about a meron since ; winds by 2* .
As we will see below, @s are weakly coupled quasiparti-

cles in those quantum disordered phases in which flux hc/2e
vortices and merons are gapped.

D. Defect condensation

Defect condensation is now implemented with dual repre-
sentations for the order parameters.28,13,29,37 In the dual de-
scription of the XY model,37 the ordering field . is replaced
by a gauge field which parametrizes the total current, to-
gether with a vortex field which accounts for the singularities
of . .
We use the conservation of charge to define the dual

gauge field,

4>AB=AaB
c$J>

tot c$?c!=>."A>
c "!J>

c , !52"

with J>
c from Eq. !51", and introduce the vortex current,

j>
v $

1
2*

4>AB=A=B. , !53"

which is not vanishing for a multivalued . . With the last two
equations we can relate the vortex current to the dual gauge
field a>

c and quasiparticle current J>
c ,

j>
v $4>AB=A'?c

"14B&:=&a:
c !AB

c"?c
"1JB

c ( . !54"

Now a dual action for the charged degrees of freedom is
easily constructed by requiring that its equations of motion
reproduce Eq. !54",

SDual
c $SGL!Cv ,a>

c "!! d3 d2x$ 12?c
! f>A

c "2

!a>
c 4>AB=A" AB

c"
1
?c
JB
c # % , !55"

where

SGL'C ,a>($! d3 d2x" ?d
2 &!=>"ia>"C&2!V!C" #

!56"

and f >A
c $=Aa>

c "=>aA
c . The field Cv

† may be thought of as a
vortex creation field. The vortex current is given by

j>
v $

?d
2 $Cv

†" 1i =>"a>
c #Cv!H.c.% . !57"

An identical construction is now used for ; with ?c re-
placed by ?2 and JB

c by JB
2 :

SDual
2 $SGL!Cm ,a>

2 "!! d3 d2x$ 12?2
! f>A

2 "2

!a>
24>AB=A" AB

2"
1
?c
JB

2# % , !58"

where Cm
† is a meron creation operator. Analogous topologi-

cal objects in the spin sector have been discussed in the
context of quantum Hall systems38–40 and quantum
antiferromagnets.17,41–43
Actions !56" and !58" need to be supplemented by Chern-

Simons gauge fields which enforce the minus sign which is
acquired when a @ encircles a flux hc/2e vortex or a
meron.28,44 With these additions, we obtain the following
dual action:

SDual$SGL!Cv ,a>
c "a>

s1"!SGL!Cm ,a>
2"a>

s2"

!! d3 d2x$ 12?c
! f>A

c "2!a>
c 4>AB=A" AB

c"
1
?c
JB
c #

!2&>
1 4>AB=AaB

s1!&>
1 J>

c %!! d3 d2x$ 12?2
! f >A

2 "2

!a>
24>AB=A" AB

2"
1
?2
JB

2#!2&>
2 4>AB=AaB

s2!&>
2 J>

2 % ,
!59"

where &>
1,2 and a>

s1,2 are the gauge fields that perform the flux
attachement and enforce the minus sign.
With this action in hand, we can now address the quantum

disordered phases and quantum number separation. In es-
sence, there are three quantum numbers: charge, spin, and
electron number modulo 2. These can separate in a variety of
patterns.

• If $Cv%<0, flux hc/2e vortices condense. The Meissner
effect associated with this condensate imposes

a>
c!a>

s1$0. !60"
Recalling that 4&:=&a:

c $J0
totc (& , :$x ,y) is the charge

density and 4&:=&a:
s1$J0

c is the quasiparticle density, we
conclude that in this phase charge is attached to the @s.

• If $Cm%<0, merons condense, and the Meissner effect as-
sociated with this condensate imposes

a>
2!a>

s2$0. !61"
As 4&:=&a:

2$J0
tot 2 is the local spin density and

4&:=&a:
s2$J0

2 we find that spin is attached to the @’s. All
the fermions carry spin.

• If $Cm%$0, $Cv%$0, but $CvCm%<0 hc/2e vortex,
meron composites condense. The Meissner effect associ-
ated with this condensate imposes

a>
c!a>

2$0. !62"
In other words, spin and charge are confined, but the fer-
mion @ carries neither since @ does not acquire any phase
upon encircling this composite object, as evinced by the
fact that CvCm is not coupled to statistical gauge fields.

• The condensation of other composites, such as Cm
2 !i.e.,

skyrmions", Cv
2 , etc., does not cause the confinement of

any quantum numbers.

E. Exotic phases

The order-parameter classification discussed after Eq. !35"
is incomplete; those states can occur in several varieties,
classified by the allowed quantum numbers.45
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Charge-4e singlet superconductors, 84e<0, Q$0:
!1A" If $Cm%<0, then the Fermionic excitations carry

spin 1/2.
!1B" However, if $Cm%$0 but $(Cm)2%<0 then the @’s

are spinless. Note that the charge quantum number of the
Fermionic excitation is not really well defined since U!1" is
broken in the superconducting state; stated differently, the
fermion can always exchange charge with the condensate.
Spin-triplet insulator, 84e$0: Q<0:
!2A" If $Cv%<0, the @’s carry charge e.
!2B" If $Cv%$0 but $(Cv)2%<0, then the @’s are neutral.

As in the previous case, the spin quantum number of the @’s
is not well defined.
Spin-singlet insulator, 84e$0: Q$0:
!3A" If $Cv%<0, $Cm%<0, then the @’s carry spin 1/2

and charge e: CSF phase.
!3B" If $Cm%$0 but $(Cm)2%<0 while $Cv%<0, then

the @’s are charge e, spinless Fermionic excitations: CFSB
phase.

!3C" If $Cv%$0 but $(Cv)2%<0 while $Cm%<0, then the
@’s are neutral, spin-1/2 Fermionic excitations: CBSF phase.

!3D" If $CvCm%<0, then the @’s are neutral, spinless
Fermionic excitations, but spin and charge are confined into
a bosonic spin-1/2, charge e excitation: CSBNF phase.

!3E" Finally, if $Cv%$0 but $(Cv)2%<0 and $Cm%$0
but $(Cm)2%<0, then the @’s are neutral, spinless Fermionic
excitations. Bosonic charge e excitations, ei./2, and Bosonic
spin-1/2 excitations, ei;/2 are also liberated: CBSBNF phase.
To summarize, we have the following phases with exotic

quantum numbers:
•A charge-4e singlet superconductor with spinless Fermi-

onic excitations.
•A spin-triplet insulator with neutral Fermionic excita-

tions.
•Spin-singlet insulators with !i" charge e spinless fermions

and spin-1/2 neutral bosons; !ii" spin-1/2 neutral fermions
and spinless charge e bosons; !iii" neutral spinless fermions,
Bosonic charge e spinless excitations, and Bosonic spin-1/2
neutral excitations; or !iv" neutral spinless Fermionic excita-
tions and Bosonic charge e spin-1/2 excitations.
These result are summarized in the following diagrams

that describe various phases that can result from quantum
disordering a p-wave superconductor.
The scenario proposed in this section for quantum number

separation in p-wave superconductors may apply to other
systems, provided that they acquire nontrivial topological or-
der in the spin and charge sectors, or in the language of this
section when they have sufficiently strong quantum fluctua-
tions of spin and charge degrees of freedom simultaneously.
In Appendix B we show that quantum disordered d-wave
superconductor with easy-plane antiferromagnetic fluctua-
tions may be treated in the same way as we treated p-wave
superconductors in this section.

V. Z2ÃZ2 LATTICE GAUGE THEORY

In this section, we derive a Z2#Z2 gauge theory repre-
sentation of a model which gives rise to local p-wave super-
conducting fluctuations. In addition to the superconducting

state, we find the exotic phases discussed in the previous
section. These have a simple description as the various de-
confining phases of the Z2#Z2 gauge theory. Readers who
are uninterested in the technical details of our derivation may
skip directly to Eqs. !105", !106", and the subsequent discus-
sion.

A. General formalism

We consider the following Hamiltonian that describes the
equal spin pairing state of a p-wave superconductor:

H$Ht!Hu!Hv!H8 !63"

with

Ht$"t #
rr!,&

cr&
† cr!&!H.c.,

Hu$u#
r

!Nr"N0"2,

Hv$v#
r

!Mr"
2,

H8$#
rr!

'8rr!
↑↑ cr↑cr!↑!8rr!

↓↓ cr↓cr!↓(!H.c., !64"

where 8rr!
↑↑ and 8rr!

↓↓ represent the order-parameter fields for
the Cooper pairs with spin up-up and down-down pairs, re-
spectively. Here &$↑ ,↓ is the spin index. The term propor-
tional to u represents the on-site Coulomb repulsion. Nr is
the total number operator of electrons at the site r, N0 is the
average electron number per site. Mr is the z component of
the total spin operator. At equilibrium, &8↑↑&$&8↓↓&. Note
that there are two independent phases associated with 8↑↑

and 8↓↓. We can rewrite H8 as

H8$8#
rr!

arr!'e
i.r↑cr↑cr!↑!ei.r↓cr↓cr!↓(!H.c.,

!65"

where 8$&8↑↑&$&8↓↓& and arr! is the form factor that gives
rise to the particular p-wave symmetry.
The fields .r↑ and .r↓ are canonically conjugate to the

Cooper pair number operators of up-up and down-down
Cooper pairs, nr↑ and nr↓ :

'.r↑ ,nr!↑($i/rr! , '.r↓ ,nr!↓($i/rr! . !66"

The conserved charge densities for the electrons with spin ↑
and ↓ are given by

Nr↑$2nr↑!?r↑ ,

Nr↓$2nr↓!?r↓ , !67"

where ?r&$cr&
† cr& is the quasiparticle number, which is not

equal to the electron number. It is useful to remind the read-
ers that the Hamiltonian !64" does not conserve the quasipar-
ticle number, since it contains terms that annihilate a pair of
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them and create a Cooper pair. Only the total number of
electrons of a given spin, given by Eq. !67", is conserved.
This may be formulated as a conservation of the total charge
and z component of the total spin,

Nr$Nr↑!Nr↓ , Mr$Nr↑"Nr↓ . !68"

Let us define boson operators br& which carry charge e
and spin &$↑ ,↓:

br&
† $tr

&ei.r& /2$ei0r&, !69"

where tr
&$%1 are Ising variables and 0r& are defined in the

interval zero to 2* . Note that the squares of br↑
† and br↓

†

create the spin up-up and down-down Cooper pairs via the
following relation:

!br&
† "2$ei.r&. !70"

One can also see that the canonical conjugates of 0r& are the
total densities of electrons with spin ↑ and ↓ . They satisfy
the following commutation relations:

'0r& ,Nr!&($i/rr! . !71"

Similarly, the following commutation relations are also sat-
isfied:

'0rc ,Nr!($i/rr! , '0rs ,Mr!($i/rr! , !72"

where 0rc$(0r↑!0r↓)/2 and 0rs$(0r↑"0r↓)/2. At this
stage, it is useful to define the fermion operators, f r&

† , as
follows:

cr&
† $br&

† f r&
† . !73"

Note that f r&
† creates spinless neutral fermions due to the fact

that br&
† carries both the charge and spin of the electrons.

It is also useful to define .rc and .rs as follows:

ei.r↑$ei.rcei.rs, ei.r↓$ei.rce"i.rs. !74"

Note that there is a Z2 symmetry associated with these defi-
nitions of phase variables; .rc→.rc!* and .rs→.rs!*
do not change ei.r↑ and ei.r↓. Now we define boson opera-
tors br

† and zr
† as

br
†$trei.rc/2$ei0rc, zr

†$srei.rs/2$ei0rs. !75"

Here tr$%1 and sr$%1 are Ising variables. Note that these
operators satisfy the following identities:

!br
†"2$ei.rc, !zr

†"2$ei.rs. !76"

Note also that br↑
† and br↓

† can be rewritten as

br↑
† $br

†zr
† , br↓

† $br
†zr . !77"

Now the total Hamiltonian can be written as

H$Ht!Hu!Hv!H8 !78"

with

Ht$"t#
rr!

!br
†br!zr

†zr! f r↑
† f r!↑!br

†br!zrzr!
† f r↓

† f r!↓"!H.c.,

H8$8#
rr!

arr!!br
†br!zr

†zr! f r↑ f r!↑!br
†br!zrzr!

† f r↓ f r!↓"!H.c.

!79"

The Hamiltonian is invariant under the following local trans-
formations:

!i" Z23 : br→"br ; f r&→" f r& ;
!ii" Z22 : zr→"zr ; f r&→" f r& ;
!iii" Z22̃ : zr→"zr ; br&→"br& .

Only two of these transformations are independent, any one
of them can be represented as a product of the other two.
Together they form Z2#Z2 gauge symmetry, that has three
Z2 subgroups as reflected in three possible transformations
above. These subgroups are distinct, but not independent.
Z2#Z2 local gauge symmetry is a consequence of the redun-
dancy in the enlarged Hilbert space of f r& , br , and zr .
There is a further redundancy in our description in terms of
br and zr because br→ibr , zr→"izr also leaves all physi-
cal quantities invariant. This identification allows for the ex-
istence of flux *-disclination-hc/4e vortex composites
which we discussed in Sec. IV B. As before, we assume that
these topological defects are gapped so that we can safely
ignore this identification and take 0rc and 0rs as defined
from '0,2*).
In order to get the correct Hilbert space of the electrons,

we have to impose two constraints at each site.

Nr!?r↑!?r↓$even number,
!80"

Mr!?r↑"?r↓$even number.

These can be written as

!"1 "Nr!?r↑!?r↓$1, !"1 "Mr!?r↑"?r↓$1. !81"

The constraints can be implemented in the path integral rep-
resentation of the partition function using the following pro-
jection operators:

Pc$1
r

Prc , Ps$1
r

Prs , !82"

with

Prc$
1
2 '1!!"1 "Nr!?r↑!?r↓(

$
1
2 #

2r$%1
ei(*/2)(1"3r)(Nr!?r↑!?r↓),

Prs$
1
2 '1!!"1 "Mr!?r↑"?r↓(

$
1
2 #

3r$%1
ei(*/2)(1"2r)(Mr!?r↑"?r↓). !83"
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Using the projection operators, the partition function can
be written as

Z$Tr'e":HPcPs( . !84"

A Euclidean path-integral representation can be obtained by
splitting the exponential into M number of time slices,

Z$Tr'!e"4HPcPs"
M( , !85"

where 4$:/M . Now the partition function can be written as

Z$! 1
i&

d f̄ i&d f i&d0 icd0 is

# #
Ni$",

,

#
Mi$",

,

#
2 i$%1

#
3 i$%1

e"S. !86"

Here i$(r ,3) runs over the 2!1-dimensional space-time lat-
tice with 3$1,2, . . . ,M time slices. The action S has the
following form:

S$S3
f!S3

0c!S3
0s!4#

3$1

M

H!N3 ,M 3 ,03c ,03s , f̄ 3& , f 3&"

!87"

with

S3
f$ #

r ,3$1

M

#
&

' f̄ 3&!23!133!1 f 3!1,&" f 3&"( ,

S3
0c$ #

r ,3$1

M

N3" 03c"03"1,c!
*

2 !1"33" # , !88"

S3
0s$ #

r ,3$1

M

M 3" 03s"03"1,s!
*

2 !1"23" # .
Here the spatial index r is suppressed for clarity. The Ising
variables 23 and 33 are defined on the links connecting ad-
jacent time slices and can be regarded as the time component
of the Ising gauge fields.
The sum of Ht and H8 can be decoupled using the

Hubbard-Stratanovich fields 5rr! and 6rr! ,

e"4(Ht!H8)$! 1
rr!

1
3
d5rr!d5rr!

* d6rr!d6rr!
* e"St ,8.

!89"

Using the expressions for Ht and H8 ,

Ht$"t #
rr!,&

!br&
† br!& f r&

† f r!&!H.c.",

!90"

H8$8 #
rr!,&

arr!!br&
† br!& f r& f r!&!H.c.",

we have

St ,8$
1
44 #

rr!,&
7'2&5rr!&

2"5rr!!br&* br!&!t f̄ r& f r!&

!arr!8 f r& f r!&"(!'2&6rr!&
2"6rr!!br&* br!&

"t f̄ r& f r!&"arr!8 f r& f r!&"(!c.c.9. !91"

Rearranging terms, we get

St ,8$
1
4 4 #

rr!,&
'2&5rr!&

2!2&6rr!&
2"!5rr!!6rr!"br&* br!&

"t!5rr!"6rr!" f̄ r& f r!&"arr!8!5rr!"6rr!" f r& f r!&

!c.c.( . !92"

Rewriting this in terms of br and zr , we get

St ,8$
1
4 4#

rr!
'#

&
'2&5rr!&

2!2&6rr!&
2

"t!5rr!"6rr!" f̄ r& f r!&"arr!8!5rr!"6rr!" f r& f r!&(

"!5rr!!6rr!"!br
†br!zr

†zr!!br
†br!zrzr!

† "!c.c.( .
!93"

In order to decouple br from zr , another Hubbard-
Stratanovich transformation is necessary. Using similar pro-
cedures, the term

"
1
4 4#

rr!
'!5rr!!6rr!"!br

†br!zr
†zr!!br

†br!zrzr!
† "!c.c.(

!94"
can be decoupled as

"
1
16 4#

rr!
!5rr!!6rr!"'2&Brr!&

2!2&Drr!&
2!2&prr!&

2

!2&qrr!&
2"!Brr!!Drr!"zr

†zr!"!prr!!qrr!"zrzr!
†

"!prr!"qrr!!Brr"Drr!"br
†br!!c.c.( , !95"

We now make a saddle-point approximation and keep the
Ising fluctuations around this saddle point. The natural
choices are

5rr!"6rr!$2rr!3rr!5 f ,

!5rr!!6rr!"!Brr!"Drr!!prr!"qrr!"$3rr!5c , !96"

!5rr!!6rr!"!Brr!!Drr!!prr!* !qrr!* "$2rr!5s ,

where 2rr!$%1 and 3rr!$%1 are Ising fluctuations. We
drop all of the constant terms and define the following vari-
ables:

t f$
1
4 t5 f , tc$

1
165c , ts$

1
165s , t8$

1
4 85 f

!97"
to obtain
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St ,8
eff $"4#

rr!
#
&

'2rr!3rr!! t f f̄ r& f r!&!t8arr! f r& f r!&"

!tc3rr!br
†br!!ts2rr!zr

†zr!!c.c.( . !98"

Combining all the results, the approximate full partition
function can be written as

Z̃$! 1
i&

d f̄ i&d f i&d0 icd0 is

# #
Ni$",

,

#
Mi$",

,

1
$i j%

#
2 i j$%1

#
3 i j$%1

e"S, !99"

where 2 i j and 3 i j are Z2 gauge fields living on the nearest
neighbor links of the space-time lattice. The total action S is
given by

S$S3
f!S3

0c!S3
0s!S8!S0!Su!Sv !100"

with

S3
f$"i #

i , j$i! 3̂
#
&

' f̄ i&!2 i j3 i j f j&" f i&"( ,

S3
0c$"i #

i , j$i" 3̂
Ni$0 ic"0 jc!

*

2 !1"3 i j"% ,
S3

0s$"i #
i , j$i" 3̂

Mi$0 is"0 js!
*

2 !1"2 i j"% ,
S8$4 #

i , j$i! x̂
t82 i j3 i j!ai j f i& f j&!c.c.",

S0$"4 #
i , j$i! x̂

#
&

' t f2 i j3 i j f̄ i& f j&

!tc3 i jbi*b j!ts2 i jz i*z j!c.c.( ,

Su$4u#
i

!Ni"N0"2,

Sv$4v#
i

!Mi"
2, !101"

where 3̂ and x̂ represent the time and spatial links. ai j
$arr! on the spatial links and zero otherwise.
Using the Poisson resummation formula, one can show

that

#
Ni

e"(Su!S
3
0c)$e# i , j$i" 3̂(1/24u)3 i jcos(0 ic"0 jc)"SB

2
,

#
Mi

e"(Sv!S
3
0s)$e# i , j$i" 3̂(1/24v)2 i jcos(0 is"0 js) !102"

with

SB
3 $"iN0 #

i , j$i" 3̂
" 2*l i j

3 "
*

2 !1"3 i j" # . !103"

Here l i j
3 is defined as

l i j
3 $Int$C i j

c

2*
!
1
2% !104"

with C i j
c $0 ic"0 jc!(*/2)(1"3 i j) is the gauge invariant

phase difference across the temporal link. Int denotes the
integer part. One can see that the Berry phase term for 2 i j is
absent. This is due to the fact that we have equal amplitudes
for up-up and down-down pairing in the equal spin pairing
state, analogous to particle-hole symmetry in the charge sec-
tor.
Gathering these terms, the final form of the action is given

by

S$S f!Sc!Ss!SB
2!Sg !105"

with

S f$"#
i j ,&

2 i j3 i j' t i j
f f̄ i& f j&! t̃8ai j f i& f j&!c.c.("#

i&
f̄ i& f i& ,

Sc$"#
i j

t i j
c 3 i j!bi*b j!c.c.",

Ss$"#
i j

t i j
s 2 i j!ziz j!c.c.". !106"

Here t i j
c is 4tc on the spatial link and 1/44u on the temporal

link. Similarly t i j
s is 4ts on the spatial link and 1/44v on the

temporal link. t i j
f $4t f on the spatial link and t i j

f $"1 on the
temporal link. And t̃8$4t8 . The last term of Eq. !105" cor-
responds to the Maxwell terms for the Z2 gauge fields, that
we assume are generated after we integrate out excitations at
high energies,

Sg$"K1#
!

1
!

2 i j"K2#
!

1
!

3 i j"K3#
!

1
!

2 i j3 i j .

!107"

These are the simplest terms providing dynamics of the
gauge fields that are consistent with the gauge symmetries,

Z23 : bi→t ibi ; f i&→t i f i& ; 3 i j→t it j3 i j ,

Z22 : zi→sizi ; f i&→si f i& ; 2 i j→sis j2 i j ,
!108"

where t i and si are %1. In the future we will call any particle
that transforms under the first and the second transformations
of Eq. !108" as having Z23 and Z22 charges, respectively.

B. Spin singlet insulating phases

Before discussing possible spin singlet insulating phases
of the combined action !105"–!107" it is useful to review
properties of a pure Z2#Z2 gauge theory !107". Under dual-
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ity transformation defined in Refs. 7,46 and 47 this model
becomes a generalized Ashkin-Teller model,48

SAT$"Kd1#
$i j%

v iv j"Kd2#
$i j%

uiu j"Kd3#
$i j%

uiv iu jv j .

!109"

Here ui and v i are Ising variables defined on the dual lattice
in d$2!1. We can identify five possible phases of Eq.
!109":

!i" fully ordered phase $u%<0, $v%<0, $uv%<0;
!ii" partially ordered phase $u%<0, $v%$0, $uv%$0;
!iii" partially ordered phase $u%$0, $v%<0, $uv%$0;
!iv" partially ordered phase $u%$0, $v%$0, $uv%<0;
!v" disordered phase $u%$0, $v%$0, $uv%$0.

As pointed out in Ref. 7 the Ising variables of Eq. !109"
correspond to the Z2 vortices of the original gauge model.
They describe gauge field configurations with plaquette
products equal to "1, i.e., plaquettes pierced by Z2 fluxes.
Following Ref. 7 we call such Z2 vortices ‘‘visons.’’ In fact
we have three kinds of visons: 2 visons that describe Z2
vortices of 2 , 3 visons that describe Z2 vortices of 3 , and
'23( visons that describe a composite of 2 and 3 Z2 vorti-
ces. The three are not independent, any one of them can be
thought of as a composite object of the other two. However,
we should treat all of them on equal footing since they rep-
resent distinct topological objects. The appearance of the
long range order in the Ashkin-Teller model corresponds to
the condensation of visons in the original gauge model and
describes transition to the confining phase. From these argu-
ments it follows that there are five distinct phases of the pure
gauge model in Eq. !107": one fully confining phase, three
partially confining phases, and one fully deconfining phase,
that correspond to the fully ordered, three partially ordered,
and one fully disordered phases of the Ashkin-Teller model.

!i" Fully confining phase. 2 and 3 visons are condensed
simultaneously. This also implies condensation of
'23( visons.

!ii" Partially confining phase. 3 visons are condensed and
2 and '23( visons are gapped.

!iii" Partially confining phase. 2 visons are condensed and
3 and '23( visons are gapped.

!iv" Partially confining phase. '23( visons are condensed
and 2 and 3 visons are gapped.

!v" Deconfining phase. All visons are gapped.

Condensation of visons has dramatic effects on the mo-
tion of spinons, holons, and neutral fermions in the model
!105"–!107". We find drastically different excitation spectra
depending on what vortices are condensed. The reason for
this is a geometrical phase factor of * that particles with Z2
charges acquire when they circle around an appropriate Z2
vortex. For example, spinons and neutral fermions get a geo-
metrical phase factor of * when they are transported around
a 2 vison, and holons and neutral fermions get a minus sign
when they circle around a 3 vison. This means that when

visons are present in the ground state, the coherent motion of
the corresponding particles is highly frustrated and they may
not be considered as elementary excitations. Only the par-
ticles that are neutral with respect to the appropriate Z2 sym-
metry may propagate freely in a phase with condensed vi-
sons. And the particles that carry such Z2 charges will have
to bind into neutral pairs. This is the essence of the confine-
ment argument discussed in Refs. 46 and 7.
When we apply the geometrical phase-confinement argu-

ment to the spin singlet insulating states we find the same
phases as discussed in Sec. IV E.

• In a phase of type !i" all kinds of Z2 vortices are con-
densed. Therefore particles that carry any Z2 charges will
be bound. This is a fully confining phase where only fully
neutral composites are allowed. Holons, spinons, and neu-
tral fermions are confined !phase CSF".

• In a phase of type !ii" we have a condensate of 3 visons. As
a result particles that carry Z23 charges are confined, but
particles that carry Z22 charges are liberated. Spinons are
free, and holons are bound to the neutral fermions !phase
CFSB".

• In a phase of type !iii", that has a condensate of 2 visons,
we have a confinement of particles with Z22 charges and
deconfinement of particles with Z23 charges. Holons are
free, and spinons are bound to the neutral fermions !phase
CBSF".

• In a phase of type !iv" we do not have individual 2 and 3
visons in the ground states, but only their composites,
'23( visons. The geometrical phase argument becomes
somewhat subtle when we consider '23( visons. Particles
that carry either one of Z23 or Z22 charges will get a *
phase shift when they circle around such a vortex. How-
ever, particles that carry both charges acquire no phase. So,
in a D-type phase particles that carry one of the Z23 or Z22
charges are confined, but particles that carry both charges
are deconfined. Holons and spinons are bound, and neutral
fermions are free !phase CSBNF".

• Finally, in a phase of type !v" we have no condensed vi-
sons, which means that all the particles are liberated. Ho-
lons, spinons, and neutral fermions are deconfined !phase
CBSBNF".

C. Broken-symmetry phases

In this section we show using Z2#Z2 theory that even
states with the long-range order in the model !105"–!107",
i.e., p-wave superconductors, spin singlet superconductors,
nematic insulators, and nematic superconductors may differ
in their topological ordering and carry the remnants of the
spin-charge separation that appears so dramatically in the
insulating phase.
We begin by reviewing the case of a p-wave supercon-

ductor.

• The simplest p-wave superconductor that may be deduced
from the model !105"–!107" is when holons and spinons
condense simultaneously, so the system acquires finite ex-
pectation values of b and z. The geometrical phase argu-
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ment when applied to this system tells us that an isolated
hc/2e vortex or a meron are no longer well defined exci-
tations, since they acquire a phase shift of * when circling
around a holon or a spinon, respectively. However, if we
bind an hc/2e vortex with a 3 vison we find that this
composite can propagate freely. The geometrical phases
acquired by the two upon encircling a holon add up to 0 or
2* . Equivalently, a meron, when bound to a 2 vison, be-
comes a well defined excitation in the presence of spinon
condensate.

• Another possible phase of a p-wave superconductor is
when we condense holon pairs and spinons, i.e., b2 and z.
In this phase merons are still bound to 2 visons, however,
hc/2e vortices and 3 visons are now deconfined. The origi-
nal holons are reduced to Ising variables, which we can
call b isons, following Ref. 7. They carry the leftover of
the charge symmetry, that was broken from U!1" to Z2, and
are well defined excitations in this phase.

• Analogously to the previous case we can consider a situa-
tion with condensed b and z2. This phase will have bound
hc/2e vortices and 3 visons and liberated merons and 2
visons. Spinons become Ising variables, z isons, that carry
the residual Z2 spin quantum numbers.

• A different type of a p-wave superconductor occurs when
holon pairs and holon-spinon composites condense simul-
taneously, i.e., b2 and bz acquire expectation values !this
also fixes the expectation value for z2). In such a phase
spinons and holons are reduced to a single Ising variable,
since knowing b automatically gives z. This bz ison carries
the residual spin-charge quantum number of the system. A
stable topological object in this phase may be constructed
by taking any two of the set (hc/2e vortex, meron, 3 vison,
2 vison".

• Finally, we may have a phase with condensed holon and
spinon pairs, b2 and z2. This gives us separate b isons, z
isons, hc/2e vortices, merons, 3 visons, and 2 visons.

The last four phases are the triplet analogs of the exotic SC*
phase discussed in Ref. 7 in the case of singlet superconduct-
ors. We now consider the case of a spin-singlet supercon-
ductor.

• The simplest kind of a spin singlet superconductor occurs
when we condense simultaneously holons b and 2 visons.
The former ensures confinement of hc/2e vortices and 3
visons, whereas the latter gives rise to binding of neutral
fermions to spinons.

• Another possibility is to have a condensate of holon pairs
b2 and 2 visons. This liberates hc/2e vortices and 3 vi-
sons, produces b isons that carry charge Z2 number, and
leaves neutral fermions bound to spinons.

• Another option is to have a condensate of bosons b with
gapped 2 visons. This means bound hc/2e vortices and 3
visons, and liberated neutral fermions and spinons.

• The most intriguing phase in this series is obtained when
we condense holon pairs b2 and holon 2 vison composites.

Excitations in this phase will be any pair from the set
(hc/2e vortex, 3 vison, @ , z) and b isons.

• Finally we can have a condensate of b2 and gapped 2
visons. This gives unconfined hc/2e vortices, 3 visons,
neutral fermions, spinons, and b isons.

Of the five phases above, four of the last ones may be con-
sidered as SC* phases.
The construction given above for p-wave superconducting

states and spin singlet superconducting states may be gener-
alized to the case of spin-nematic insulators and nematic su-
perconductors. In those cases, just as in the two discussed
above, we find five possible states. One of these is a tradi-
tional version, whereas the other four are of the unconven-
tional * variety that may be thought of as containing traces
of quantum number separation.
The reader may be worried that we do not find hc/4e

vortices * disclinations in our discussion of various phases
of p-wave superconductors. As in the previous sections we
assumed that these excitations have been gapped out 'see
discussion after Eq. !79"(.

VI. DISTINGUISHING DIFFERENT
FRACTIONALIZED PHASES

In previous sections, we have seen how various fraction-
alized phases can arise in the context of Kondo lattice mod-
els and systems with a tendency towards p-wave supercon-
ductivity or superconductivity coexisting with magnetism.
These phases can be described in the language of vortex and
skyrmion condensation or in terms of a Z2#Z2 gauge theory.
However, one might wonder if these results are an artifact of
these formalisms. In particular, one can ask how these phases
can be distinguished—both as a matter of principle and as a
practical experimental issue—from each other and from un-
fractionalized phases. As Wen11 and, more recently, Senthil
and Fisher4 have emphasized recently, their ‘‘topological
order’’—i.e., the sensitivity of the ground state to changes of
the topology of the system—provides one means of distin-
guishing fractionalized phases.
This characterization of fractionalized phases is crucial

because other heuristic definitions of fractionalized phases
can fail. To see why this is so, consider the intuitively ap-
pealing statement that a fractionalized phase is distinguished
from a conventional phase by asking for the lowest energy
excitation with, for instance, spin 1/2. In the conventional
case, this would be an electron which also carries an electric
charge e. In the fractionalized phases of the kind discussed
above, one might expect that the corresponding excitation is
a spinon which is charge neutral. However, this test for frac-
tionalization fails if there is an attractive interaction between
the holons and spinons which binds them into an electron at
low energies. This could, in principle, happen without going
through a phase transition. !Unlike in an unfractionalized
phase, holons and spinons would still exist as unbound exci-
tations, but at higher energies." Then, the lowest energy ex-
citation with spin 1/2 is an electron !as opposed to a spinon"
though the system is adiabatically connected to a fractional-
ized phase !see Refs. 13, 28, and 29 for a discussion of this
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effect". Furthermore, other tests such as the vanishing of the
quasiparticle residue at some point of the Brillouin zone also
fail in this situation. Hence we turn to the characterization in
terms of the topological properties of the system.
Topologically ordered systems are partially characterized

by their ground-state degeneracy on the annulus, the torus, or
higher-genus manifolds, over and above any degeneracy
which may be due to broken symmetry. Consider the CBSF
phase. It has a twofold degenerate ground state on the annu-
lus. The two ground states correspond to periodic and anti-
periodic boundary conditions for holons and spinons as they
encircle the center of the annulus. In either case, electrons
themselves have periodic boundary conditions, as they must.
In an unfractionalized phase, spinons and holons are con-
fined within an electron so the two states are identical; the
excitations which could distinguish them are not part of the
spectrum. By the same reasoning, the CFSB and CSBNF
phases also have two degenerate ground states on the annu-
lus. By extension, all of these states have ground-state de-
generacy 4g on a genus g surface. On the other hand,
CBSBNF has four degenerate ground states. We can inde-
pendently choose periodic or antiperiodic boundary condi-
tions for the charge and spin bosons. The boundary condi-
tions for the neutral fermions are then determined by the
requirement that electrons must have periodic boundary con-
ditions. On a genus g surface, it has degeneracy 16g.
These degeneracies can be interpreted in terms of the vi-

son spectra of the fractionalized states. The two ground states
of CBSF on an annulus correspond to the presence or ab-
sence of a 3 vison !i.e., a v) in the center of the annulus; the
two ground states of CFSB correspond to the presence or
absence of a 2 vison !a v!); the two ground states of CSBNF
correspond to the presence or absence of a 23 vison in the
center of the annulus. The four ground states of CBSBNF
correspond to the presence or absence of 2 and 3 visons in
the center of the annulus. The interpretation of these ground
states in terms of visons forms the basis for an experimental
probe of topological order proposed by Senthil and Fisher.19
We will return to this issue later but let us, in the meantime,
continue to pursue the question of the distinction in principle
between different fractionalized phases.
Different states at the same level of fractionalization have

the same ground-state degeneracy; CBSF, CFSB, and
CSBNF all have two degenerate ground states on the annu-
lus. In order to distinguish them, we must consider their
quantum number spectra. CSBNF does not have spin-charge
separation, i.e., it is not possible to isolate a charge-0, spin-
1/2 excitation at finite-energy cost. Furthermore it is possible
to isolate a neutral Fermionic excitation. Both of these stand
in contrast to CBSF and CFSB which exhibit spin-charge
separation but do not support neutral Fermionic excitations.
Hence, we conclude that CSBNF is distinct from the other
two states despite having the same ground state degeneracy.
One might be tempted to conclude that CBSF and CFSB

are distinct because the lowest-energy charged excitation is a
boson in one phase and a fermion in another phase. How-
ever, if a holon in CBSF forms a bound state with a 3 vison,
the resulting bound state will be Fermionic; similarly, if a
spinon in CBSF forms a bound state with a 3 vison, the

resulting bound state will be Bosonic. Hence, as a result of
the seemingly innocuous formation of bound states, the
CBSF and CFSB states appear to metamorphose into each
other. Thus one is instead tempted to conclude that the CBSF
and CFSB phases can be adiabatically connected to each
other.
This contention is supported by considering the singlet

superconducting state which results if holons condense in
CBSF or if holon-2 vison composites condense in CFSB
!see Fig. 1". It is easy to see that the superconducting states
in either case are conventional and are smoothly connected
to a BCS state. The superconducting state can be disordered
by vortex condensation. This will yield a fractionalized state
!with a twofold degenerate ground state on an annulus" if
vortex pairs condense but individual vortices are uncon-
densed. Since the result could be either CBSF or CFSB, this
appears to support the possibility that there is no phase
boundary between these phases in the part of the phase dia-
gram near the singlet superconducting phase.
However, there is a logically possible alternative, namely

that an operator which is irrelevant in the superconducting
phase and at the critical point becomes relevant at the fixed
points characterizing the fractionalized phases. In that case,
the actual nature of the resulting fractionalized phase de-
pends on short distance physics—the value of the coupling
which is formally irrelevant in the superconductor—and is
not uniquely dictated by knowing that there is proliferation
of hc/e and with hc/2e vortices remaining gapped.
Despite this caveat, a scenario in which CBSF and CFSB

are smoothly connected to each other in the vicinity of their
transition to the superconducting state is appealing and plau-
sible. This does not necessarily mean that CBSF and CFSB
are not distinct phases. Their relationship could be similar to
that between a liquid and a gas, which are separated by a
first-order phase transition line which terminates at a critical
point, beyond which a liquid and a gas can be adiabatically
connected without crossing a phase-transition line. In Appen-
dix C, we show that precisely such a scenario does occur in
simpler !though somewhat different" Z2#Z2 gauge theory
models. Thus we tentatively suggest that the first-order phase
transition between the CBSF and CFSB phases terminates at
a critical point. Beyond this critical point, there is no distinc-
tion between these phases, and it is in this region of the
phase diagram that there is a phase transition to the super-
conducting phase.

VII. FLUX-TRAPPING EXPERIMENTS

Let us now consider the practical issue of how we can
identify whether a given system in an unknown phase is
fractionalized or not and, if it is fractionalized, then what its
fractionalization pattern is. To proceed, note first that the
CBSF phase contains in it the seed of superconductivity. As
argued in Ref. 7, condensing the charged boson provides a
natural nonpairing route to superconductivity !of a conven-
tional kind". Similarly, the CFSB phase contains in it the
seed of magnetism—simply condensing the spinon leads to a
conventional state with some kind of magnetic long-range
order. However, it is possible to imagine a transition between
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the CFSB phase and a superconductor which occurs when a
composite formed by a holon and a 2 vison condenses. Simi-
larly, it is possible to imagine a transition between the CBSF
phase and a magnetic phase which occurs when a composite
formed by a holon and a 2 vison condenses.
The feature of most interest to the following discussion is

simply that a direct phase transition should be possible be-
tween the CBSF and CFSB phases and a conventional super-
conductor. Upon going through such a phase transition, the
visons of these phases acquire hc/2e units of electromag-
netic flux to become the hc/2e vortices of the supercon-
ductor. This may be exploited to devise a sensitive test for
the topological order in the CBSF phase, as argued in Refs.
19 and 4.
The test proceeds as follows. Consider an annular sample

of a material which is in a conventional superconducting
phase and let us suppose that we can tune the sample param-
eters adiabatically so that the sample makes transitions be-
tween the superconducting phase and the CBSF and CFSB
phases. Suppose that hc/2e units of electromagnetic flux are
trapped in the annulus when the system is in its supercon-
ducting phase. There must also be a vison trapped in the
annulus so that the holon condensate can have periodic
boundary conditions !without which it would cost infinite
energy": the antiperiodicity caused by the flux hc/2e is can-
celled by the antiperiodicity due to the vison. If the system is
taken into the CBSF phase, the flux escapes since there is no
holon condensate trapping it, but a vison will remain since it
will cost energy !the vison gap" to unwind the antiperiodic
boundary conditions of the !neutral" spinons. If the system is
returned to the superconducting state, then it must generate
flux %hc/2e so that the holon condensate can again have
periodic boundary conditions. The same analysis holds if we
take the system into the CFSB phase except that we have to
replace ‘‘holon’’ in the above description by ‘‘holon-vison
composite.’’ On the other hand, if the system undergoes a
transition to an unfractionalized phase, then the vison can
escape since there are no deconfined spinons or holons
whose boundary conditions would be affected by its escape.
Of course, this experiment would simply be confirming

the result which we arrived at in the previous section: that
the CBSF and CFSB phases can be adiabatically continued
into each other, particularly in the neighborhood of a conven-
tional singlet superconducting phase.
Let us now consider a more complicated flux-trapping

experiment in which, as an intermediate step, we take the
system through the higher-level fractionalized phase,
CBSBNF !see Fig. 1". This phase has two distinct vison ex-
citations. One of these visons can be envisioned as a descen-
dent of the 3 vison of the CBSF phase; we will refer to this
as v . The other can be envisioned as a descendent of the 2
vison of the CFSB phase or as a by-product of the further
fractionalization of the fermionic spinon of CBSF; we will
refer to this as v!. A direct transition from CBSBNF to the
CBSF phase occurs when the visons v! condense while that
from CBSBNF to CFSB occurs when the visons v condense.
The presence of two distinct visons in the CBSBNF phase
distinguishes it from the CBSF and CFSB phases—indeed it
will have a ground-state degeneracy of 16 on a torus.

Now consider a conventional BCS superconductor. This is
obtained from CBSF by condensing the holon. The flux-
trapping experiment performed by moving between the su-
perconductor and CBSF gives a positive result. Now con-
sider a modification of the experiment so that we start in the
superconducting phase, move first to CBSF, then to
CBSBNF, then back into CBSF before finally going back
into the superconductor. This again gives a positive result
since v is trapped in the annulus and it can never escape.
Upon making the transition between the CBSF and CBSBNF
phases, a v! will be generated with probability 1/2 since the
ground state of CBSF with one v will make a transition to
either of the corresponding ground states of CBSBNF with
equal probability. However, this v! will escape upon the
transition from CBSBNF back to CBSF. Now consider a
further modification in which we go all the way from the
superconductor to the CFSB phase through the CBSF and
CBSBNF phases and then return by the same route to the
superconductor. The result of this experiment will be nega-
tive half of the time. This is because in going from CBSBNF
to CFSB, the vison v condenses. Thus v which was trapped
in the hole until the phase CBSBNF was reached can escape
on moving into the CFSB phase. In going from CFSB back
to CBSBNF, a v is generated with probability 1/2—the two
ground states are obtained with equal proability. This v , if it
is generated, will lead to the generation of flux hc/2e in the
superconducting state.
Hence, there appears to be a difference between the CBSF

and CFSB which can be detected in this experiment. It ap-
pears that these phases cannot be continuously connected—
since the probability of a negative result for the flux-trapping
experiment of the previous paragraph must jump from 0 to
1/2—at least in the vicinity of the CBSBNF phase. This can
be understood in the following terms. In the CBSBNF phase,
there are two distinct types of visons, v and v!. If one or the
other condensed, a transition occurs to CFSB or CBSF. The
remaining vison in CBSF ‘‘remembers’’ that it is a v vison.
Meanwhile the vison in CFSB remembers that it is a v!
vison. However, if we take the system far from CBSBNF so
that a bound state can form between a v and a holon and also
between a v and a spinon, then v now looks like a v! and the
distinction between the two phases is blurred. Combining
this reasoning with that of the previous section, we propose
the phase diagram of Fig. 6.

VIII. DISCUSSION

When electrons interact strongly, a number of interesting
phenomena are known to occur, including unconventional
superconductivity and magnetism. As we have seen in this
paper, many of the physical settings which give rise to these
phenomena also have the potential to exhibit electron frac-
tionalization. Different theoretical approaches, adapted to
these specific systems, suggest seemingly different fraction-
alized phases. It is natural to ask if these phases are truly
different and, if so, what their organizing principle is.
In this paper, we have pursued the idea3,4 that a crisp and

coherent way of understanding quantum number fractional-
ization is provided by the concept of topological order intro-
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duced in the context of fractional quantum Hall liquids,49
anyon superfluids,50 chiral spin states,51 and short-range
resonating valence bond spin states.30 We presented two ap-
proaches for understanding such topological order. The first
one relies on the recently developed Z2 gauge theory of spin-
charge separation, originally suggested for the high-Tc cu-
prates, and generalizes it to a Z2#Z2 theory to include pos-
sible fractionalization of spin and charge quantum numbers.
Some of the interesting fractionalized phases are: CBSF
!Bosonic holons and Fermionic spinons", CFSB !Fermionic
holons and Bosonic spinons", CSBNF !bound Bosonic ho-
lons and spinons and neutral fermions", and CBSBNF
!Bosonic holons and spinons and neutral fermions". Any one
of these phases can be further characterized by possible bro-
ken symmetries with conventional order parameters. Each of
the fractionalized phases corresponds to a different deconfin-
ing phase of the pure Z2#Z2 gauge theory and will have
appropriate topological Z2 vortices, visons, as finite-energy
excitations.
An alternative picture of fractionalization which is also

presented in this paper uses the language of quantum disor-
dered superconductors and magnets. When topological
ordering—defined by the suppression of certain defects—
occurs, the Goldstone modes associated with various broken
symmetries can screen the corresponding quantum numbers
of the Fermionic quasiparticles. In this way, these quasipar-
ticles can be bleached of some or all of their quantum num-
bers. This may be implemented mathematically with U!1"
particle-vortex duality in both the charge and spin sectors.
We arrive at essentially the same picture as that of the Z2
#Z2 gauge theory. In those insulating phases in which hc/2e
vortices are condensed, charge is bound to the Fermionic
quasiparticles. When hc/2e vortices are gapped and hc/e
vortices are condensed, charge carrying holons can propagate
separately from the electrically neutral Fermionic quasiparti-
cles. In the spin sector, we can consider either meron or
skyrmion !which carry twice the topological charge of
merons" condensation, with gapped merons in the latter case.
In the former case, spin is confined to the Fermionic quasi-
particles, and in the latter case spinons will exist as indepen-
dent objects, deconfined from the Fermionic quasiparticles.

We have also discussed the possibility of quantum disordered
phases in which the condensed topological objects are the
hc/2e vortex–meron composites, but not hc/2e vortices or
merons separately. Such phases have spinons and holons
bound together but deconfined from the neutral Fermionic
quasiparticles.
An important issue discussed in this paper is whether one

can distinguish the phases obtained by quantum disordering
the spin and charge sectors of the system, for example, the
phases CFSB and CBSF of the quantum disordered p-wave
superconductor. The simplest choice seems to be the identi-
fication of the spin excitation as a Fermionic or Bosonic
particle. This, however, is not a reliable tool. In the Z2#Z2
gauge theory formulation, both spinons and holons carry Z2
charges, so a bound state of a Z2 vortices with either one of
them !this can also be thought of as attaching Wilson loops
to the particles" will change its statistics from Fermionic to
Bosonic or vice versa.17,42,43,52 In the deconfining phase such
vortices are gapped. However, if a bound state between a Z2
charge carrying particle and a Z2 vortex forms, this bound
state may have a lower energy than the original particle. This
means that in both CFSB and CBSF phases the lowest en-
ergy spin- or charge-carrying excitations can exist as either
bosons or fermions. The subtleties discussed above lead us to
consider flux-trapping experiments of the type discussed in
Sec. VII. Combining all of these considerations, we outlined
one scenario in which CBSF and CFSB phases can be sepa-
rated by a first-order transition which terminates at a critical
point. On the other hand, one can go from CBSF to CFSB
through CBSBNF phase by two continuous transitions. Thus,
if this scenario is correct, the relation between CBSF and
CFSB is somewhat similar to that between liquid and gas
phases. We, however, defer offering any definitive conclu-
sion.
Spin charge separation in one-dimensional systems is fun-

damentally different from its two-dimensional counterpart,
since it does not involve topological order. Another non-
trivial realization of electron number fractionalization which
is analogous to that presented here can occur in multicom-
ponent quantum Hall systems and was discussed in Refs. 40
and 53.
Another avenue for further research is the investigation of

quantum-disordered states of triplet superconductors with
more complicated spin structures appearing in some of the
superfluid phases of 3He. We expect that these will share
some features of noncollinear spin-density waves.54 Further
exotic phases are likely to occur upon quantum-disordering
states with multiple order parameters. We have considered
one of the simplest cases of this—antiferromagnetism and
superconductivity—but there are more complicated possibili-
ties, involving incommensurate charge and/or spin order.
In addition to the phases CBSF and CFSB that have ap-

peared in the literature before, we proposed the possibility of
two additional quantum number separated phases in these
systems: phase CSBNF in which the excitations are a spin-
1/2, charge e boson, a neutral spinless fermion and a vison
and phase CBSBNF with a charge e spinless boson, a neutral
spin 1/2 boson, a neutral spinless fermion, and two distinct

FIG. 6. A schematic phase diagram indicating how the CBSF,
CFSB, CSBNF, CBSBNF, and conventional singlet superconduct-
ing phases might fit together. The thick lines are first-order phase
transitions and the thin lines are second-order phase transitions.
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visons, simultaneously condensed hc/e vortices and skyrmi-
ons.
The possibility of a higher SO!5" symmetry which unifies

d-wave superconductivity and antiferromagnetism has been
suggested for the high-Tc cuprates and organic supercon-
ductors in Ref. 55. In the Sr2RuO4 materials, a similar sym-
metry has been proposed in Ref. 56 which combines p-wave
superconductivity and ferromagnetism. An effective model
for the coupling of quasiparticles to a fluctuating SO!5" order
parameter has been derived in Ref. 57. In this model holons
and spinons are not segregated into independent quasiparti-
cles from the very beginning but are naturally combined into
composite quasiparticles which transform as spinors of
SO!5". Such spinors are spin doublets and carry charge e.58,59
There are also neutral fermions which carry no quantum
numbers. One can see a striking resemblance between these
excitations and the excitations in the phase CBSBNF. This
suggests the interesting possibility that the restoration of the
SO!5" symmetry in models with strong quantum fluctuations
manifests itself not in the existence of a bicritical point on
the phase diagram, but in the appearance of a specific form
of quantum number separation of the electrons. A detailed
discussion of quantum disordering phenomena in models
with SO!5" symmetry requires a detailed analysis of the non-
Abelian Berry’s phases involved in the description of SO!5"
spinors and will be presented in subsequent publications.
The states which we have discussed, as well as the more

complicated ones alluded to above, have potential applica-
tion to a variety of materials, including not only the
cuprates,22 but also Sr2RuO4;21 heavy fermion superconduct-
ors, such as CeIn3;24 and organic superconductors, such as
E-(ET)2Cu'N(CN)2(Cl.23 All of these compounds have
magnetic !in come cases incommensurate" phases in proxim-
ity to p-wave or d-wave superconducting states. It is possible
that pressure, chemical substitution, magnetic field, etc.,
might drive a transition into one of the phases described here
in which the magnetism and the superconductivity are disor-
dered by quantum fluctuations.
Ideas presented in this paper should also apply to Bose-

Einstein condensates of spinor bosons, such as alkali atoms
23Na and 87Ru which have a hyperfine spin F$1. For ex-
ample, when restricted dimensionality or quantum fluctua-
tions destroy the spin ordering we expect to find condensa-
tion of pairs of atoms into a global spin singlet state, and
when quantum fluctuations in the charge sector destroy the
U!1" phase ordering we can find states characterized by a
spin nematic order. Some of these phenomena have been
discussed in Ref. 25.
To summarize, we have studied the possibility of fraction-

alization in systems with ordering tendencies in the charge
and spin sectors, including Kondo lattices, p-wave supercon-
ductors, and systems with simultaneous d-wave supercon-
ducting and antiferromagnetic fluctuations. In the case of
p-wave superconductors we find that the rich internal struc-
ture of their order parameter allows for the existence of the
following quantum disordered phases: a charge 4e singlet
superconductor, a spin singlet insulator, and a spin nematic
insulator. For both the p wave superconductors and the
d-wave superconductor/antiferromagnet systems, we find

that the quantum disordered phases may have separated
quantum numbers, depending on the topological order, which
can be characterized by specifying the nature of the finite-
energy Z2 visons.
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APPENDIX A: KONDO LATTICE MODEL

In this appendix, we provide some of the details of the Z2
gauge theory reformulation of the Kondo lattice model dis-
cussed in Sec. II. Consider the Hamiltonian in Eq. !1". As in
the discussion of the pure exchange Hamiltonian, we first
replace the spin operator Sr

" by the boson operator bsr
-ei.r. The exchange Hamiltonian takes the form of Eq. !6"
and the Kondo coupling takes the form of Eq. !24". The
electron hopping term is unaffected. We now change vari-
ables to spinon and holon operators as in Eqs. !7", !26", and
!27". The terms Ht ,Hk , and Hex are now given by Eqs. !29",
!25", and !9", respectively. In the presence of the Kondo
coupling between the local moments and the conduction
electrons, the total (z component of the" spin at each site is

nr!
1
2 cr

†2zcr . !A1"

We therefore define the total spinon number

Nr
tot$2nr!cr

†2zcr . !A2"

Note that Nr
tot is conjugate to the phase 0r of the spinon

field. We will work with the operators (zr ,Nr
tot ,6↑r ,6↓ ,r)

instead of the original electron and local spin S! r operators.
This change of variables, however, introduces some
redundancy—the Hilbert space of states on which the holon
and spinon fields operate is larger than the physical set of
states. This may be seen by noting that with the definition
above, the operator Nr

tot must satisfy
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Nr
tot"cr

†2zcr$even. !A3"

From the definition of the holons, it follows that cr
†2zcr

$6r
†2z6r . Furthermore 6r

†2z6r has the same parity as
6r
†6r . Thus we have the constraint

Nr
tot"6r

†6r$even. !A4"

The Hamiltonian needs to be supplemented with this con-
straint to correctly represent the original model !before the
change of variables".
It is useful to rewrite the exchange and Kondo parts of the

Hamiltonian as follows:

HK!Hex$JK#
r

!6r↑
† 6r↓!H.c.""J #

$rr!%
!zr
2†zr

2!H.c."

!
U
4 #

r
!Nr"1 "2"U#

r
Nr!6r

†2z6r"

!
U
4 #

r
!6r

†2z6r"
2. !A5"

The last term is an interaction between the holons. Clearly
this term cannot affect issues of confinement of the holons
with the spinons. We will therefore drop it for the present
discussion. The last but one term represents an interaction
between the spinon density and the holons. We again expect
that such an interaction is also unimportant for issues of the
stability of fractionalized phases. We will therefore drop this
too.
We may now derive a functional-integral representation of

the system, proceeding as in Ref. 7. The resulting action is

S$S3!Sr!SB . !A6"

Here S3 represents terms involving coupling along the
!imaginary" time direction. This and the Berry phase SB are
exactly the same as in Ref. 7. The spatial part of the action is

Sr$SI!SK!SII , !A7"

SI$"4 #
$rr!%

trr!'zr
†zr!!!6r!↑

† 6r↑!6r↓
† 6r!↓"!H.c.( ,

SK$!4JK#
r

!6r↑
† 6r↓!c.c.",

SII$"4J #
$rr!%

!zr
2†zr

2!H.c.". !A8"

We now combine the terms SI and SII and rewrite them as

"4J #
$rr!%

$ zr†zr!!trr!
2J !6r!↑

† 6r↑!6r↓
† 6r!↓"%2!H.c.!O!64".

!A9"
The last term is a four-holon interaction which we will ig-
nore on the grounds that it cannot affect issues of fractional-
ization. It is convenient to further rewrite the expression
above as follows:

SI!SII$
4J
2 #

$rr!%
$ " zr†zr!!trr!

2J 6r
†6r!!H.c.# 2

!" zr†zr!"trr!
2J 6r

†6r!"H.c.# 2% . !A10"

We may now decouple each of these two terms with a real
Hubbard-Stratanovich field to write

e"(SI!SII)$! 'D5D?(e"(S5!S?), !A11"

S5$
4J
2 #

$rr!%
5rr!
2 "25rr!" zr†zr!!trr!

2J 6r
†6r!!H.c.# ,

!A12"

S?$
4J
2 #

$rr!%
?rr!
2 "2?rr!" zr†zr!"trr!

2J 6r
†6r!"H.c.# .

!A13"

Note that 5rr!$5r!r while ?rr!$"?r!r . We now consider
evaluating the 5 ,? integrals in a saddle-point approximation.
Looking for uniform saddle points, we write

$5rr!%$50 ; $?rr!%$?0 . !A14"

Note that a nonzero value of ?0 requires specifying direc-
tions for all the links of the lattice. The saddle-point equa-
tions are

50$ ) zr†zr!!trr!
2J 6r

†6r!!H.c.* , !A15"

?0$ ) zr†zr!"trr!
2J 6r

†6r!"H.c.* . !A16"

Note that ?0 must be pure imaginary as it is the expectation
value of an anti-Hermitian operator. With nonzero ?0, the
saddle-point action therefore becomes complex—this breaks
time-reversal symmetry !and possibly various lattice symme-
tries due to the need to specify directions to the links". We
restrict ourselves to time-reversal invariant saddle-point so-
lutions, and therefore set ?0$0. The resulting saddle-point
action then preserves all the global symmetries of the origi-
nal model. However, it does break the local Z2 symmetry
introduced by the change of variables to the holons and the
spinons. This can be remedied by keeping a particular set of
fluctuations about the saddle point, namely those associated
with a change in the sign of the fields 5rr! :

5rr!$502rr! !A17"

with 2rr!$%1. The 2rr! may be identified as the spatial
components of a Z2 gauge field. We thus finally arrive at the
action in Eq. !30".
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APPENDIX B: QUANTUM NUMBER SEPARATION
IN SYSTEMS WITH d-WAVE SUPERCONDUCTING
AND ANTIFERROMAGNETIC FLUCTUATIONS

Nodal fermions in a d-wave superconductor are described
by28

S̃ f$! d2x d3 5†'=3"A33
z"vF3zi=x!vFAx"A3

2n! 2!

!v fAx
2n! 2! 3z"v83s7eis.9! i=y"(5 , !B1"

where the electron operators 5a& are defined as

5a&!k! "$$ 511
521
512
522

%$$ ck!F!k!↑

c"k!F"k!↓
†

ck!F!k!↓

"c"k!F"k!↑
†

% !B2"

and the coordinate system was rotated in such a way that the
x axis goes along the nodal direction that we are considering
!see Fig. 7".
Antiferromagnetic fluctuations are introduced via

Sa f$! d3! d2kd2qn! q!c"k!F!k!&
† 2! &:ck!F!k!!q! :!H.c.

$! d2x d3 n! !x "5a&!x "4ab4&
F2! F:5b:!x ", !B3"

where n! $(cos ;,sin ;).
Spin and charge may again be decoupled by rotating the

fermions as in Eq. !48",

5a&$ei.3z/2ei;2z/2@a: , !B4"

with the result

S̃$! d2x d3 @†'=3"vF3zi=x"v83x! i=y"(@

!! d2x d3 @a&!x "4ab4&
F2F:

x @b:!x "

!
1
2! d2x d3!@†'3z=3."2A3

c3z"vF=x.!2vFAx
c(@

!@†'2z=3;"2A3
23z"vF3z2z=x;!2vF3z2zAx

2(@".

!B5"
This describes the same coupling of the quasiparticle cur-
rents to the fluctuations of charge and spin as in Eq. !50",

S̃ f$ S̃ f
0!! d2x d3'J0

c!=3."A3"!Jx
c!=x."Ax"

!J0
2!z†=3z"A3

2"!Jx
2!z†=xz"Ax

2"( !B6"

with

J0
c$@†3z@ , Jx

c$"vF@†@ ,

J0
2$@†2z@ , Jx

2$"vF@†2z3z@ . !B7"

Quantum disordering of the superconducting and antiferro-
magnetic orders in Eq. !B6" may now be achieved by con-
densing vortices and merons with the possibility of five
phases similar to phases 3A–3E in Sec. IV D:

!A" Spinons and holons confined. No quantum number
separation.

!B" Spinons unbound and holons glued to fermions.
!C" Holons free and spinons bound to fermions.
!D" Spinons and holons bound together, decoupled from

fermions.
!E" All excitations decoupled. Free holons, spinons, neu-

tral fermions.

APPENDIX C: ADIABATIC CONTINUATION
BETWEEN DIFFERENT PHASES OF A Z2ÃZ2
GAUGE MODEL WITH MATTER FIELDS.

In the pure Z2#Z2 gauge theory there are five phases that
are distinct and separated by phase transitions. A question
that we address in this section is whether this distinction
survives in the presence of matter fields.

1. Toy models

Let us begin with a simple model,

S$"K1#
!

1
!

2 i j"K2#
!

1
!

3 i j":#
i j

2 i j3 i jv iv j ,

!C1"

where v i$%1 is an Ising matter field. To construct the full
phase digram of this model we consider several limiting
cases. When :$0 we have two independent gauge fields,
each of which has confining and deconfining phases. When
both K1 and K2 are small we have a confining phase for both
2 and 3 , that has no extra degeneracy on topologically non-

FIG. 7. Order parameter for a d-wave superconductor. Gapless
excitations exist at k!F$(%kF,0), (0,%kF).
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trivial manifolds and is labeled 1 in Fig. 8. When K1 is large
and K2 is small we have a phase that is confining for 3 , but
deconfining for 2 !phase 2! in Fig. 8". There is an analogous
phase for K2 large and K1 small !phase 2" in Fig. 8" which is
confining for 2 and deconfining for 3 . When both K’s are
large, we have a fully deconfining phase with degeneracy 4
on a cylinder. When K1$, !BCGF plane in Fig. 8" there are
no frustrated plaquettes for 2 , so we can choose a gauge
where all 2 i j$1. The model is then the same as in Ref. 46
and its phase diagram can be easily constructed. When K1
$0 !ADHE plane in Fig. 8" we find that integrating out 2 i j
and v i only adds a constant to the action for 3 and does not
affect the confinement-deconfinement transition which takes
place for the same value of K2, regardless of the value of : .
When :$, !EFGH plane in Fig. 8" we must have
1!2 i j3 i j$1 on every plaquette, so we can choose a gauge
where 2 i j3 i j$1 on every link. The fields 2 and 3 are iden-
tical and there are only two phases, a confining !phase 1" and
a deconfining !phase 2" with the transition determined by
K1!K2. The full phase diagram may now be obtained by
connecting the lines on the faces of the cube in Fig. 8. It is
immediately clear from this picture that the two partially

confining phases which appeared to be distinct for :$0
!phases 2! and 2" in the ABCD plane" may be continuously
connected through a path that takes advantage of the finite :
region of the phase diagram. It is important to realize that
our argument for the existence of a path connecting phases
2! and 2" does not depend on the details of how the phase
boundaries in Fig. 8 are connected. One can always find a
path which begins in phase 2!, approaches face ABFE, goes
up to EFGH, crosses to EHDA, and finally comes down to
2" without crossing the phase boundaries !this path does not
have to actually be on any of the faces and it may be suffi-
cient to be in their vicinity". It is interesting to note that in
the cross section DBFH in Fig. 8 the phase diagram looks
similar to a liquid-gas phase diagram, where the two phases
2! and 2" may be separated by a first-order transition or
continuously connected arond the critical point which termi-
nates the first-order line.
The real reason why phases 2! and 2" of the gauge theory

!C1" may be connected to each other is that both of them are
related to the Higgs phase !phase 2" for the v i matter field.
This may be explained by noting that in such a Higgs phase
visons of either 2 or 3 are forbidden, but their composite is

FIG. 9. One scenario for the phase diagram of
Eq. !C2" with two kinds of superfluid phases SF1
and SF2. Shaded figure shows a phase boundary
of the superfluid and insulating phases. Diagonal
shading corresponds to the boundary of SF1 and
horizontal shading to a boundary of SF2. There is
a continuous path to go between partially confin-
ing phases 2! and 2" without crossing the phase
boundaries.

FIG. 8. Phase diagram of Eq. !C1". Plane
ABCD corresponds to :$0, EFGH to :$, ,
ADHE to K1$0, BCFG to K1$, , ABFE to K2
$0, and DCGH to K2$, . The pure gauge
model (:$0) has only two partially confining
phases (2! and 2") because not all the possible
lattice Maxwell terms are present. They are sepa-
rated by one first-order or two second-order
phase transitions for small : , but may be continu-
ously connected for larger : .
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not, so this phase should be related to the phases where these
visons are condensed separately !but not simultaneously".
Note that this argument may no longer apply if the matter

field carries a quantum number, and a Higgs phase breaks
some continuous symmetry. Let us, for example, explore the
model where the matter field is an XY order parameter,

S$"K1#
!

1
!

2 i j"K2#
!

1
!

3 i j

":#
i j

2 i j3 i jcos!0 i"0 j". !C2"

In this case, the Higgs phase has superfluid order, and there-
fore is fundamentally distinct from confined insulating
phases. Thus we can no longer easily claim the equivalence
of the two phases in which either 2 or 3 !though not both"
fields are confining.
We can again attempt to construct a phase diagram fol-

lowing construction on each of the outside faces of the cube.
The ABCD plane is the same as in Fig 8. The BCGF plane
(K1$,) will now have three phases: a confining and a de-
confining phases without broken XY symmetry !phases 2"
and 4", and a phase with broken XY symmetry.60 When K1
$0 !ADEH plane" we have four phases. This is obvious
from the fact that when we integrate out 2 i j we find that 3 i j
and cos0i are decoupled from each other, and we have sepa-
rate order-disorder and confinement-deconfinement transi-
tions. We therefore find two superfluid phases SF1 and SF2
that differ in their degeneracy on the nontrivial manifolds !on
the cylinder it is 1 for SF1 and 2 for SF2). The origin of this
extra degeneracy for SF2 is that it has a finite energy topo-

logical excitation: a bound state of 2 and 3 visons that does
not interact with the matter field. This has interesting impli-
cation that we have hc/2e vortices that are bound to either 2
or 3 visons, and the two kinds of vortices are distinct.
We do not at this stage know what the generic phase

diagram for Eq. !C2" in the K1K2: cube is. One possibility
is shown in Fig. 9. As in the Ising case there is a way to
connect phases 2! and 2" continuously by going to finite : .
There is another qualitatively different phase diagram

!without introducing new phases" where the point M is at the
phase boundary with the superfluid phase. This will remove
the possibility of a continuous path between phases 2! and
2" !see Fig. 10".
At this point we are unable to make a definite comment

on of the validity of either of the scenarios shown in Fig. 9 or
Fig. 10. We note, however, that this issue is amenable to
study by numerical or other means. Thus future work should
be able to settle this satisfactorily.
Another important model to consider is one in which the

matter field is Fermionic. An appropriate model is

S$"K1#
!

1
!

2 i j"K2#
!

1
!

3 i j":#
i j

2 i j3 i j@ i@ j ,

!C3"

where the @’s are real fermions. Following the same kind of
arguments as before we find the phase diagram shown in Fig.
11. There is no Higgs phase for the fermions which leads to
phases 2! and 2" being distinct even for finite : .

2. Full Action

Let us now consider the action !105" and ask how many
truly distinct phases it has. The phase space of this model is
large and an explicit construction of the full phase diagram is
difficult. We note, however, that the charge sector of the
theory is precisely the same as Eq. !C2". Consequently, if in
Eq. C2, the two phases 2 and 2! are smoothly connected to
each other, they will necessarily be so for the full action as
well. If on the other hand, in Eq. !C2", the two phases are
distinct, then that is evidence !though not proof" that they are
distinct in the full theory as well. Thus unambiguous deter-
mination of the phase diagram of Eq. !C2" will shed consid-
erable light on the important conceptual issue of whether
CBSF and CFSB are distinct or not.

FIG. 10. Another scenario for a phase diagram of Eq. !C2" when
the point M is exactly on the superfluid-insulator phase boundary.
As before, the shaded figure shows a phase boundary of the super-
fluid and insulating phases with diagonal and horizontal striping
that correspond to SF1 and SF2, respectively. In this case there is no
continuous path connecting phases 2! and 2" without crossing the
phase boundaries.

FIG. 11. Phase diagram of Eq. !C3". When the
matter field is Fermionic distinction between
phases 2! and 2" survives for all : .
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While the distinction between CBSF and CFSB, if any, is
subtle, it is very clear that they are both distinct from
CSBNF. One cannot find any vison attachment that would
map the spectrum of CSBNF to either CBSF or CFSB, which
proves rigorously that it is a phase fundamentally distinct
from the other two.
To summarize the discussion in this section, we argued

that studies, numerical or otherwise, of simple models of the
form of Eq. !C2" should be extremely useful in deciding on
the issue of whether CBSF and CFSB are distinct quantum
phases. One can, however, prove rigorously that CBSF and
CFSB are fundmentally different from the other partially
confining phase of Eq. !105" CSBNF. The other phases of
Eq. !105": the fully confining phase !CSF" and the fully de-
confining phase !CBSBNF", will be distinct from any of the
partially confining ones and from each other as may be seen
from their degeneracy on nontrivial manifolds.

APPENDIX D: UNFRACTIONALIZED PHASES

In this paper, we have, for the most part, focused on states
in which the electron is fractionalized. However, even the
transitions which do not lead to electron fractionalization are
rather interesting. One would ordinarily assume that strong
quantum fluctuations will completely disorder a p-wave su-
perconductor. However, as we pointed out in Sec. IV B, if
hc/4e vortex-* disclination composites are gapped, then the
spin symmetry can be restored without affecting the charge;
alternatively, the superconductivity can be destroyed without
affecting the spin ordering.
Let us consider, first, what happens when flux hc/2e vor-

tices condense, but no other topological defects condense.
Then the charged degrees of freedom are disordered, but the
spin nematic order parameter should be undisturbed. Follow-
ing the arguments of Ref. 61, a possible unfractionalized spin
nematic insulating state is !in the notation of Ref. 61" a trip-
let px density wave:

$@&†!k!Q ,t "@:!k ,t "%$C! Q•2! :
&sin kxa . !D1"

This state is related to the p-wave superconducting state by a
‘‘rotation’’ generated by

O!$! d2k

!2*"2
c↑
†!k "c↓

†!"k!Q ". !D2"

In other words, the triplet px density wave and the p-wave
superconductor are related in precisely the same way as a
charge-density wave and an s-wave superconductor. In par-
ticular, Hamiltonians with short-ranged interactions can be
constructed for which both states are exactly degenerate;
such Hamiltonians could describe a critical point between
these two states.
In the triplet px density wave state, there is no spin mo-

ment !at any wave vector", since the right-hand side of Eq.
!D1" vanishes upon integration over k! . However, the spin-
nematic order parameter, which may be calculated from Eq.
!D1", is nonvanishing:

) SiS j" 1
3 / i jS2* $

1
2 &C! Q&2diag!2/3,"1/3,"1/3",

!D3"
where Si is the ith component of the total spin of the system.
Hence this is the natural spin-nematic state which results
when a p-wave superconductor is quantum disordered by
flux-hc/2e vortex condensation. The possibility of spin nem-
atic states in the context of high-Tc cuprates has been pro-
posed in Ref. 62.
When the spin degrees of freedom are disordered, but the

charge remains ordered, the triplet p-wave superconducting
order parameter and the spin-nematic order parameter van-
ishes; only the charge-4e order parameter is left. The con-
densation of merons causes the Fermionic quasiparticles to
be confined to spin. Once the merons have condensed, the
topological quantum number in the spin sector is no longer
well defined, so the flux hc/4e vortex-* disclination com-
posites become simple flux hc/4e vortices, as we would ex-
pect for a charge-4e superconductor. Said differently, the
meron condensate screens the spin topological charge of the
flux hc/4e vortex-* disclination composites, thereby making
rendering them simple flux hc/4e vortices. Remarkably, by
quantum disordering the spin sector of a p-wave supercon-
ductor, we have changed the charge of its order parameter,
which may, for example, lead to some unusual critical behav-
ior of the superconducting transition.
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