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Abstract
Diffusion Tensor MRI (DT-MRI) can provide important in vivo information for the detection of
brain abnormalities in diseases characterized by compromised neural connectivity. To quantify
diffusion tensor abnormalities based on voxel-based statistical analysis, spatial normalization is
required to minimize the anatomical variability between studied brain structures. In this article, we
used a multiple input channel registration algorithm based on a demons algorithm and evaluated the
spatial normalization of diffusion tensor image in terms of the input information used for registration.
Registration was performed on 16 DT-MRI data sets using different combinations of the channels,
including a channel of T2-weighted intensity, a channel of the fractional anisotropy, a channel of the
difference of the first and second eigenvalues, two channels of the fractional anisotropy and the trace
of tensor, three channels of the eigenvalues of the tensor, and the six channel tensor components. To
evaluate the registration of tensor data, we defined two similarity measures, i.e., the endpoint
divergence and the mean square error, which we applied to the fiber bundles of target images and
registered images at the same seed points in white matter segmentation. We also evaluated the tensor
registration by examining the voxel-by-voxel alignment of tensors in a sample of 15 normalized DT-
MRIs. In all evaluations, nonlinear warping using six independent tensor components as input
channels showed the best performance in effectively normalizing the tract morphology and tensor
orientation. We also present a nonlinear method for creating a group diffusion tensor atlas using the
average tensor field and the average deformation field, which we believe is a better approach than a
strict linear one for representing both tensor distribution and morphological distribution of the
population.
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Introduction
Diffusion tensor magnetic resonance imaging (DT-MRI), initially proposed by Basser and
colleagues (Basser et al., 1994), is a rapidly evolving technique that can be used to investigate
the diffusion of water in brain tissue. It is particularly useful for evaluating white matter
abnormalities in the brain, because the measurement of water diffusion in brain tissue is based
on the movement of water molecules, which is restricted in white matter. Specifically, in pure
liquids, such as water, the motion of individual water molecules is random, with equal
probability in all directions. However, within white matter, which is comprised of myelinated
fibers, the movement of water molecules is substantially restricted and that restriction, when
compared with pure water, is present along all directions, but particularly perpendicular to the
fiber axis. Consequently, in white matter fiber tracts, the major axis of the diffusion tensor
ellipsoid is much larger than the other two axes, and it coincides with the direction of the fibers.
Thus, linking the major diffusion axes in white matter makes possible the visualization and
appreciation of white matter tracts within the brain. Such fiber-tracing schemes, also called
DT-MRI tractography (Basser, 1998; Conturo, et al. 1999; Jones et al., 1999; Mori et al.,
1999; Westin et al., 1999, 2002; Basser et al., 2000; Poupon et al., 2000; Gossl et al., 2002;
Mori et al., 2002), where fiber tracts follow the major eigenvector of the diffusion tensor,
provide important information about the connectivity between brain regions.

The quantification of diffusion tensor data for investigating white matter abnormalities is
generally approached using one of two methods: (1) region-of-interest-(ROI) based methods
or (2) voxel-based methods. Most researchers have used ROI methods that begin by identifying
anatomical brain regions and by comparing the anisotropy or the extent of the region having
thresholded high anisotropy (Peled et al., 1998; Kubicki et al., 2002; McGraw et al., 2002).
For studies where the region of interest (ROI) of potential abnormality is difficult to define
precisely, voxel-based methods tend to be used (Eriksson et al., 2001; Rugg-Gunn et al.,
2001). A voxel-based strategy is more exploratory and is suitable for identifying unanticipated
or unpredicted/unhypothesized areas of abnormal white matter morphology. Voxel-based
quantification of diffusion tensor, however, requires more sophisticated spatial normalization
in order to remove anatomical confounds, such as the extent of white matter, misalignment of
fiber tracts, and slight variations in fiber bundle thickness.

Spatial normalization involves the registration of images and the generation of a stereotaxic
atlas that represents the statistical distribution of the group at each voxel (Friston et al., 1995;
Mazziotta et al., 1995; Thompson and Toga, 1997; Grenander and Miller, 1998; Guimond et
al., 2000). The registration of diffusion tensor images has generally been performed in a similar
way to the registration of T1-weighted or SPGR MR images. That is, T2-weighted MR or
fractional anisotropy (FA) images, which are scalar data, have been used to estimate
deformation fields or transformation functions to minimize the intensity difference between
the template and the normalized image. With the estimated deformation field or transformation
function, the morphology of the diffusion tensor is deformed to fit a stereotaxic space. This
transformation function can be either an affine transformation or a nonlinear elastic warping.
For the accurate registration of diffusion tensor images, however, an additional step is required
to adjust the orientation of the tensor according to the transformation. As was proposed by
Alexander and colleagues (Alexander and Gee, 2000; Alexander et al., 2001), the rotational
component of linear transformation, or the local rotational component of deformation field,
can be applied in order to reorient tensors in the whole tensor field.

As mentioned above, an appropriate atlas for diffusion tensors is also required in order to
represent a population of diffusion tensors. Jones and colleagues (Jones et al., 2002) created a
diffusion tensor average brain by normalizing tensors with a linear transformation derived from
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the individual fractional anisotropy images. Their work demonstrates the feasibility and the
importance of an atlas template derived from the studied population.

As a registration method for the diffusion tensor, Alexander and coworkers (Alexander and
Gee, 2000) have proposed a multiresolution elastic matching algorithm using similarity
measures of the tensor in order to manage tensor data instead of scalar data. Our group has
proposed diffusion tensor registration methods using tensor similarity (Ruiz-Alzola et al.,
2000, 2002) and multiple channel information (Guimond et al., 2002). Ruiz-Alzola and
colleagues (Ruiz-Alzola et al., 2000, 2002) extended the general concept of intensity-based
similarity in registration to the tensor case and also proposed an interpolation method by means
of the Kriging estimator. Their work is based on template matching by locally optimized
similarity function. Of further note, Guimond and colleagues (2002) have noted the importance
of channel information used for registration and they introduced multiple channel registration
for tensor images by, for example, using all components of the tensor simultaneously in the
registration process with successively updating tensor orientation.

The performance of spatial registration is worth evaluating in terms of the input information
used for registration, i.e., either a univariate scalar data (for instance, FA or T2) or multivariate
tensor data, because most neuroimaging groups are familiar with a univariate registration due
to its easy access to the registration algorithms, such as SPM (Ashburner and Friston, 1999)
or AIR (Woods et al., 1998). When evaluating the spatial registration of diffusion tensor data,
it is important to define the concept of anatomical correspondence between data sets that are
to be spatially registered. Because the anatomical correspondence is determined by the intensity
distribution of channels (i.e., types of information) used for registration, appropriate channels
should be used to achieve the definition of anatomical correspondence in the registration
process. In this article, we define anatomical correspondence between white matters in terms
of both spatial location of the fibers and their local tensor orientation, and we evaluate the
registration performance to determine an optimal set of information types to meet these criteria.

To evaluate the registration performance, we have proposed an evaluation method based on
tractography, where we compare the similarity/dissimilarity of pairs of fiber bundle maps, i.e.,
the results of the fiber tractography, derived from both the registered diffusion images and the
target (template) diffusion images. The assumption here is that small local registration errors
will accumulate and become visible in the tractography results. Such a method will also be
simultaneously sensitive for both spatial errors in the registration as well as geometrical tensor
alignment errors. The better the images are registered, the more similar the fiber bundle maps
will be. We have also evaluated the registration performance with voxel-based measures by
examining the dispersion of tensors at each voxel after registration. The evaluation of
registration performance in terms of the type of similarity function and the type of matching
process specific to registration algorithms are not covered in the article. Additionally we have
proposed a method for creating a group diffusion tensor atlas utilizing the average brain
morphology as well as the average tensors derived from the registration using the whole tensor
information.

Materials and methods
Subjects and data acquisition

Sixteen normal healthy subjects, with a mean age of 42 (range = 30–51), were recruited from
the general community at the VA Boston Healthcare System, Brockton, MA. This research
was approved by the local Institutional Review Board of the VA Boston Healthcare System,
and all subjects signed written informed consent prior to participation. Subjects were scanned
using Line Scan Diffusion Imaging (LSDI) (Gudbjartsson et al., 1996; Maier et al., 1998;
Mamata et al., 2002), which is comprised of a series of parallel columns lying in the image

Park et al. Page 3

Neuroimage. Author manuscript; available in PMC 2010 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



plane. The sequential collection of these line data in independent acquisitions makes the
sequence largely insensitive to bulk motion artifact because no phase encoding is used and
shot-to-shot phase variations are fully removed by calculating the magnitude of the signal.

A quadrature head coil was used on a 1.5-T GE Echospeed system (General Electric Medical
Systems, Milwaukee, WI), which permits maximum gradient amplitudes of 40 mT/m. For each
slice, six images with high diffusion-weighting (1000 s/mm2) along six noncollinear and non-
coplanar directions were collected. Two base line images with low diffusion weighting (5 s/
mm2) were also collected and averaged. Scan parameters were as follows: rectangular FOV
(field of view) 220 × 165 mm; 128 × 128 scan matrix (256 × 256 image matrix); slice thickness
4 mm; interslice distance 1 mm; receiver bandwidth ± 4kHz; TE (echo time) 64 ms; effective
TR (repetition time) 2592 ms; scan time 60 s/slice section. A total of 31–35 coronal slices
covering the entire brain were acquired, depending on brain size.

Multiple-channel spatial registration
Spatial registration was used to determine anatomical correspondences between source and
target (template) images or, in statistical terms, to remove anatomical confounds. We used a
multiple-channel demons algorithm for estimating deformation fields in the spatial
normalization (Guimond et al., 2002). This algorithm finds the displacement v(x) for each
voxel, x, of a target image, T, to match the corresponding location in a source image, S. The
optimal solution can be found by using the iterative scheme as follows:

(1)

where S̃cn = Sc ○hn(x), ○ denotes the composition with the local tensor reorientation, and the
transformation h(x) is the sum of current position and its deformation, i.e., h(x) = x + v(x). C
is the number of channels in the images. Gσ is a Gaussian filter with a variance of σ2; * denotes
the convolution. A more detailed formulation of this model, and its association with other
registration methods, such as the minimization of the sum of squared difference criterion,
optical flow and the demons algorithm, can be found in Guimond and Roche (1999).

The Gaussian filter used to smooth the displacement has a progressively decreasing standard
deviation σ. This progressive method constrains deformation strongly in the beginning of the
registration procedure to correct for gross displacements, whereas later it applies weaker
constraints near the end of the procedure for finer displacements. The multiresolution process
of the registration was performed at four resolution levels to accelerate convergence. A trilinear
interpolation was used for the resampling process. When the full tensor field was used during
the registration, the tensor orientations were adjusted iteratively according to deformation field
using the Preservation of Principal Direction algorithm, as described by Alexander et al.
(2001).

The advantage of the demon's algorithm compared with several low dimensional registration
algorithms is the high dimensional warping which renders local registration. Additional
advantages of this modified demons algorithm include multiple channel registration and its
iterative adjustment of tensor orientation during tensor registration.

Because the demons algorithm matches voxel values between the source and target images,
the resulting transformation is determined by the type of information contained in these voxels.
Below we compare the registration performance by combining into these voxels information
obtained from various channels.
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Evaluation of fiber bundle registration
Evaluation data—The registration schemes were evaluated using both artificially deformed
DT-MRI data and real DT-MRI data from different subjects.

Registration of artificially deformed DT-MRI data to its original DT-MRI data: The
artificially deformed diffusion tensor data were created by applying nonlinear transformations
to 10 DT-MRI data sets. To avoid bias to any of our registration schemes, and for the easy
control of the deformation for generating the test data, we chose to apply a low-order (in this
study, using 7 × 8 × 7 basis functions) nonlinear registration method from SPM99 (Ashburner
and Friston, 1999). For each subject, the nonlinear transformation g was generated using
SPM99 by registering the subject's T2-weighted image of diffusion tensor image (Vs) to the
T2-weighted image of a target diffusion tensor image (Vt) arbitrary chosen from the extra DT-
MRI data. A registered diffusion tensor image, Vr, was created by applying the transformation
g to the original tensor image, Vs, followed by the regional adjustment of tensor orientation,
using the Preservation of Principal Direction method (Alexander et al., 2001). In this case, the
registered image, Vr, keeps the same topology but changed morphology of the original diffusion
tensor, Vs.

The performance of fiber tract registration according to the channel information was evaluated
by inversely transforming the registered image, Vr, to the source image, Vs. For the inverse
registration, we applied the demons algorithm with the following six different combinations
of information: (1) T2-weighted image (T2); (2) fractional anisotropy (FA), i.e.,

(2)

where λ1, λ2, λ3 are eigenvalues of the tensor from bigger to lower values, respectively: (3)
difference of the first and second eigenvalues (DE), i.e., λ1 − λ2; (4) fractional anisotropy and
trace of tensor (AT), i.e., FA and λ1 + λ2 + λ3; (5) three channel eigenvalues (EV), i.e., λ1,
λ2, λ3; and (6) six channel tensor components (TC), i.e., Dxx, Dxy, Dxz, Dyy, Dyz, and Dzz
components of tensors. FA, DE, AT, and EV are scalar indices without directional information
of the tensor, whereas the TC comprises both direction and magnitude of the diffusivity. Figure
1 shows the types of intensity information used for registration. T2, FA, and mean ADC (i.e.,
trace) images are displayed in the first row and λ1, λ2, λ3 images, i.e., the three channels of EV,
are displayed in the second row. DE image, i.e., λ1 − λ2, is displayed in the right side of the
third row and all tensor images of TC, i.e., Dxx, Dxy, Dxz, Dyy, Dyz, and Dzz, are shown with
absolute values of diffusion in the left bottom three rows.

In order to bias the registration to the brain region, i.e., to gray and white matter, we multiplied
all channels by the brain mask of the T2-weighted image derived from SPM99. Thus, we
derived deformation fields, fX (i.e., fT2, fFA, fDE, fAT, fEV, and fTC), according to the type of
information used for registration (T2, FA, DE, AT, EV, and TC), respectively. We created
inversely transformed tensor images, VsX (i.e., VsT2, VsFA, VsDE, VsAT, VsEV, and VsTC), by
applying respective deformation fields, fx, to the registered tensor image, Vr. The procedure
can be summarized as follows:

(3)
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We compared the tensor field, Vs, with each of the inversely transformed tensor images,
VsT2, VsFA, VsDE, VsAT, VsEV, and VsTC, using dissimilarity measures of fiber tracts and a
voxel-based overlap measure, which are described below under “Performance index of fiber
bundle registration” and “Voxel-based evaluation of registration performance.”

Registration of DT-MRI data from different subjects: For the evaluation of the registration
of DT-MRI data from different subjects, we normalized 15 diffusion tensor images, Vs, to one
target diffusion image, Vt, using multiple channel information, using the above procedure. The
registration performance was evaluated by comparing the target image, Vt, and the registered
images, VrX (i.e., VrT2, VrFA, VrDE, VrAT, VrEV, and VrTC), derived from the various types of
channel information. Here, the tensor fields, VrX, may have differences in topology compared
with target image, Vt. This procedure can be summarized as follows:

(4)

The above evaluation processes are shown in Fig. 2. We compared the original images and the
reverted images, which were registered to a target image and then inversely registered to the
original images (bottom left side in the figure). We also compared the target image and the
registered images of original images that were registered to the target image (bottom right side
in the figure) using different intensity information: T2, FA, DE, AT, EV, and TC.

Generation of fiber bundle maps
In order to evaluate the registration performance in terms of minimization of tensor field
distortion, we used a traditional eigenvector tracking method. In the tract calculation, we used
a fourth-order Runge–Kutta method for the integration solver (Press et al., 1992; Basser et al.,
2000; Tench et al., 2002). This gains both speed due to a larger step length and stability
compared with a direct Euler method. A trilinear interpolation method was used for obtaining
subvoxel estimation with a 1-mm step size.

A straightforward implementation of the eigenvector tracking method is highly dependent on
the major eigenvector and will have problems following fibers at locations where other fibers
are crossings and the anisotropy is low. To reduce the impact of this problem, we adopted the
regularization scheme proposed by Bjornemo and colleagues (Bjornemo et al., 2002) and added
a small bias toward the previous tracking direction to the current tensor as follows:

(5)

where D is the current tensor at xt and ẋt is the direction vector from the current point xt, i.e.,
major eigenvector of D, denoted as ê1 (D). α controls the regularization strength and a larger
value of α will smooth the proposed fiber paths to a greater extent. α was adaptively applied
according to the fractional anisotropy, as in Eq. (6), so that at the high anisotropy tensor fields,
no regularization was applied:

(6)
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where α(v) and FA(v) are alpha value and fractional anisotropy at a voxel v with a global
constraint αg, a lower bound threshold of FA, THR_FAlow and a higher bound threshold
THR_FAhigh αg, THR_FAlow, and THR_FAhigh were determined manually according to the
tensor images case by case. Fiber tracts were visualized by the stream tube method (Schroeder
et al., 1991), as used for example by Zhang et al. (2000).

A probability map of white matter derived from T2-weighted image was created as a seed mask
for tractography using the SPM99 segmentation algorithm (Ashburner and Friston, 2000). The
voxels that had a higher value than 0.9 in the white matter probability map were used as initial
seeds for the fiber tracking. As stopping criteria for the fiber tracking, we used the criteria of
low FA (0.2) and a rapid change of direction (30° per 1 mm), as well as white matter mask.

Performance index of fiber bundle registration
The accuracy of the deformation was evaluated by calculating the dissimilarity between fiber
tracts derived from the tensor images at all the seed points within white matter segmentation.
We calculated mean dissimilarity between the tracts in the original tensor field, Vs, and tracts
in the inversely transformed tensor fields, VsX (i.e., VsT2, VsFA, VsDE, VsAT, VsEV, and
VsTC). We also measured the dissimilarity between tracts in the target field, Vt, and tracts in
the normalized tensor fields, VrX (i.e., VrT2, VrFA, VrDE, VrAT, VrEV, and VrTC).

Mean dissimilarity was defined by the following equation:

(7)

where trS (x, Vs) indicates a tract in the original tensor field, Vs, with a seed point x and trX
(x, VsX) indicates a tract in the inversely transformed tensor field, VsX, with the same seed point
x. We calculated the dissimilarity function, dX, of fiber bundles at all the seed points of the
white matter segmentation, S, with the total number of seed points, n(S), in the original tensor
field, Vs. In the calculation, we ruled out those seed points that had both fibers in comparison
shorter than 5 cm in length. The dissimilarity function between fiber bundles was defined by
the two following methods:

Mean square error (MSE)—We defined the mean square error between tracts as the mean
distance normalized by the tract length in the following equation:

(8)

where trS (t|x, Vs) indicates spatial position on trace line trS at the offset t from the starting
point. ‖ · ‖ denotes the square error between trace lines trS and trX. |trS| and |trX| indicate the
lengths of the trace lines and T is equal to |trS|. The tract trX was resampled to have the same
number of tracking points with trS with the resampling ratio of λ.

Endpoint divergence (EDIV)—We defined the end point divergence as the distance
between end points of both tracts normalized by mean tract length, T, seeded from a same point
x.
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(9)

where T is equal to |trS|, length of fiber tract trS, and tT is the location of the end point of trS,
whereas λtT is the location of the end point of trX. Because fiber tracking was performed
bidirectionally from the seed point, we calculated the end point divergence in both directions
and chose maximum divergence.

Note that we did not transform the points of the original fiber bundle maps to a stereotaxic
space as was done by Xu et al. (2002), instead we performed tractography in the transformed
diffusion fields.

Voxel-based evaluation of registration performance
We also applied a voxel-based measure of tensor overlap between the source images and the
registered images.

Overlap (OVL)—Overlap of eigenvalue-eigenvector pairs between tensors was defined by
Basser and Pajevic (2000) by the following equation:

(10)

(11)

where λi, εi and ,  are eigenvalue–eigenvector pairs of the x-th tensors in the tensor fields
V and V′ respectively. S is the white matter segmentation of the original tensor field, Vs, with
a total number of tensors, n(S). The minimum value 0 indicates no overlap and maximum value
1 indicates complete overlap of the principal axes of the diffusion tensor between voxels.

The alignment of tensors in the samples of normalized images can be a measure of registration
performance. As a measure of alignment, we calculated the mean dispersion index of
normalized tensor images inside the white matters and the mean fractional anisotropy of the
white matters in the average image:

Mean dispersion index (MDI)—Dispersion index indicating the alignment of principal
eigenvectors was also proposed by Basser and Pajevic (2000) and was defined as follows:

(12)
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(13)

where β1 (largest), β2, and β3 are eigenvalues of the mean dyadic tensor 〈ε1ε1T〉 derived from
the eigenvectors associated with the largest eigenvalue (ε1) of the tensors, for the N subjects,
in the voxel, x, that belongs to the white matter segmentation, S, of the average tensor field
with a total number of tensors, n(S). The mean dyadic tensor 〈ε1ε1T〉 can be written as the
following equation:

(12)

where  is the ith component of the principal eigenvector in the voxel for the jth subject. The
minimum dispersion index of 0 indicates that there is no scatter about the mean eigenvector
and a maximum of 1 when the eigenvectors are uniformly distributed about the sphere.

Mean fractional anisotropy (MFA)—Fractional anisotropy of the average tensor image
can be a measure of the alignment of the tensor, an alignment of eigenvectors associated with
not only the largest eigenvalue but also of all eigenvalues and eigenvectors. This index is based
on the fact that the average of anisotropic tensors stays anisotropic if they are aligned and that
the average of a set of nonaligned anisotropic tensors will become more isotropic and thus the
FA will decrease. We calculated the mean fractional anisotropy inside the white matter of the
average image.

Diffusion tensor atlas as an average of tensors and deformation fields
We created average maps of the diffusion tensor according to normalization schemes by
combining mean intensities of all the normalized images and the mean of the deformation fields
(Guimond et al., 2000, 2002). A diffusion tensor image among the group was chosen as a
temporary atlas and all other images were registered to the temporary atlas with an adjustment
of tensor orientation. The average of the registered diffusion tensor images was resampled with
the inverse of the average deformation field in order to achieve morphological (shape) mean
as well as the intensity (tensor) mean. The average map was again used for the target atlas of
the next iteration. Four iterations were used to create an average diffusion tensor map. The
following equations explain how the average of the intensity and the average of the deformation
field were incorporated into the generation of the target atlas:
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(13)

where  is the deformation field of subject j from the source image of the subject Sj-to the
target image Ti−1, i.e., the average atlas created from the previous iteration i−1. Initially, T0 is

an arbitrary image chosen from the group of diffusion images.  is the rotational

component of deformation derived from the deformation field  and the operator ⊗

indicates adjustment of the tensor orientation with . Note that the selection of a first
target image does not affect the creation of the average template with this method (Guimond
et al., 2000, 2002).

For averaging tensors at each voxel from the normalized diffusion images, we used both the
mean and median of the tensors, as suggested by Jones et al. (2002). The mean and the median
of a sample of tensors are derived from the definition of Frechet (1948), where the central
location is defined to minimize the sum of distances in the domain of the samples. As a measure
of the distance between two tensors A and B, the following metric d (A,B) is used:

(14)

where Aij and Bij indicate the components of tensors.

To calculate the median, X, of N tensors, Di (i = 1 … N), the gradient descent of the absolute

distance function  is solved with the mean of a sample of tensors, i.e.,

 used as initial value. Due to the time complexity, the median averaging method
was used only at the final iteration. In our atlas generation, both mean and median tensor images
are resampled with the inverse mean deformation field.

From the normalized diffusion images registered using T2, FA, DE, AT, EV, and TC, we
created average maps by calculating the mean of the tensors and by calculating the median of
the tensors. In order to compare linear registration and nonlinear registration, we created
average images, using the mean and median from the normalized images linearly registered
using all TC channels. We compared these average images in terms of the mean dispersion
index (MDI) and the mean fractional anisotropy (MFA).

Park et al. Page 10

Neuroimage. Author manuscript; available in PMC 2010 January 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Results
The performance of registration according to channel information was evaluated using both
the dissimilarity of fiber bundles [i.e., mean square error (MSE) and divergence (DIV) index]
and the voxel-based overlap measure (OVL).

We applied a nonparametric sign test to evaluate the difference between registration using TC
and registration using other methods. The results of this evaluation are displayed in Fig. 3 and
summarized in Table 1. When performing registration of artificially deformed data sets, TC
showed significantly increased performance in EDIV, MSE, and OVL (P < 0.005) over T2,
FA, and DE, but did not show significantly increased performance over AT and EV. Only
improvement of TC in OVL was found over that of AT (P < 0.05) for this simulated
deformation. In the registration of different subjects, TC showed significantly increased
performance (P < 0.005) over any other type of channel information in terms of MSE, EDIV,
and OVL.

The average diffusion tensor brain was created using TC by four iterations of averaging the
intensity and deformation fields. T2, FA, and 2D visualization of TC of a single brain used as
the initial atlas are displayed in the upper row of Fig. 4, and corresponding images of the average
brain are displayed in the lower row of the same figure. The average brain shows higher signal
to noise ratio due to the averaging scheme employed to build this image.

The fiber bundle maps of the average brains and a comparative single brain are displayed in
Fig. 5. Fiber bundle maps of the average brains show much smoother tracts than a fiber bundle
map of a single brain. As was noted in Jones et al. (2002), most of the short fibers in the
peripheral region of brain, such as the arcuate fibers, do not appear in the average brains due
to smoothing effects caused by registration errors, intersubject variability, or both.

The registration performance in terms of the mean of the dispersion index (MDI) of normalized
images using different methods and the mean of fractional anisotropy (MFA) of different type
of average atlas is summarized in Table 2. We calculated the mean dispersion index (MDI) on
two types of normalized tensor images, registered to a single subject and to a group atlas as a
target image.

Results demonstrate that the mean of the dispersion index of nonlinear normalization using TC
(0.34) is lower than the linear normalization using TC (0.41). This result indicates a higher
alignment of the eigenvectors associated with the largest eigenvalue at each voxel in the
nonlinear normalization. MDI of the nonlinear normalization using TC is lowest in both
registration to a single brain and to an atlas. MFA was highest in the atlases generated by both
the mean and median methods when the nonlinear normalization using TC was used. These
results imply that the best registration was done with the nonlinear registration using all the
tensor components. These two indices support previous findings of similarity of fiber bundle
maps and overlap of tensors between different subjects, suggesting that nonlinear registration
using all the tensor information is optimal for normalization. The mean fractional anisotropy
of the median average inside white matter was higher than that of the mean image in our
evaluation.

Maps of the dispersion index from linearly normalized diffusion images and those from
nonlinearly normalized diffusion images using TC are displayed in Fig. 6a and histograms of
MDI according to channel information are displayed in Fig. 6b. In Fig. 6a, the gray level colors
indicate the dispersion index. The black color indicates the lowest dispersion, indicating
complete coherence of the principal direction between tensors of the group, whereas the white
color indicates the highest dispersion, indicating random distribution of the principal tensor
direction. Dispersion index maps of nonlinear registration show clear and wider black areas
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than linear registration, which indicates better performance of nonlinear registration in the
alignment of the principal direction of tensors. From Fig. 6b, we can see that the dispersion
index histogram of nonlinear registration using TC demonstrates a shift toward zero, compared
with both nonlinear registration using T2, FA, DE, AT, and EV and linear registration using
TC (linTC). This closeness to zero implies the better performance of nonlinear registration
using TC.

Discussion
Evaluation of spatial normalization of white matter

In contrast to traditional MRI where both gray and white matter are relatively homogeneous,
the information contained in the diffusion tensor components is much more complex.
Therefore, we need precise spatial normalization and interpretation focusing on the properties
of tensors. The registration method for tensors should be able to match the spatial location of
white matter structures, i.e., fiber bundles, and to match the orientation of tensors. Accordingly,
the evaluation of the registration should include the detection of anatomical correspondence
defined in terms of the spatial structures of the diffusion tensor fields. In this article, we
proposed a new evaluation method using fiber tractography in combination with voxel-based
correspondence metrics. The advantage of using fiber tractography is that it imposes a stronger
model of what we would like to register, the white matter fibers.

We evaluated both the registration of artificially deformed data to its original data and
registration between DT-MRI from different subjects. In the first evaluation, the tensor fields
are topologically the same, whereas in the second, the tensor fields may include topological
variation. Our evaluations using tractography and voxel-based tensor metrics showed similar
results, i.e., a nonlinear registration using TC has better performance in most evaluations and
is more robust to the difference between source and target images, thus strengthening our belief
that our tractography-based evaluation is useful to measure the performance of the registration
of DT-MRI data. The assumption here is that the better the images are aligned, the more similar
the fiber bundle maps and the more overlap of the tensor orientation.

With respect to limitations of our study, we acknowledge that errors in fiber tracking affect the
evaluation of the registration. The inherent errors arise from the limitation of the current
technique of diffusion tensor tractography due to noise effects and the intrinsic limitations of
DT-MRI, known as partial volume effects. Anisotropic voxel units of 1.72 × 1.72 × 4 mm,
used in the study, may add to the errors in fiber tracking even though we used an interpolation
scheme to continuously estimate tensors. However, the evaluation was done systematically to
all tensor images and we expect that such errors were evenly distributed for all comparison
procedures. Additionally, to ensure that there was no bias introduced by the choice of target
image, a smaller number of source images (five) with a different target were evaluated. No
significant changes in our results could be found.

Using multiple channels for registration
Because the anatomical correspondence is determined relative to the anatomical landmarks or
local intensity distribution that the matching algorithm utilizes, the type of input information
can determine the registration process of tensor images. Previous registration methods have
utilized mostly scalar images such as FA or T2 image or T1-weighted image coregistered to
TC. However, the anatomical correspondence derived from FA or T2 may have different
meanings, that is, the white matter of T2 does not correspond exactly to that of FA.

We therefore questioned which information is optimal in terms of registering fiber tracts. T2-
weighted data can delineate the gray and white matter as well as the CSF relatively well.
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However, white matter in T2 is relatively homogeneous throughout the brain and contains little
information concerning the location and orientation of fiber bundles. FA is a widely used index
for the anisotropy of a tensor, which is related to the fiber density, coherence, and myelination,
and thus it shows the location of fiber bundles very well. DE was chosen as a non-normalized
index for anisotropy. Because FA is a normalized anisotropic index which is insensitive to the
magnitude of diffusivity, adding the trace of the tensor (AT) is thought to provide
complementary information on the registration. EV contains all the magnitude information of
the tensor due to multiple channels of eigenvalues. However, it does not guarantee that
corresponding points are in the same fiber tracts or not, because the tensors of different fiber
tracts showing different orientation may have similar eigenvalues. The peculiarity of TC is that
TC contains the directional information of tensors, including the tensor anisotropy. Using TC,
the optimization algorithm can search corresponding tensors of target images for the same
anisotropy, magnitude of diffusivity and direction with source images.

In terms of the overall performance of registration, using TC showed the best performance,
especially in the registration of images from different subjects, and in the registration to a group
atlas. The robustness of using TC may be due to utilization of tensor orientation information
in the registration process. In the artificially deformed registration, that two channels of the
fractional anisotropy and the trace of the tensor combination (AT), three channels of
eigenvalues (EV) and six channels of tensor components (TC) showed more or less similar
performance and these three methods showed significantly increased performance over a
channel of T2-weighted image (T2), a channel fractional anisotropy (FA), or a channel of major
eigenvalues difference (DE). We conjecture that information contained in all the tensor
components contain is redundant and is not necessarily required in this registration, because
the deformation we artificially applied contains relatively low spatial-frequency-ranged
deformation field. This conjecture is supported by the fact that the registration of the artificially
deformed data showed better performance than registration between different subjects. A low-
dimensional warping of SPM99 has a highly smoothed deformation field and therefore the
high dimensional warping could approximate the deformation field successfully with a larger
size of Gaussian smoothing kernel. In this situation, the effect of the input channel may not be
too noticeable in the estimation as long as it contains the basic information to register. But in
the registration of the real brain between different subjects, more precise matching using
anisotropy, magnitude of diffusivity and orientation information is required with a lower
Gaussian smoothing kernel size. Mean dispersion index of normalized images, in Table 2,
registered both to a single subject and to a group atlas also suggests that registration using the
whole tensor information is more robust than other methods.

The computational time grows proportional to the number of channels used for registration. In
an explorative study, the accuracy is more important than the complexity and the time
requirement is not essential as long as it stays within a reasonable range. In this study, the
calculation time of one 2.0 GHz Pentium 4 processor is about 5 min for one channel and for
TC calculation it takes about 30 min, which is quite acceptable.

Considering the time complexity, the registration using three eigenvalues showed a comparable
performance to that using all the tensor components. Therefore, we may choose to use three
channels of eigenvalues in the registration with acceptable confidence and reduced time
complexity.

In general, registration algorithms are controlled by a similarity function as well as the input
information type, i.e., type of channels. For the registration of the tensor, various similarity
measures between tensors of source and target images can be defined. The demons algorithm
does not use a specific tensor similarity measure during registration, but, instead, it simply
utilizes the difference of the intensity of each channel from source and target images.
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Incorporating a precise tensor similarity measure and optimizing the weight of each channel
might increase the registration performance. Data reduction using a principal component
method can potentially be used to efficiently reduce the number of channels and thus decrease
the computational burden without compromising the registration error. Though these topics
are of interest to further research, in this study, we restricted our evaluation to only optimal
choices of input channels in the tensor matching process.

Creation of a group atlas of diffusion tensor brain
For creating the group average diffusion atlas, we used an iterative scheme similar to the one
presented by Guimond et al. (2000) for averaging MR images. Instead of using structural MRI,
diffusion tensor images were registered to create a tensor diffusion atlas. Tensor orientations
were successively adjusted during each iteration. The combination of the intensity average and
the shape average derived from mean of deformation fields renders the topology and
morphology representative of the group.

In making an atlas, Jones et al. (2002) evaluated several averaging methods such as mean,
median, and mode. The median tensor was obtained in order to be robust to outliers by finding
a tensor that minimizes the distance to the sample of tensors in an absolute distance sense. We
applied these mean and median methods in the averaging of normalized DT-MRIs, but instead
of linear registration using FA information, we used the nonlinear registration using all the
tensor components. In terms of the alignment of the major eigenvector of the tensor, nonlinear
normalization showed better performance than linear normalization. As mentioned by several
investigators (Alexander and Gee, 2000; Jones et al., 2002), due to noise effects, there may
exist a possibility of misorientation of the diffusion tensors in nonlinear high-dimensional
warping. However, this potential misorientation does not necessarily pose a larger problem
than the misalignment obtained by an affine transformation. For voxel-based statistics, where
finding corresponding positions is important, nonlinear warping technique is thought to be
appropriate. More specifically, the nonlinear warping using all diffusion tensor information
showed a lower dispersion index implying better registration of tensors compared with
nonlinear registration using other types of input information. This provides further arguments
supporting the thesis that the orientation information of diffusion tensor as well as anisotropy
is necessary for the registration of fiber tracts.

Note that we used the average brain morphology, derived from the mean deformation field, as
well as the average tensor intensity when creating the average brain. We believe that the average
brain created by our nonlinear method using these two types of average information is a better
approach than a strict linear one, in representing both tensor distribution and morphological
distribution of the population.

Though further work will be required, including comparisons between the mean and median
method in terms of better group representation, we think the selection of the averaging method
can be dependent on the distributional model of sample tensors at each voxel and the use of an
atlas. As was noted by Jones et al. 2002, especially for the case of outliers, the median method
will be advantageous but for normally distributed or coherently distributed samples of tensors,
the mean method is thought to be sufficient with a much lower computational cost.

Using the multiple channel registration method and a group diffusion tensor atlas, we are further
exploring white matter abnormalities in schizophrenia in comparison to healthy control
subjects, using statistics for scalar quantities such as FA and angles between vectors at the
corresponding position across samples. Exploration of left and right hemispheric asymmetry
for both populations has also been conducted using the proposed methods (e.g., Park et al.,
2003).
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Concluding remarks
In this article we have discussed spatial normalization of DT-MRI data in terms of the input
information the registration algorithm utilizes. We have evaluated the methods using DT-MRI
tractography. In addition, we have created a DT-MRI atlas based on the average diffusion
tensor images. Nonlinear registration using all the components of the diffusion tensors resulted
in the most reliable results and can be used for generation of a group atlas, where the mean of
tensors and the mean of deformation fields are combined together.
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Fig. 1.
Types of intensity information used for registration. T2, FA (fractional anisotropy), and mean
ADC (apparent diffusion coefficient, the trace of tensor) images in the first row, DE (difference
of the first and second eigenvalues, i.e., λ1 − λ2) in the right side of the third row are used as
a single channel registration respectively. AT contains two channels information, i.e., fractional
anisotropy and trace of tensor (mean ADC). Three channels of information in EV (eigenvalues,
i.e., λ1, λ2, and λ3 images) are displayed in the second row. Absolute intensity of each channel
of TC (tensor components, i.e., Dxx, Dxy, Dxz, Dyy, Dyz, and Dzz gradient images) is seen
in the last three rows. Areas with very low signal (surrounding air) or with mean apparent
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diffusion coefficient (ADC) values higher than 2.0 μs/mm2 (cerebrospinal fluid) were
excluded.
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Fig. 2.
Evaluation of registration with artificially deformed DT-MRI. For evaluation on the
registration of artificially deformed data, images registered to a target image were inversely
transformed to source images using different intensity information: T2, FA, DE, AT, EV, and
TC (reverted images, bottom left). Evaluation of the registration to different subject was
conducted on the registered images on a arbitrary chosen subject image (registered images,
bottom right). The dissimilarity between two comparing tensor images was evaluated using
fiber bundle map that was derived using regularized Runge–Kutta fourth-order integration
method. Regularization was incorporated to render fiber tracking at the region of crossing
fibers. Streamtubes were used for the tract visualization.
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Fig. 3.
Scattergram of registration performance. The evaluation results of both registration of
artificially deformed data and registration of different subjects are displayed in scattergram.
The midline indicates the mean. EDIV (end point divergence), MSE (mean square error), and
OVL (overlap of tensors) were calculated according to the input channel type used for
registration, i.e., T2 (T2-weighted), FA (fractional anisotropy), DE (difference of eigenvalues),
AT (fractional anisotropy and trace), EV (three eigenvalues), and TC (total six tensor
components). Ten images were used for evaluation on artificially deformed data and 15 images
were used for evaluation on different subjects.
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Fig. 4.
DT-MRI of single brain and a group averaged brain (n = 15). T2-weighted image (T2, first
column) and fractional anisotropy image (FA, second column) are displayed for a single brain
DT-MRI (top row) and a group average DT-MRI (bottom row). Major eigenvectors of all tensor
components (TC, third column) around the corpus callosum of single brain and average brain
are also visualized in 2D space by line and colors. The color level indicates the strength of the
component of major eigenvector perpendicular to the slice from blue (lowest) to red (highest).
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Fig. 5.
Fiber bundle maps of averaged DT-MRIs. Averages of 15 DT-MRIs (n = 15) are created by
calculating the mean and the median of nonlinearly transformed images (WARPMEAN and
WARPMED respectively). A comparative fiber bundle map of a single brain is also displayed.
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Fig. 6.
Maps and histograms of dispersion index for linear registration and nonlinear registration.
Dispersion maps at three different coronal slices derived from linear registration (Linear) using
TC are displayed in the upper row of (a) and those of nonlinear registration (Warp) using TC
are displayed in the lower row of (a). Gray level color shows the dispersion index. Black
indicates the lowest dispersion meaning complete coherence of the direction of tensors of the
group, whereas white indicates the high dispersion indicating random distribution of tensor
directions. Dispersion index maps of nonlinear registration shows more dark black areas than
linear registration, indicating better performance of nonlinear registration in the alignment of
principal direction of tensors. The dispersion index histogram (b) of nonlinear registration
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using TC (black line) shows shifted toward zero compared with nonlinear registration using
T2 (blue dash-dot line), FA (green dash-dot line), DE (red dash-dot line), AT (cyan line), EV
(blue line), and linear registration using TC (linTC, ochre dotted line). This closeness to zero
implies the better performance of registration. This histogram was calculated inside the white
matter.
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