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Abstract. We present a statistical framework that combines the registration of an
atlas with the segmentation of magnetic resonance images. We use an Expectation
Maximization-based algorithm to find a solution within the model, which simul-
taneously estimates image inhomogeneities, anatomical labelmap, and a mapping
from the atlas to the image space. An example of the approach is given for a brain
structure-dependent affine mapping approach. The algorithm produces high qual-
ity segmentations for brain tissues as well as their substructures. We demonstrate
the approach on a set of 22 magnetic resonance images. In addition, we show that
the approach performs better than similar methods which separate the registration
and segmentation problems.

1 Introduction
With notable exceptions, segmentation and registration have been treated as two sep-
arate problems in medical imaging research. However, these techniques complement
each other. For example, segmentation simplifies the registration of anatomical struc-
tures with ambiguous intensity patterns [1]. On the other hand, aligning an atlas to these
anatomical structures aids the detection of indistinct boundaries and therefore simpli-
fies the segmentation problem [2]. In this paper, we describe a simultaneous solution to
both problems by combining them in a unified Bayesian framework.

The idea of the unified Bayesian framework was motivated by boundary localiza-
tion techniques, such as [3, 4], which align an atlas to the subject and simultaneously
estimate the shape of a structure. These methods relate both problems to each other
by extending the definition of the shape to include its pose. This paper describes an
integrated segmentation and registration approach for voxel-based classification meth-
ods. In contrast to boundary localization approaches, voxel-based classification meth-
ods consider the anatomical structure associated with each voxel. In addition, they often
explicitly model the image inhomogeneities of Magnetic Resonance Images (MRI) to
segment large data sets without manual intervention.

Voxel-based classification methods have coupled registration and segmentation of
misaligned images [5, 6], however, we wish to align an atlas to MRI and separate the
images into anatomical structures. Previous voxel-based classification methods perform
this task sequentially [7, 8, 2] increasing the risk of systematic biases [1]. In contrast, our
new approach is based on the principle of least commitment so that an initial imperfect
estimation converges to a good approximation for each problem.

Similar to [8, 9, 1], this paper is based on an instance of the Expectation Maximiza-
tion Algorithm (EM) using non-stationary priors to outline structures with indistinct
boundaries and to estimate image inhomogeneities. Instead ofsequentiallyperforming
registration and segmentation [8, 9, 1], we propose in Section 2 a Bayesian framework



describing the relationship between atlas registration, intensity correction, and image
segmentation. This framework is based on a Maximum A posteriori Probability (MAP)
estimation formulation approximating the solution to these three interrelated problems.

Section 3 applies the concept to a hierarchical registration framework modeling
global- and structure-dependent deformations. The limits and benefits of the implemen-
tation are illustrated in Section 4 by presenting a study comparing the robustness of our
algorithm with respect to other EM implementations. In this study, the automatic meth-
ods outline a set of 22 MRIs into the major brain tissue classes as well as the thalamus
and caudate, which are structures with indistinct boundaries.

2 Deriving an EM Framework for Simultaneous Inhomogeneity
Correction, Registration, and Segmentation

The accuracy of segmenting structures that have indistinct boundaries on MR images
with tissue classification methods significantly depends on properly modeling the image
inhomogeneities as well as correctly registering the atlas to the subject. In this section,
we develop a unified framework which performs segmentation, registration and inho-
mogeneity correction simultaneously.

2.1 A Maximum a Posteriori Probability Estimation Problem
Due to their complex dependencies, it is very difficult to extract the inhomogeneities
B and the registration parametersR from the MRI I without the explicit knowledge
of the unknown true segmentation. However, this problem is greatly simplified within
an EM framework where it is formulated as an incomplete data problem marginalizing
over all possible segmentationsT . To determineB andR within this framework, we
define the following MAP estimation problem over the incomplete data model:

(B̂, R̂ ) = argmaxB,R logP(B,R |I ). (1)

In general, this results in a system of equations for which there is no analytical solution.
To estimate a solution for this problem, we propose an EM model that improves the

initial estimate(B ′,R ′) by solving the following MAP estimation problem:

(B ′,R ′)← argmaxB,R ET |I ,B ′,R ′ (logP(I |T ,B)+ logP(R |T )+ logP(B)) (2)

The relationship between Equation (1) and Equation (2) is described in detail in our
technical report [10]. This report shows that the update rule of Equation (2) yields a
better estimate of(B ′,R ′) as measured by Equation (1). In addition, this EM framework
guarantees convergence to a local maxima of the objective function [11].

Based on the derivation of [10], the solution of Equation (2) improves(B ′,R ′) by
iterating between the Expectation-Step (E-Step) and Maximization-Step (M-Step). The
E-Step calculates the posterior of an anatomical structurea with respect to voxelx

Wx(a) =
P(Ix|Tx = ea,B ′x) ·P(Tx = ea|R ′)

P(Ix|B ′x,R ′)
(3)

with Tx being the indicator random vector at voxelx. ea is zero but at positiona, where it
is one. The M-Step updates the estimates by solving the following two MAP problems

R ′←argmaxR ∑x ∑aWx(a) · logP(Tx = ea|R )+ logP(R ) (4)

B ′←argmaxB ∑x ∑aWx(a) · logP(I |Tx = ea,B)+ logP(B) (5)



A variety of closed-form solutions for Equation (5) have been proposed in the literature
such as [8] and [12].

The remainder of this paper focuses on modeling Equation (4). Before doing so we
must point the method’s sensitivity towards uncommon characteristics favored by the
atlas; a minor drawback of this formulation. The aligned atlas is represented in Equa-
tion (4) and Equation (3) byP(Tx = ea|R ). To match the atlas with the segmentation
weights, the algorithm compensates for any biases through intensity correction and atlas
realignment. For example, if the atlas does not properly capture the brain intensity dis-
tribution, the algorithm might identify the neck as part of the brain. The inhomogeneity
correction will then normalize the intensity pattern of the neck to the once inside the
brain and the registration might scale the atlas of the brain to cover both brain and neck.
This causes the algorithm to converge to a suboptimal solution but a re-calibration of
the atlas to the intensity pattern of the MRI protocol can overcome this problem.

In summary, we find a local maxima to the difficult MAP problem of Equation (1)
by solving it within an EM framework. The E-Step determinesW of Equation (3) and
the M-Step solves for the MAP estimates specified by Equation (4) and Equation (5).

2.2 Defining a Hierarchical Registration Approach

To solve the MAP estimation problem of Equation (4), we define the registration pa-
rametersR , logP(T |R ), andP(R ). The parametersR model a hierarchical registra-
tion framework, which distinguishes between global- and structure-dependent defor-
mations. We then apply the registration framework to the MAP estimation problem and
find a solution with another optimization algorithm.

The hierarchical registration parametersR capture the correspondence between at-
las, brain, and structures within the brain. The parametersR can be structure-dependent
or -independent. Structure-independent parameters capture the correspondence between
atlas and image space. When limited to affine interpolation, the degrees of freedom of
R are too low to capture the characteristics of individual brain structures ([13]). The
alternative is a more general non-rigid framework which often has problems aligning
structures with indistinct boundaries [1].

Our Structure-dependent registration parameters treat the relationship between at-
las and image space for each structure independently. Since most of the misalignment is
structure-independent, e.g the patient’s head is not aligned with the atlas space, we ex-
pect small differences between structure-dependent parameters of different structures.
We model this dependency with a hierarchical registration frameworkR = (R G,R S).
R G are the global registration parameters, which describe the non-structure dependent
deformations between atlas and image.R S , (R 1, . . . ,R N) are the structure dependent
parameters of structure1, . . . ,N, which represent the residual structure-specific defor-
mations not adequately explained byR G. The similarity between structure specific pa-
rameters is encoded in Equation (4) through the prior probabilityP(R ) enforcing tight
bounds onR S and weak constraints onR G.

The mapping of the atlas to the image space is performed by an interpolation func-
tion r(R G,R a,x), which maps voxelx into the coordinate system of structurea. Unlike
global affine registration methods, this results in structure dependent coordinate systems
represented by(r(R G,R1, ·), . . . , r(R G,RN, ·)) that are not aligned with each other.
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Fig. 1. Image (a) shows an MRI, which is segmented by our EM implementation using the mis-
aligned spatial atlas of the brainfa(·) in (b). W in (c) is the result of E-Step andQ(·) in (d) is
the initial cost function of the M-Step.Q(·) measures the disagreement betweenfa(·) andWa(·)
with black indicating agreement and white showing disagreement between the two instances.

Let R a of R S be the parameters specific to structurea with a∈ {1, . . . ,N}. If we
define fa as the probability over voxel location in the atlas space conditioned on struc-
turea then fa (r(R G,R a, ·)) is defined in the structure specific coordinate system of the
patient. Thus, we can model the conditional structure probability:

P(Tx = ea|R ) , fa (r(R G,R a,x))
∑a′ fa′ (r(R G,R a′ ,x))

(6)

Substituting Equation (6) into Equation (4) changes the MAP problem to

R ′←argmaxR ∑x ∑a

[
Wx(a) · (log fa[r(R G,R a,x)]−log∑a′ fa′[r(R G,R a′ ,x)]

)]

+ logP(R ) = argmaxR Q(R )
(7)

where the objective functionQ(·) of Equation (7) is defined as

Q(R ),∑x∑aWx(a) · log( fa [r(RG,Ra,x)])−log
(
∑a fa [r(RG,Ra′ ,x)]

)
+logP(R ) (8)

Q(·) measures the disagreement between betweenfa(·) andWa(·) (see Figure 1.) One
can also show thatQ(·) relates to the Kullback-Leibler divergence. The objective func-
tion is therefore maximized with respect toR if fa(r(R G,R a,x)) is made as close
as possible toWx(a). For example, if voxelx is clearly assigned to structurea′ with
ya , r(R G,R a,x) being the coordinate of voxelx in the atlas space of structurea then
Wx(a′) = 1 and fa′(ya′) = ∑a fa(ya). The value of the sum across all structures of Equa-
tion (8) atx is zero as

∑a [Wx(a) log( fa(ya)]− log( fa′(ya′)) = log( fa′(ya′))− log( fa′(ya′)) = 0.

In summary, we developed a hierarchical registration framework guided by global
and structure specific deformations. We transformed Equation (4) into Equation (7),
whose objective functionQ(·) measures the disagreement between the current align-
ment of the atlas space and the segmentation weights.

3 Affine Registration Implementation
This section describes an implementation of the approach presented in Section 2.2. We
will give an example of an interpolation functionr(·, ·, ·), the corresponding registra-
tion parametersR , a Probability Density Function (PDF)P(R ), and a maximization
algorithm to solve the MAP problem defined in Equation (7).

The interpolation functionr(·, ·, ·) of Section 2 can model various mapping ap-
proaches. For simplicity, we choose an affine interpolation so thatR z = (−→tz t ,−→rz

t ,−→sz
t)t

with z∈ {G,1, . . . ,N} define displacement−→tz , rotation−→rz, and scaling−→sz . The mapping



is defined asr(·, ·, ·) : R12×12×3→ R3,(R G,R a,x)→ AR G
·AR a · (xt ,1)t whereAR z is

an affine transformation matrix based on the parameter settingR z.
We do not assume correspondence between the atlas and the image space so that we

choose a uniform prior for the global registration parameterR G. As opposed toR G,
the structure specific parametersR S , (R 1, . . . ,R N) describe the residual of structure
specific deformations that are not well explained byR G. In general, our model should
penalize large deviations ofR S from the expected mean, which is approximated by
the average structure-specific registration parameters of the training data. We enforce
this penalty by modeling the PDF ofR S as a Gaussian distributionN(µR S

,ϒR S
) with

structure independent meanµR S
and varianceϒR S

based on the mapping parameters of
the training data. We choose a Gaussian distribution as small varianceϒR S

discourages
large deformations from the meanµR S

. In addition, Gaussian distributions simplify the
calculations in the M-Step [11].

Based on the previous modeling assumptions the objective function is defined as

Q(R ) , ∑x ( ∑a

(
Wx(a) · log

[
fa(AR G

·AR a · (xt ,1)t)
])

− log
[
∑a fa(AR G

·AR a · (xt ,1)t)
]
)− 1

2
(R S−µR S

)tϒ−1
R S

(R S−µR S
).

Determining a closed form solution to the MAP problem defined byQ(·) is difficult.
Instead, we estimate the solutions through the Powell’s method [14]. We also decouple
the search forR G andR S as their dependencies can cause instability. The pseudo code
for this implementation is given below.

Algorithm 1: SEGMENTATION AND REGISTRATION()

repeat
E-Step:Update soft assignment of anatomical structures

Wx(a)← 1
ZP(Ix|Tx = ea,B ′x) · fa

(
r(R ′G,R ′a,x)

)
M-Step: Update parameter space

B ′ ← Estimation of the image inhomogeneities based onW
R ′G← Result of Powell’s method withQ((·,R ′S))
R ′S ← Result of Powell’s method withQ((R ′G, ·))

until B ′ andR ′converge
define labelmap:Tx← argmaxa Wx(a)

4 Comparative Experiment on 22 Test Cases
The section compares three EM methods which differ in the mapping of the atlas to the
patient. The first approach (EM-NonRigid) aligns the atlas using an intensity based non-
rigid registration approach and then runs our EM implementation without registration
parameters [1]. The second approach (EM-Affine) is similar to EM-NonRigid but uses
the affine mapping method by [15] as the preprocessing step. The third approach (EM-
Integrated) is our new algorithm solving registration and segmentation simultaneously.
All three methods use the same atlas which was generated according to [1]. In order
to compare the three methods, each of them segments 22 test cases into the three brain
tissue classes and further parcellates grey matter into the subcortical structures thalamus
and caudate. We then measure the agreement of the automatic segmentations of the
subcortical structures to manual ones, which we view as ground-truth.
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Fig. 2. The top row shows an MRI with unusual head position and the corresponding 3D models
of our segmentations of the thalamus and caudate. The button row shows the coronal MRI with
black indicating the two manually outlined structures. The segmentations to the left are produced
by our method, which initial performs poorly but converges closely to the experts’ results.

This experiment focuses on the thalamus and caudate as they are challenging struc-
tures for registration and segmentation. Purely intensity based methods, such as EM
without spatial priors, cannot segment these structures because part of the boundary is
invisible on MRI (Figure 3). Consequently, EM relies heavily on spatial priors making
it sensitive towards misaligned priors. The registration of the priors is also a challenge.
Intensity based alignment methods, such as [16], have difficulties mapping the priors to
the thalamus because of the structure’s similar intensity properties to the adjacent white
matter; affine registration methods, such as [15], are too constrained to properly cap-
ture the bending within the horn-shaped caudate. In conclusion, a detailed analysis of
the segmentation of thalamus and caudate highlights the differences between the three
methods.

To measure the quality of the automatic generated results, we compare them to the
manual segmentations of the thalamus and caudate using the Dice volume overlap mea-
sure. The graph in Figure 3 shows the mean and standard error of the Dice measure
for the three algorithms. For the thalamus, EM-NonRigid (NRigid) performed worst
because the intensity based registration method is too unreliable for structures with
smooth boundaries. The method often overestimates white matter and underestimated
the thalamus in this region (Figure 3(EM-NonRigid)). EM-Affine (Affine) performs
much better than EM-NonRigid but the method is sensitive towards initial misalign-
ments. For example, EM-Affine cannot properly address the unusual pose of the patient
in Figure 2 (Sagittal) causing a bias in the segmentation (Figure 3 (EM-Affine)).

For the caudate, EM-NonRigid performs much better than EM-affine. In contrast
to the thalamus, the caudate has a different intensity profile than white matter. Only
the relatively small portion of the boundary neighboring the putaman, another subcor-
tical structure, is invisible on MRI. Thus, the intensity based registration method of
EM-NonRigid correctly registers the spatial priors to this region. However, the affine
registration method of EM-Affine does not have enough degrees of freedom to cap-
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Fig. 3. The graph shows the mean and standard error of the three methods segmenting the tha-
lamus and caudate in 22 cases. For both structures, our new approach EM-Integrated (Integr.)
outperformed EM-Affine (Affine) and EM-NonRigid (NRigid). The segmentations to the right
highlight deficiencies of EM-Affine and EM-NonRigid, such as the general underestimation of
the thalamus by EM-NonRigid and the misalignment of the caudate by EM-Affine due the low
degree of freedom. In the MRI as well as 2D segmentations the thalamus is outlined in black.

ture the patient specific bending of the horn-shaped caudate. This causes EM-Affine to
misclassify voxels especially at the tip of the structure, which explains the lower score.

EM-Integrated (Integr.) generally outperformed the other two methods (Figure 3).
For the thalamus, the method was significantly more reliable than the other two methods
(mean Dice and standard error of EM-Integrated :89.2± 0.4%, EM-Affine: 86.9±
1.2%, EM-NonRigid:81.4±1.3%). For the caudate, EM-Integrated (86.3±0.6%) was
still significantly better than EM-Affine (83.2±1.7% ), but only slightly more robust
than EM-NonRigid (85.8± 1.1% ). However, the standard error of EM-Integrated is
lower than EM-NonRigid indicating a higher predictive power of our new approach.

Our new approach performed much better than the two other method on cases,
where the deformation between atlas and image space was complex. As the example
of Figure 2 illustrates the accuracy of registration and segmentation greatly depend on
each other. Initially, the algorithm only correctly outlines corticospinal fluid, whose
disposition between the atlas and image space guides the registration (see also Figure
1(d)). As the method progresses, the overall accuracy of the registration as well as seg-
mentation increases. In this example it took 30 iterations until the algorithm converged
and correctly segmented the subcortical structures whose boundary is outlined in black.

We have demonstrated that our method performs better than EM-Affine and EM-
NonRigid as a consequence that our approach directly maps the spatial priors of the
structures to the segmentation model. In contrast, EM-Affine and EM-NonRigid align
an MRI in the atlas space to the image of the patient, using the resulting deformation
map to align the spatial priors. This inherently increases the risk of systematic biases
in the model. Another explanation for the increased accuracy of our approach is the ex-
plicit modeling of dependency between segmentation and registration, which constrains
the space of possible solutions and thus simplifies the segmentation problem.
5 Conclusion
We have presented a statistical framework combining inhomogeneity estimation, atlas
registration, and segmentation of MRI. Unlike other voxel-based classification meth-
ods, our framework models these three problems as a single MAP estimation problem.
We implemented the framework as an instance of an EM algorithm using a hierarchical
affine mapping approach for anatomical structures. Our approach was validated by au-
tomatically segmenting 22 sets of MRIs into the major brain tissue classes and the sub-



cortical structures thalamus and caudate that are structures with indistinct boundaries.
Using manual segmentations, we then compared our results to other EM implementa-
tions which sequentially register and segment. In general, our method performed much
better than the other segmentation methods. The improvement is due primarily to the
seamless integration of registration into the performance estimation problem.
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