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Abstract
We propose a technique to simultaneously estimate the local fiber orientations and perform multi-
fiber tractography. Existing techniques estimate the local fiber orientation at each voxel
independently so there is no running knowledge of confidence in the measured signal or estimated
fiber orientation. Further, to overcome noise, many algorithms use a filter as a post-processing
step to obtain a smooth trajectory. We formulate fiber tracking as causal estimation: at each step of
tracing the fiber, the current estimate of the signal is guided by the previous. To do this, we model
the signal as a discrete mixture of Watson directional functions and perform tractography within a
filtering framework. Starting from a seed point, each fiber is traced to its termination using an
unscented Kalman filter to simultaneously fit the signal and propagate in the most consistent
direction. Despite the presence of noise and uncertainty, this provides an accurate estimate of the
local structure at each point along the fiber. We choose the Watson function since it provides a
compact representation of the signal parameterized by the principal diffusion direction and a
scaling parameter describing anisotropy, and also allows analytic reconstruction of the oriented
diffusion function from those parameters. Using a mixture of two and three components
(corresponding to two-fiber and three-fiber models) we demonstrate in synthetic experiments that
this approach reduces signal reconstruction error and significantly improves the angular resolution
at crossings and branchings. In vivo experiments examine the corpus callosum and internal capsule
and confirm the ability to trace through regions known to contain such crossing and branching
while providing inherent path regularization.
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1. Introduction
The advent of diffusion weighted magnetic resonance imaging has provided the opportunity
for non-invasive investigation of neural architecture. Using this imaging technique,
clinicians and neuroscientists want to ask how neurons originating from one region connect
to other regions, or how well-defined those connections may be. For such studies, the quality
of the results relies heavily on the chosen fiber representation and the method of
reconstructing pathways.

To begin studying the microstructure of fibers, we need a model to interpret the diffusion
weighted signal. Such models fall broadly into two categories: parametric and
nonparametric. One of the simplest parametric models is the diffusion tensor which
describes a Gaussian estimate of the diffusion orientation and strength at each voxel [6, 10].
While robust, this model can be inadequate in cases of mixed fiber presence or more
complex orientations [3, 18]. To handle more complex diffusion patterns, various parametric
models have been introduced: weighted mixtures [1, 51, 33, 19, 41], higher order tensors
[25, 8], directional functions [37, 32, 45], and diffusion oriented transforms [39].

Nonparametric models often provide more information about the diffusion pattern. Instead
of estimating a discrete number of fibers as in parametric models, nonparametric techniques
estimate an oriented distribution function (ODF) describing an arbitrary configuration of
fibers. For this estimation, Tuch [50] introduced Q-ball imaging to numerically compute the
ODF using the Funk-Radon transform. The use of spherical harmonics simplified the
computation with an analytic form [4, 24, 16] and spherical ridgelets further reduced the
coefficients required [38]. Recently, Poupon et al. [42] demonstrated online direct
estimation of single-tensor and harmonic coefficients using a linear Kalman filter. Another
approach to producing an ODF is to assume a model for the signal response of a single-fiber
and use spherical deconvolution [29, 28, 49, 32, 34]. A good review of both parametric and
nonparametric models can be found in [2, 17].

Based on these models, several techniques attempt to reconstruct pathways. Deterministic
tractography involves directly following the diffusion pathways. In the single tensor model,
this means simply following the principal diffusion direction [7], while multi-fiber models
often include techniques for determining the number of fibers present or when pathways
branch [23, 33, 22, 43]. Kalman and particle filters have been used with single tensor
streamline tractography [21, 12, 54, 27], but these have been used for path regularization
and not to estimate the full underlying fiber model. Another approach to regularizing single
tensor tractography uses a moving least squares estimate weighted with the previous tensor
[55]. While this present study focuses on deterministic techniques, probabilistic methods
have been developed to form connections by diffusing out a connectivity map according to
the ODF [40, 14, 26, 9].

While parametric methods directly describe the principal diffusion directions, interpreting
the ODFs from model independent representations typically involves determining the
number and orientation of principal diffusion directions present [53, 47, 30]. For example,
Bloy et al. [13] and Ghosh et al. [20] find them as maxima on the spherical surface;
Descoteaux et al. [17] deconvolve with a sharpening kernel before extracting maxima; and
Schultz and Seidel [46] decompose a high-order tensor into a mixture of rank-1 tensors.
Ramirez-Manzanares et al. [44] provide a quantitative comparison of several such
techniques.

Finally, [42] proposed using a linear Kalman filter for online, direct estimation of either
single-tensor or harmonic coefficients while successive diffusion image slices are acquired,
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while [15] revisited the technique to account for proper regularization and proposed a
method to quickly determine optimal gradient set orderings.

1.1. Our contributions
Of the approaches listed above, almost all fit the model at each voxel independent of other
voxels. In this paper, we describe a method to estimate the model parameters and perform
tractography simultaneously within a causal filter. In this way, the estimation at each
position builds upon the previous estimates along the fiber.

To begin estimating within a finite dimensional filter, we model the diffusion signal using a
mixture of either two or three Watson directional functions [45]. This enables estimation
directly from the raw signal data without separate preprocessing or regularization steps.
Because the signal reconstruction is nonlinear, we use the unscented Kalman filter to
perform model estimation and then propagate in the most consistent direction. Using causal
estimation in this way yields inherent path regularization, low signal reconstruction error,
and accurate fiber resolution at crossing angles not found with independent optimization.
We further note that the approach presented here generalizes to arbitrary fiber model with
finite dimensional parameter space, and since the estimation is inherently smooth, it does not
require arbitrary termination criteria such as curvature.

2. Approach
The main idea of our approach is to trace the local fiber orientations using the estimation at
previous positions to guide estimation at the current position. In a loop, the Kalman filter
estimates the model at the current position, moves a step in that direction, and then begins
estimation again. Iterative estimation in this manner greatly improves the accuracy of
resolving individual orientations and yields inherently smooth tracts despite the presence of
noise and uncertainty. Further, since each iteration begins with a near-optimal solution
provided by the previous estimation, the convergence of model fitting is improved and many
local minima are naturally avoided.

Section 2.1 provides the necessary background on modeling the measurement signal using
Watson functions and defines the specific fiber model employed in this study. Then, Section
2.2 describes how this model may be estimated using an unscented Kalman filter, and finally
Section 2.3 summarizes the entire algorithm.

2.1. Modeling local fiber orientations
In diffusion weighted imaging, image contrast is related to the strength of water diffusion,
and our goal is to accurately relate these signals to an underlying model of fiber orientation.
At each image voxel, diffusion is measured along a set of distinct gradients, u1, …, un ∈ 3

(on the unit sphere), producing the corresponding signal, s = [s1, …, sn ]T ∈ ℝn. For voxels
containing a mixed diffusion pattern, a general weighted formulation may be written as,

(1)

where s0 is a baseline signal intensity, b is an acquisition-specific constant, wj are convex
weights, and Dj is a tensor describing a diffusion pattern [51, 33].

Considering a single tensor, we now follow the formulation of Rathi et al. [45] to define the
Watson directional function which approximates the apparent diffusion pattern. We begin by
noting that any diffusion tensor D can be decomposed as D = UΛ UT , where U is a rotation
matrix and Λ is a diagonal matrix with eigenvalues {λ1, λ2, λ3}. These eigenvalues
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determine the shape of the tensor: ellipsoidal, planar, and spherical. For example, if λ1 > λ2
> λ3, then the shape is ellipsoidal with the major axis of the ellipsoid pointing to the
eigenvector corresponding to λ1. Intuitively, it represents strong diffusion along that
particular direction. When λ1 = λ2 > λ3, the shape is planar indicating diffusion along
orthogonal directions, and finally, when λ1 = λ2 = λ3, the diffusion is spherical (isotropic).

The most common of these configurations is ellipsoidal with principal diffusion direction m
and eigenvalue λ1, and hence the first step to introducing directional functions is to
approximate the tensor by its first eigenvector expansion: D ≈ λ1mmT . Using this, each
exponent in Eq. 1 may then be rewritten,

(2)

(3)

(4)

where the scalar k concentration parameter determines the degree of anisotropy. Finally, the
general model may be restated:

(5)

where A is a normalization constant such that ‖s‖ = 1. For purposes of comparison, this
normalization will also be done to signals obtained from scanner. Note that, while the
diffusion tensor requires six parameters, these Watson functions require four parameters:
three for the orientation vector m and one concentration parameter k. Employing spherical
coordinates further reduces the unit vector m to two parameters. Fig. 1a demonstrates how
adjusting the k-value produces different diffusion patterns, and Fig. 1b illustrates two multi-
fiber configurations.

From this general mixture model, we choose to start with a restricted form involving two
equally-weighted Watson functions. This choice is guided by several previous studies.
Behrens et al. [9] showed that at a b-value of 1000 the maximum number of detectable
fibers is two. Several other studies have also found two-fiber models to be sufficient [51, 33,
53, 41]. Using this as a practical guideline, we started with a mixture of two Watson
functions as our local fiber model. Further, following the study of [53], we assume an equal
combination (50%-50%) of the two Watson functions. While the effect of this second choice
appears to have little to no effect on experiments, we have yet to quantify any potential loss
in accuracy. These assumptions leave us with the following two-fiber model used in this
study:

(6)

where k1 and m1 parameterize the first Watson function, and k2 and m2 parameterize the
second, and A is again a normalization constant such that ‖s‖ = 1. Thus the equally-weighted
two-fiber model is fully described by the following parameters: k1, m1, k2, m2. Extending
off the two-Watson model, we can directly formulate the equally-weighted three-Watson
model:
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(7)

with the additional parameters k3 and m3.

Finally, from such parameters, Rathi et al. [45] describe how one may compute the ODF
analytically by applying the Funk-Radon transform directly to Eq. 5. The ODF can be
reconstructed directly from the same parameters describing the signal without a separate
estimation process. For the two-Watson model (Eq. 6) the ODF is approximated by,

(8)

and for the three-Watson model (Eq. 7) this becomes,

(9)

where B is a normalization factor such that Σi fi = 1.

2.2. Estimating the fiber model
Given the measured signal at a particular voxel, we want to estimate the underlying model
parameters that explain this signal. As in streamline tractography, we treat the fiber as the
trajectory of a particle which we trace out. At each step, we examine the measured signal at
that position, estimate the underlying model parameters, and propagate forward in the most
consistent direction. Fig. 2 illustrates this filtering process.

To use a state-space filter for estimating the model parameters, we need the application-
specific definition of four filter components:

1. The system state x: the model parameters

2. The state transition f[·]: how the model changes as we trace the fiber

3. The observation h[·]: how the signal appears given a particular state

4. The measurement y: the actual signal obtained from the scanner

For our state, we directly use the model parameters, thus the two-fiber model in Eq. 6 has
the following state vector:

(10)

Similarly, the three-Watson model adds additional state variables for the third component:

(11)

While each m could be represented in a reduced spherical form, the antipodes of the
spherical parameterization would then introduce nonlinearities which complicate estimation.
For the state transition we assume identity dynamics; the local fiber configuration does not
undergo drastic change from one position to the next. Our observation is the signal
reconstruction, y = s = [s1, …, sn]T using si from Eq. 6, and our measurement is the actual
signal interpolated at the current position. Theoretically, the measurement noise model is
Rician and not additive Gaussian as the Kalman filter assumes. A specific formulation of the
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Kalman filter for Rician noise might provide better performance under severe noise, but
such a formulation is beyond the focus of this paper.

Since the signal reconstruction is a nonlinear processes, we employ an unscented Kalman
filter to perform nonlinear estimation. Similar to classical linear Kalman filtering, the
unscented version seeks to reconcile the predicted state of the system with the measured
state and addresses the fact that those two processes (prediction and measurement) may be
nonlinear or unknown. It does this in two phases: first it uses the system transition model to
predict the next state and observation, and then it uses the new measurement to correct that
state estimate. In what follows, we present the algorithmic application of the filter. For more
thorough treatments, see [31, 52].

It is important to note two alternative techniques for nonlinear estimation. First, particle
filters are commonly used to provide a multi-modal estimate of unknown systems. With
respect to an n-dimensional state space, particle filters require the number of particles to be
exponential to properly explore the state space. In contrast, the unscented filter requires only
2n + 1 particles (sigma points) for a Gaussian estimate that space. Further, for many slowly
varying systems, the multimodal estimate is unnecessary: from one voxel to the next, fibers
tend not to change direction drastically. Second, the extended Kalman filter may also be
used to provide a Gaussian estimate after linearizing the system; however, the unscented
Kalman filter provides a more accurate estimate with equivalent computational cost and
altogether avoids the attempt at linearization [31, 52, 35].

The unscented Kalman filter considers a system of interest at time t given a Gaussian
estimate of its current state with mean (xt ∈ ℝn) and covariance (Pt ∈ ℝn × n). Prediction
begins with the formation of a set Xt = {χi} ⊂ ℝn of (2n + 1) sigma point states with
associated convex weights, wi ∈ ℝ, each a perturbed version of the current state. We use the
covariance, Pt, to distribute this set:

(12)

where [A]i denotes the ith column of matrix A and κ is an adjustable scaling parameter (κ =
0.01 in all experiments). The sigma points are spread in this manner so as to retain the mean
and covariance, yet alternative set arrangements are sometimes used to control additional
characteristics of the distribution [31].

This set is then propagated through the state transition function, χ̂ = f[χ] ∈ ℝn, to obtain a
new predicted sigma point set: Xt+1|t = {f[χi]} = {χ̂i}. Since in this study we assume the fiber
configuration does not change drastically as we follow it from one voxel to the next, we may
write this identity transition as, xt+1|t = f[xt] = xt. These are then used to calculate the
predicted system mean state and covariance,

(13)

where Q is the injected process noise bias. This procedure comprises the unscented
transform used to estimate the behavior of a nonlinear function: spread sigma points based
on your current uncertainty, propagate those using your transform function, and measure
their spread.
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To obtain the predicted observation, we again apply the unscented transform this time using
the predicted states, Xt+1|t, to estimate what we expect observe from the measurement of
each state: γ = h[χ̂] ∈ ℝm. Keep in mind that, for this study, our observation is the signal
reconstruction from Eq. 6, and the measurement itself is the diffusion-weighted signal, s,
interpolated at the current position. From these, we obtain the predicted set of observations,
Yt+1|t = {h[χ̂i]} = {γi}, and may calculate its mean and covariance,

(14)

where R is the injected measurement noise bias. The cross correlation between the estimated
state and measurement may also be calculated:

(15)

As is done in the classic linear Kalman filter, the final step is to use the Kalman gain,

 , to correct our prediction and provide us with the final estimated system mean
and covariance,

(16)

(17)

where yt ∈ ℝm is the actual signal measurement taken at this time.

2.3. The algorithm
To summarize the proposed technique, we are using the unscented Kalman filter to estimate
the local model parameters as we trace out each fiber. For each fiber, we maintain the
position at which we are currently tracing it and the current estimate of its model parameters
(mean and covariance).

At each step of tracing a fiber, we predict its new orientation, which in this case is simply
identity: xt+1|t = xt. Our actual measurement yt in Eq. 16 is the diffusion-weighted signal s
recorded by the scanner at this position. At subvoxel positions we use trilinear interpolation
directly on the diffusion-weighted images. Further, we normalize this measurement to place
it on the same scale as Eq. 6 and Eq. 7. With these, we step through the equations above to
find the new estimated model parameters, xt+1.

Last, this filtering procedure is used to drive second-order Runge-Kutta path integration
through the volume: at each step we use the filter to estimate and then report the most
consistent of the principal diffusion directions for integration. Algorithm 1 outlines these
steps.
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3. Experiments
We first use experiments with synthetic data to validate our technique against ground truth.
We confirm that our approach accurately estimates the true underlying signal and reliably
recognizes crossing fibers over a broad range of angles. Comparing against two alternative
multi-fiber optimization techniques, we find the filtered approach gives consistently superior
results in both respects (Section 3.1). We follow this with the estimation of three-fiber
crossings (Section 3.2). Next, we perform tractography through crossing fiber fields and
examine the underlying orientations and branchings (Section 3.3). Lastly, we examine a real
dataset to demonstrate how causal estimation is able to pick up fibers and branchings known
to exist in vivo yet absent using other techniques (Section 3.4).

Following the experimental method of generating synthetic data found in [49, 17, 46], we
pull from our real data set the 300 voxels with highest fractional anisotropy (FA) and
compute the average eigenvalues among these voxels: {1200, 100, 100} µm2/msec
(FA=0.91). We generated synthetic MR signals according to Eq. 1 using these eigenvalues
to form an anisotropic tensor at both b = 1000 and b = 3000, using 81 gradient directions
uniformly spread on the hemisphere, and assume s0 = 1. We generate two separate data sets,
each with a different level of Rician noise: low-noise (σ = 0.1) and high-noise (σ = 0.2). To
get an idea of this level of noise, Fig. 3 visualizes a sample voxel with two fibers at a 60°
angle.

Throughout the experiments, we draw comparison to three alternative techniques. First, we
use the same two-Watson model from Section 2.1 with a variant of matching pursuit for
brute force, dictionary-based optimization [36]. In our implementation, we construct a finite
dictionary of two-6 Watson signals at a range of various k-values, essentially discretizing the
search space across orientations and k-values. Given a new measured signal, the signal from
the dictionary with highest inner product provides an estimate of orientation and
concentration. While our signal is produced at 81 gradient directions, we use 341 directions
to construct the dictionary, thus any error is due to the method’s sensitivity to noise and
discretization. Note that by using 341 orientation directions there is roughly an 8° angular
difference between offset orientations, hence we see that the angular error is often at most
8°. This approach highlights the effect of using the same model but changing the
optimization technique to one that treats each voxel independently. Second, we use spherical
harmonics for modeling [49] and fiber-ODF sharpening for peak detection as described in
[17] (order l = 8, regularization L = 0.006). This provides a comparison with an
independently estimated, model-free representation. Note that this technique is very similar
to spherical deconvolution. Last, when performing tractography on real data, we use single-
tensor streamline tractography as a baseline2.

Algorithm 1

Main loop repeated for each fiber

repeat

  Form the new weighted sigma points  around the current mean xt and covariance Pt

    

2Using the freely available Slicer 2.7 (http://www.slicer.org).
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  Predict the observed signals from these sigma points (Eq. 6)

  Update estimate using Kalman gain K and scanner measurement yt

    

  Proceed to new position along most consistent mj

until estimated model appears isotropic

The unscented Kalman filter conveniently requires few parameters. Specifically, of
importance are the matrices for injecting model noise Q and injecting measurement noise R
(see Eq. 13 and Eq. 14). Fortunately, the relative magnitude of each can be determined off-
line from the data itself. We found that values on the order of qm = 0.001 (roughly 2°), qλ =
10, and rs = 0.02 were quite robust for the appropriate diagonal entries of Q and R. Off-
diagonal entries were left at zero.

3.1. Signal reconstruction and angular resolution
While the independent optimization techniques can be run on individually generated voxels,
care must be taken in constructing reasonable scenarios to test the causal filter. For this
purpose, we constructed an actual 2D field through which to navigate (see Fig. 7 and Fig.
8a). In the middle is one long fiber pathway where the filter begins estimating a single
component but then runs into a field of voxels with two crossed fibers at a fixed angle. In
this crossing region we calculated error statistics. Similarly, we computed the angular error
over this region using both sharpened spherical harmonics and matching pursuit. We
generated several similar fields, each at a different fixed angle. By varying the size of the
crossing region or the number of fibers run, we ensured that each technique performed
estimation on at least 500 voxels.

In the first experiment, we look at signal reconstruction error. We calculate the mean
squared error of the reconstructed signal, s, against the ground truth signal, ŝ (pure, no
noise): ‖s − ŝ‖2/‖ŝ‖2. In essence, this is exactly what the filter is trying to minimize: the error
between the reconstructed signal and the measured signal. Fig. 4 shows the results of using
the proposed filter, matching pursuit, and spherical harmonics. Over each technique’s series
of estimations, the trend-lines indicate the mean error while the bars indicate one standard
deviation. Spherical harmonics (red) appear to produce a smooth fit to the given noisy data,
while matching pursuit (blue) shows the effect of discretization and sensitivity to noise. The
two raised areas are a result of the dictionary being constructed with an 8° minimum
separation between any pair of orientations. This experiment demonstrates that the proposed
filter (black) accurately and reliably estimates the true underlying signal.

In the second experiment, we looked at the error in angular resolution by comparing the
filtered approach to matching pursuit and sharpened spherical harmonics. Fig. 5a and Fig. 5b
show the sensitivity of matching pursuit. Consistent with the results reported in [17, 16],
spherical harmonics are generally unable to detect and resolve angles below 50° for b =
1000 or below 40° for b = 3000. Fig. 5c and Fig. 5d confirm this, respectively. This
experiment demonstrates that for b=1000, the filtered approach consistently resolves angles
down to 20–30° with 5° error compared to independent optimization which fails to reliably
resolve below 60° with as much as 15° error. For b=3000, the filtered approach consistently
resolves down to 20–30° with 2–3° error compared to independent optimization which
cannot resolve below 50° with 5° error.
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3.2. Three-fiber crossings
Resolving three-fiber crossings has proven difficult for many techniques, especially at the
lower b-values typically used in in vivo studies. For ex-ample, Tuch et al. [51] found the
general multi-tensor model to be unstable for three or more components using data at
b=1077 with 126 gradients. Bergmann et al. [11] only reported results for up to two-tensors
(b = 700, 30 gradients). Behrens et al. [9] found that b-values at upwards of 3000–4000 were
required for detecting more than two fibers in simulations and none were found in vivo (b =
1000, 60 gradients). Further, many studies specifically use at most two orientations [1, 33,
41]. However, detection of three-fiber crossings has been reported using spherical
harmonics. Tournier et al. [49] reported such crossings using spherical deconvolution
(b=2971, 60 gradients) and Descoteaux et al. [17] also found three-fiber voxels using
spherical harmonics with fiber sharpening (b = 1000, 60 gradients). Most recently, Schultz
and Seidel [46] demonstrated tensor decomposition as a promising technique for resolving
such configurations.

Following the experimental setup of Schultz and Seidel [46], we constructed an additional
set of synthetic fields this time with three equally-weighted Gaussian components. As in the
synthetic fields shown in Fig. 7 and Fig. 8a, one fiber is angled up and is the intended
orientation to track through the region. The other two orientations were set so that the
endpoints of the three principal axes formed an equilateral triangle with any two separated
by the specified angle. With this setup, Fig. 6 shows that the filtered approach provides an
accurate estimate that reaches roughly 60° compared to 70° for spherical harmonics [17]. A
significant bias is apparent at more acute angles using either technique.

3.3. Synthetic tractography
Having verified the technique’s accuracy, we now turn to the resulting tractography. Fig. 7
provides examples of synthetic crossing fiber fields each at different fixed angles: 40°, 50°,
60° (b = 3000, noisy). In our experiments, we start fibers from the bottom and propagate
upward where they encounter the crossing region. Here we show one such fiber and use blue
glyphs to indicate the second component detected as the it passes through the crossing
region. In general, we found that in regions with only one true fiber present (those outside
the crossing), the second component either aligned with the first or adjusted its
concentration parameter to fill out the isotropic component of the signal. Further, we found
the filtering strategy to be robust with respect to initial configuration and choice of injected
noise matrices Q and R (Eq. 13 and Eq. 14).

In Fig. 8a we show another 60° field (b = 1000, noisy) but take a closer look at several
points along a single fiber as it passes through the crossing region. We also examine the
corresponding ODFs reconstructed using sharpened spherical harmonics and the proposed
filter. As expected, the sharpened spherical harmonics often do not detect the crossing but
result in a single angle as seen in the middle two samples in Fig. 8b. A close examination of
the reported axes shows the bias toward a single averaged axis as reported in [53, 48, 46]. In
contrast, the filtered results are consistent and accurate.

3.4. In vivo tractography
We tested our approach on a real human brain scan acquired on a 3-Tesla GE system using
an echo planar imaging (EPI) diffusion weighted image sequence. A double echo option was
used to reduce eddy-current related distortions. To reduce impact of EPI spatial distortion,
an eight channel coil was used to perform parallel imaging using Array Spatial Sensitivity
Encoding Techniques (GE) with a SENSE-factor (speed-up) of 2. Acquisitions have 51
gradient directions with b=900 and eight baseline scans with b=0. The original GE sequence
was modified to increase spatial resolution, and to further minimize image artifacts. The
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following scan parameters were used: TR 17000 ms, TE 78 ms, FOV 24 cm, 144×144
encoding steps, 1.7 mm slice thickness. All scans had 85 axial slices parallel to the AC-PC
line covering the whole brain. In addition, b=0 field inhomogeneity maps were collected and
calculated.

We first focused on fibers originating in the corpus callosum. Specifically, we sought to
trace out the lateral transcallosal fibers that run through the corpus callosum out to the lateral
gyri. It is known that single-tensor streamline tractography only traces out the dominant
pathways forming the U-shaped callosal radiation (Fig. 9a and Fig. 15a). Several studies
document this phenomena, among them the works of Descoteaux et al. [17] and Schultz and
Seidel [46] have side-by-side comparisons. These fibers have been reported in using
diffusion spectrum imaging [23], probabilistic tractography [32, 5, 17], and more recently
with tensor decomposition [46].

We start with two basic experiments: first examining the tracts surrounding a single coronal
slice and second looking at all tracts passing through the corpus callosum. We seed each
algorithm multiple times in voxels at the intersection of the mid-sagital plane and the corpus
callosum. To explore branchings found using the proposed technique, we considered a
component to be branching if it was separated from the primary component by less than 40°
with k ≥ 0.6. Similarly, with sharpened spherical harmonics, we considered it a branch if we
found additional maxima over the same range. We terminated fibers when the general
fractional anisotropy of the estimated signal (std/rms) fell below 0.1. While such heuristics
are somewhat arbitrary, we found little qualitative difference in adjusting these values.

To demonstrate the flexibility of the proposed filtering strategy with respect to model
choice, we use both the two-Watson fiber model (Eq. 6) and the three-Watson fiber model
(Eq. 7). While this introduced differences in the quantity of branchings detected, we found
that using either model resulted in generally finding the same pathways.

For the first experiment, Fig. 9 shows tracts originating from within a few voxels
intersecting a particular coronal slice. For a reference backdrop, we use a coronal slice
showing the intensity of fractional anisotropy (FA) placed a few voxels behind the seeded
coronal position. Keeping in mind that these fibers are intersecting or are in front of the
image plane, this roughly shows how the fibers navigate the areas of high anisotropy (bright
regions). Similar to the results in [17, 46], Fig. 9b shows that sharpened spherical harmonics
only pick up a few fibers intersecting the U-shaped callosal radiata. In contrast, our
proposed method traces out many pathways consistent with the apparent anatomy using
either the two-fiber or three-fiber model. To emphasize transcallosal tracts, we color as blue
those fibers exiting a corridor of ±22 mm around the mid-sagittal plane. Fig. 10 provides a
closer inspection of Fig. 9c and Fig. 9d where, to emphasize the underlying anatomy
influencing the fibers, we use as a backdrop the actual coronal slice passing through the
voxels used to seed this run. Such results are obtained in minutes in our current Matlab
implementation. At each step, the cost of reconstructing the signal for few sigma points
approaches the cost of a few iterations of weighted least-squares estimation of a single
tensor.

For the second experiment, Fig. 15 shows a view of the whole brain to see the overall
difference between the different methods. Here again we emphasize with blue the
transcallosal fibers found using the proposed filter. Comparing Fig. 15c and Fig. 15d we see
several regions that appear to have different fiber density using the two models. This
suggests that incorporating model selection into filtered approaches may have a significant
effect. To show the various pathways infiltrating the gyri, Fig. 11 provides a closeup of the
frontal lobe from above (without blue emphasis).
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Next we examined fibers passing through the internal capsule to trace out the pathways
reaching up into the primary motor cortex at the top of the brain as well as down into the
hippocampal regions near the brain stem. Fig. 12 shows frontal views for each technique
with seeding near the cerebral peduncles (blue). Fig. 14 shows this same result from a side
view where we can see that the filtered approach picks up the corticospinal pathways. Notice
that the two-Watson model picks up the temporo-pontine and parietopontine tracts and the
three-Watson model further reveals the occipitopontine pathways, another indication that the
chosen fiber model often affects the results. As reported elsewhere [9, 43], single-tensor
tractography follows the dominant corticospinal tract to the primary motor cortex. The same
pathways were also found with spherical harmonics. Fig. 13 shows a view from above
where we use a transverse FA image slice near the top of the brain as a backdrop so we can
focus on the fiber endpoints. From this we can see how each method infiltrates the sulci
grooves, and specifically we see that the filtered method is able to infiltrate sulci more
lateral compared to single-tensor tractography.

Note that in the region of intersection between the transcallosal fibers, the corticospinal, and
the superior longitudinal fasciculus, the partial voluming of each of these pathways leads the
filter to report several end-to-end connections that are not necessarily present, e.g. fibers
originating in the left internal capsule do not pass through this region, through the corpus
callosum and then insert into the right motor cortex. Many of the lateral extensions are
callosal fibers that are picked up while passing through this juncture. It is our hope that such
connections may be avoided with the introduction of weighted mixtures, alternative filter
formulations, or different heuristic choices in the algorithm.

4. Conclusion
Studies involving deterministic tractography rely on the underlying model estimated at each
voxel as well as the reconstructed pathways. In this work, we demonstrated that using a
causal filter provides robust estimates of much higher accuracy than independent estimation
techniques. While the model we employed has been introduced previously [45], we
primarily focused on the optimization technique used to estimate that model. Framing that
estimation within a causal filter allowed us to apply a standard technique for nonlinear
estimation. The proposed approach gives significantly lower angular error (5–10°) in regions
with fiber crossings compared to using sharpened spherical harmonics (15–20°), and it is
able to reliably resolve crossings down to 20–30° compared to spherical harmonics which
reaches only down to 50–60°.

We believe that exploring both alternative models and filtering techniques will provide more
accurate and comprehensive information about neural pathways and ultimately enhance non-
invasive diagnosis and treatment of brain disease.
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Figure 1.
Watson directional functions are capable of representing various diffusion patterns and fiber
orientations.
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Figure 2.
System overview illustrating relation between the neural fibers, the scanner signals, and the
unscented Kalman filter as it is used to estimate the local model. At each step, the filter uses
its current model state (xt) to predict the observed scanner signal (ȳt+1|t) and then compares
that against the actual measured signal (yt) from the scanner in order to update its internal
model state (xt+1).
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Figure 3.
Synthetic two-fiber voxel signals at a 60° angle (black wires indicate principal diffusion
directions). Each column shows the same surface from two view-points. (a) shows the
ground truth signal and corresponding true ODF (left to right). (b) shows the corrupted
versions of the ground truth signal (left to right).
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Figure 4.
Mean squared error (MSE) between reconstructed signal and ground truth signal at various
crossing angles (low-noise on left, high-noise on right). Notice how the increased noise has
little effect on the filter (black) compared to using matching pursuit (blue) or sharpened
spherical harmonics (red).
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Figure 5.
Average angle error at various crossing angles comparing all three techniques: matching
pursuit (blue), sharpened spherical harmonics (red), and the proposed filter (black). The
filter provides stable and consistent estimation compared to either alternative technique.
Each subfigure shows both the low-noise and high-noise experiments (left, right).
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Figure 6.
The filtered approach (black) is able to resolve three-fiber crossings with improved accuracy
and at sharper angles compared to using sharpened spherical harmonics (red). Both the low-
noise and high-noise experiments are shown at b=3000 (left, right).
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Figure 7.
Fiber passing through 40°, 50°, and 60° synthetic crossings (b=3000, noisy). Blue dashes
represent the orientation of the second fiber when detected.
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Figure 8.
One fiber passing through an example synthetic field (b = 1000, noisy) and the estimated
ODFs using spherical harmonics and the filter as it passes through the crossing region (blue
box). The filter provides consistent angular resolution along the fiber while independent
spherical harmonic modeling at those same locations misses the second fiber in two voxels.

Malcolm et al. Page 23

Med Image Anal. Author manuscript; available in PMC 2014 March 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
Filtered tractography picks up many fiber paths consistent with the underlying structures.
Both single-tensor streamline and sharpened spherical harmonics are unable to find the
majority of these pathways. Fibers existing ±22 mm around the mid-sagittal plane are
indicated in blue. Seed region indicated in yellow.
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Figure 10.
Closeup of upper right in Fig. 9c and Fig. 9d.
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Figure 11.
Closeup of frontal fibers in Fig. 15c and Fig. 15d viewed from above.
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Figure 12.
Frontal view with seeding in the internal capsule (blue). While both single-tensor and
spherical harmonics tend to follow the dominant corticospinal tract to the primary motor
cortex, the filtered approach follows many more pathways. Seed region indicated in yellow.
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Figure 13.
View from above showing cortical insertion points for each method. FA backdrop is taken
near the top of the brain. The filtered approach shows more lateral insertions compared to
single-tensor and spherical harmonic tracts.
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Figure 14.
Side view with seeding in the internal capsule (yellow). Filtered tractography finds many
insertions into cortical regions of the parietal and occipital lobes. Seed region indicated in
yellow.
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Figure 15.
Tracing fibers originating from the center of the entire corpus callosum with views from
above (top rows) and front-to-back (bottom rows). The proposed filtered tractography is able
to find many of the lateral projections (blue) while single-tensor is unable to find any and
few are found with sharpened spherical harmonics. Seed region indicated in yellow.
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