Extensible Access Control with Authorization Contracts

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:28552973</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
Extensible Access Control with Authorization Contracts

Scott Moore* Christos Dimoulas* Robert Bruce Findler† Matthew Flatt‡ Stephen Chong*

*Harvard University †Northwestern University ‡University of Utah

{sdmoore,chrdimo,chong}@seas.harvard.edu robbie@eecs.northwestern.edu mflatt@cs.utah.edu

Abstract

Existing programming language access control frameworks do not meet the needs of all software components. We propose an expressive framework for implementing access control monitors for components. The basis of the framework is a novel concept: the authority environment. An authority environment associates rights with an execution context. The building blocks of access control monitors in our framework are authorization contracts: software contracts that manage authority environments. We demonstrate the expressiveness of our framework by implementing a diverse set of existing access control mechanisms and writing custom access control monitors for three realistic case studies.

1. Introduction

An access control monitor mediates requests to call sensitive operations and allows each call if and only if the request possesses the necessary rights to call the operation. Broadly speaking, when an access control mechanism is presented with a call to a sensitive operation, it must be able to answer two questions. First, which rights are required for the call? And second, which rights does the request possess? The design of an access control mechanism specifies, implicitly or explicitly, the answers to these questions.

For example, Unix file permissions describe which users are allowed to call which operations on a file. The access control mechanism uses file permissions to determine what rights are necessary to call different sensitive operations. Each Unix process executes on behalf of a specific user, and a request to call an operation possesses the same rights as the user of the process that issues the request. Thus, file permissions answer the first question, and the rights of the user associated with a process answer the second question. Importantly, Unix associates users and processes in two different ways. By default, a new process runs on behalf of the same user as the process that spawned it. But a process can run on behalf of a different user if it runs an executable that has the setuid bit set. When a process invokes a setuid executable, the operating system launches a new process to run the executable and associates the new process with the user that owns the executable, rather than the user that invoked it. Hence, this feature creates services that provide restricted access to resources that an invoking user could not otherwise access.

In this paper we propose a new, extensible access control framework that allows component authors to design access control monitors that suit their needs. The framework supports the design and implementation of many different novel and existing access control monitors for software components. Moreover, because different monitors are implemented using a common framework, different software components within the same application can use different access control mechanisms.

In this technical report expands [30] with additional examples and code listings, along with a formal definition and proof of complete monitoring for the contract system described in Section 3.1.

This technical report expands [30] with additional examples and code listings, along with a formal definition and proof of complete monitoring for the contract system described in Section 3.1.
By analogy with dynamic and lexical scoping of variable environments, we identify two ways in which an execution context can receive authority:

1. **dynamically**, by inheriting the authority environment of the surrounding execution context, and
2. **lexically**, by capturing the authority environment of the execution context where it is defined.

Returning to the Unix file system example, a process receives authority dynamically when it inherits the user of the process that launched it. A process receives authority “lexically” when it runs a setuid executable.

Based on the correspondence with variable scoping, we define a framework for designing access control monitors as sets of monitor actions that manipulate authority environments (§3). We implement our framework as a library for Racket [17] without changes to the language’s runtime. We use higher-order contracts [16] to specify where an access control monitor should interpose on a program and how it should manage authority environments. Contracts are executable specifications attached to software components that support separation of concerns by removing defensive checks from code implementing functionality [24–26]. In the same way, our authorization contracts separate the task of access control from the program’s functionality.

The design of this framework presents four major contributions:

1. the introduction of **authority environments** as a unifying concept for access control mechanisms (§2),
2. the introduction of **context contracts** to check and enforce properties of execution contexts (§3.1),
3. a novel **authorization logic** for representing and querying authority in authority environments (§3.2), and
4. **authorization contracts** that specialize context contracts for managing authority environments and enforcing access control policies expressed in the logic (§3.3).

We have used the framework to implement diverse access control mechanisms: discretionary access control, stack inspection, history-based access control, and object-capabilities (§4). We demonstrate the practicality of our approach with three realistic case studies (§5).

2. Authority Environments

In this section, we introduce **authority environments** as a unifying concept for access control. First, we review the differences between lexical and dynamic scoping (§2.1). Then we describe the connection between lexical and dynamic scoping and access control (§2.2) and show how we can use scoping in the design of a framework for writing access control monitors (§2.3). Throughout, we use small examples in the Racket programming language [17].

2.1 Lexical and Dynamic Scoping

The scope of a variable binding is the spatial and temporal part of the program in which it is visible. A common way to categorize strategies for assigning scopes to bindings is as either **lexical** or **dynamic**. Earlier work distinguishes between the **scope** of a binding, which describes where the binding is visible in the program text, and the **extent** of a binding, which describes when the binding is visible during execution. Dynamic scope often refers to bindings that have dynamic extent and “indefinite” scope. Here, we use dynamic scope to refer to bindings that have dynamic extent and lexical scope, also called “fluid” scope [18, 36, 37].

Under lexical scoping, a variable refers to the binding from its closest binder in the textual structure of the program. For example, in the Racket expression below, the variable \(x \) in function \(f \) refers to the binding in the outer-most let statement. The evaluation of this expression returns 0 since the inner-most let statement has no effect on the value \(x \) binds within \(f \).

\[
\text{(let ([x 0])}
\text{ (let ([f (lambda () x)])}
\text{ (let ([x 42])}
\text{ (f))))}
\]

In a programming language with fluid scoping, programmers can instead associate a binding with the dynamic extent of an expression. That binding is visible to any code that runs in the dynamic extent of the expression. For example, the following Racket expression defines a new fluidly-scoped variable \(x \) with default value 0. The `parameterize` expression binds \(x \) to the value 42 in the dynamic extent of its body. The variable \(x \) in the body of \(f \) refers to the most recent binding rather than the closest one in the program text. Since \(f \) is invoked within the `parameterize` expression, the program evaluates to 42 instead of 0.

\[
\text{(let ([x (make-parameter 0)])}
\text{ (let ([f (lambda () (x))])}
\text{ (parameterize ([x 42])}
\text{ (f))))}
\]

Fluid scoping is a useful programming construct because it allows the context of an expression to communicate with its callees without explicitly threading arguments through the program. For example, a library function for printing may offer a parameter that determines the standard output file. Instead of threading that file as an argument through every function call leading to the `printf` routine, a client program can instead set the parameter once and all calls to `printf` in the body of the program see the client-specified file.

2.2 Scoping for Access Control

This ability to pass contextual information from an execution context to an eventual callee closely matches the problem of correctly determining the authority of a request to call a sensitive operation. To demonstrate this relationship, consider the design of a web application with multiple users. A key component of this application is a login function that authenticates users and executes code on their behalf:
We can avoid modifying the code between the decision of whether the update is authorized. This code thus implicitly uses the authority of its context, i.e., the current user, in much the same way that code accesses the dynamically scoped bindings from its context. By managing authority as an implicit context in this way, we can avoid modifying the code between the decision to run a computation with particular authority and the call to the sensitive operation. This has two advantages. First, threading authority explicitly through the program reduces extensibility, since third party code would need to be aware of and correctly handle authority explicitly. Second, if the code is untrustworthy, it might attempt to subvert the access control checks that protect the sensitive operation by fabricating its own authority.

Another requirement of the security of this application is that only code running with the authority of the main loop is allowed to switch users. According to the Principle of Least Privilege [3], we should further limit the code that is allowed to switch users to just the \texttt{login} function, and switch to an unprivileged user for the rest of the program. Crucially, the body of the \texttt{login} function must still use the authority that was in its environment when it was created, i.e., the authority of the main loop. In a sense, for \texttt{login}, we wish to close over the authority of the main loop, in the same way that closures capture lexically scoped bindings.

To achieve this, we build on the analogy between scoping and access control and introduce the concept of an \textit{authority environment}. An authority environment associates rights with an execution context, just as a variable environment associates bindings with an execution context. Just like variable environments, authority environments can be captured and associated with code, updated, and extended with new bindings for the dynamic extent of a computation. In this application, the authority environment of an execution context records the user on whose behalf the code executes. Section 2.3 shows how authority environments help enforce access control in our running example, including how to create a secure \texttt{login} function. Section 3 generalizes authority environments so that we can express a wide variety of access control mechanisms.

2.3 From Access Control to Authorization Contracts

Using the concept of an authority environment, we build an access control monitor that manipulates and inspects the authority environments of the example web application. The monitor consists of \texttt{actions} that describe how events in the execution of the application interact with its authority environment. We describe our framework for defining monitors in detail in Section 4. Here we explain only the features relevant to the example.

Figure 1 shows our example monitor. The monitor specifies three actions: \texttt{setuid/c}, \texttt{chuser/c}, and \texttt{checkuser/c}. Each action defines a higher-order function contract 16. When one of these contracts is attached to a function, the contract captures the current authority environment and associates it with the function. When the function is called, the contract has access to both the authority environment at the call site and the authority environment that it has captured. The monitor configures each action-contract with two hooks: \texttt{#:on-create} and \texttt{#:on-apply}. By changing these hooks, monitor designers can implement actions that implement different forms of “lexically” and dynamically scoped authority environments.

Action \texttt{chuser/c} is parameterized with an argument \texttt{user} that identifies the user whose authority should be used during the execution of the body of a contracted function. The \texttt{#:on-apply} hook for \texttt{chuser/c} ignores the authority it has closed over and sets the active principal to \texttt{user} for the dynamic extent of the body of the contracted function, but only...
In Racket, a keyword argument is a (possibly optional) argument passed by
without losing the ability to safely authenticate as a different
string? which must be a
#:auth () setuid/c
The keyword argument
This revised implementation of update-profile
#:
function
run-as-user
allows the application to switch to a less privileged principal
setuid/c action to the login function, capturing the authority
now elide the authorization check. The definition of the function can
finally, the range of this contract is
attaches the contract
for this function depends on the
user (user)(checkuser/c user)
says that the authorization con-
tракt for this function is a
update-profile
Racket form
define/contract

(define/contract
 (update-profile someUser text)
 (->a ([user principal?] [text string?])
 #:auth (user) (checkuser/c user)
 any)
)
 ...
)

This revised implementation of update-profile uses the Racket form define/contract to attach a contract to the
update-profile function. This contract is a dependent contract [10] for a function. It says that update-profile takes
two arguments: user, which must be a principal?, and text, which must be a string?. The keyword argument
#:auth (user)(checkuser/c user) says that the authorization contract for this function depends on the user argument and
attaches the contract (checkuser/c user) to the function. Finally, the range of this contract is any, making no require-
ments on the return values. The definition of the function can now elide the authorization check.

We also revise the implementation of login:

(define/contract
 (login user guess onSuccess)
 (->a ([user principal?] [guess string?]
 [onSuccess (user) (chuser/c user)]
 #:auth () setuid/c any)
 if (check-password? user guess)
 (onSuccess)
 (error "Wrong password")))

The keyword argument #:auth () setuid/c attaches the
setuid/c action to the login function, capturing the authority
of the program context where it is created. This allows the
login function to execute with the captured authority and thus
allows the application to switch to a less privileged principal
without losing the ability to safely authenticate as a different
user. In the original implementation, login uses a hand-rolled
function run-as-user to confine onSuccess within the author-

3. A Framework for Access Control

In this section, we present the general design of our framework with a formal model. First, we show how we extend
existing higher-order function contracts to context contracts
that check and modify information about their execution context (§3.1). Context contracts are expressive enough to
enforce a wide range of properties. However, this flexibility makes it difficult to use them to implement and reason
about access control. To free users from this burden, our framework provides a specialized interface for defining au-
thorization contracts. The interface simplifies the definition
of context contracts for access control in two ways. First, it
specifies a common representation for authorization environ-
ments (§3.2). At the core of this representation is a novel
authorization logic that describes how authority captured in
a closure may be used. Second, it defines combinators for
building authorization contracts (§3.3). Authorization
contracts are specializations of context contracts that use the
authorization logic to succinctly describe how they manage
authority environments.

3.1 A Contract System with Context Contracts

We model higher-order contracts and context contracts as extensions to an applied lambda calculus with modules and
parameters, which implement dynamic binding. Figure 2 describes the syntax of our model. Figure 3 gives the reduction
semantics of the model. Evaluation contexts that are not pre-
ented in Figure 2 are standard and enforce call-by-value,
left-to-right evaluation. The type system and the definition of
evaluation contexts are given in Appendix A. Though we omit
the extension for clarity, we have also extended the model
with first class continuations, following Takikawa et al. [39],
because our implementation language supports them and they
interact in interesting ways with our framework.

The semantics of common language features is standard.
Below, we explain the semantics of modules, parameters,
higher-order contracts, and context contracts.

3.1.1 Modules

A program \(p \) is a sequence of modules followed by a top-level
expression. A module simultaneously defines a collection of
values owned by a single component and a set of contracts
for those values. Each module

\[
\text{module } \ell \text{ exports } x_{v1} \text{ with } x_{c1} \ldots \text{ where } y_1 = e_1 \ldots
\]
contract system stops the program and raises an error blaming the provider of the value.

Contract $c_d : \tau \rightarrow (c_r)\, c_r$ is a higher-order function contract. It specifies a contract c_d for the domain of the function and a contract c_r for the range of the function. In addition, it specifies a context contract c_c for the function. Context contracts, novel to this work, are higher-order contracts that enforce restrictions on the execution context of function calls. They are described in detail below. Attaching contract $c_d : \tau \rightarrow (c_r)\, c_r$ to a function returns a new value that enforces contracts on the argument and results of the function and applies the context contract c_c.

Contract $c_d : \tau \rightarrow (\lambda x : \tau.\, e_c)\, v_r$ is an indy-dependent\footnote{An indy-dependent contract is a dependent function contract that uses the “indy” strategy for blame assignment \cite{indy}.} contract for higher-order functions. This contract corresponds to the $\rightarrow a$ contracts from Section 2. The contract is dependent since the contract uses the argument of a contracted function to choose a context contract for the function. Applying a function v with this contract has four steps. First, the argument is wrapped with the contract for the domain, c_d. Second, the wrapped argument is passed to the function $\lambda x : \tau.\, e_c$ to construct a context contract. Third, the resulting context contract is attached to v, which is applied to the wrapped argument. Finally, the contract for the range, c_r, is attached to the result of the application.

3.1.3 Parameters

Parameters are first-class values that can be used to access and install dynamic bindings. Parameters implement fluid scope because access to their dynamic bindings is controlled lexically by access to the parameter itself. The expression $\text{make-parameter } e$ creates a new parameter $p(r)$ with default value the result of e, where r is a fresh tag uniquely identifying the parameter. The default value is recorded in the store σ. Term $\text{parameterize } p(r) = e_1$ in e_2 installs the result of e_1 as the new value of the parameter $p(r)$ for the dynamic extent of e_2. Accessing the value of a parameter with term $\text{?} p(r)$ returns the value of the closest enclosing parameterize for $p(r)$ in the current evaluation context. If there is no such term, it returns the current value for r in the store. Similarly, term $p(r) := v$ mutates the current binding for the parameter, updating the parameter associated with either the closest enclosing parameterize for $p(r)$ in the current evaluation context or the value for r in the store, if there is no such expression.

The parameter contract $\text{param}/c(c)$ is a higher-order contract that restricts uses of a parameter. A contracted parameter v reduces to a proxy $\text{param}/p(c, r)$ that records the labels of the contract, provider, and client modules and intercepts uses of the parameter to enforce that values bound to the parameter meet contract c.
Figure 3. Reduction semantics
3.1.4 Context Contracts

To track properties of execution contexts, context contracts use parameters to install and access relevant state. A context contract interposes on programs at two key times: when the contract is attached to a function and when the contracted function is applied. At both times, the contract can inspect the current values of parameters to check that the current environment is satisfactory, capture the current value for later use, or change the parameterization of a call to the contracted function.

A context contract

\[\text{ctx/c}(v_c, v_p, v_u, \ldots) \]

has four parts:

1. \(v_c \), a predicate that checks whether the context is appropriate when the contract is attached,
2. \((v_g \Rightarrow v_{p_g} \leftarrow v_{v_g}), \ldots \) a list of guarded parameterizations, described below, to close over when the contract is attached,
3. \(v_u \), a predicate that checks whether the context is appropriate when the contract function is called, and
4. \((v_g \Rightarrow v_{p_g} \leftarrow v_{v_g}), \ldots \) a list of guarded parameterizations to be installed around the body of the contracted function if the contract check succeeds.

The first two parts are evaluated when the contract is attached to a value. First, the predicate \(v_c \) is executed to allow the contract to check the current context. If the predicate returns \(\#f \), a contract error is raised blaming the client of the contract. Otherwise, each guarded parameterization \((v_g \Rightarrow v_{p_g} \leftarrow v_{v_g}) \) from part 2 is evaluated in turn. Each guarded parameterization specifies a guard function \(v_g \), a parameter \(v_{p_g} \), and a value function \(v_{v_g} \). If invoking the guard thunk \(v_g \) returns \(\#t \), the corresponding value thunk \(v_{v_g} \) is executed to produce a new value. This value is “closed over” and re-installed for parameter \(v_{p_g} \) when the contracted function is applied. The predicate \(v_u \) and the remaining parameterizations are recorded in a proxy \(\text{ctx/p}^\ell \).

The proxy enforces additional checks and parameterizations when the contracted function is called. First, the parameter values captured when the contract was attached are reinstalled. This gives the evaluation of the proxy and the function call access to any bindings from when the contract was attached, in addition to any bindings that are present in the current evaluation context. With these captured bindings in place, the proxy first evaluates the predicate \(v_u \), which checks whether the current context is satisfactory. If the predicate returns false, a contract error is raised blaming the client \(\ell \). Otherwise, the guarded parameterizations of the proxy are evaluated in a similar fashion as before. However, any new bindings are installed just for the dynamic extent of the contracted function’s call.

Figure 4 demonstrates context contracts with a small example. The example involves two context contracts, \(\text{outer/ctx} \) and \(\text{inner/ctx} \), that communicate via parameter \(p \). The contracts ensure that function \(\text{inner} \) can be applied only in the dynamic extent of the function returned by \(\text{outer} \). Evaluating \(\text{inner/42} \) results in a contract error \(\text{error}_{\text{top}} \) blaming the context that applied \(\text{inner} \). Replacing this expression with \(\text{((inner outer) 42)} \) evaluates to 42.

The ability to close over an environment is a key feature of authorization contracts. To see that context contracts can close over some part of the environment when a contract is applied, consider extending the example in Figure 4 with the contract \(\text{capture/ctx/c} \) from Figure 5. This context captures the value of parameter \(p \) when the contract is applied, and reinstates that value for the dynamic extent of subsequent applications of the contracted value.

3.1.5 Complete Monitoring

Our contract system satisfies complete monitoring \[9\], an important correctness criterion for contract systems. Complete monitoring guarantees that a contract system correctly assigns blame to components that violate their contracts and, crucially, that the contract system can interpose on all uses of a value in a component that did not create that value. This property makes contracts suitable for interposing on programs to enforce access control policies. Moreover, because the interposition is local to individual components, an access control monitor can be installed around a component without a global enforcement mechanism or the cooperation of other components.

module \(\ell \) exports \text{inner with inner/c, outer with outer/c}

where \(\text{inner} = \lambda x : \text{Int}. x \),
\(\text{outer} = \lambda f : (\text{Int} \rightarrow \text{Int}). \lambda x : \text{Int}. (f x) \),
\(\text{true} = \lambda _ : \text{Unit}. \#t \),
\(\text{int/c} = \text{flat/c}(\text{true : Unit.} \#t) \),
\(\text{fun/c} = \lambda \text{ctx : ctc}. (\text{int/c : Int} \rightarrow (\text{ctx} : \text{Int/c})) \),
\(\text{any/ctx} = \text{ctx/c}(\text{true : true}) \),
\(\text{any/c} = (\text{fun/c : any/c}) \),
\(\text{p} = \text{make-parameter} \#f \),
\(\text{check/ctx} = \text{ctx/c}(\text{true : Unit.} \#p) \),
\(\text{enable/ctx} = \text{ctx/c}(\text{true : true}, ((\text{true} \Rightarrow p \leftarrow \text{true})) \),
\(\text{enable/c} = (\text{fun/c : enable/c}) \),
\(\text{inner/c} = (\text{fun/c : check/ctx}) \),
\(\text{outer/c} = (\text{any/c : (Int} \rightarrow \text{Int} \rightarrow (\text{any/ctx} : \text{enable/c})) \).

\(\text{inner 42} \)

Figure 4. Context contracts enforcing nested applications.

module \(\ell \) exports ...

where ..., \(\text{cp} = \text{make-parameter} \#f \),
\(\text{capture/ctx} = \text{ctx/c}(\text{true}, ((\text{true} \Rightarrow c : \text{Unit.} \#p)), \text{true}, ((\text{true} \Rightarrow p \leftarrow \text{Unit.} \#c))) \), ...

\(\ldots ; \)

Figure 5. A context contract that closes over parameter \(p \).
Put differently, complete monitoring guarantees that contracts can enforce the same set of properties as reference monitors: an arbitrary prefix-closed property of a sequence of events. For contracts, these events are the attachment of contracts to values and the use of contracted values. In contrast, for inline reference monitors built with aspects, this set of events is determined by the point-cuts selected by the policy. In either case, the programmer must correctly identify relevant events and specify the policy, but can assume the policy is enforced.

The formal definition and proof of complete monitoring for our contract system are given in Appendix[3].

3.2 Representing Authority

In principle, a programmer can use context contracts to enforce arbitrary properties of execution contexts such as access control, but in practice this requires the careful design of an appropriate representation of the relevant information as an environment, i.e., a set of parameters. In particular, for access control this requires a representation of the authority of an execution context.

The authority of an execution context describes the rights it has to perform sensitive operations. In different access control, mechanisms the form and organization of these rights varies. For example, in a web application, a session executes and

\[
\begin{align*}
\text{Delegations} & : \quad A \quad ::= \quad p \geq p \otimes p \\
\text{Delegation sets} & : \quad D \quad ::= \quad \{ A, A, \ldots \}
\end{align*}
\]

Figure 6. Syntax of principals, delegations, and worlds

authority of both \(p \) and \(q \). Similarly, the disjunctive principal \(p \lor q \) has the authority of either \(p \) or \(q \).

If principal \(p \) trusts principal \(q \), we write \(q \succeq p \), and say that \(q \) acts for \(p \). The acts-for relation is reflexive and transitive, and induces a lattice structure over the set of principals, with conjunction as join, disjunction as meet, and \(\top \) and \(\bot \) as the top and bottom elements of the lattice.

Principals may assert the existence of trust relationships. A delegation \(p \succeq q \otimes r \) means that principal \(r \) asserts that \(p \) acts for \(q \) (or, equivalently, that \(q \) delegates its authority to \(p \)). Of course, whether a principal \(s \) believes the assertion depends on whether \(s \) trusts principal \(r \). (We differ from FLAM in that we describe only the integrity of delegations, not their confidentiality.)

Judgment \(D_1 : r \vdash p \succeq q \) denotes that given the set of delegations \(D_1 \), principal \(r \) believes that principal \(p \) acts for principal \(q \). Intuitively, \(r \) believes that \(p \) acts for \(q \) if that trust relationship can be derived using only delegations asserted by principals that \(r \) trusts.

Figure 7 presents the inference rules for the judgment \(D : r \vdash p \succeq q \). Rules \text{Bot}, \text{Top}, \text{Refl}, \text{Trans}, \text{Conj-Left}, \text{Conj-Right}, \text{Disj-Left}, and \text{Disj-Right} are standard and provide the underlying lattice structure for the acts-for relation. Rule \text{Del} captures the intuition that principal \(r \) trusts only delegations asserted by principals that it trusts, that is delegations \(p \geq q \otimes s \) where \(D_1 : r \vdash s \succeq r \).

We have three additional principal constructors. Principal \(p \succeq \alpha \) is the projection of the authority of principal \(p \) on dimension \(\alpha \). We use projections to limit or attenuate the authority of a principal, and to identify access rights. For example, \(p \succeq \text{files} \) may refer to principal \(p \)'s authority restricted to \(p \)'s rights to access the file system. Similarly, principal \(p \succeq \text{obj} \succeq \text{invoke} \) (equivalently \(p \succeq \text{invoke} \succeq \text{obj} \)) might refer to the right to invoke a particular object belonging to principal \(p \). Principal \(p \) can grant this right to another principal \(q \) by asserting a delegation: \(q \succeq p \succeq \text{obj} \succeq \text{invoke} \otimes p \).

We leave projection dimensions underspecified, and access control mechanisms can define their own dimensions. For any projection dimension \(\alpha \), principal \(p \) acts for principal \(p \succeq \alpha \), as captured in Rule \text{Proj}. Typically the converse does not hold, and so \(p \succeq \alpha \) has strictly less authority than \(p \).

Novel to this work, we introduce closure principals \(\overline{D}p \) and \(\overline{D}p \). Given a set of delegations \(D \) and principal \(p \),

3 FLAM considers basis projections and ownership projections. The projections we use here are more general and have less structure than either. In addition to preserving the acts-for lattice, the only structure we impose is that projections are commutative: \(p \succeq \alpha \succeq \beta = p \succeq \beta \succeq \alpha \).
which parts of the closed over authority environment are
The latter has two sub-parts: a global, mutable delegation set, authorization contracts. Authorization contracts specialize context
executing context.

Figure 7. Inference rules for judgment $D = p \triangleright q$

the left-closure principal $\triangledown p$ represents p with all of the trust relationships derivable from D where p delegates its authority to other principals. The right-closure principal $\triangledown p$ represents p with all of the trust relationships derivable from D where p acts for other principals. In our framework, delegations may change over time. Closure principals are useful because they allow us to capture trust relationships as they exist at particular moments in time. In particular, closure principals are a principled mechanism to describe how authority captured by a context contract should be combined with the current authority environment based on which parts of the closed over authority environment are trusted by principals in the current authority environment.

Rule Closure-Left shows that $D \vdash r \triangleright p \triangledown q$ holds when there is some principal s such that at the time of closure creation (i.e., with delegation set D'), s believed that p acted for q (premise $D' \vdash s \triangleright p \triangledown q$), and moreover, right now (i.e., with delegation set D) principal r trusts principal $\triangledown s$ (premise $D \vdash r \triangleright s \triangledown r$). Typically, s and r are the same principal, meaning that r-at-time-D trusts the decisions made by r-at-time-D'. Rule Closure-Right is similar and $D \vdash r \triangleright p \triangledown q$ holds when there is some principal s such that at the time the closure was taken s believed that p acted for q (premise $D' \vdash s \triangleright p \triangledown q$), and principal r trusts s-at-time-D' (premise $D \vdash r \triangleright s \triangledown r$).

To query whether a particular set of delegations satisfies an acts-for relation, we use a proof search algorithm adapted from FLAM [5]. We give examples of using delegations to implement different authorization mechanisms in Section 4.

Based on this logic, we represent an authority environment as:

1. a principal, who is responsible for the current execution context, and
2. a delegation set, which records the current trust relationships between principals.

The latter has two sub-parts: a global, mutable delegation set, and a set of delegations that are in place only for a currently executing context.

3.3 Authorization Contracts

Using authority environments, we can now introduce authorization contracts. Authorization contracts specialize context contracts in two ways. First, they prevent interference from untrustworthy code by using parameters that the rest of the program does not have access to. Second, they use a high-level representation of authority environments rather than directly manipulating parameters. Authorization contracts provide a structured way to describe how the underlying context contracts should manipulate authority environments.

Authorization contracts are defined as monitor actions using the define-monitor form (§2). In this section, we model a pared-down version of define-monitor as an extension to the language model from Section 3.1. Figure 8 displays the syntax of the extension. The extension introduces new types, constructors, and operations for principals, delegations, and delegations sets, including an expression that evaluates an acts-for judgment: $e\vdash e \triangleright e$. The define-monitor form corresponds to the monitor (a ...) form that can appear in the where clause of a module definition in the extended model. Each a in monitor (a ...) is an action specification. An action specification action x (y : τ, ...) (ce, ae) has a name (x), a set of arguments (y : τ, ...), and two terms (ce and ae) that define the action’s #:on-create and #:on-app hooks.

The term for the #:on-create hook has the form

\begin{align*}
\text{check}: & \text{cee add: cee remove: cee set-principal: cee} \\
\text{closure-principal: cee closure-delegations: cee}
\end{align*}

and specifies what the authorization contract should do when the contract is applied to a value. In particular it describes how to modify each part of the authority environment. Its field check accepts an acts-for judgment. If this judgement does not hold, a contract error is raised blaming the client of the contract. Field add accepts a set of delegations to add to the global delegation set. Field remove accepts a set of delegations to remove from the global delegation set, if present. Field set-principal changes the current principal to the given principal. Fields closure-principal and closure-delegations accept a principal and a set of delegations, respectively, and record the principal and delegations for use upon a call to the contracted function. Terms in each of these six fields can access the pieces of the current authority environment using current-principal and current-delegations.
The second term corresponds to the `#:on-apply` hook, which specifies what the authorization contract should do upon a call of the contracted function. It has the form

```
check: cee add: cee remove: cee scope: cee
set-principal?: cee principal: cee set-principal: cee
```

Similar to a `ce` term, it allows the configuration of the contract’s behavior. As before, `check` accepts an acts-for judgment and raises a contract error if it does not hold. Likewise, fields `add` and `remove` mutate the global delegation set, and field `set-principal` changes the current principal. The `scope` field accepts a set of delegations, but this set is installed only for the dynamic extent of the current function call, rather than added to the global delegation set. The `set-principal?` field requires a boolean value. If that value is `#t`, the current authorization environment is extended with a principal for the dynamic extent of the function call. This (1) allows changing the principal visible within the extent of the function call and (2) prevents contracts that change the principal during the extent of the function call from modifying the principal of the enclosing context. In addition to accessing the current principal and delegations from the authority environment, the seven fields of an `ae` term can access the principal and delegations closed over by the contract with terms `current-principal` and `current-delegations`.

To give a detailed semantics for `monitor` terms, we use a compilation function that replaces `monitor` expressions with terms that explicitly construct context contracts. The compilation uses five parameters: one each for the current principal, current delegation set, and scoped delegation set, plus a pair to record the closed-over principal and delegations. Each `monitor` term generates a fresh set of parameters, preventing separately defined monitors from interfering with each other. Each `action` term compiles to a single context contract that closes over the fresh parameters. The full compilation function is listed in Appendix [A] along with typing judgments for authorization contracts and the semantics of expressions that operate on principals, dimensions, delegations, and delegation sets.

The hooks for defining actions are sufficiently flexible to implement a variety of access control mechanisms ([4]). Here, we briefly describe some of the ways programmers can configure authorization contracts.

Mutable Authority Many access control mechanisms have a global policy that changes over time. For example, in discretionary access control, users can grant or revoke access to their resources. We can implement this with a contract that adds or removes (global) delegations.

Dynamically-scoped Authority An authority closure can inherit the authority environment from its calling context by ignoring the authority environment it closes over.

“Lexically”-scoped Authority An authority closure can isolate itself from the authority of its calling context by replacing the authority environment at a call site with the authority that it closes over.

Moreover, different access control mechanisms may require authorization contracts that blend these different strategies. For example, implementing `setuid`-like authority closures requires capturing the principal but not the delegations the closures close over. Otherwise, updates to the global, mutable discretionary access control policy would be forgotten when a `setuid` function runs.

4. Putting Authorization Contracts to Work

As evidence of the usefulness and expressiveness of the framework, we implemented a variety of existing access control mechanisms including discretionary access control, stack inspection [42], history-based access control [11], and object capabilities [27]. Before delving into the mechanisms, we further explain `define-monitor`, the main linguistic tool that our framework provides.

4.1 The define-monitor Form

Figure 8 shows the complete syntax of `define-monitor`. It has two sections in addition to the `action` section we have seen before: `extra` and `syntax`. The first defines extra functions and contracts that the programmer wants to include in the interface of a monitor. These are usually contracts that combine two or more actions together or contracts that fix the arguments of an action. The `syntax` section defines macros that
serve as syntactic abstractions over the monitor’s interface, for example, to automate the placement of authority contracts when defining a function. We give examples of definitions in the extra and syntax sections later. The monitor-interface and monitor-syntax-interface clauses specify which elements are available to users of the monitor. After defining a monitor monitor-name, a client can instantiate it with (run monitor-name). This creates a fresh monitor, i.e., one with a fresh authority environment and contracts.

The most complicated part of defining a monitor is writing the two hooks for each monitor action. To facilitate this, we provide two functions, do-create and do-apply, that simplify this process. Each function has optional keyword arguments corresponding to the fields of an action form in Section 3.3. The functions provide default values for any argument not specified. Thus, the programmer need only specify the results of the hooks they care about. For instance, the default value for the argument with keyword #:check seen in Figure 1 is an acts-for relation that is always true.

4.2 A Discretionary Access Control Monitor

In a discretionary access control system, individual users can choose what policy to enforce on objects they control. We extended the basic discretionary access control monitor from Figure 1 with additional contracts for marking functions as objects owned by individual users, and for granting or revoking the right to invoke these functions. The resulting monitor is shown in Figure 1 in Appendix C. It defines four actions: make-user/c, make-object/c, grant/c, and revoke/c. Action make-user/c creates an authority closure that captures a fresh principal representing a new user. Invoking the wrapped function requires that the current principal at the call site is authorized for the invoke projection of the new user’s authority, and switches to the new user’s principal without modifying any delegations. Action make-object/c creates a new projection of the current user’s authority, and requires that any context invoking the wrapped function has authority to use this projection of the user’s authority. Action grant/c takes two functions as arguments, one wrapped with a make-user/c authorization contract and one wrapped with a make-object/c contract. When a function wrapped with this contract is applied, the contract adds a new delegation that says the principal of the make-user/c closure acts for the principal of the make-object/c closure. This delegation is ignored if the current context has insufficient authority to delegate the object. Similarly, revoke/c takes a user and an object as arguments, and removes any delegation from the global delegation environment that grants the user right to invoke the object where the current principal acts for the principal that asserted the delegation.

4.3 A Stack Inspection Monitor

In stack inspection [42], code obtains permissions based on static properties such as the package it belongs to. At run time, code can choose to enable its static permissions making them eligible for satisfying an access control check. Before a sensitive operation, stack inspection checks for the presence of a particular permission by walking the run-time call stack until a frame from code that has enabled the permission is found. To prevent luring attacks [42], stack inspection additionally requires that all execution contexts between the enabled permission and the authorization check have the required static permission. Despite this protection, untrusted code may be able to influence the program even if its frames are no longer on the stack. As a result, modern adaptations of stack inspection provide additional support for capturing the permissions of the stack at some point in an execution and reinstating them for a later check.

Implementations of stack inspection provide the following primitives: checkPermission, which checks that a frame on the stack has the required permission enabled and that all intervening frames have the required static permission; doPrivileged, which enables the static permissions of the current code for its dynamic extent, possibly using captured permissions instead of the current permissions; and getRuntime, which captures the permissions of the stack at some point in an execution and reinstating them for a later check.
principal has a particular permission if it acts for the corresponding projection of the \(\top \) principal.

We use one additional monitor action, privileged/c, to indicate the static permissions a code possesses and to enforce that a stack frame’s active projection acts for exactly those permissions for which checkPermission should succeed. Action privileged/c takes a list of permissions (each of which is a projection of the \(\top \) principal). On an \#on-apply event, it creates a new principal callee to represent the new stack frame and adds delegations initializing these projections for the dynamic extent of the function:

\[
(\geq @ (\triangleright \text{callee static}) \permissions \top) \\
(\geq @ (\triangleright \text{callee enable}) \\
(\triangleright \text{current-principal active}) \\
\text{current-principal}) \\
(\geq @ (\triangleright \text{callee active}) \\
(\lor (\triangleright \text{callee enable}) (\triangleright \text{callee static})) \\
\text{callee}).
\]

These delegations give callee the specified static permissions (by asserting that the callee’s static dimension acts for the conjunctive principle permissions), assert that the new frame inherits the active permissions from the previous frame, and require that the callee has both static and enabled permissions to make them active.

Tracking the authority of each frame in this way makes walking the stack unnecessary. Action check-permission/c only checks that the active projection of the current principal acts for all of the requested permissions.

Action do-privileged/c enables the current frame’s static permissions by adding a delegation from the frame’s static projection to its enable projection for the dynamic extent of the wrapped function.

Action context/c is used to capture the permissions of the current stack for future permission checks. It captures the current authorization environment when it is attached to a function. When it is invoked, it installs the same set of delegations as privileged/c, except that the first delegation that grants static permissions gets replaced with a delegation that derives permissions from the active permissions of the captured frame at the time they were captured:

\[
(\geq @ (\triangleright \text{callee static}) \\
(\triangleright (\text{→ closure-principal closure-delegations}) \\
\text{active}) \top).
\]

The right-closure principal on the right hand side of this delegation acts for all of the principals that closure-principal acted for when the closure was created.

The monitor must also provide (2) a way to grant static permissions to code. Because Racket does not have class-loading facilities that would allow permissions to be granted to code at load-time, we use macros to attach authorization contracts to code that should have static permissions. In particular, the monitor provides a new definition form define/rights in its \texttt{syntax} section. This form works like the define form,

\[
\text{(define/rights (read-file file) (filesys) (check-permission/c filesys) ...)}
\]

\[
\text{(define/rights (read-privileged file) (filesys) do-privileged/c (if (safe? file) (read-file file) #f))}
\]

\[
\text{(define/rights (malicious) (net) any/c (read-file "/etc/passwd"))}
\]

but takes two additional arguments: a set of permissions and a contract to apply to the definition. It defines a function wrapped with the given contract and a privileged/c contract. In addition, the macro define/rights coheres any function arguments or free-variables appearing in the body of the function to authority closures by applying an additional contract unprivileged/c, which is defined in the extra section of the monitor. Action unprivileged/c switches to the \(\bot \) principal for the dynamic extent of the closure it wraps, preventing any check-permission/c actions from succeeding. Thus, these contracts prevent functions that were not defined with define/rights from using code that requires permissions.

The complete implementation of the monitor is given in Figure 12 in Appendix C, and Figure 10 shows an example program using the stack inspection monitor. There are three functions defined using define/rights. Two of these functions are trusted to access the filesystem: read-file and read-privileged. However, read-file should not be used directly, so it checks that the filesys permission has been enabled by one of its callers. Function read-privileged enables the filesys permission, but only calls read-file if the file is safe to read. Function malicious does not have the filesys permission but attempts to read "/etc/passwd" anyway, so invoking this function results in a contract violation. The contract violation says that the stack frame corresponding to the call to read-file does not have the necessary permission filesys.

4.4 A History-Based Access Control Monitor

Abadi and Fournet [1] observe that stack inspection fails to protect against attacks where the influence of untrusted code is no longer apparent from the call stack. As a remedy, they propose history-based access control (HBAC). In HBAC, the rights of an execution context depend not just on the
rights of code currently on the execution stack, but also on the rights of all code that has previously been executed. HBAC has two primitives: grant and accept. grant has the same behavior as the do-privileged operator we implement for stack inspection. accept allows a component to take responsibility for code in its dynamic extent. After accept returns, it restores any privileges that were present before it was invoked.

Our implementation of a monitor for HBAC is very similar to the monitor for stack inspection, and is shown in Figure [13] in Appendix [C]. The primary difference between the two monitors is the definition of action privileged/c. In the HBAC monitor, in addition to initializing the three projections for the new frame, its #:on-apply event walks the call stack by reading the current delegations. For every frame on the call stack, it adds a disjunct with the callee’s static permissions to the delegation that granted permissions from that frame’s caller. For example, the delegation:

\[(\lhd @ (\lhd parent enable) (\rhd grandparent active)) grandparent\]

is replaced with the delegation:

\[(\lhd @ (\rhd parent enable) (\lor (\rhd grandparent active) (\rhd callee static))) grandparent)\]

This means that future attempts to use the parent frame’s permissions will be restricted to whatever rights the callee had, unless the parent frame specifically vouches for an action by enabling its own permissions.

We define accept/c in the extra section. accept/c uses the accept-context/c action to create an authority closure around its continuation. When the function accept/c wraps returns, accept/c invokes this continuation, restoring the authority environment before the wrapped function was called.

4.5 An Object Capability Monitor

Authority closures are closely related to the idea of capabilities. A capability both designates a resource and confers the authority necessary to use it [8]. An authority closure designates resources (those accessed by the wrapped function) and captures the authority that should be used to access those resources. Any code that can invoke an authority closure can exercise the authority of the closure, though that authority is attenuated by the functionality of the closure itself. For example, in our web application example, login is a capability that allows any code that invokes it to use the “root” user’s authority; however, the implementation of the login function ensures that this authority can be used only to switch to a different user after supplying the correct password.

In a memory-safe programming language, any reference to a value can be considered a capability that grants restricted access to some set of resources that can be accessed through it (by invoking or otherwise inspecting it). Object-capability languages like E [27], Joe-E [23], or Caja [28], embrace this fact as the basis of their security architecture. In an object-capability language, all sensitive resources are represented as objects. Access to these objects is controlled by structuring the language to limit the ways that objects acquire references to other objects [27].

1. by initial conditions: two objects may reference each other before a computation begins,
2. by parenthood: the creator of an object is initially the only object with a reference to it,
3. by endowment: an object can close over references to objects available in its parent’s environment, and
4. by introduction: an object can receive references to other objects passed as arguments to its methods or returned from methods it invokes.

These restrictions are sometimes referred to as “capability safety” and are designed to support modular reasoning about security. For example, the restrictions above are sufficient to enforce the property that “only connectivity begets connectivity;” that is, two components may communicate or share references only via a capability shared by both components [27].

We built a monitor to enforce capability safety. This monitor, shown in Figure [14] in Appendix [C], defines two actions, capability/c and unprivileged-capability/c, which is the same as the capability/c, but does not grant any initial authority. These actions enforce capability safety by creating a new principal for each capability and using delegations to specify when one capability has the authority to invoke another. Their #:on-create hooks handle parenthood and endowment and their #:on-apply hooks handle introduction. Parenthood amounts to a delegation:

\[(\lhd @ (\lhd parent caps) (\lhd child invoke) child)\]

Similarly, endowment closes over the current authority of the parent and grants it to the child:

\[(\lhd @ (\lhd child caps) (\lhd (\lhd parent caps) current-delegations)) parent)\]

We must also assert that the parent authorizes the use of its closed-over delegations for the rest of the execution:

\[(\lhd @ (\lhd parent current-delegations) parent parent)\]

Introduction is implemented by adding additional delegations granting callee’s authority over arguments they are passed, and vice versa for return values.

5. Case Studies

To evaluate the use of our framework in practical applications, we developed three case studies. The first adds simple
authorization contracts to the implementation of a card game to ensure that player’s moves affect only the parts of the game state they control. The second secures a plugin interface of the DrRacket development environment and demonstrates how the flexibility of the framework can support complex security mechanisms. The third, which mirrors the example from Section 2.2 replaces authorization checks in a web application with authorization contracts.

We evaluated the performance of our framework on each case study. The experiments were conducted on a MacBook Pro with a 2.6 GHz Intel Core i5 and 16GB of RAM running Mac OS X 10.11 and Racket 6.4.0.9. In the first two case studies, authorization contracts have significant impact on the performance of the benchmarks. However, both case studies are worst case scenarios: they have no existing code implementing access control (and so we are strictly adding functionality), and after adding contracts, they invoke many access control checks (tens of thousands in the case of the card game) while performing cheap operations. Moreover, in the DrRacket case study, the absolute overhead for each benchmark due to authorization contracts is less than 45ms, but the relative overhead is high since the baseline running time is less than 15ms. The third case study replaces existing access control checks with authorization contracts, with negligible impact on performance. Our implementation is a prototype, and we anticipate that optimizations in the implementation of our contracts can further reduce their overhead.

Preventing Cheating in a Card Game We have used authorization contracts to enforce a security policy for a functional implementation of the card game Dominion. The exact rules of Dominion do not matter for our purpose, except that each player collects cards in a local deck and attempts to outscore the rest of the players by playing cards from their deck. During each turn, players can play cards from their deck to either purchase additional cards or attack other players, forcing them to discard some of their cards.

In this implementation, each player is a program that runs in its own process and responds automatically to messages from a central broker. The broker maintains the shared inventory of cards and a mirror of each player’s local deck. Players perform moves by sending messages to the broker describing the move.

To perform a move, the player sends a message to the broker identifying a card to play. In response, the broker updates its copy of the game state to reflect the move and, if the move involves an attack on another player, informs the other player of the attack. The other player then has an opportunity to defend by choosing which card to discard and the broker again updates the game state.

The broker represents the local deck of each player as an immutable record player and the state of the game as an immutable structure game that holds a list of player records. The first element in this list corresponds to the player who makes the next move. The broker is implemented as a core drive function that delegates to two functions: move and defend. Both functions perform functional updates to the relevant structures.

We enforce the policy that the broker only updates the current player’s deck or a defending player’s deck. The monitor that enforces this policy specifies three authorization contracts: deprive/c, which sets the principal for the dynamic extent of a function to \(\bot \); (switch-player/c name), which sets the principal for the dynamic extent of a function to the player with name name; and (check-player/c name), which checks before calling a function if the current principal is the player with name name.

To enforce the policy, we attach contract deprive/c to the function drive so that only authorized code can modify the game state during the game. The contract for the game structure, game/c, gives the accessor functions of each field of the player records in the game the contract (check-player/c name), where name is the name of the corresponding player.

The contract for the move function is

\[
\begin{align*}
&\text{(-a)} \\
&\quad ([\text{game/c}] \ [\text{turn/c}] \ [\text{play/c}]) \\
&\quad \text{#:auth (game)} \\
&\quad \quad (\text{switch-player/c}) \\
&\quad \quad \quad \text{(first (game-players game)))} \\
&\quad \quad \text{(values [game-result-game game/c] [turn-result any/c])}
\end{align*}
\]

and it authorizes the move function to act on behalf of the current player, i.e., (first (game-players game)). The contract for defend is

\[
\begin{align*}
&\text{(-a)} \\
&\quad ([\text{player/c}] \ [\text{defense/c}]) \\
&\quad \text{#:auth (player)} \\
&\quad \quad (\text{switch-player/c}) \\
&\quad \quad \quad \text{(player-name player)} \\
&\quad \quad \quad \text{[result player/c])}
\end{align*}
\]

which similarly allows the function to update the state of the player who was attacked.

We created 10 benchmarks for the Dominion case study that each consists of a simulated game with 2–7 players. Adding authorization contracts increases running time by 1.3–1.7× at both the median and 99th percentile.

Securing a Plugin Interface We wrote a monitor to protect DrRacket from malicious or buggy third-party key bindings. First, we explain aspects of DrRacket’s design related to key bindings. Keystrokes sent to DrRacket are dispatched as method calls to a text% object which encapsulates the state of the editor. This object has methods that access and modify parts of DrRacket. For instance, the get-text method returns the content of the editor, while the set-padding method changes the inset padding used to display the editor’s content. Each text% object has a keymap% object that stores

\[\text{The implementation is part of the teaching material of a long running undergraduate Functional Programming course.}\]
registered key bindings and maps sequences of keystrokes to the action they trigger. A keybinding action is an arbitrary Racket function of two arguments: the current `text/c` object and an `event/c` object, which describes the event that triggered the action. On startup, DrRacket populates its `text/c` object’s key map with built-in key bindings. In addition, DrRacket registers user-defined key bindings from configuration files. Keybinding actions can inspect and modify almost any aspect of DrRacket through the `text/c` object. This gives users a powerful interface for customizing DrRacket but makes key bindings a source of vulnerabilities. For instance, a key binding could accidentally erase the user’s code or snoop on the editing session.

Our monitor restricts which `text/c` object methods a keybinding action can invoke. We group methods of `text/c` that can access or modify similar parts of DrRacket. For instance, methods that write to the clipboard (e.g. `cut` and `copy`) belong to the same group while methods that change how DrRacket displays content (e.g. `set-max-width` and `set-line-spacing`) belong to a second group. Each group has a corresponding privilege that is required to invoke the group’s methods. For example, the privileges `ReadClipboard` and `ChangeEditorView` grant access to the methods mentioned above. Methods can belong to multiple groups. Access control checks around each method verify that the authority of a calling execution context has the necessary privileges.

In addition to methods that require specific privileges to invoke, `text/c` has sensitive methods that should be invoked only by another method of the `text/c` object. For example, the `on-delete` method should never be invoked directly as its correctness depends on DrRacket’s state. Instead, key bindings should invoke the `delete` method that subsequently calls `on-delete`. To support this use case, we require an additional privilege to call `on-delete` that is granted during the dynamic extent of `delete`.

The stack-inspection-like access control mechanism we have described so far is not sufficient. Some methods of `text/c` install callbacks that are triggered by subsequent events. For example, `add-undo` registers a callback that runs when the user wishes to undo the action of a key binding. This callback should not run with the authority of its calling context, but instead should use the privileges of the action that created it. To achieve this, we create authority closures around any callbacks registered by an action.

Our monitor represents each privilege as a unique principal and represents sets of principals as conjunctions and disjunctions of principals. It defines three actions: `check/c`, `enable/c`, and `closure/c`. Upon an `#:on-create` event, the first action consumes principal `perms` and checks if the current principal has permissions that imply `perms`. Then the action switches the current principal to a principal that only has permissions `perms`. When a function wrapped with `enable/c` is applied, it switches the current principal to a principal that has the same permissions as the current principal augmented with `perms`. The `#:on-create` event of the third action creates an authority closure. When the authority closure is applied, it installs the closed-over principal.

We use the actions of the monitor to define an authorization contract for the keybinding interface:

```
(->a ([t text/c] [e (is-a/c event%)])
  #:auth () (check/c perms) any)
```

where `perms` is a principal which encodes the privileges we grant to the key binding and `text/c` is the object contract we define for the editor’s `text/c` object. `text/c` applies a contract to each method of `text/c` specifying whether the method enables some permission, requires some permissions, or creates an authority closure around one of its arguments. For example, `text/c` gives the method `blink-caret` the contract `(check/c ChangeEditorView)`. In essence, `text/c` defines a security policy for the editor.

To assess the monitor’s performance, we ran a series of 30 benchmarks, adapted from DrRacket’s test suite, that simulate a sequence of keystrokes that trigger built-in key bindings. We ran these benchmarks with the monitor off and on. When the monitor is on, the prototype grants the minimum set of privileges necessary for each key binding. For each benchmark, we measured the time required to retrieve and execute each key binding. Our measurements show that the authority monitor increases median response time by 3–7× and increases response time at the 90th percentile by 3–5×. However, for an IDE, a response time fast enough for interactive use is more important. Our prototype achieves this goal with a maximum response time of 53ms.

Authentication in a Web Application The Racket package system allows users to discover and install packages from a public index service. Individual users can add new packages or update old ones by logging into the index service web application, which is implemented using the Racket web-server. Requests to add or modify packages are issued to the application as asynchronous http requests. The baseline implementation of the application uses macros to authenticate the user and perform any required access control checks before processing the request. For example, the `jsonp/pkg/modify` endpoint authenticates the current user and checks that they are an author of the package they are attempting to modify. This approach to access control is brittle, since it requires that the checks included for each endpoint accurately capture the privileges required when processing the response.

Using authorization contracts, we are able to separate the tasks of authentication and authorization in the index service web application. Rather than performing a different set of access control checks for each endpoint, all endpoints now simply invoke an `authenticate` function that checks whether the current session is valid and which user is logged in, then invokes a procedure to process the request, like the `login` function from Section 2.2. The access control policies for sensitive operations like updating a package are enforced by
adding authorization contracts that implement the necessary checks to the web application’s data model. There are two types of checks: (is-author/c pkg) which checks that the logged in user is an author of package pkg, and is-curator/c, which checks whether the logged in user has “curator” status, which allows them to tag packages with information about their quality.

To evaluate the new implementation’s performance, we measured the latency of 1,000 repeated requests to modify a package record. Replacing inline checks with authorization contracts has minimal impact on performance. Median latency was 283ms for the baseline implementation versus 281ms with authorization contracts. At the 99th percentile, using authorization contracts latency was 338ms versus 330ms with the baseline implementation.

6. Related Work

The connection between scoping and access control has been implicit in prior work on security in programming languages but has never been a central concept for extensible access control. Morris’s seminal paper “Protection in Programming Languages” [61] describes how lexical scope can be used to create security abstractions within a program. More recently, the object-capability paradigm has embraced lexical scope as an organizing security principle [27]. Wallach and Felten [41] note that “in some ways, [stack inspection] resembles dynamic variables (where free variables are resolved from the caller’s environment rather than from the environment in which the function is defined).” Phung et al. [32] use dynamic and lexical scoping to associate principals with executing code in order to correctly enforce security policies on programs that mix JavaScript and ActionScript code.

Inlined Reference Monitors An alternative approach to language-level access control is inlined reference monitoring. Reference monitors observe the actions taken by a system and intercede to prevent violations of a security policy [3]. They can enforce a large class of policies [34]. Inlined reference monitoring (IRM) weaves the implementation of a reference monitor into the program being monitored [13]. Many implementations of inlined reference monitoring rely on aspects to identify security relevant actions during program execution [6] [14] [15] [21]. Policies supported by these tools typically focus on access patterns for sensitive resources. While policies supported by our framework can be encoded this way, as in Erlingsson and Schneider’s IRM implementation of Java stack inspection [14], policies where the authority of code depends on application state require duplicating code. A further disadvantage of IRMs is that they require a global transformation of the program to inline the security monitor. Because authorization contracts are applied at component boundaries, our framework requires only local modifications.

Authorization Logics Authorization logics give a formal language to express access control policies [1]. Authorization logics have been used to understand existing access control mechanisms, including Java stack inspection [41]. Aura [20] and Fine [38] implement access control using proof-carrying authentication, where proofs of formulas in an authorization logic are used as capabilities [41]. Our access control logic is inspired by the Flow-Limited Authorization Model [5], which uses projections to describe attenuated authority without requiring additional constructs such as roles or groups.

Contracts for Security Previous work has used contracts to enforce limited access control policies. Moore et al. [29] use contracts to constrain the use of capabilities in a secure shell scripting language. Dimoulas et al. [10] use contracts to control the flow of capabilities between components in object-capability languages. Heidegger et al. [19] use contracts to specify which fields of an object may be accessed by a component. However, each of these systems is specialized to enforce a specific type of access control policy. Disney et al. [11] introduce temporal higher-order contracts that enforce that sequences of function calls and returns match a specification. Schollier et al. [35]’s computational contracts can enforce a wide range of trace properties on programs. Unlike authorization contracts and temporal higher-order contracts, computational contracts use aspects to interpose on program events. Both of these systems support arbitrarily powerful monitors, but like inlined reference monitoring, provide limited support for writing complex access control policies like stack inspection or discretionary access control.

Scoped Aspects for Security Dutchyn et al. [12] are the first to identify a connection between modular access control and the scoping of aspects that implement authorization checks. They introduce constructs for lexical and dynamic aspect scoping and use them to enforce a simple security policy similar to the one we enforce in §2.3 with authorization contracts. With additional aspect scoping mechanisms, Toledo et al. [40] implement a complete Java stack inspection mechanism in a modular fashion. The exact relation between the expressiveness of scoped aspects and that of authorization contracts is an open question. However, as our case studies and example access control mechanisms demonstrate, authorization contracts are powerful enough to enforce a variety of access control policy classes with a single domain-specific abstraction: authority environments. Doing the same with aspects, if possible, requires brittle and complex encodings in terms of general-purpose advice and aspect scoping.

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant Numbers CCF-1438271, CNS-1524052, and CCF-1526324. This research is also supported by the Air Force Research Laboratory and a Google Faculty Research Award.
References

A. Details of Model

A.1 Evaluation Contexts

\[E ::= \begin{cases} [l] \mid E \mid v \ E \mid \text{let } x = E \text{ in } v \mid \text{if } E \text{ then } e \text{ else } e \mid E \oplus e \mid v \oplus E \mid E \leq e \mid v \leq E \end{cases} \]

| make-parameter \ E \mid \ ?E \mid \ (E := e) \mid \ p(r) := E |
| parameterize \ E = e \text{ in } c \mid \text{parameterize } p(r) = E \text{ in } c \mid \text{parameterize } p(r) = v \in E |

| flat/c(E) \mid \ param/c(E) \mid E : \tau \rightarrow (e) \mid c : \tau \rightarrow (E) \mid e : \tau \rightarrow (c) |

| E : \tau \rightarrow_0 (\lambda x : \tau. e) \mid c : \tau \rightarrow_0 (\lambda x : \tau. e) \mid ctx/c(E) | \text{ctx/c(E),}(e \Rightarrow e \ldots) | (e \Rightarrow e \ldots) |

| ctx/c(E). \ (v \Rightarrow v) \ldots | (v \Rightarrow E \ldots) | (e \Rightarrow e \ldots) | (e \Rightarrow e \ldots) |

\[\text{ctx/c}(E). (v \Rightarrow v) \ldots, (v \Rightarrow E \ldots), (e \Rightarrow e \ldots) \ldots \]

A.2 Typing Judgments

\[\Sigma \vdash p : \tau \]

\[\emptyset; \Sigma \vdash m_1 \triangleright_1 \Gamma_1 \ldots \Gamma_{n-1}; \Sigma \vdash m_n \triangleright_1 \Gamma_n \quad \Sigma; \vdash e : \tau \]

\[\vdash m_1 : \ldots m_n : e : \tau \]

\[\Gamma; \Sigma \vdash m : \Gamma' \]

\[\emptyset; \Sigma \vdash e_1 : \tau_1 \ldots \{ y_1 : \tau_1, \ldots, y_{n-1} : \tau_{n-1} \}; \Sigma \vdash e_n : \tau_n \quad \Gamma' = \{ y_1 : \tau_1, \ldots, y_n : \tau_n \} | (x_1, \ldots, x_n) \]

\[\forall 1 \leq i < n', \exists 1 \leq h < n, x_i \equiv y_h | \tau \equiv \tau \text{ ctc} \land \tau_1 \neq \tau \text{ ctc} \]

\[\Gamma; \Sigma \vdash \text{module } \ell \text{ exports } x_1 \text{ with } x_{e_1}, \ldots, x_{e_n} \text{ with } x_{e_1} \text{ where } y_1 = e_1, \ldots, y_n = e_n \triangleright_1 \Gamma \triangleright_0 \Gamma' \]

\[\Gamma; \Sigma \vdash e : \tau \]

\[\Gamma; \Sigma \vdash () : \text{Unit} \quad \Gamma; \Sigma \vdash n : \text{Int} \quad \Gamma; \Sigma \vdash \# : \text{Bool} \quad \Gamma; \Sigma \vdash \# : \text{Bool} \]

\[\Gamma; \Sigma \vdash e_1 : \text{Int} \quad i \in \{1, 2\} \quad \Gamma; \Sigma \vdash e_1 : \tau_1 \quad \Gamma; \Sigma \vdash x = e_1 \text{ in } e_2 : \tau \]

\[\Gamma; \Sigma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau \quad \Gamma; \Sigma \vdash e_1 \oplus e_2 : \text{Int} \quad i \in \{1, 2\} \]

\[\Gamma; \Sigma \vdash e_1 : \tau \quad \Gamma; \Sigma \vdash \text{if } e_1 \text{ then } e_1 \text{ else } e_2 : \tau \]

\[\Gamma; \Sigma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau \quad \Gamma; \Sigma \vdash \text{if } e_1 \text{ then } e_1 \text{ else } e_2 : \tau \]

\[\Gamma; \Sigma \vdash \lambda x : \tau_1, e : \tau_1 \rightarrow \tau_2 \quad \Gamma; \Sigma \vdash \mu \mu x : \tau. e : \tau \quad \Gamma; \Sigma \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma; \Sigma \vdash e_2 : \tau_2 \quad \Sigma(r) = \tau \]

\[\Gamma; \Sigma \vdash e : \tau \quad \Gamma; \Sigma \vdash e_1 : \tau \quad \Sigma(r) = \tau \quad \Gamma; \Sigma \vdash p(r) : \tau \]

\[\Gamma; \Sigma \vdash (\text{param}) \quad \Gamma; \Sigma \vdash e_1 : \tau_1 \quad \Gamma; \Sigma \vdash e_2 : \tau_1 \quad \Gamma; \Sigma \vdash e_1 : \tau \]

\[\Gamma; \Sigma \vdash \text{parameterize } e_1 = e_2 \text{ in } e_3 : \tau \quad \Gamma; \Sigma \vdash e_2 : \tau_1 \quad \Gamma; \Sigma \vdash e_3 : \tau \quad \Gamma; \Sigma \vdash \text{make-parameter } e : \tau \]

\[\Gamma; \Sigma \vdash e_1 : \tau_p \quad \Gamma; \Sigma \vdash e_2 : \tau_p \quad \Gamma; \Sigma \vdash e_3 : \tau \quad \Gamma; \Sigma \vdash \text{parameterize } e_1 = e_2 \text{ in } e_3 : \tau \]

\[\Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : (\tau_d \rightarrow \tau_i) \quad \Gamma; \Sigma \vdash \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \]

\[\Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : (\tau_d \rightarrow \tau_i) \quad \Gamma; \Sigma \vdash \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \]

\[\Gamma; \Sigma \vdash e_d : \tau_d \quad \Gamma; \Sigma \vdash e_r : \tau_r \quad \Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : \text{ctx ctx} \]

\[\Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : (\tau_d \rightarrow \tau_i) \quad \Gamma; \Sigma \vdash \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \]

\[\Gamma; \Sigma \vdash e_d : \tau_d \quad \Gamma; \Sigma \vdash e_r : \tau_r \quad \Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : \text{ctx ctx} \]

\[\Gamma; \Sigma \vdash e_d : \tau_d \rightarrow_3 (\lambda x : \tau_d. e) \quad \Gamma; \Sigma \vdash e_r : \tau_r \rightarrow_3 \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : \text{ctx ctx} \]

\[\Gamma; \Sigma \vdash e_d : \tau_d \rightarrow_3 (\lambda x : \tau_d. e) \quad \Gamma; \Sigma \vdash e_r : \tau_r \rightarrow_3 \text{ctx ctx} \]

\[\Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : \text{ctx ctx} \]

\[\Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : \text{ctx ctx} \]

\[\Gamma; \Sigma \vdash e_d : \tau_d \rightarrow_3 (\lambda x : \tau_d. e) \quad \Gamma; \Sigma \vdash e_r : \tau_r \rightarrow_3 \text{ctx ctx} \]

\[\Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : \text{ctx ctx} \]

\[\Gamma; \Sigma \vdash e_d : \tau_d \rightarrow_3 (\lambda x : \tau_d. e) \quad \Gamma; \Sigma \vdash e_r : \tau_r \rightarrow_3 \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : \text{ctx ctx} \]

\[\Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_1 : \text{ctx ctx} \quad \Gamma; \Sigma \vdash e_2 : \text{ctx ctx} \]
A.3 Typing Judgments for Authorization Contract Extensions

Γ; Σ ⊢ e : τ; ctc, Γ; Σ ⊢ e : e τ

Γ; Σ ⊢ e g : Boolean, Γ; Σ ⊢ e v p : τ; ctc, Γ; Σ ⊢ e v : Unit → τ

Γ; Σ ⊢ e f : τ d → τ, Γ; Σ ⊢ e g : Boolean, Γ; Σ ⊢ e p v : τ; ctc, Γ; Σ ⊢ e v p : Unit → τ

Γ; Σ ⊢ guard (e g, e p v, e v p) : τ d → τ, Γ; Σ ⊢ e p v : τ; ctc, Γ; Σ ⊢ e v : τ, Γ; Σ ⊢ e f : τ d → τ

Γ; Σ ⊢ install (p f, e v p, e f) : τ d → τ

Γ; Σ ⊢ module ℓ exports x 1 , ..., x n , with x 1 , ..., x n where y 1 = e 1 , ..., y n = e n, monitor (a 1 , ..., a o), y k = e k : y m = e m, Γ; Σ ⊢ γ

Γ; Σ ⊢ e : τ

Γ; Σ ⊢ ⊥ : Prin, Γ; Σ ⊢ ⊥ : Prin, Γ; Σ ⊢ D : Dim, Γ; Σ ⊢ new-principal : Prin

Γ; Σ ⊢ new-dimension : Dim, Γ; Σ ⊢ e p : Prin, Γ; Σ ⊢ e d : Dim, Γ; Σ ⊢ e : Del

Γ; Σ ⊢ e 1 : Del Set, Γ; Σ ⊢ e 2 : Del Set, Γ; Σ ⊢ e 1 ∩ e 2 : Del Set

Γ; Σ ⊢ e 1 : Del Set, Γ; Σ ⊢ e 2 : Del Set, Γ; Σ ⊢ e f : (τ → (Del → τ)), Γ; Σ ⊢ e 1 : τ

Γ; Σ ⊢ (fold e w e f e 1) : τ

Γ; Σ ⊢ e w : Del Set, Γ; Σ ⊢ e s : Prin, Γ; Σ ⊢ e 1 : Prin, Γ; Σ ⊢ e r : Prin

Γ; Σ ⊢ e w ; e s ⊢ e l ≥ e r : τ

Γ; Σ ⊢ e s : Prin, Γ; Σ ⊢ e l : Prin, Γ; Σ ⊢ e r : Prin

Γ; Σ ⊢ e w ; e s ⊢ e l ≥ e r : τ

Γ; Σ ⊢ [x s → Prin, x l → Prin, x r → Prin]; e : τ

Γ; Σ ⊢ [y 1 → τ 1 , ..., y n → τ n]; e : τ

Γ; Σ ⊢ action x (y 1 : τ 1 , ..., y n : τ n) (ce; ae) : (τ 1 → (τ n [ctx ctc]))

Γ; Σ ⊢ ce

Γ; Σ ⊢ cee 1 : Del, Γ; Σ ⊢ cee 2 : Del Set, Γ; Σ ⊢ cee 3 : Del Set

Γ; Σ ⊢ cee 4 : Del Set, Γ; Σ ⊢ cee 5 : Prin, Γ; Σ ⊢ cee 3 : Prin, Γ; Σ ⊢ cee 6 : Del Set

Γ; Σ ⊢ ce

Γ; Σ ⊢ ace 1 : Del, Γ; Σ ⊢ ace 2 : Del Set, Γ; Σ ⊢ ace 3 : Del Set

Γ; Σ ⊢ ace 4 : Del Set, Γ; Σ ⊢ ace 5 : Prin, Γ; Σ ⊢ ace 6 : Prin, Γ; Σ ⊢ ace 7 : Prin

Γ; Σ ⊢ check: ace 1 add: ace 2 remove: ace 3 scope: ace 4 set-principal?: ace 5 principal: ace 6 set!-principal: ace 7
\textbf{A.4 Compiling Authorization Contract Extensions}

\texttt{compile[module }\ell\texttt{ exports }x_1\texttt{ with }x_{c_1},\ldots\texttt{ where }y_1 = e_2,\ldots; p\texttt{]} =

\texttt{compile-monitor[module }\ell\texttt{ exports }x_1\texttt{ with }x_{c_1},\ldots\texttt{ where }y_1 = e_2,\ldots\texttt{; compile[p]]

\texttt{compile[e] = e}

\texttt{compile-monitor[module }\ell\texttt{ exports }x_1\texttt{ with }x_{c_1},\ldots\texttt{ where }y_1 = e_1,\ldots;y_n = e_n,

\texttt{monitor (action }x_{a_1}\texttt{ (}y_{a_1} : \tau_{y_{a_1}},\ldots\texttt{) (}ce_1,ae_1\texttt{),}\ldots,\texttt{ action }x_{a_n}\texttt{ (}y_{a_n} : \tau_{y_{a_n}},\ldots\texttt{) (}ce_n,ae_n\texttt{))}

\texttt{y_{n+1} = e_{n+1},\ldots;y_m = e_m;}

\texttt{where }p, d, s, cp, cd, curp, curd\texttt{ are fresh}

\texttt{compile-action[action }x\texttt{ (}y : \tau_y,\ldots\texttt{) (}ce,ae\texttt{),} p, d, s, cp, cd, curp, curd\texttt{] =}

\texttt{\lambda y : \tau_y,\ldots\texttt{.}}

\texttt{ctx/c(compile-cecheck[ce, p, d, s, curp, curd],}

\texttt{compile-cep[ce, cp, curp, curd],}

\texttt{compile-ceal[ce, cd, curp, curd],}

\texttt{compile-ceal[ae, p, d, cd, curp, curd],}

\texttt{compile-ceal[ae, s, cp, cd, curp, curd],}

\texttt{compile-ceal[ae, p, cp, cd, curp, curd])}

\texttt{compile-cecheck[check: }e_1\texttt{ add: }e_2\texttt{ remove: }e_3\texttt{ set!-principal: }e_4\texttt{ closure-principal: }e_5\texttt{ closure-delegations: }e_6\texttt{, p, d, s, curp, curd\texttt{] =}

\texttt{\lambda _\bot : Unit.}

\texttt{let _ = curp := ?p in}

\texttt{let _ = curd := ?d \cup ?s in}

\texttt{let p_1 \geq p_2 \at p_1 = compile-ce[e_1, curp, curd] in}

\texttt{if (curd) ; p_1 \at p_1 \geq p_2 then}

\texttt{let add = compile-ce[e_2, curp, curd] in}

\texttt{let remove = compile-ce[e_3, curp, curd] in}

\texttt{let set prin = compile-ce[e_4, curp, curd] in}

\texttt{let _ = d := (}?d \cup ?add\texttt{)/remove in}

\texttt{let _ = p := set prin in}

\texttt{\#!}

\texttt{else \#!}

\texttt{compile-cecheck[check: }e_1\texttt{ add: }e_2\texttt{ remove: }e_3\texttt{ set!-principal: }e_4\texttt{ closure-principal: }e_5\texttt{ closure-delegations: }e_6, cp, curp, curd\texttt{] =}

\texttt{((}\lambda _\bot : Unit. \#! (}cp \leftarrow \lambda _\bot : Unit. compile-ce[e_5, curp, curd]))

\texttt{compile-cecheck[check: }e_1\texttt{ add: }e_2\texttt{ remove: }e_3\texttt{ set!-principal: }e_4\texttt{ closure-principal: }e_5\texttt{ closure-delegations: }e_6, cd, curp, curd\texttt{] =}

\texttt{((}\lambda _\bot : Unit. \#! (}cd \leftarrow \lambda _\bot : Unit. compile-ce[e_6, curp, curd]))
compile-aee[check: e₁ add: e₂ remove: e₃ scope: e₄ set-principal?: e₅ principal: e₆ set-principal: e₇, p, d, s, cp, cd, curp, curd] =
λ_: Unit.
 let _ = curp := ?p in
 let _ = curd := ?d in
 let p₁ ≥ p₂ @ p₃ = compile-aee[e₁, curp, curd, cp, cd] in
 if (?curd) : p₃ ⊨ p₁ ≥ p₂ then
 let add = compile-aee[e₂, curp, curd, cp, cd] in
 let remove = compile-aee[e₃, curp, curd, cp, cd] in
 let setprin = compile-aee[e₇, curp, curd, cp, cd] in
 let _ = d := (?d ∪ add)/remove in
 let _ = p := setprin in
 #!
 else #!

(compile-aee[e₅, curp, curd, cp, cd] ⇒ p ← compile-aee[e₆, curp, curd, cp, cd])

compile-aee[check: e₁ add: e₂ remove: e₃ scope: e₄ set-principal?: e₅ principal: e₆ set-principal: e₇, s, cp, cd, curp, curd] =
((λ_: Unit. #!) ⇒ s ← compile-aee[e₄, curp, curd, cp, cd])

compile-cee[let x = cee₁ in cee₂, curp, curd] =
let x = compile-cee[cee₁, curp, curd] in compile-cee[cee₂, curp, curd]

A.5 Authorization Contract Extension Evaluation Contexts

\begin{align*}
E ::= & \ldots | E ⊢ e | v ⊢ e | E; e ⊢ e ≥ e | v; E ⊢ e ≥ e | v; v ⊢ E ≥ e | v; v ⊢ E
| E ⊢ e @ e | v ⊢ E ⊩ e | v ⊢ v ⊩ E | \{E\} | E ∪ e | v ∪ E | E \setminus e | v \setminus E \\
| (\lambda e E e) | (\text{fold } v E e) | (\text{fold } v v E)
\end{align*}

A.6 Reduction Semantics for Authorization Contract Extensions

\begin{align*}
(E[\text{new-principal}], σ) & \rightarrow (E[p], σ) \text{ where } p \text{ is fresh} \\
(E[\text{new-dimension}], σ) & \rightarrow (E[d], σ) \text{ where } d \text{ is fresh} \\
(E[[p₁ ≥ p₁ @ p₁, \ldots]; pₙ ≥ pₙ], σ) & \rightarrow (E[\#], σ) \text{ if } \{p₁ ≥ p₁ @ p₁, \ldots; pₙ ≥ pₙ\} \\
(E[[p₁ ≥ p₁ @ p₁, \ldots]; pₙ ≥ pₙ], σ) & \rightarrow (E[\#], σ) \text{ if } \{p₁ ≥ p₁ @ p₁, \ldots; pₙ ≥ pₙ\} \\
(E[v₁₁, \ldots, v₁ₘ] \cup \{v₂₁, \ldots, v₂ₙ\}, σ) & \rightarrow (E[[v₃₁, \ldots, v₃ₙ]], σ) \\
& \text{ where } \{v₃₁, \ldots, v₃ₙ\} = \{v₁₁, \ldots, v₁ₘ\} \cup \{v₂₁, \ldots, v₂ₙ\} \\
(E[v₁₁, \ldots, v₁ₘ] \setminus \{v₂₁, \ldots, v₂ₙ\}, σ) & \rightarrow (E[[v₃₁, \ldots, v₃ₙ]], σ) \\
& \text{ where } \{v₃₁, \ldots, v₃ₙ\} = \{v₁₁, \ldots, v₁ₘ\} \setminus \{v₂₁, \ldots, v₂ₙ\} \\
(E[\text{fold } \{vₕ v₁\}], σ) & \rightarrow (E[vₕ], σ) \\
(E[\text{fold } \{v₁, v₂, \ldots; vₕ v₁\}], σ) & \rightarrow (E[\text{fold } \{v₂, \ldots; vₕ (vₕ v₁)\}], σ) \\
(E[\text{let } x₁ ≥ x₁ @ x₁ = v₁ ≥ v₁ @ v₁ \text{ in } e], σ) & \rightarrow (E[[v₁, v₁, v₁]_{x₁,x₁,x₁}], σ)
\end{align*}
B. Proof of complete monitoring

This appendix demonstrates that CtxPCF satisfies complete monitoring. Complete monitoring states that a contract system correctly assigns blame to components that violate their contracts and, crucially, that the contract system can interpose on all uses of a value in a component that did not create that value. We follow Dimoulas et. al’s standard techniques for stating and proving complete monitoring. The formalization has two key aspects:

1. We develop an independent mechanism to provide a ground truth for ownership of values. To accomplish this, we devise an annotated version of the CtxPCF semantics that has the same behavior, but also keeps track of ownership by annotating values as they flow from one component to another. To ensure that the annotated semantics is truly an independent system for tracking ownership, the semantic rules that implement contract boundaries do not modify ownership annotations on values that flow through contracts.

2. The semantics of the annotated language are modified so that programs get stuck when a component accesses a “foreign” value, i.e., a value from another component that is not protected by the contract system.

Using this annotated semantics, complete monitoring can be stated as a soundness property that states that well-formed programs (those whose initial ownership annotations agree with the placement of contracts in the surface program) do not get stuck because components access “foreign” values. Using a straightforward subject-reduction technique, we show that CtxPCF (and Ctrl+CtxPCF, its extension with first-class control operators) satisfies complete monitoring.

B.1 Surface CtxPCF

B.1.1 Surface Programs

\[
\begin{align*}
p & ::= m; p \mid e \\
m & ::= \text{module } \ell \text{ exports } x \text{ where } x = e, \ldots \\
e & ::= x \mid v \mid e e \mid \mu x : \tau . e \mid \text{let } x = e \text{ in } e \mid \text{if } e \text{ then } e \text{ else } e \mid e + e \mid e \leq e \\
& \quad \mid \text{make-parameter } e \mid \text{parameterize } e = e \text{ in } e \mid ?e \mid e := e \\
& \quad \mid \text{flat/c}(e) \mid \text{param/c}(e) \mid e : \tau \rightarrow (e) e \mid e : \tau \rightarrow a (\lambda x : \tau . e) e \\
& \quad \mid \text{ctx/c}(e)(e, e \mapsto e) \ldots . (e, e \mapsto e) \\
v & ::= () \mid n \mid \#t \mid \#f \mid \lambda x : \tau . e \mid c \\
c & ::= \text{flat/c}(v) \mid \text{param/c}(e) \mid e : \tau \rightarrow (e) c \mid e : \tau \rightarrow a (\lambda x : \tau . e) c \\
& \quad \mid \text{ctx/c}(v)(v \mapsto v) \ldots . (v \mapsto v) \\
\tau & ::= \beta \mid \tau \rightarrow \tau \mid \tau \text{ param} \mid \tau \text{ ctx} \mid \text{ctx ctc} \\
\beta & ::= \text{Unit} \mid \text{Int} \mid \text{Bool}
\end{align*}
\]

B.1.2 Well-typed Surface Programs

\[
\begin{align*}
\Gamma & \vdash p : \tau \\
\text{if } \quad \varnothing \vdash m_1 \triangleright \Gamma_1 \ldots \text{ where } \ldots \Gamma_{n-1} \vdash m_n \triangleright \Gamma_n \quad \Gamma_n \vdash e : \tau \\
\text{then } \Gamma \vdash m_1 \ldots m_n ; e : \tau \\
\end{align*}
\]

\[
\begin{align*}
\varnothing \vdash e_1 : \tau_1 \ldots \text{ where } \{y_1 : \tau_1, \ldots, y_{n-1} : \tau_{n-1}\} \vdash e_n : \tau_n \quad \Gamma' = \{y_1 : \tau_1, \ldots, y_n : \tau_n\} \{x_1, \ldots, x_{n'}\} \\
\forall 1 \leq i \leq n', 1 \leq h \leq n, x_i \equiv y_h \wedge \tau_h \neq \tau \text{ ctc } \wedge \tau_h \neq \text{ ctc ctc} \\
\quad \forall 1 \leq i \leq n', 1 \leq h \leq n, x_e_i \equiv y_h \wedge \tau_h = \tau \text{ ctc} \\
\Gamma \vdash \text{module } \ell \text{ exports } x_1 \text{ with } x_{c_1}, \ldots, x_{n'} \text{ with } x_{e_{n'}} \text{ where } y_1 = e_1, \ldots, y_n = e_n \triangleright \Gamma \uplus \Gamma'
\end{align*}
\]
Γ ⊢ e : τ

Γ ⊢ () : Unit Γ ⊢ n : Int Γ ⊢ #t : Bool Γ ⊢ #f : Bool Γ ⊢ x : τ Γ ⊢ e_i : Int \ i ∈ \{1, 2\}

Γ ⊢ e_1 : Int i ∈ \{1, 2\} Γ ⊢ e_1 : τ_1 Γ[x → τ_1] ⊢ e_2 : τ Γ ⊢ e_2 : Bool Γ ⊢ e_i : τ i ∈ \{1, 2\} Γ ⊢ if e_1 \ then \ e_1 \ else \ e_2 : τ

Γ[x → τ_1] ⊢ e : τ_2 Γ ⊢ λx : τ_1. e : τ_1 → τ_2 Γ ⊢ μx : τ, e : τ Γ ⊢ e_1 : τ_1 → τ_2 Γ ⊢ e_2 : τ_1 Γ ⊢ e : τ Γ ⊢ e_i : τ \ i ∈ \{1, 2\}

Γ ⊢ e_1 : τ \ param Γ ⊢ e_2 : τ Γ ⊢ e : τ

Γ ⊢ e_1 := e_2 : Unit Γ ⊢ e : τ \ param

Γ ⊢ e_1 : τ_p \ param Γ ⊢ e_2 : τ_p Γ ⊢ e_3 : τ Γ ⊢ parameterize e_1 = e_2 in e_3 : τ

Γ ⊢ e_d : τ_d \ ctc Γ ⊢ e_r : τ_r \ ctc Γ ⊢ e_e : ctx \ ctc Γ ⊢ e : τ Γ ⊢ flat/c(e) : β \ ctc Γ ⊢ param/c(e) : (τ \ param) \ ctc

Γ ⊢ e_d : τ_d \ ctc Γ ⊢ e_r : τ_r \ ctc Γ ⊢ e_e : ctx \ ctc Γ ⊢ e : ctx \ ctc Γ ⊢ e : β \ ctc Γ ⊢ e : τ \ ctc

Γ ⊢ e_d : τ_d \ ctc Γ ⊢ e_r : τ_r \ ctc Γ ⊢ e : ctx \ ctc Γ ⊢ e : ctx \ ctc Γ ⊢ e : ctx \ ctc

Γ ⊢ e_1 : Unit → Bool Γ ⊢ e_2 : Unit → Bool Γ ⊢ e_{g_{i_1}} : Unit → Bool Γ ⊢ e_{p_{i_1}} : τ_{c_{i_1}} \ param Γ ⊢ e_{v_{i_1}} : Unit → τ_{a_{i_1}} Γ ⊢ e_{g_{i_1}} : Unit → τ_{c_{i_1}} Γ ⊢ e_{p_{i_1}} : τ_{a_{i_1}} \ param Γ ⊢ e_{v_{i_1}} : Unit → τ_{a_{i_1}}

Γ ⊢ ctx/c(e_1, (e_{g_{i_1}} ⇒ e_{p_{i_1}} ← e_{v_{i_1}}), \ldots, e_2, (e_{g_{i_1}} ⇒ e_{p_{i_1}} ← e_{v_{i_1}}), \ldots) : ctx \ ctc
B.2 Annotated Surface CtxPCF

B.2.1 Annotated Surface Programs

\[e ::= \ldots \mid \ell((\ell x)) \]

B.2.2 Additional Typing Rules for Annotated Surface Programs

\[
\frac{\Gamma \vdash e : \tau}{\Gamma \vdash x : \tau}
\]

\[
\Gamma \vdash \ell((\ell x)) : \tau
\]

B.2.3 Well-formed Annotated Surface Programs

\[
\ell_0 \vdash p
\]

\[
\frac{\emptyset \vdash m_1 \triangleright \Delta_1 \ldots \Delta_{n-1} \vdash m_n \triangleright \Delta_n \; \ell_0 \vdash e}{\ell_0 \vdash m_1 ; \ldots ; m_n ; e}
\]

\[
\Delta \vdash m \triangleright \Delta'
\]

\[
\frac{\emptyset ; \ell \vdash e_1 \ldots \{y_1 : \ell, \ldots, y_{n-1} : \ell\} : \ell \vdash e_n \; \Gamma' = \{y_1 : \ell, \ldots, y_n : \ell\} \{x_1, \ldots, x_{n'}\}}{\Delta \vdash \text{module exports } x_1 \text{ with } x_{c_1}, \ldots, x_{n'} \text{ with } x_{c_{n'}} \text{ where } y_1 = e_1, \ldots, y_n = e_n \triangleright \Delta \uplus \Delta'}
\]

\[
\Delta; \ell \vdash e
\]

\[
\begin{align*}
&\Delta; \ell \vdash () \quad \Delta; \ell \vdash n \quad \Delta; \ell \vdash \#i \quad \Delta; \ell \vdash \#t \\
&\frac{\Delta; \ell \vdash e_i \quad i \in \{1, 2\}}{\Delta; \ell \vdash e_1 \leq e_2} \quad \frac{\Delta; \ell \vdash e_1 \quad \Delta[x \mapsto \ell]; \Pi \vdash \ell e_2}{\Delta; \ell \vdash \text{let } x = e_1 \text{ in } e_2} \quad \frac{\Delta; \ell \vdash e_1 \quad \Delta; \ell \vdash e_2}{\Delta; \ell \vdash e}
\end{align*}
\]

\[
\frac{\Delta; \ell \vdash \lambda x : \tau. \; e \quad \Delta; \ell \vdash \mu x : \tau. \; e}{\Delta; \ell \vdash \text{make-parameter } e} \quad \frac{\Delta; \ell \vdash e_1 \quad \Delta; \ell \vdash e_2 \quad \Delta; \ell \vdash e_3}{\Delta; \ell \vdash \text{parameterize } e_1 = e_2 \text{ in } e_3} \quad \frac{\Delta; \ell \vdash e \quad \Delta; \ell \vdash \ell e}{\Delta; \ell \vdash e}
\]

\[
\begin{align*}
&\Delta; \ell \vdash e_1 \quad \Delta; \ell \vdash e_2 \quad \Delta; \ell \vdash e_3 \\
&\frac{\Delta; \ell \vdash \ell e_1 \quad \Delta; \ell \vdash e_2 \quad \Delta; \ell \vdash e_3}{\Delta; \ell \vdash \ell e} \quad \frac{\Delta; \ell \vdash \ell e_1 \quad \Delta; \ell \vdash e_2 \quad \Delta; \ell \vdash e_3}{\Delta; \ell \vdash \ell e} \quad \frac{\Delta; \ell \vdash \ell e_1 \quad \Delta; \ell \vdash e_2 \quad \Delta; \ell \vdash e_3}{\Delta; \ell \vdash \ell e}
\end{align*}
\]

\[
\Delta; \ell \vdash e_1 \quad \Delta; \ell \vdash e_2 \quad \Delta; \ell \vdash e_{g_{c_1}} \quad \Delta; \ell \vdash e_{p_{c_1}} \quad \Delta; \ell \vdash e_{v_{c_1}} \quad \Delta; \ell \vdash e_{g_{c_{n_1}}} \quad \Delta; \ell \vdash e_{p_{c_{n_1}}} \quad \Delta; \ell \vdash e_{v_{c_{n_1}}}
\]

\[
\Delta; \ell \vdash \text{ctx/c}(e_1, (e_{g_{c_1}} \Rightarrow e_{p_{c_1}} \leftarrow e_{v_{c_1}}), \ldots, e_{2}, (e_{g_{c_{n_1}}} \Rightarrow e_{p_{c_{n_1}}} \leftarrow e_{v_{c_{n_1}}}), \ldots)
\]

\[
\Delta; \ell \vdash \ell((\ell x))
\]
B.3 CtxPCF

B.3.1 Programs

\[
p ::= \begin{array}{c}
m : p \mid e \\
m ::= \text{module } \ell \text{ exports } x \text{ with } x, \ldots \text{ where } x = e, \ldots \\
e ::= v \mid e e \mid \mu x : \tau. e \mid \text{let } x = e \text{ in } e \mid \text{if } e \text{ then } e \text{ else } e \mid e \odot e \mid e \leq e \\
& \mid \text{make-parameter } e \mid \text{parameterize } e = e \text{ in } e \mid ?e \mid e ::= e \\
& \mid \text{flat}/c(e) \mid \text{param}/c(e) \mid e : \tau \rightarrow (e) e \mid e : \tau \rightarrow (\lambda x : \tau. e) e \\
& \mid \text{ctx}/c(e, (e \Rightarrow e) \ldots,e,(e \Rightarrow e)\ldots) \\
& \mid \ell \text{mon}^j_{\ell}(e,e) \mid \text{guard}_j(e,v,v,e) \mid \text{install}/p_j(v,e,e) \mid \text{check}^j(e,e) \mid \text{error}^j \\
v ::= () \mid n \mid \# \mid \#f \mid \lambda x : \tau. e \mid c \mid p(r) \\
& \mid \ell \text{param}/p_j^k(c,v) \mid \ell \text{ctx}/p_j^k(v,v \Rightarrow v),\ldots,v) \mid \text{install}/p_j(v,v,v) \\
c ::= \text{flat}/c(v) \mid \text{param}/c(e) \mid c : \tau \rightarrow (c) c \mid c : \tau \rightarrow (\lambda x : \tau. e) c \\
& \mid \text{ctx}/c(v,v \Rightarrow v),\ldots,v) \\
\tau ::= \beta \mid \tau \rightarrow \tau \mid \tau \text{ param} \mid \tau \text{ ctc} \mid \text{ctx ctc} \\
\beta ::= \text{Unit} \mid \text{Int} \mid \text{Bool}
\end{array}
\]

B.3.2 Well-typed Programs

\[
\Sigma \vdash p : \tau
\]

\[
\varnothing; \Sigma \vdash m_1 \triangleright \Gamma_1 \ldots \Gamma_{n-1}; \Sigma \vdash m_n \triangleright \Gamma_n \Gamma_n; \Sigma \vdash e : \tau
\]

\[
\Gamma; \Sigma \vdash m \triangleright \Gamma'
\]

\[
\varnothing; \Sigma \vdash e_1 : \tau_1 \ldots \{y_1 : \tau_1, \ldots, y_{n-1} : \tau_{n-1}\}; \Sigma \vdash e_n : \tau_n \Gamma' = \{y_1 : \tau_1, \ldots, y_n : \tau_n\} \mid \{x_1, \ldots, x_n\}
\]

\[
\forall i \leq n', \exists 1 \leq h \leq n, x_i \equiv y_h \land \tau_i \neq \tau \text{ ctc} \land \tau_h \neq \text{ctx ctc}
\forall i \leq i' \leq n', \exists 1 \leq h \leq n, x_i \equiv y_h \land \tau_h = \tau \text{ ctc}
\]

\[
\Gamma; \Sigma \vdash \text{module } \ell \text{ exports } x_1 \text{ with } x_{1'}, \ldots, x_{n'} \text{ with } x_{c_{1'}} \text{ where } y_1 = e_1, \ldots, y_n = e_n \triangleright \Gamma \uplus \Gamma'
\]

\[
\Gamma; \Sigma \vdash e : \tau
\]
B.3.3 Evaluation Contexts

Note. Values v appearing in evaluation contexts are closed terms.

\[
E ::= \quad [] \mid E \mid v \mid E \mid \text{let } x = E \in e \mid \text{if } E \text{ then } e \text{ else } e \mid E \uplus e \mid v \uplus E \\
E \leq e \mid v \leq E \mid \text{make-parameter } E \mid ?E \mid E := e \mid p(r) := E \\
\text{parameterize } E = e \in E \mid \text{parameterize } p(r) = E \in e \mid \text{parameterize } p(r) = v \in E \\
\text{flat/c}(E) \mid \text{param/c}(E) \mid \text{tag/c}(E) \\
E : \tau \rightarrow (e) e \mid c : \tau \rightarrow (E) e \mid c : \tau \rightarrow (c) E \\
E : \tau \rightarrow \lambda x : \tau. e \mid c : \rightarrow \lambda (\lambda x : \tau. e) E \\
\text{ctx/c}(E,(e \Rightarrow e \leftarrow c),\ldots,(e \Rightarrow e \leftarrow c),\ldots) \\
\text{ctx/c}(v,(v \Rightarrow v \leftarrow v),\ldots,(E \Rightarrow e \leftarrow e),(e \Rightarrow e \leftarrow e),\ldots) \\
\text{ctx/c}(v,(v \Rightarrow v \leftarrow v),\ldots,(v \Rightarrow E \leftarrow e),(e \Rightarrow e \leftarrow e),\ldots) \\
\text{ctx/c}(v,(v \Rightarrow v \leftarrow v),\ldots,(v \Rightarrow \sigma \leftarrow v),(e \Rightarrow e \leftarrow e),\ldots) \\
\ell \text{mon}^j(E,e) \mid \ell \text{mon}^j(c,E) \mid \check{\ell}(E,e) \\
\text{guard}_j(E,v,v,e) \mid \text{install/p}_j(v,e,E) \mid \text{install/p}_j(v,E,v) \\
\text{module } \ell \text{ exports } x \ldots \text{ where } x = v \ldots, x = E, x = e, \ldots ; p
\]

B.3.4 Reduction Semantics

\begin{align*}
\langle \text{module } \ell \text{ exports } x_1 \text{ with } x_{c_1} \ldots \text{ where } y_1 = v_1 \ldots, y_n = v_n, y_{c_1} = e_1 \ldots, y_{c_m} = e_m; p, \sigma \rangle \\
& \rightarrow \langle \text{module } \ell \text{ exports } x \text{ with } x_{c_1} \ldots \text{ where } y_1 = v_1 \ldots, y_n = v_n, y_{c_1} = e_1 \ldots, y_{c_m} = e_m; p, \sigma \rangle \\
\langle \text{module } \ell \text{ exports } x_1 \text{ with } x_{c_1} \ldots \text{ where } \ldots x_1 = v_1 \ldots, x_{c_1} = c_1 \ldots; p, \sigma \rangle \\
& \rightarrow \langle \text{import}[\ell,(x_1,\ldots,x_n),(v_1,\ldots,v_n),(c_1,\ldots,c_n),p],\sigma \rangle \\
\langle E[(\lambda x : \tau. e) v], \sigma \rangle & \rightarrow \langle E[(v / x) e], \sigma \rangle \\
\langle E[\mu x : \tau. e], \sigma \rangle & \rightarrow \langle E[(\mu x : \tau. e / x) e], \sigma \rangle \\
\langle E[\text{let } x = v \in e], \sigma \rangle & \rightarrow \langle E[(v / x) e], \sigma \rangle \\
\langle E[\text{if } \# \text{ then } e_1 \text{ else } e_2], \sigma \rangle & \rightarrow \langle E[e_1], \sigma \rangle \\
\langle E[\text{if } \# \text{ then } e_1 \text{ else } e_2], \sigma \rangle & \rightarrow \langle E[e_2], \sigma \rangle \\
\langle E[v_1 \uplus v_2], \sigma \rangle & \rightarrow \langle E[v], \sigma \rangle \text{ where } v = v_1 \uplus v_2 \\
\langle E[v_1 \leq v_2], \sigma \rangle & \rightarrow \langle E[v], \sigma \rangle \text{ where } v = v_1 \leq v_2 \\
\langle E[\text{make-parameter } v], \sigma \rangle & \rightarrow \langle E[p(r)], \sigma[r \mapsto v] \rangle \text{ where } r \text{ is fresh in } \sigma \\
\langle E[?p(r)], \sigma \rangle & \rightarrow \langle v, \sigma \rangle \text{ where } \sigma(r) = v \text{ and } \\
& E \text{ does not contain parameterize } p(r) = v' \text{ in } E' \\
\langle E[\text{parameterize } p(r) = v \text{ in } E'(?r)], \sigma \rangle & \rightarrow \langle E'[\text{parameterize } p(r) = v \text{ in } E'(v)], \sigma \rangle \text{ where } E' \text{ does not contain parameterize } p(r) = v' \text{ in } E'' \\
\langle E[p(r) := v], \sigma \rangle & \rightarrow \langle E[(v)], \sigma[r \mapsto v] \rangle \text{ where } E \text{ does not contain parameterize } p(r) = v' \text{ in } E' \\
\langle E[\text{parameterize } p(r) = v \text{ in } E'[p(r) := v']], \sigma \rangle & \rightarrow \langle E'[\text{parameterize } p(r) = v' \text{ in } E'[v']], \sigma \rangle \text{ where } E' \text{ does not contain parameterize } p(r) = v'' \text{ in } E'' \\
\langle E[\text{parameterize } p(r) = v \text{ in } v'], \sigma \rangle & \rightarrow \langle E[v'], \sigma \rangle
\end{align*}
\(E[j \text{ mon}^k_j (\text{flat/c}(v_c),v)], \sigma)\) \quad \rightarrow \quad \(E[\text{check}^k_j ((v_c,v),v)], \sigma)\)

\(E[j \text{ mon}^k_j (\text{param/c}(c),v)], \sigma)\) \quad \rightarrow \quad \(E[\text{param/p}^k_j (c,v)], \sigma)\)

\(E[j \text{ mon}^k_j (c_d : \tau \rightarrow (c_r) c_r,v)], \sigma)\) \quad \rightarrow \quad \(E[(j \text{ mon}^k_j (c_r,\lambda x : \tau_d. j \text{ mon}^k_j (\ell, v_f \text{ mon}^k_j (c_d,x)))) v)], \sigma)\)

where \(x\) is fresh

\(E[j \text{ mon}^k_j (c_d : \tau \rightarrow \gamma_a (\lambda x : \tau. e_c) c_r,v)], \sigma)\)

\[
\rightarrow \quad \langle E[\lambda y : \tau_d. j \text{ mon}^k_j (j \text{ mon}^k_j (\ell, y) / x) e_c, j \text{ mon}^k_j (c_r, v \ j \text{ mon}^k_j (c_d,y))] \rangle, \sigma)
\]

where \(y\) is fresh

\(E[j \text{ mon}^k_j (\text{ctx/c}(v_{c_p}) \Rightarrow v_{c_{p_1}} \leftarrow v_{c_{e_1}}, \ldots (v_{c_{p_n}} \Rightarrow v_{c_{p_n}} \leftarrow v_{c_{e_n}}), v_a (v_{a_{g_1}} \Rightarrow v_{a_{p_1}} \leftarrow v_{a_{e_1}}), \ldots), v)], \sigma)\)

\[
\rightarrow \quad \langle E[\text{check}^k_j ((v_1),e)], \sigma) \rangle
\]

where \(e = \text{guard}_j ((v_{c_{e_1}}, v_{c_{p_1}}), v_{c_{e_2}}, \ldots \text{guard}_j ((v_{c_{e_n}}), v_{c_{p_n}}, v_{c_{e_n}}, j \text{ mon}^k_j (v_{a_{g_1}} \Rightarrow v_{a_{p_1}} \leftarrow v_{a_{e_1}}), \ldots, v))\)

\(E[j \text{ mon}^k_j (v_a, e) \Rightarrow v_{a_{p_n}} \leftarrow v_{a_{e_n}}), \ldots (v_{a_{g_n}} \Rightarrow v_{a_{p_n}} \leftarrow v_{a_{e_n}}), (v_f v)], \sigma)\)

\[
\rightarrow \quad \langle E[(\text{check}^k_j ((v_a), e) v)], \sigma) \rangle
\]

where \(e = \text{guard}_j ((v_{a_{g_1}}), v_{a_{p_1}}, v_{a_{e_1}}, \ldots \text{guard}_j ((v_{a_{g_n}}), v_{a_{p_n}}, v_{a_{e_n}}, v_f))\)

import \(\llbracket k.(x_1, \ldots, x_n),(v_1, \ldots, v_n),(c_1, \ldots, c_n), m_1; \ldots; m_n; e] \rrbracket = \)

import \(\llbracket k.(x_1, \ldots, x_n),(v_1, \ldots, v_n),(c_1, \ldots, c_n), m_1; \rrbracket; \)

\[\ldots;\]

import \(\llbracket k.(x_1, \ldots, x_n),(v_1, \ldots, v_n),(c_1, \ldots, c_n), m_n; e] \rrbracket;\)

import \(\llbracket k.(x_1, \ldots, x_n),(v_1, \ldots, v_n),(c_1, \ldots, c_n), \text{module } \ell \text{ exports } x_{v_1} \text{ with } x_{c_1}, \ldots \text{ where } y_1 = e_1; \ldots; y_n = e_n \rrbracket = \)

module \(\ell \text{ exports } x_{v_1} \text{ with } x_{c_1}, \ldots \text{ where } y_1 = \{j \text{ mon}^k_j (c_{v_1}) / x_{v_1}\} e_1; \ldots; y_n = \{j \text{ mon}^k_j (c_{v_n}) / x_{v_i}\} e_n \rrbracket;\)

import \(\llbracket k.(x_1, \ldots, x_n),(v_1, \ldots, v_n),(c_1, \ldots, c_n), e] \rrbracket = \{j \text{ mon}^k_j (c_{v_n}) / x_{v_i}\} e \)
B.4 Annotated CtxPCF

B.4.1 Annotated CtxPCF Programs

\[e ::= \ldots | \ell \langle \ell x \rangle | \ell e | \ell \ell e | \ell e \]
\[v ::= \ldots | \ell v | \ell \ell v \]
\[c ::= \ldots | \ell \ell \text{flat}(v) | \ldots | \ell \ell \text{param}(c) | \ldots | \ell \ell c : \tau \rightarrow (c) c | \ldots | \ell \ell v \rightarrow (a) (\lambda x : \tau. e) c | \ldots | \ell \ell \text{ctx}(v, (v \Rightarrow v) \ldots, v, (v \Leftarrow v) \ldots) | \ldots \]
\[\ell \ell \text{flat}(v) | \ldots | \ell \ell \text{ctx}(v, (v \Rightarrow v) \ldots, v, (v \Leftarrow v) \ldots) | \ldots | \ell \ell \]

B.4.2 Additional Typing Rules for Annotated CtxPCF Programs

\[\Gamma; \Sigma \vdash e : \tau \]

\[\begin{array}{cccc}
\Gamma; \Sigma \vdash x : \tau & \Gamma; \Sigma \vdash e : \tau & \Gamma; \Sigma \vdash e : \tau & \Gamma; \Sigma \vdash e : \tau \\
\ell \langle \ell x \rangle : \tau & \ell e : \tau & \ell \ell e : \tau & \ell e : \tau \\
\end{array} \]
B.4.3 Annotated Evaluation Contexts

Note We write \(\|e\| \) to denote that the ownership annotations (if present) in \(e \) are consistent with ownership by \(\ell \). That is, either \(e \) has no ownership annotations or all ownership annotations in \(e \) have owner \(\ell : \|e\| = |\ell| \ldots |e| \ldots \) where for all labels \(k \) and terms \(e', e \neq \|e'\| \).

\[
E^\ell := F^\ell
\]

\[
E^\ell_0 := F
\]

\[
F := [\cdot] \mid F \mid v F \mid \text{let } x = F \text{ in } e \mid \text{if } F \text{ then } e \text{ else } e \mid F \oplus e \mid v \oplus F
\]

\[
| F \leq e \mid v \leq F \mid \text{make-parameter } F \mid ?F \mid F := e \mid \text{parameterize } F = e \text{ in } F \mid \text{parameterize } \|p(r)\| = v \text{ in } F
\]

\[
\text{flat(c/F)} \mid \text{param(c/F)} \mid F : \tau \rightarrow (e) \quad \text{check c} \mid \text{module } F
\]

\[
F^\ell := F^\ell e \mid v F^\ell \mid \text{let } x = F^\ell \text{ in } e \mid \text{if } E \text{ then } e \text{ else } e \mid F^\ell \oplus e \mid v \oplus F^\ell
\]

\[
\begin{align*}
| F^\ell \leq e \mid v \leq F^\ell \mid \text{make-parameter } F^\ell \mid 2F^\ell \mid \overset{\ell}{B}^k[F := e] \mid \overset{\ell}{B}^k[p(r) := F] \\
\text{\overset{\ell}{B}^k[F := e] \mid \overset{\ell}{B}^k[p(r) := F]} \mid \text{parameterize } F^\ell = e \text{ in } F \mid \overset{\ell}{B}^k[\text{parameterize } \|p(r)\| = F^\ell \text{ in } k' B^\ell[F]]
\end{align*}
\]

\[
\text{\overset{\ell}{B}^k[\text{parameterize } \|p(r)\| = F^\ell \text{ in } k' B^\ell[F]]} \mid \text{flat(c/F)} \mid \text{param(c/F)} \mid F^\ell : \tau \rightarrow (e) \quad \text{check c} \mid \text{module } F
\]

\[
F^\ell := F^\ell e \mid v F^\ell \mid \text{let } x = F^\ell \text{ in } e \mid \text{if } E \text{ then } e \text{ else } e \mid F^\ell \oplus e \mid v \oplus F^\ell
\]

\[
\begin{align*}
| F^\ell \leq e \mid v \leq F^\ell \mid \text{make-parameter } F^\ell \mid 2F^\ell \mid \overset{\ell}{B}^k[F := e] \mid \overset{\ell}{B}^k[p(r) := F] \\
\text{\overset{\ell}{B}^k[F := e] \mid \overset{\ell}{B}^k[p(r) := F]} \mid \text{parameterize } F^\ell = e \text{ in } F \mid \overset{\ell}{B}^k[\text{parameterize } \|p(r)\| = F^\ell \text{ in } k' B^\ell[F]]
\end{align*}
\]

\[
\text{\overset{\ell}{B}^k[\text{parameterize } \|p(r)\| = F^\ell \text{ in } k' B^\ell[F]]} \mid \text{flat(c/F)} \mid \text{param(c/F)} \mid F^\ell : \tau \rightarrow (e) \quad \text{check c} \mid \text{module } F
\]

\[
\begin{align*}
\ell \mid F^\ell := \ell F^\ell \\
\ell \mid B^k := \ell B^k
\end{align*}
\]
B.4.4 Annotated Reduction Semantics

\[\text{\langle module } \ell \text{ exports } x_1 \text{ with } x_{c_1}, \ldots \text{ where } y_1 = v_1 \ldots y_n = v_n, y_{c_1} = c_1 \ldots y_{c_m} = c_m; p, \sigma\]
\[\xrightarrow{\text{ann}} \text{\langle module } \ell \text{ exports } x_1 \text{ with } x_{c_1}, \ldots \text{ where } y_1 = v_1 \ldots y_n = v_n, y_{c_1} = \{v_1 / y_n\} c_1, y_{c_2} = c_2 \ldots y_{c_m} = c_m; p, \sigma\]
\[\text{\langle module } \ell \text{ exports } x_{v_1} \text{ with } x_{c_1}, \ldots \text{ where } \ldots x_{v_1} = v_1 \ldots x_{c_1} = c_1 \ldots p, \sigma\]
\[\xrightarrow{\text{ann}} \text{\langle import } \ell, x_{v_1}, c_1, \ldots \text{ import } \ell, x_{v_n}, c_n, \sigma\]

\[\langle E^\ell[|f \lambda x : \tau. e| |f v|], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|f v| / x] e, \sigma \rangle\]
\[\langle E^\ell[|u x : \tau. e|], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|u^\ell x : e| / x] e, \sigma \rangle\]
\[\langle E^\ell[|\text{let } x = |f v| \text{ in } e|], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|f v| / x] e, \sigma \rangle\]
\[\langle E^\ell[|f \# t| \text{ then } c_1 \text{ else } c_2|], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[c_1], \sigma \rangle\]
\[\langle E^\ell[|f \# t| \text{ then } c_1 \text{ else } c_2|], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[c_2], \sigma \rangle\]
\[\langle E^\ell[|f v_1| + |f v_2|], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|f v|], \sigma \rangle \text{ where } v = v_1 + v_2\]
\[\langle E^\ell[|f v_1| \leq |f v_2|], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|f v|], \sigma \rangle \text{ where } v = v_1 \leq v_2\]
\[\langle E^\ell[|\text{make-parameter } |f v|], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|f p(r)|], \sigma[r \mapsto v]\rangle \text{ where } r \text{ is fresh in } \sigma\]
\[\langle E^\ell[|f p(r)|], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|f v|], \sigma\rangle \text{ where } \sigma(r) = v \text{ and } E \text{ does not contain parameterize } \ell B^k[p(r)] = v' \text{ in } k_2 B^{k_2}[E']\]
\[\langle E^\ell[|B^k[\text{parameterize } |k p(r)|]| = |k v| \text{ in } k B^\ell[|k B^k[p(r)|]], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|B^k[\text{parameterize } |k p(r)|]| = |k v| \text{ in } k B^\ell[|B^k[v]|], \sigma \rangle\]
\[\langle E^\ell[|B^k[p(r)|]| = |k v|], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|k v|], \sigma[r \mapsto v]\rangle \text{ where } E^\ell \text{ does not contain } \ell B^{k_2}[E'']\]
\[\langle E^\ell[|B^k[p(r)|]| = |k v| \text{ in } k B^\ell[|B^k[p(r)|]| := |k v'|], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|B^k[p(r)|]| := |k v'|], \sigma \rangle \text{ where } E^\ell \text{ does not contain } \ell B^{k_2}[E'']\]
\[\langle E^\ell[|B^k[\text{parameterize } |k p(r)|]| = |k v| \text{ in } k B^\ell[|B^k[v]|], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|B^k[\text{parameterize } |k p(r)|]| = |k v| \text{ in } k B^\ell[|B^k[v]|], \sigma \rangle\]
\[\langle E^\ell[|\text{mon}_{\ell}^k(|\ell c_d : \tau \rightarrow (c_c) c_v|)], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|\text{mon}_{\ell}^k(c_c, \lambda x : \tau. c_{\ell_d}^\ell(c_{\ell_d}^\ell(x)), \sigma)\rangle \text{ where } x \text{ is fresh}\]
\[\langle E^\ell[|\text{mon}_{\ell}^k(|\ell c_d : \tau \rightarrow \ell (\lambda y : \tau. c_{\ell_c}^\ell) c_{\ell_c}^\ell)], \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|\text{check}_{\ell}^k((v_c, v), \sigma), \sigma)\rangle \text{ where } y \text{ is fresh}\]
\[\langle E^\ell[|\text{mon}_{\ell}^k(|\ell \text{ctx/c}(v_{c_{g_1}} \rightarrow v_{c_{p_1}} \leftarrow v_{c_{v_1}}), \ldots (v_{c_{g_n}} \rightarrow v_{c_{p_n}} \leftarrow v_{c_{v_n}}), v_{a_1} \rightarrow v_{a_2} \leftarrow v_{a_3}, \ldots |]|), \sigma \rangle \xrightarrow{\text{ann}} \langle E^\ell[|\text{check}_{\ell}^k((v_{c_{g_1}}), \sigma), \sigma)\rangle \text{ where } e = \text{guard}_{\ell}((v_{c_{g_1}})), v_{c_{p_1}}, v_{c_{v_1}}, \ldots \text{guard}_{\ell}((v_{c_{g_n}})), v_{c_{p_n}}, v_{c_{v_n}}, \text{ctx/p}^k(v_{a_1} \rightarrow v_{a_2} \leftarrow v_{a_3}, \ldots v_{a_{n}}))\]
\[
(\ell E[[\text{ctx/p}]_j \ell E (v_a (v_{a_1} \mapsto v_{a_1} \leftarrow v_{a_{i_1}}), \ldots, (v_{a_n} \mapsto v_{a_n} \leftarrow v_{a_{i_n}}), v_f)], \sigma)
\]
\[
\rightarrow_{\text{ann}} \quad (\ell E[[\text{check}]_j (\ell E ((v_a ()), e) v)], \sigma)
\]
\[
\quad \text{where } e = \text{guard}_j ((v_{a_{i_1}} ()), v_{a_{p_1}}, v_{a_{u_1}}, \ldots, \text{guard}_j ((v_{a_{i_n}} ()), v_{a_{p_n}}, v_{a_{u_n}}, v_f))
\]

\[
(\ell E[[\text{guard}_j (\ell E[[\# \text{optional}_l] \ell E (v_p, v_v, e_f)], \sigma)], \sigma) \rightarrow_{\text{ann}} \quad (\ell E[[e_f], \sigma]
\]

\[
(\ell E[[\text{guard}_j (\ell E[[\# \text{optional}_l] \ell E (v_p, v_v, e_f)], \sigma)], \sigma) \rightarrow_{\text{ann}} \quad (\ell E[[\text{install}/p_j (v_p, (v_v ()), e_f)], \sigma]
\]

\[
(\ell E[[\ell E[[\text{install}/p_j (v_p, v_v, v_f)], \sigma)], \sigma) \rightarrow_{\text{ann}} \quad (\ell E[[e_f \ell E[\text{parameterize } v_p = v_v \text{ in } \ell E[[v_f]], \sigma)]
\]

\[
(\ell E[[\ell E[[\# \text{optional}_l] \ell E (\ell E[[\text{param}/p_j^k (e, v_p)]], \sigma)], \sigma) \rightarrow_{\text{ann}} \quad (\ell E[[\ell E[[\text{param}/p_j^k (c, v_p)], \sigma)]
\]

\[
(\ell E[[\ell E[[\# \text{optional}_l] \ell E (\ell E[[\text{param}/p_j^k (c, v_p)], \sigma)]), \sigma) \rightarrow_{\text{ann}} \quad (\ell E[[\ell E[[\text{param}/p_j^k (c, v_p)], \sigma)]
\]

\[
(\ell E[[\ell E[[\# \text{optional}_l] \ell E (\ell E[[\text{check}_j^k (\ell E[[\# \text{optional}_l] \ell E (e)], \sigma)], \sigma) \rightarrow_{\text{ann}} \quad (\ell E[[\ell E[[\text{check}_j^k (\ell E[[\# \text{optional}_l] \ell E (e)], \sigma) \rightarrow_{\text{ann}} \quad (\ell E[[\text{error}_j], \sigma]
\]

\[
\text{import} \ell E[[k, (x_1, \ldots, x_n), (v_1, \ldots, v_n), (c_1, \ldots, c_n), m_1; \ldots; m_n; e] = \text{import} \ell E[[k, (x_1, \ldots, x_n), (v_1, \ldots, v_n), (c_1, \ldots, c_n), m_1];
\]
\[
\quad \ldots;
\]
\[
\text{import} \ell E[[k, (x_1, \ldots, x_n), (v_1, \ldots, v_n), (c_1, \ldots, c_n), e])
\]

\[
\text{module } \ell E \text{ exports } x_{e_1}, \ldots \text{ where } y_1 = e_1, \ldots, y_n = e_n = \ell E[[\ell E[[\text{check}_j^k (\ell E[[\# \text{optional}_l] \ell E (e)], \sigma)], \sigma]
\]

\[
\text{module } \ell E \text{ exports } x_{e_1}, \ldots \text{ where } y_1 = \ell E[[\ell E[[\text{check}_j^k (\ell E[[\# \text{optional}_l] \ell E (e)], \sigma)], \sigma]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (v) \ell E (v), e)], \sigma] = \ell E[[\text{ctx}/c (v), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (c) \ell E (e)], \sigma] = \ell E[[\text{ctx}/c (c), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (c) \ell E (e)], \sigma] = \ell E[[\text{ctx}/c (c), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (e) \ell E (v), e)], \sigma] = \ell E[[\text{ctx}/c (v), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (e) \ell E (v), e)], \sigma] = \ell E[[\text{ctx}/c (v), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (v), e)], \sigma] = \ell E[[\text{ctx}/c (v), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (v), e)], \sigma] = \ell E[[\text{ctx}/c (v), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (v), e)], \sigma] = \ell E[[\text{ctx}/c (v), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (v), e)], \sigma] = \ell E[[\text{ctx}/c (v), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (v), e)], \sigma] = \ell E[[\text{ctx}/c (v), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (v), e)], \sigma] = \ell E[[\text{ctx}/c (v), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (v), e)], \sigma] = \ell E[[\text{ctx}/c (v), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (v), e)], \sigma] = \ell E[[\text{ctx}/c (v), e]]
\]

\[
\text{obli} \ell E[[\ell E[[\text{ctx}/c (v), e)], \sigma] = \ell E[[\text{ctx}/c (v), e]]
\]
B.4.5 Well-formed Annotated Programs

\[\ell_0; \Pi \vdash p \]

\[\varnothing; \Pi \vdash m_1 \triangleright \Delta_1 \quad \ldots \quad \varnothing; \Pi \vdash m_n \triangleright \Delta_n \quad \ell_0; \Pi \vdash e \]

\[\ell_0; \Pi \vdash m_1 : \ldots m_n : e \]

\[\Delta; \Pi \vdash m \triangleright \Delta' \]

\[\varnothing; \Pi; \ell \vdash e_1 \quad \ldots \quad \varnothing; \Pi; \ell \vdash e_n \quad \Gamma' = \{ y_1 : \ell_1, \ldots, y_n : \ell_n \} \cap \{ x_1, \ldots, x_{m'} \} \]

\[\Delta; \Pi \vdash \text{module } \ell \text{ exports } x_1 \text{ with } x_{e_1}, \ldots, x_{e_n} \text{ with } x_{e_n}, \text{ where } y_1 = e_1, \ldots, y_n = e_n \triangleright \Delta \cup \Delta' \]

\[\Delta; \Pi; \ell \vdash e \]

\[\Delta; \Pi; \ell \vdash () \quad \Delta; \Pi; \ell \vdash n \quad \Delta; \Pi; \ell \vdash \# t \quad \Delta; \Pi; \ell \vdash \# \]

\[\Delta; \Pi; \ell \vdash e_i \quad i \in \{1, 2\} \quad \Delta; \Pi; \ell \vdash e_1 \quad \Delta; \Pi; \ell \vdash e_2 \]

\[\Delta; \Pi; \ell \vdash \text{let } x = e_1 \in e_2 \quad \Delta; \Pi; \ell \vdash e \quad \Delta; \Pi; \ell \vdash e_i \quad \Delta; \Pi; \ell \vdash e_i \quad i \in \{1, 2\} \]

\[\Delta; \Pi; \ell \vdash x \rightarrow e \quad \Delta; \Pi; \ell \vdash \text{let } x = e \quad \Delta; \Pi; \ell \vdash \mu x : \tau. e \quad \Delta; \Pi; \ell \vdash e \]

\[\Delta; \Pi; \ell \vdash \text{let } x = e \quad \Delta; \Pi; \ell \vdash e \quad \Delta; \Pi; \ell \vdash e \quad \Delta; \Pi; \ell \vdash e \]

\[\Delta; \Pi; \ell \vdash k \quad \Delta; \Pi; \ell \vdash e_1 \quad \Delta; \Pi; \ell \vdash e_2 \quad \Delta; \Pi; \ell \vdash k \quad \Delta; \Pi; \ell \vdash e_2 \quad \Delta; \Pi; \ell \vdash e_3 \]

\[\Delta; \Pi; \ell \vdash \ell \tau e_1 \quad \Delta; \Pi; \ell \vdash \ell \tau e_2 \quad \Delta; \Pi; \ell \vdash \ell \tau e_3 \]

\[\Delta; \Pi; \ell \vdash p(r) \quad \Delta; \Pi; \ell \vdash \text{flat/c}(e) \quad \Delta; \Pi; \ell \vdash \text{param/c}(e) \quad \Delta; \Pi; \ell \vdash e_1 \quad \Delta; \Pi; \ell \vdash e_2 \quad \Delta; \Pi; \ell \vdash e_3 \]

\[\Delta; \Pi; \ell \vdash e_1 \quad \Delta; \Pi; \ell \vdash e_2 \quad \Delta; \Pi; \ell \vdash e_3 \]

\[\Delta; \Pi; \ell \vdash e_{g_{e_1}} \quad \Delta; \Pi; \ell \vdash e_{g_{e_2}} \quad \Delta; \Pi; \ell \vdash e_{g_{e_3}} \quad \Delta; \Pi; \ell \vdash e_{v_{e_1}} \quad \Delta; \Pi; \ell \vdash e_{v_{e_2}} \quad \Delta; \Pi; \ell \vdash e_{v_{e_3}} \]

\[\Delta; \Pi; \ell \vdash \text{ctx/c} \left(e_1 \left(e_{g_{e_1}} \Rightarrow e_{p_{e_1}} \leftarrow e_{v_{e_1}} \right) \ldots e_2 \left(e_{g_{e_2}} \Rightarrow e_{p_{e_2}} \leftarrow e_{v_{e_2}} \right) \ldots \right) \right) \]

\[\Delta; \Pi; \ell \vdash \text{check}_j (e_1, e_2) \quad \Delta; \Pi; \ell \vdash \text{check}_j (e_1, e_2) \quad \Delta; \Pi; \ell \vdash \text{guard}_j (e_1, e_2, e_3) \quad \Delta; \Pi; \ell \vdash \text{guard}_j (e_1, e_2, e_3) \]
\[
\frac{\Gamma; \Pi(k) \vdash \ell \vdash c}{\Gamma; \Pi \vdash \textit{param/p}_j^k(c, v)} \\
\frac{\Gamma; \Pi \vdash v \quad \Gamma; \Pi \vdash v_{a_1} \quad \Gamma; \Pi \vdash v_{a_n}}{\Gamma; \Pi \vdash \textit{ctx/p}_j^k(v_{a_1} \Rightarrow v_{a_1}, \ldots, v_{a_n} \Rightarrow v_{a_n}, v_f)} \\
\frac{\Gamma; \Pi \vdash e \quad \Gamma; \Pi \vdash e_f}{\Gamma; \Pi \vdash \textit{install/p}_j(e, e_f)} \\
\frac{\Gamma; \Pi \vdash x}{\Gamma; \Pi \vdash \{x\}} \\
\frac{\Gamma; \Pi \vdash e}{\Gamma; \Pi \vdash \{e\}} \\
\frac{\Gamma; \Pi \vdash c}{\Gamma; \Pi \vdash \textit{mon}_j^k(c, e)} \\
\frac{\Gamma; \Pi \vdash e_1 \quad \Gamma; \Pi \vdash e_2}{\Gamma; \Pi \vdash \textit{mon}_j^k([e_1, e_2])} \\
\frac{\Gamma; \Pi \vdash \ell \vdash c}{\Gamma; \Pi \vdash \textit{error}_j^k} \\
\frac{\Gamma; \Pi \vdash \sigma}{\text{dom}(\Pi) = \text{dom}(\sigma) \quad \forall p \in \text{dom}(\sigma), \Gamma; \Pi(p) \vdash \sigma(p)} \\
\frac{\Gamma; \Pi \vdash \sigma}{\Delta; \Pi \vdash \sigma} \\
\frac{\Gamma; \Pi \vdash e \quad \tilde{k} \subseteq \tilde{k}}{\Gamma; \Pi; \tilde{k}; \ell; j \vdash c} \\
\frac{\Gamma; \Pi; \tilde{k}; \ell; j \vdash \textit{flat}/c(e)}{\tilde{i} = \tilde{k} \cup \tilde{k}} \\
\frac{\Gamma; \Pi; \tilde{i}; \tilde{j}; j \vdash c}{\Gamma; \Pi; \tilde{k}; \tilde{l}; j \vdash \textit{param}/c(\tilde{i})} \\
\frac{\Gamma; \Pi; \tilde{k}; \tilde{l}; j \vdash e_1}{\Gamma; \Pi; \tilde{i}; \tilde{j}; j \vdash e_1} \\
\frac{\Gamma; \Pi; \tilde{i}; \tilde{j}; j \vdash \textit{ctx}/c(e_1, (e_{g_{a_1}} \Rightarrow e_{p_{a_1}} \leftarrow e_{v_{a_1}}), \ldots, e_{g_{a_n}} \Rightarrow e_{p_{a_n}} \leftarrow e_{v_{a_n}}), v_f)}{\Gamma; \Pi; \tilde{k}; \tilde{l}; j \vdash e} \\
\frac{\Gamma; \Pi; \ell \vdash e_{g_{a_1}}}{} \\
\frac{\Gamma; \Pi; \ell \vdash e_{p_{a_1}}}{} \\
\frac{\Gamma; \Pi; \ell \vdash e_{v_{a_1}}}{} \\
\frac{\Gamma; \Pi; \ell \vdash e_{g_{a_2}}}{} \\
\frac{\Gamma; \Pi; \ell \vdash e_{p_{a_2}}}{} \\
\frac{\Gamma; \Pi; \ell \vdash e_{v_{a_2}}}{} \\
\frac{\Gamma; \Pi; \ell \vdash e_{g_{a_n}}}{} \\
\frac{\Gamma; \Pi; \ell \vdash e_{p_{a_n}}}{} \\
\frac{\Gamma; \Pi; \ell \vdash e_{v_{a_n}}}{} \\
\frac{\Gamma; \Pi; \ell \vdash \textit{ctx}/c(e_1, (e_{g_{a_1}} \Rightarrow e_{p_{a_1}} \leftarrow e_{v_{a_1}}), \ldots, e_{g_{a_n}} \Rightarrow e_{p_{a_n}} \leftarrow e_{v_{a_n}}), v_f)}{\Gamma; \Pi; \tilde{k}; \tilde{l}; j \vdash e^\ell}
\section*{B.5 Metatheory of CtxPCF}

\textbf{Theorem 1 (Type Soundness for Surface CtxPCF).} For all programs p of Surface CtxPCF such that $\vdash p : \tau$
\begin{itemize}
 \item $(p, \emptyset) \rightarrow \ast(v, \sigma)$ or;
 \item $(p, \emptyset) \rightarrow \ast(\text{error}_j^k, \sigma)$ or;
 \item $(p, \emptyset) \rightarrow \ast(\overline{p'}, \sigma)$ and there exist p'' such that $p' \rightarrow p''$.
\end{itemize}
\begin{proof}
Direct consequence of Lemmas 1 and 2. \hfill \Box
\end{proof}

\textbf{Lemma 1 (Type Progress for CtxPCF Terms).} If $\Sigma \vdash p : \tau$, then either p is a value v, p is \text{error}_j^k, or for all σ such that $\emptyset ; \Sigma \vdash \sigma$, there exist p' and σ' such that $(p, \sigma) \rightarrow (p', \sigma')$.
\begin{proof}
By straight-forward case analysis on p using Lemmas 3 and 4. \hfill \Box
\end{proof}

\textbf{Lemma 2 (Type Preservation for CtxPCF Terms).} If $\Sigma \vdash p : \tau; \emptyset ; \Sigma \vdash \sigma$, and $(p, \sigma) \rightarrow (p', \sigma')$, then either there exists $\Sigma' \supseteq \Sigma$ such that $\Sigma' \vdash p' : \tau$ and $\emptyset ; \Sigma' \vdash \sigma'$, or $p' = \text{error}_j^k$.
\begin{proof}
By straight-forward case analysis on the rules of the reduction semantics using Lemma 5 and Lemma 6. \hfill \Box
\end{proof}

\textbf{Lemma 3 (Unique decomposition for CtxPCF).} For all well-typed programs p such that $p \neq v$, $p \neq \text{error}_j^k$, and $p \neq \text{module } e \text{ exports } x_0, x_1, \ldots$ where $y_1 = e_1, \ldots, y_n = e_n, \ldots ; p'$, there are unique e' and E such that $p = E[e']$ and e' is one of the following:
\begin{enumerate}
 \item $v_0 v_1$
 \item $\mu x : \tau. e_0$
 \item $\text{let } x = v_0 \text{ in } e_1$
 \item $\text{if } v_0 \text{ then } e_1 \text{ else } e_2$
 \item $v_0 \oplus v_1$
 \item $v_0 \leq v_1$
 \item $\text{make-parameter } v_0$
 \item $\text{parameterize } v_0 = v_1 \text{ in } e_2$ where $v_0 \neq p(r)$
 \item $\text{parameterize } p(r) = v_1 \text{ in } v_2$
 \item $\text{guard}_j(x_0, v_1, \ldots, v_n, \overline{e}_f)$
\end{enumerate}
\begin{proof}
By induction on the size of p. \hfill \Box
\end{proof}

\textbf{Lemma 4 (Well-typed evaluation context plugs for CtxPCF).} If $\Sigma \vdash E[e] : \tau, \emptyset ; \Pi \vdash e : \tau', \text{ and } \emptyset ; \Pi \vdash e' : \tau'$ then $\Sigma \vdash E[e'] : \tau$.
\begin{proof}
Induction on E. \hfill \Box
\end{proof}

\textbf{Lemma 5 (Type focusing for CtxPCF).} If $\Sigma \vdash E[e] : \tau$ then $\emptyset ; \Sigma \vdash e : \tau'$ for some τ'.
\begin{proof}
Induction on E. \hfill \Box
\end{proof}

\textbf{Theorem 2 (Type Soundness for Annotated Surface CtxPCF).} For all programs p of Annotated Surface CtxPCF such that $\vdash p : \tau$
\begin{itemize}
 \item $(p, \emptyset) \rightarrow \ast_{\text{ann}}(v, \sigma)$ or;
 \item $(p, \emptyset) \rightarrow \ast_{\text{ann}}(\text{error}_j^k, \sigma)$ or;
 \item $(p, \emptyset) \rightarrow \ast_{\text{ann}}(\overline{p'}, \sigma)$ and there exist p'' such that $p' \rightarrow p''$.
\end{itemize}
\begin{proof}
Direct consequence of Lemmas 6 and 7. \hfill \Box
\end{proof}

\textbf{Lemma 6 (Type Progress for Annotated CtxPCF Terms).} If $\Sigma \vdash p : \tau$, then either p is a value v, p is \text{error}_j^k, or for all σ such that $\emptyset ; \Sigma \vdash \sigma$, there exist p' and σ' such that $(p, \sigma) \rightarrow (p', \sigma')$.
\begin{proof}
By straight-forward case analysis on p using Lemmas 8 and 9. \hfill \Box
\end{proof}
Lemma 7 (Type Preservation for Annotated CtxPCF Terms). If $\Sigma \vdash p : \tau, \emptyset ; \sigma$, and $\langle p, \sigma \rangle \to_{ann} \langle p', \sigma' \rangle$, then either there exists $\Sigma' \supseteq \Sigma$ such that $\Sigma' \vdash p' : \tau$ and $\emptyset ; \sigma'$, or $p' = \text{error}_j$.

Lemma 8 (Unique decomposition for Annotated CtxPCF). For all well-typed programs p such that $p \neq v$, $p \neq \text{error}_j$, and $p \neq \text{module} \ell \text{ exports} x_n \text{ with } x_1, \ldots, y_n$, $y_1 = e_1, \ldots, y_n = e_n$, p', there are unique ℓ', ℓ'', and $E^{\ell'}$ such that $p = E^{\ell'}[e']$ and e' is one of the following:

1. $v_0 v_1$
2. $\mu x : \tau, v_0$
3. $\text{let} x = v_0 \text{ in } e_1$
4. if v_0 then e_1 else e_2
5. $v_0 \oplus v_1$
6. $v_0 \leq v_1$
7. make-parameter v_0
8. $\ell B^{\ell'}[\text{parameterize} v_0 = v_1 \text{ in } j B^{j}[v_2]]$ where $v_0 \neq \|^{\ell'} p(r)\|
9. $\ell B^{\ell'}[\text{parameterize } \|^{\ell'} p(r)\| = v_1 \text{ in } j B^{j}[v_2]]$
10. $?v_0$
11. $\ell B^{\ell'}[v_0 := v_1]$
12. $\ell \text{ mon}_j(v_0, v_1)$
13. $\text{check}_j(v_0, e_1)$
14. $\text{guard}_j(v_g, v_p, v_e, e_f)$

Lemma 9 (Well-typed evaluation context plugs for Annotated CtxPCF). If $\Sigma \vdash E^k[e] : \tau, \emptyset ; \emptyset$, and $\emptyset \vdash e' : \tau'$ then $\Sigma \vdash E^k[e'] : \tau$.

Proof. Induction on E^k. □

Lemma 10 (Type focusing for Annotated CtxPCF). If $\Sigma \vdash E^k[e] : \tau$ then $\emptyset \vdash e : \tau'$ for some τ'.

Proof. Induction on E^k. □

Theorem 3 (Annotation transparency). The following statements hold for Surface CtxPCF:

1. Let e be a well-typed and well-formed Annotated CtxPCF program: $\vdash p : \tau$ and $\ell_0 \models p$. Let \bar{p} be the Surface CtxPCF expression that is like p but without annotations. If $\langle p, \emptyset \rangle \to_{ann} \langle p', \sigma \rangle$, then $\langle \bar{p}, \emptyset \rangle \to_{ann} \langle p', \bar{\sigma} \rangle$, where \bar{p} is the CtxPCF program that is like p' but without annotations.

2. Let \bar{p} be a well-typed Surface CtxPCF program: $\vdash \bar{p} : \tau$. Then there exists some Annotated Surface CtxPCF program p such that $\vdash p : \tau$ and $\ell_0 \models p$. Furthermore, if $\langle \bar{p}, \emptyset \rangle \to_{ann} \langle \bar{p}', \bar{\sigma} \rangle$, then $\langle p, \emptyset \rangle \to_{ann} \langle p', \sigma \rangle$ for some \bar{p}', where \bar{p}' is the CtxPCF program that is like p' but without annotations.

Proof. By a straightforward lock-step bi-simulation between the two reduction steps using the obvious annotation erasure function to relate the corresponding configurations in each step. For the second point of the Theorem, we construct p from \bar{p} by adding to each imported variable in a term of \bar{p} the appropriate annotation. □

Definition 1 (Complete monitoring). CtxPCF is a complete monitor if any only if for all p such that $\vdash p : \tau$ and $\ell_0 \models p$, $\langle p, \emptyset \rangle \to_{ann} \langle v, \sigma \rangle$, or

- for all p_1 and σ_1 such that $\langle p_0, \emptyset \rangle \to_{ann} \langle p_1, \sigma_1 \rangle$ there exists p_2 and σ_2 such that $\langle p_1, \sigma_1 \rangle \to_{ann} \langle p_2, \sigma_2 \rangle$, and p_1 is of the form $E^{\ell'}[\ell \text{ mon}_j([\text{flat} / c(p)]^{\ell'}, v)]$ and for all such terms $p_1, v = \|^{\ell'} u'\|$, and $k \in \ell'$.
- for all p_1 and σ_1 such that $\langle p_0, \emptyset \rangle \to_{ann} \langle p_1, \sigma_1 \rangle$ there exists $\langle p_2, \sigma_2 \rangle$ and p_1 is of the form $E^{\ell'}[\ell \text{ mon}_j([\text{ctx} / c(v_{g_1}, v_{p_1} \leftarrow v_{v_{u_1}}, \ldots, v_a, v_{p_{u_1}} \leftarrow v_{v_{u_1}}, \ldots)]^{\ell'})]$

and for all such terms $p_1, \ell \in \ell'$.

Theorem 4. CtxPCF is a complete monitor.
Proof. As a direct consequence of Lemmas 6, 7, 11, and 12 we have that for all programs p_0 such that $\vdash p_0 : \tau$ and $\ell_0 \vdash p_0$, either

- $\langle p_0, \varnothing \rangle \rightarrow^*_{\text{ann}} (v, \sigma)$, or
- for all p_1 and σ_1 such that $\langle p_0, \varnothing \rangle \rightarrow^*_{\text{ann}} (p_1, \sigma_1)$ there exists p_2 and σ_2 such that $(p_1, \sigma_1) \rightarrow^*_{\text{ann}} (p_2, \sigma_2)$, or
- $\langle p_0, \varnothing \rangle \rightarrow^*_{\text{ann}} (\text{error}^k_j, \sigma_2)$.

In the last case, since $\ell_0 \vdash p_0$, we know that error^k_j does not appear in p_0. Therefore it must have been introduced by a reduction. In particular, it must have been the result of the reduction $\langle E^f[\text{check}^k_j(\llbracket \#! \rrbracket, e)], \sigma_2 \rangle \rightarrow^*_{\text{ann}} (\text{error}^k_j, \sigma_2)$. Again, since $\ell_0 \vdash p_0, \text{check}^k_j(\llbracket \#! \rrbracket, e)$ must not occur in p_0. Hence it must be the result of a reduction. There are three rules that introduce checks:

1. $\langle E^f[\text{mon}^k_j(\llbracket \#! \rrbracket, e)], \sigma \rangle \rightarrow^*_{\text{ann}} \langle E^f[\text{check}^k_j(\llbracket \#! \rrbracket, e)], \sigma \rangle$: In this case, we can deduce

$$\langle p_0, \varnothing \rangle \rightarrow^*_{\text{ann}} \langle E^f[\text{mon}^k_j(\llbracket \#! \rrbracket, e)], \sigma_1 \rangle$$

$$\rightarrow^*_{\text{ann}} \langle E^f[\text{check}^k_j(\llbracket \#! \rrbracket, e)], \sigma_1 \rangle$$

By Lemma 13, we can deduce that for some Π such that $\varnothing; \Pi \models \sigma_1, \ell_0; \Pi \models E^f[\text{mon}^k_j(\llbracket \#! \rrbracket, e)]$. By Lemma 13 we derive $\varnothing; \Pi; \ell \models E^f[\text{check}^k_j(\llbracket \#! \rrbracket, e)], \sigma_2)$. By Lemma 12 we can deduce that for some Π such that $\varnothing; \Pi \models \sigma_1, \ell_0; \Pi \models E^f[\text{check}^k_j(\llbracket \#! \rrbracket, e)]$. By Lemma 13 we derive $\varnothing; \Pi; \ell \models E^f[\text{check}^k_j(\llbracket \#! \rrbracket, e)], \sigma_2)$.

2. $\langle E^f[\text{mon}^k_j(\llbracket \#l \rrbracket), \sigma \rangle \rightarrow^*_{\text{ann}} \langle E^f[\text{check}^k_j(\llbracket \#l \rrbracket, e)], \sigma \rangle$ where $c = \text{ctx}/c(v_c, v_{c_1} \Rightarrow v_{c_1}, \ldots, v_{c_n} \Rightarrow v_{c_n}), v_a(v_{a_1} \Rightarrow v_{a_1}, \ldots)$. In this case, we can deduce

$$\langle p_0, \varnothing \rangle \rightarrow^*_{\text{ann}} \langle E^f[\text{mon}^k_j(\llbracket \#l \rrbracket), \sigma_1 \rangle$$

$$\rightarrow^*_{\text{ann}} \langle E^f[\text{check}^k_j(\llbracket \#l \rrbracket), \sigma_1 \rangle$$

3. $\langle E^f[(\llbracket \#l \rrbracket), \sigma \rangle \rightarrow^*_{\text{ann}} \langle E^f[\text{check}^k_j(\llbracket \#l \rrbracket), \sigma \rangle$ where $e = \text{guard}_j((v_{e_1}, \ldots, v_{e_n}), c)$. Again, since $\ell_0 \vdash p_0, p_0$ does not contain $\text{ctx}/c(v_c, v_{c_1} \Rightarrow v_{c_1}, \ldots, v_{c_n} \Rightarrow v_{c_n}), v_a(v_{a_1} \Rightarrow v_{a_1}, \ldots)$. In this case, we can deduce that for some Π such that $\varnothing; \Pi \models \sigma_1, \ell_0; \Pi \models E^f[\text{check}^k_j(\llbracket \#l \rrbracket, e)]$. By Lemma 13 we derive $\varnothing; \Pi; \ell \models E^f[\text{check}^k_j(\llbracket \#l \rrbracket, e)], \sigma_2)$. By Lemma 12 we can deduce that for some Π such that $\varnothing; \Pi \models \sigma_1, \ell_0; \Pi \models E^f[\text{check}^k_j(\llbracket \#l \rrbracket, e)]$. By Lemma 13 we derive $\varnothing; \Pi; \ell \models E^f[\text{check}^k_j(\llbracket \#l \rrbracket, e)], \sigma_2)$.
From Lemma 8 we know that there either

\[\text{either} \]

\[p = v, \quad p = \text{error}_j, \quad \text{or} \]

\[(p, \sigma) \rightarrow_{\text{ann}} (p', \sigma'). \]

\[\text{Proof.} \] From Lemma 8, we know that there either \(p = v, p = \text{error}_j, \) \(p = \text{module } \ell \text{ exports } x_v, \) \(\ldots \) where \(y_1 = e_1, \ldots, y_n = e_n; \) \(p', \) or there exist \(\ell^*, \) \(\ell^* \) and \(E^{\ell^*} \) such that \(p = E^{\ell^*} [e^*]. \) The first two cases are immediate. If \(p = \text{module } \ell \text{ exports } x_v, \) \(\ldots \) where \(y_1 = e_1, \ldots, y_n = e_n; \) \(p', \) then either \(p \) is one of the following:

1. \(\text{module } \ell \text{ exports } x_v, \) \(\ldots \) where \(\ldots x_v = v_1, \ldots, x_c_1 = \ldots; \) \(p': \) Then by the reduction relation we have

\[(p, \sigma) \rightarrow_{\text{ann}} \langle \text{import}[\ell, (x_1, \ldots, x_n), (v_1, \ldots, v_n), (c_1, \ldots, c_n); p'] '\rangle, \sigma \rangle, \]

where meta function \text{import} is total.

2. \(\text{module } \ell \text{ exports } x_v, \) \(\ldots \) where \(y_1 = v_1, \ldots, y_n = v_n; \) \(e_1 = e_1, \ldots, y_e_m = e_m; \) \(p': \) Then by the reduction relation we have

\[(\langle \text{module } \ell \text{ exports } x_v, \) \(\ldots \) where \(y_1 = v_1, \ldots, y_n = v_n; e_1 = e_1, \ldots, y_e_m = e_m; \) \(p' \rangle, \rangle \rightarrow_{\text{ann}} \langle \text{exports} x \rangle \text{ with } x_v, \ldots, x_c_1 = \ldots; e' \rangle, \]

\[\text{and thus that } \langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [\text{check}^k ((u_a (()), e')), v], \rangle, \sigma \rangle \]

where \(e' = \text{guard}_j ((v_{a_{v_1}} (()), v_{a_{v_2}} \ldots \ldots \ldots \text{guard}_j ((v_{a_{v_n}} (()), v_{a_{v_{a_1}}} v_{a_{v_{a_2}}} v_{a_{v_{a_n}}} v_{a_{v_{a_n}}} v_{a_{v_{a_n}}})]. \)

2. \(\mu x : \tau. e_0 \): According to the reduction relation and Lemma 14, we have \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [e_0] \rangle, \sigma \rangle \).

3. \(\text{let } x = v_0 \text{ in } e_1 \): Since \(\varnothing; \ell^* \vdash \text{let } x = v_0 \text{ in } e_1 \text{, it must be the case that } \varnothing; \ell^* \vdash v_0 \text{, so } v_0 = \| v_0' \|. \text{ Thus by the reduction relation and Lemma 14, we have } \langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [e_0] \rangle, \sigma \rangle \).

4. \(\text{if } v_0 \text{ then } e_1 \text{ else } e_2 \): Since \(\varnothing; \ell^* \vdash \text{if } v_0 \text{ then } e_1 \text{ else } e_2 \text{, it must be the case that } \varnothing; \ell^* \vdash v_0 \text{, so } v_0 = \| v_0' \|. \text{ By assumption, we have } \Sigma \vdash E^{\ell^*} [\text{if } v_0 \text{ then } e_1 \text{ else } e_2] \text{, and thus by Lemma 10, we have } \varnothing; \Sigma \vdash v_0 = \| v_0' \|. \text{ Thus by the reduction relation and Lemma 14, we have either } \langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [e_0] \rangle, \sigma \rangle \) or \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [e_1] \rangle, \sigma \rangle \).

5. \(v_0 \oplus v_1 \): By assumption, we have \(\Sigma \vdash E^{\ell^*} [v_0 \oplus v_1] \text{, and thus } v_0 = \| v_0' \| \text{ and } v_1 = \| v_1' \|. \text{ By Lemma 10, we have } \varnothing; \Sigma \vdash v_0 \oplus v_1 \text{, and thus } v_0 = \| v_0' \| \text{ and } v_1 = \| v_1' \|. \text{ Thus by the reduction relation and Lemma 14, we have either } \langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [e_0] \rangle, \sigma \rangle \text{ or } \langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [e_1] \rangle, \sigma \rangle \).
6. \(v_0 \leq v_1 \): Similar to the case \(v_0 \oplus v_1 \).

7. make-parameter \(v_0 \): Since \(\emptyset; \Pi; \ell^* \vdash \text{make-parameter} v_0 \), it must be the case that \(\emptyset; \Pi; \ell^* \vdash v_0 \) and thus \(v_0 = \|\ell^* v_0\| \) for some \(\ell^* \). Then by the reduction relation and Lemma 14 we have \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [\ell^* \{ p(r) \}], \sigma[r \mapsto v_0] \rangle \), where \(p \) is fresh.

8. \(\ell^* B^k \text{parameterize} v_0 = v_1 \in j^* B^j[e_2] \) where \(v_0 \neq \|\ell^* p(r)\| \): By assumption, we have \(\Sigma \vdash E^\ell \langle B^k \text{parameterize} v_0 = v_1 \in j^* B^j[e_2] \rangle : \tau \) and thus by Lemma 10 that \(\emptyset; \Sigma \vdash \ell^* B^k \text{parameterize} v_0 = v_1 \in j^* B^j[e_2] : \tau^* \) for some \(\tau^* \). By inversion, we can derive \(\emptyset; \Sigma \vdash \tau^* \text{param} \) and \(\emptyset; \Sigma \vdash v_1 : \tau^* \text{param} \). Further discriminating by \(\emptyset; \Sigma \vdash v_0 : \tau^* \text{param} \) we have that either \(v_0 = p(r) \) for some \(r \) or \(v_0 = \text{param}^j(c, v_0) \) for some \(k' \) and \(j' \). Since \(v_0 \neq \|\ell^* p(r)\| \), it must be the case that \(v_0 = \text{param}^j(c, v_0) \). Thus by the reduction relation and Lemma 14 we have that \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [\ell^* B^k \{ k' \text{ parameterize} v_0 = k' \text{ mon}^j(c, v_0') \in k^* \{ k^* B^{\ell^*} [e_2] \}], \sigma \rangle \).

9. \(\ell^* B^k \text{parameterize} \|\ell^* p(r)\| = v_1 \in j^* B^j[e_2] \): Inverting \(\emptyset; \Pi; \ell^* \vdash \ell^* B^k \text{parameterize} \|\ell^* p(r)\| = v_1 \in j^* B^j[e_2] \) we have that \(\ell = j = \ell^* \), \(j' = k \), \(v_0 = \|k' v_1'\| \), and \(v_2 = \|\ell^* v_2'\| \). Thus by the reduction relation and Lemma 14 we have that \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [\ell^* \{ \ell^* v_2' \}], \sigma \rangle \).

10. ?\(v_0 \): By assumption, we have \(\Sigma \vdash E^\ell [\|v_0\| : \tau \) and thus by Lemma 10 that \(\emptyset; \Sigma \vdash \|v_0\| : \tau^* \) for some \(\tau^* \). By inversion, it must be the case that \(\emptyset; \Sigma \vdash \|v_0\| : \tau^* \text{param} \). This, combined with the fact that \(\emptyset; \Pi; \ell^* \vdash \|v_0\| \) allows us to derive that either \(v_0 = \|\ell^* p(r)\| \) for some \(p \) or \(v_0 = \|\ell^* \text{param}^j(c, v_0)\| \). In the first case, we must consider two possibilities: when \(E^{\ell^*} \) contains \(\ell^* B^k \text{parameterize} \|k' \ell^* p(r)\| = v_1 \in k^* B^{\ell^*} \) for some \(k, k', \ell', \ell_2, v', \) and \(E^{\ell^*} \) that doesn’t contain another parameterize expression for \(p(r) \), and when \(E^{\ell^*} \) does not contain such a context. We consider each of these cases in turn:

(a) \(v_0 = \|\ell^* p(r)\| \) and \(E^{\ell^*} = E^\ell \langle \ell^* B^k \text{parameterize} \|k' \ell^* p(r)\| = v_1 \in k^* B^{\ell^*} \rangle \|\ell^* p(r)\| \) where \(E^{\ell^*} \) contains no parameterize for \(p(r) \): Inverting \(\emptyset; \Pi; \ell^* \vdash \|\ell^* p(r)\| \) gives \(\Pi(p) = \ell^* \). Since by assumption \(\emptyset; \Pi; \ell^* \vdash E^\ell \langle \ell^* B^k \text{parameterize} \|k' \ell^* p(r)\| = v_1 \in k^* B^{\ell^*} \rangle \|\ell^* p(r)\| \rangle \), we can again apply Lemma 13 to derive \(\emptyset; \Sigma ; \ell^* \vdash E^\ell \langle \ell^* B^k \text{parameterize} \|k' \ell^* p(r)\| = v_1 \in k^* B^{\ell^*} \rangle \|\ell^* p(r)\| \rangle \). By the well-formedness rule for parameterize, \(\ell^* = \ell^* \) and since \(\Pi(p) = \ell^* \) it must be the case that \(k = k_2 = k' = \ell^* = \ell'_2 \), and \(\ell^* = \|\ell^* \ell^* \| \). Thus by the reduction relation and Lemma 14 we have that

\(\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [\ell^* B^k \{ \ell^* \text{parameterize} \|k' \ell^* p(r)\| = \|\ell^* \ell^* \| \}], \sigma \rangle \).

(b) \(v_0 = \|\ell^* p(r)\| \) and \(E^{\ell^*} \neq E^\ell \langle \ell^* B^k \text{parameterize} \|k' \ell^* p(r)\| = v_1 \in k^* B^{\ell^*} \rangle \|\ell^* p(r)\| \rangle \): By the reduction semantics and Lemma 14 we have \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [\|v_1\|], \sigma \rangle \) where \(v = \sigma(r) \). It must be the case that \(r \in \sigma \) since \(\emptyset; \Sigma \vdash \|\ell^* p(r)\| \vdash \|\ell^* \text{param}^j(c, v_0)\| \vdash v \in k^* B^{\ell^*} \). Thus by the reduction relation and Lemma 14 we have that \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [\|k' \text{ param}^j(c, v_0)\|], \sigma \rangle \).

11. \(\ell^* B^k \{ v_0 := v_1 \} \): By assumption, we have \(\Sigma \vdash E^\ell \langle \ell^* B^k \{ v_0 := v_1 \} : \tau \) and thus by Lemma 10 that \(\emptyset; \Sigma \vdash \ell^* B^k \{ v_0 := v_1 \} : \tau^* \text{param} \). By inversion, it must be the case that \(\emptyset; \Sigma \vdash \ell^* B^k \{ v_0 := v_1 \} : \tau^* \text{param} \). This, combined with the fact that \(\emptyset; \Pi; \ell^* \vdash E^\ell \langle \ell^* B^k \{ v_0 := v_1 \} \rangle \) allows us to derive that \(\ell^* B^k \{ v_0 := v_1 \} \) for some \(k, k', j, v', \) and \(E^{\ell^*} \) that doesn’t contain another parameterize expression for \(p(r) \), and when \(E^{\ell^*} \) does not contain such a context. We consider each of these cases in turn:

(a) \(v_0 = \|\ell^* p(r)\| \) and \(E^{\ell^*} = E^\ell \langle \ell^* B^k \text{parameterize} \|k' \ell^* p(r)\| = v_1 \in k^* B^{\ell^*} \rangle \|\ell^* p(r)\| \) where \(E^{\ell^*} \) contains no parameterize for \(p(r) \): Inverting \(\emptyset; \Pi; \ell^* \vdash \|\ell^* p(r)\| \) gives \(\Pi(p) = \ell^* \). Since by assumption \(\emptyset; \Pi; \ell^* \vdash E^\ell \langle \ell^* B^k \text{parameterize} \|k' \ell^* p(r)\| = v_1 \in k^* B^{\ell^*} \rangle \|\ell^* p(r)\| \rangle \), we can again apply Lemma 13 to derive \(\emptyset; \Sigma ; \ell^* \vdash E^\ell \langle \ell^* B^k \text{parameterize} \|k' \ell^* p(r)\| = v_1 \in k^* B^{\ell^*} \rangle \|\ell^* p(r)\| \rangle \). By the well-formedness rule for parameterize, \(\ell^* = \ell^* \) and since \(\Pi(p) = \ell^* \) it must be the case that \(k = k_2 = k' = \ell^* \), and \(\ell^* = \|\ell^* \ell^* \| \). Thus by the reduction relation and Lemma 14 we have that

\(\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{\ell^*} [\ell^* B^k \{ \ell^* \text{parameterize} \|k' \ell^* p(r)\| = \|\ell^* \ell^* \| \}], \sigma \rangle \).
(b) \(v_0 = \| \ell \cdot p(r) \| \) and \(E^{\ell'} \neq E^{\ell''} \). By further applications of well-formedness, we can derive that \(v_1 = \| \ell' \cdot v'_1 \| \) for some \(v'_1 \) and \(\ell' = \ell'' \). Thus by the reduction sematics and Lemma 14 we have \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} (E^{\ell'}(\ell' \cdot [v_0 := v_1])) \).

(c) \(v_0 = \| \ell \cdot \text{param}(p^1_j, c, v_0) \| \). By inverting \(\emptyset; \cdot \ell \rightarrow E^{\ell'} \) we derive \(\ell' = \ell^* \). Thus by the reduction relation and Lemma 14 we have \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} (E^{\ell'}(\ell' \cdot [v_0 := \text{mon}^*_j(c, v_1)])) \).

12. \(\text{mon}^*_j(c_0, v_1) \): Deconstructing \(c_0 \) we consider seven cases (for simplicity, we reduce \(|\ell| \cdot |\ell' c| \cdot \ldots \cdot |\ell' c| \) to \(|\ell c| \) since well-formedness will ensure it):

(a) \(\| \ell \cdot \text{flat}(c(v_0)) \| \): This case is a contradiction, since \(\emptyset; \ell \cdot \ell^* \vdash \ell \cdot \text{mon}^*_j(\| \ell \cdot \text{flat}(c(v_0)) \|, v_1) \) requires \(\emptyset; \ell; \emptyset; \{ k \}; \{ \ell \} \rightarrow \| \ell \cdot \text{flat}(c(v_0)) \| \), which does not hold.

(b) \(\| \ell \cdot \text{param}(c(v_0)) \| \): Since \(\emptyset; \ell \cdot \ell^* \vdash \ell \cdot \text{mon}^*_j(\| \ell \cdot \text{param}(c(v_0)) \|, v_1) \) we can deduce \(\ell = \ell^* \) and \(\ell' = j \). Thus by the reduction relation and Lemma 14 we have \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} (E^{\ell'}(\ell' \cdot \text{param}(p^1_j, c_0, v_1))) \).

(c) \(\| \ell \cdot \text{cd}(\tau_d \rightarrow c_0, v_1) \| \): Since \(\emptyset; \ell \cdot \ell^* \vdash \ell \cdot \text{mon}^*_j(\| \ell \cdot \text{cd}(\tau_d \rightarrow c_0, v_1) \|, v_0) \) we can deduce \(\ell = \ell^* \) and \(\ell' = j \). Thus by the reduction relation and Lemma 14 we have \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} (E^{\ell'}(\ell' \cdot \text{cd}(\tau_d \rightarrow c_0, v_1))) \).

(d) \(\| \ell \cdot \text{ctx}(\ell' c(v_0) \rightarrow v_{c_{p_1}} \leftarrow v_{c_{v_1}}), \ldots, (v_{c_{p_n}} \rightarrow v_{c_{v_n}}), (v_{a_1} \rightarrow v_{a_{p_1}} \leftarrow v_{a_{v_1}}), \ldots) \| \): This case is a contradiction, since \(\emptyset; \ell \cdot \ell^* \vdash \ell \cdot \text{mon}^*_j(\| \ell \cdot \text{ctx}(\ell' c(v_0) \rightarrow v_{c_{p_1}} \leftarrow v_{c_{v_1}}), \ldots, (v_{c_{p_n}} \rightarrow v_{c_{v_n}}), (v_{a_1} \rightarrow v_{a_{p_1}} \leftarrow v_{a_{v_1}}), \ldots) \|, v_1) \) requires \(\emptyset; \ell; \emptyset; \{ k \}; \{ \ell \} \rightarrow \| \ell \cdot \text{ctx}(\ell' c(v_0) \rightarrow v_{c_{p_1}} \leftarrow v_{c_{v_1}}), \ldots, (v_{c_{p_n}} \rightarrow v_{c_{v_n}}), (v_{a_1} \rightarrow v_{a_{p_1}} \leftarrow v_{a_{v_1}}), \ldots) \|, v_1) \), which does not hold.

(e) \(\| \ell \cdot \text{check}(c(v_0) \rightarrow v_{c_{v_1}}), \ldots, (v_{c_{p_1}} \rightarrow v_{c_{v_1}}), \ldots, (v_{c_{v_n}} \rightarrow v_{c_{v_n}}), (v_{a_1} \rightarrow v_{a_{p_1}} \leftarrow v_{a_{v_1}}), \ldots) \| \): Since \(\emptyset; \ell \cdot \ell^* \vdash \ell \cdot \text{mon}^*_j(\| \ell \cdot \text{check}(c(v_0) \rightarrow v_{c_{v_1}}), \ldots, (v_{c_{p_1}} \rightarrow v_{c_{v_1}}), \ldots, (v_{c_{v_n}} \rightarrow v_{c_{v_n}}), (v_{a_1} \rightarrow v_{a_{p_1}} \leftarrow v_{a_{v_1}}), \ldots) \|, v_1) \) we can deduce \(\ell = \ell^* \) and \(\ell' = j \). Thus by the reduction relation and Lemma 14 we have \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} (E^{\ell'}(\ell' \cdot \text{check}(c(v_0) \rightarrow v_{c_{v_1}}), \ldots, (v_{c_{p_1}} \rightarrow v_{c_{v_1}}), \ldots, (v_{c_{v_n}} \rightarrow v_{c_{v_n}}), (v_{a_1} \rightarrow v_{a_{p_1}} \leftarrow v_{a_{v_1}}), \ldots))) \).

13. \(\text{check}^*_j(v_0, e_1) \): By assumption, we have \(\Sigma \vdash E^{\ell'}[\text{check}^*_j(v_0, e_1)] : \tau' \). By Lemma 10 we have \(\emptyset; \Sigma \vdash \text{check}^*_j(v_0, e_1) : \tau' \). By inversion, \(\emptyset; \Sigma \vdash v_0 : \text{Bool} \). This, combined with further decomposing \(\emptyset; \ell \rightarrow \text{check}^*_j(v_0, e_1) \), is sufficient to derive that either \(v_0 = \| \ell \# \| \) or \(v_0 = \| \ell' \# \| \). In the first case and appealing to Lemma 14 we have \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} (E^{\ell'}[e_1]) \). In the latter, we have \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} (\text{error}^*_j, \sigma) \).

14. \(\text{guard}_j(v_{g_1}, v_{p_1}, v_{v_1}, e_1) \): By assumption, we have \(\Sigma \vdash E^{\ell'}[\text{guard}_j(v_{g_1}, v_{p_1}, v_{v_1}, e_1)] : \tau' \). By Lemma 10 we have \(\emptyset; \Sigma \vdash \text{guard}_j(v_{g_1}, v_{p_1}, v_{v_1}, e_1) : \tau' \). By inversion, \(\emptyset; \Sigma \vdash v_{g_1} : \text{Bool} \). This, combined with further decomposing \(\emptyset; \ell \rightarrow \text{guard}_j(v_{g_1}, v_{p_1}, v_{v_1}, e_1) \), is sufficient to derive that either \(v_{g_1} = \| \ell \# \| \) or \(v_{g_1} = \| \ell' \# \| \). Using Lemma 14 we can now construct reductions for each case. In the first, we have \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} (E^{\ell'}[e_1], \sigma) \). In the latter, we have \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} (E^{\ell'}[e_1], \sigma) \).

\(\square \)

Lemma 12 (Preservation). For all programs \(p \), stores \(\sigma \), store typings \(\Sigma \), and store labelings \(\Pi' \) such that

- \(\Sigma \vdash p : \tau \)
- \(\emptyset; \Sigma \vdash \sigma \)
- \(\ell_0 ; \Pi \vdash p \)
- \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} (\ell' \cdot \sigma') \),

there exists a store labeling \(\Pi' \) such that

- \(\Pi' \models \Pi \)
- \(\ell_0 \models \Pi' \models p' \).

Proof. By case analysis on the reduction \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} (\ell' \cdot \sigma') \).
1. \(\langle \text{module } \ell \text{ exports } x_1 \text{ with } x_{c_1}, \ldots \text{ where } y_1 = v_1, \ldots, y_n = v_n, y_{c_1} = e_1, \ldots, y_{c_m} = e_m; p, \sigma \rangle \rightarrow_{\text{ann}} \langle \text{module } \ell \text{ exports } x_1 \text{ with } x_{c_1}, \ldots \text{ where } y_1 = v_1, \ldots, y_n = v_n, y_{c_1} = \{v/y_i\} e_1, y_{c_2} = e_2, \ldots, y_{c_m} = e_m; p, \sigma \rangle \): Let \(\Pi' = \Pi \). It suffices to show that given
\(\Pi \vdash \text{module } \ell \text{ exports } x_i \text{ with } x_{c_i}, \ldots \text{ where } x_1 = v_1, \ldots, x_n = v_n, x_{c_1} = e_1, \ldots, \gamma \Delta \),
\(\Pi \vdash \text{module } \ell \text{ exports } x_i \text{ with } x_{c_i}, \ldots \text{ where } y_1 = v_1, \ldots, y_n = v_n, y_{c_1} = \{v/y_i\} e_1, y_{c_2} = e_2, \ldots, y_{c_m} = e_m \uparrow \Delta \). From the premise, we have that \(\varnothing; \Pi \models v_1, \ldots, \{y_1 : \ell \}, \ldots, y_{n-1} : \ell \}; \Pi, \ell \models v_n, \{y_1 : \ell, \ldots, y_n : \ell\}; \Pi, \ell \models e_1, \ldots, \\
\{y_1 : \ell, \ldots, y_n : \ell, y_{c_1} : \ell, \ldots, y_{c_m-1} : \ell\}; \Pi, \ell \models e_m, \text{ and } \Gamma' = \{y_1 : \ell, \ldots, y_n : \ell, y_{c_1} : \ell, \ldots, y_{c_m-1} : \ell\} \uparrow \{x_1, \ldots, x_n\} \). These suffice to show the desired result, except we must also show \(\{y_1 : \ell, \ldots, y_n : \ell\}; \Pi, \ell \models \{v/y_i\} e_1 \) by applying Lemma 15.

2. \(\langle \text{module } \ell \text{ exports } x_i \text{ with } x_{c_i}, \ldots \text{ where } \ldots x_1 = v_1, \ldots, x_n = c_1, \ldots, p', \sigma \rangle \rightarrow_{\text{ann}} \langle \text{import } \{x_1 : \ell, \ldots, x_n : \ell\}; c_1, \ldots, p', \sigma \rangle \): By Lemma 14, it suffices to show that \(\varnothing; \Pi \models \{v/y_i\} e_1 \). By Lemma 13 and well-formedness, we have that \(\varnothing; \Pi \models \{v/y_i\} e_1 \). By Lemma 15 and well-formedness, we have that \(\varnothing; \Pi \models \{v/y_i\} e_1 \) and also \(\Delta; \Pi \models v_1, \ldots, \Delta; \Pi \models c_1, \ldots \).

3. \(\langle E^f [t : \tau \mid v \mid \ell], \sigma \rangle \rightarrow_{\text{ann}} \langle E^f [\{t/v\} \ell], \sigma \rangle \): By Lemma 14, it suffices to show that \(\varnothing; \Pi \models \{t/v\} \ell \). By Lemma 13 and well-formedness, we have that \(\varnothing; \Pi \models \{t/v\} \ell \) and \(\Delta; \Pi \models \{t/v\} \ell \).

4. \(\langle E^f [\mu \rightarrow t : \tau, e \mid \ell], \sigma \rangle \rightarrow_{\text{ann}} \langle E^f [\{\mu \rightarrow t / \tau, v \mid \ell\}], \sigma \rangle \): By Lemma 14, it suffices to show that \(\varnothing; \Pi \models \{\mu \rightarrow t / \tau, v \mid \ell\} \). By Lemma 13 and well-formedness, we have that \(\varnothing; \Pi \models \{\mu \rightarrow t / \tau, v \mid \ell\} \) and also \(\Delta; \Pi \models \{\mu \rightarrow t / \tau, v \mid \ell\} \).

5. \(\langle E^f [\text{let } x \rightarrow t : \tau \mid v \mid \ell], \sigma \rangle \rightarrow_{\text{ann}} \langle E^f [\{t/v\} \ell], \sigma \rangle \): By Lemma 14, it suffices to show that \(\varnothing; \Pi \models \{t/v\} \ell \). By Lemma 13 and well-formedness, we have that \(\varnothing; \Pi \models \{t/v\} \ell \) and \(\Delta; \Pi \models \{t/v\} \ell \).

6. \(\langle E^f [\text{if } v \mid \# \text{ then } c_1 \text{ else } c_2 \mid \sigma \rangle \rightarrow_{\text{ann}} \langle E^f [c_1] \rangle, \sigma \rangle \): By Lemma 14, it suffices to show that \(\varnothing; \Pi \models \{v/\#\} c_1 \), which holds by Lemma 13 and well-formedness.

7. \(\langle E^f [\text{if } v \mid \# \text{ then } c_1 \text{ else } c_2 \mid \sigma \rangle \rightarrow_{\text{ann}} \langle E^f [c_2] \rangle, \sigma \rangle \): By Lemma 14, it suffices to show that \(\varnothing; \Pi \models \{v/\#\} c_2 \), which holds by Lemma 14 and well-formedness.

8. \(\langle E^f \{v_1 \mid \ell, \sigma \} \rangle \rightarrow_{\text{ann}} \langle E^f \{v_1 \mid \ell, \sigma \} \rangle \): By Lemma 14, it suffices to show that \(\varnothing; \Pi \models \{v_1 \mid \ell, \sigma \} \). By the type system, \(v_1 \), \(v_2 \), and \(v \) must be integers, so \(\varnothing; \Pi \models \{v_1 \mid \ell, \sigma \} \) holds directly.

9. \(\langle E^f \{v_1 \mid \ell, \sigma \} \rangle \rightarrow_{\text{ann}} \langle E^f \{v_1 \mid \ell, \sigma \} \rangle \): By Lemma 14, it suffices to show that \(\varnothing; \Pi \models \{v_1 \mid \ell, \sigma \} \). By the type system, \(v_1 \), \(v_2 \), and \(v \) must be integers, so \(\varnothing; \Pi \models \{v_1 \mid \ell, \sigma \} \) holds directly.

10. \(\langle E^f [\text{make-structure } \{v \mid \ell, \sigma \} \rangle \rightarrow_{\text{ann}} \langle E^f [\{v \mid \ell, \sigma \} \rangle \rangle \): By Lemma 14, it suffices to show that \(\varnothing; \Pi \models \{v \mid \ell, \sigma \} \). By Lemma 13 and well-formedness, we have that \(\varnothing; \Pi \models \{v \mid \ell, \sigma \} \) and \(\Delta; \Pi \models \{v \mid \ell, \sigma \} \).

11. \(\langle E^f [\text{make-parameter } \{v \mid \ell, \sigma \} \rangle \rightarrow_{\text{ann}} \langle E^f [\{v \mid \ell, \sigma \} \rangle \rangle \): By Lemma 14, it suffices to show that \(\varnothing; \Pi \models \{v \mid \ell, \sigma \} \). By Lemma 13, we have that \(\varnothing; \Pi \models \{v \mid \ell, \sigma \} \). By inversion we can derive \(\Pi (r) = \ell \) and \(\varnothing; \Pi \models \sigma \). Combining these facts, we can derive \(\varnothing; \Pi \models \sigma \), which is sufficient to show \(\varnothing; \Pi \models \{v \mid \ell, \sigma \} \).

12. \(\langle E^f [\text{parameterize } \{v \mid \ell, \sigma \} : \ell, \sigma \rangle \rightarrow_{\text{ann}} \langle E^f [\text{parameterize } \{v \mid \ell, \sigma \} : \ell, \sigma \rangle \rangle \): By Lemma 14, it suffices to show that \(\varnothing; \Pi \models \{v \mid \ell, \sigma \} \). By Lemma 13, we have that \(\varnothing; \Pi \models \{v \mid \ell, \sigma \} \). By inversion we can derive \(\Pi (r) = k \) and \(\varnothing; \Pi \models \sigma \). Combining these facts, we can derive \(\varnothing; \Pi \models \{v \mid \ell, \sigma \} \).

13. \(\langle E^f [\text{parameterize } \{v \mid \ell, \sigma \} : \ell, \sigma \rangle \rightarrow_{\text{ann}} \langle E^f [\{v \mid \ell, \sigma \} \rangle \rangle \): By Lemma 14, it suffices to show that \(\varnothing; \Pi \models \{v \mid \ell, \sigma \} \). By Lemma 13, we have that \(\varnothing; \Pi \models \{v \mid \ell, \sigma \} \). By inversion we can derive \(\Pi (r) = k \) and \(\varnothing; \Pi \models \sigma \). Combining these facts, we can derive \(\varnothing; \Pi \models \{v \mid \ell, \sigma \} \).
15. \(\langle E'[\ell^k B^k] \mid \text{paramize} \mid \parallel E'[\ell^k B^k] \parallel \parallel E'[\ell^k B^k] \parallel \parallel \rangle \), \(\sigma \) \(\rightarrow_{\text{ann}} \) \(\langle E'[\ell^k B^k] \mid \text{paramize} \mid \parallel E'[\ell^k B^k] \parallel \parallel E'[\ell^k B^k] \parallel \parallel \rangle \), \(\sigma \) \(\rightarrow_{\text{ann}} \) \(\langle E'[\ell^k B^k] \mid \text{paramize} \mid \parallel E'[\ell^k B^k] \parallel \parallel E'[\ell^k B^k] \parallel \parallel \rangle \), \(\sigma \) for all \(\ell \). This holds by well-formedness of paramrize, coupled with an application of Lemma 14 to show that \(\varnothing \); \(\ell \vdash E'[\ell^k B^k] \), since \(\varnothing \); \(\ell \vdash \). Finally, \(\varnothing \); \(j \vdash (v_c, v) \) since \(\varnothing \); \(j \vdash v \) and \(\varnothing \); \(j \vdash v_\ell \) by well-formedness of contracts for flat/c.

16. \(\langle E'[\ell^k B^k] \mid \text{paramize} \mid \parallel E'[\ell^k B^k] \parallel \parallel E'[\ell^k B^k] \parallel \parallel \rangle \), \(\sigma \) \(\rightarrow_{\text{ann}} \) \(\langle E'[\ell^k B^k] \mid \text{paramize} \mid \parallel E'[\ell^k B^k] \parallel \parallel E'[\ell^k B^k] \parallel \parallel \rangle \), \(\sigma \) \(\rightarrow_{\text{ann}} \) \(\langle E'[\ell^k B^k] \mid \text{paramize} \mid \parallel E'[\ell^k B^k] \parallel \parallel E'[\ell^k B^k] \parallel \parallel \rangle \), \(\sigma \) for all \(\ell \). For the second, we must show that \(\varnothing \); \(\ell \vdash E'[\ell^k B^k] \), which requires that \(\varnothing \); \(k \); \(\ell \); \(j \vdash c \) and \(\varnothing \); \(\Delta ; k \vdash v \). By Lemma 13 we have that \(\varnothing \); \(\ell \vdash \text{mon} \mid \parallel E'[\ell^k B^k] \parallel \parallel E'[\ell^k B^k] \parallel \parallel \rangle \), \(\sigma \). Thus by inversion we have \(\varnothing \); \(k \vdash v \) and \(\varnothing \); \(k \); \(\ell \); \(j \vdash \text{param} \mid \parallel E'[\ell^k B^k] \parallel \parallel E'[\ell^k B^k] \parallel \parallel \rangle \). Inverting the latter second time, we have that \(\varnothing \); \(k \); \(\ell \); \(j \vdash c \). By Lemma 17 implies \(\varnothing \); \(k \); \(\ell \); \(j \vdash c \).
and guard; \(\emptyset; \ell \vdash v \). The latter holds by Lemma 13 and well-formedness. The former requires further showing that \(\emptyset; \Pi; j \vdash v_a \), \(\emptyset; \Pi; j \vdash () \), and \(\emptyset; \Pi; \ell \vdash e \). This is straightforward, since we can derive \(\emptyset; \Pi; j \vdash v_a \), \(\emptyset; \Pi; j \vdash v_a \), \(\emptyset; \Pi; j \vdash v_{a_1} \), \(\emptyset; \Pi; j \vdash v_{a_1} \), \(\emptyset; \Pi; j \vdash v_{a_2} \), and \(\emptyset; \Pi; \ell \vdash v_f \) by Lemma 13 and repeated applications of well-formedness.

22. \(\langle E^f[\text{guard}_j (\|k\#\|),v_p,v_{v_f},e_f] ,\sigma \rangle \rightarrow_{\text{ann}} \langle E^f[e_f],\sigma \rangle \) By Lemma 14 it suffices to show that \(\emptyset; \Pi; \ell \vdash e_f \). This holds since by Lemma 13 and inversion \(\emptyset; \Pi; \ell \vdash \text{guard}_j (\|k\#\|,v_p,v_{v_f},e_f) \), which requires that \(\emptyset; \Pi; \ell \vdash e_f \).

23. \(\langle E^f[\text{guard}_j (\|k\#\|,v_p,v_{v_f},e_f)] ,\sigma \rangle \rightarrow_{\text{ann}} \langle E^f[\text{install}_j (v_p,(v_{v_f}(),e_f))] ,\sigma \rangle \) By Lemma 14 it suffices to show that \(\emptyset; \Pi; \ell \vdash \text{install}_j (v_p,(v_{v_f}(),e_f)) \). By well-formedness, we must show that \(\emptyset; \Pi; j \vdash v_p \), \(\emptyset; \Pi; j \vdash v_{v_f} () \), \(\emptyset; \Pi; \ell \vdash e_f \). By Lemma 13 and inversion we have \(\emptyset; \Pi; \ell \vdash \text{guard}_j (\|k\#\|,v_p,v_{v_f},e_f) \), which inverting again is sufficient to show the required well-formedness properties.

24. \(\langle E^f[\|\text{install}_j (v_p,v_{v_f})\|,v] ,\sigma \rangle \rightarrow_{\text{ann}} \langle E^f[\|\text{parameterize} v_p = v_v in j (v_{v_f})\|,\sigma \rangle \) By Lemma 14 it suffices to show that \(\emptyset; \Pi; \ell \vdash \|\text{parameterize} v_p = v_v in j (v_{v_f})\| \). By the well-formedness rule for parameterize, we must show that \(\emptyset; \Pi; j \vdash v_p \), \(\emptyset; \Pi; j \vdash v_v \), and \(\emptyset; \Pi; \ell \vdash (v_f v) \). By Lemma 13 and inversion we can derive \(\emptyset; \Pi; \ell \vdash \text{install}_j (v_p,v_{v_f},v_f) \) and \(\emptyset; \Pi; \ell \vdash v_f \). Inverting the former, we can further infer \(\emptyset; \Pi; j \vdash v_p \), \(\emptyset; \Pi; j \vdash v_v \), and \(\emptyset; \Pi; \ell \vdash v_f \). All that remains to be show is \(\emptyset; \Pi; \ell \vdash (v_f v) \), which follows through a single application of the well-formedness rule for application.

25. \(\langle E^f[\|\text{param}_j (c,v_p)\|,\sigma \rangle \rightarrow_{\text{ann}} \langle E^f[\|\text{mon}_j (c,v_p)\|,\sigma \rangle \) By Lemma 14 it suffices to show that \(\emptyset; \Pi; \ell \vdash \|\text{mon}_j (c,v_p)\| \). By Lemma 10 we can derive \(\emptyset; \Sigma \vdash \|\|\text{param}_j (c,v_p)\| = \tau \) for some \(\tau \), and by further inversion that \(\emptyset; \Sigma \vdash c : \tau \) ctc for some \(\tau \). Thus \(c = \|\|\text{ctx}(v_{v_a_1} \rightarrow v_{a_1} \leftarrow v_{a_1}), \ldots (v_{v_a_n} \rightarrow v_{a_n} \leftarrow v_{a_n}), v_f \rightarrow v_f, (v_{a_1} \rightarrow v_{a_1}), \ldots \| \) for \(\|\|\text{mon}_j (c,v_p)\| \), and so by the well-formedness rule for monitors we must show that \(\emptyset; \Pi; \{k\}; \ell \); j \(\vdash c \) and \(\emptyset; \Pi; k \vdash \|\text{param}_j (c,v_p)\| \). By Lemma 13 and inversion, we can derive \(\emptyset; \Pi; \ell \vdash \|\|\text{param}_j (c,v_p)\| \) and thus by inversion the required facts.

26. \(\langle E^f[\|\text{param}_j (c,v_p)\| = v in \ell \|\text{param}_j (c,v_p)\|,\sigma \rangle \rightarrow_{\text{ann}} \langle E^f[\|\text{param}_j (c,v_p)\| = v in \ell \|\text{param}_j (c,v_p)\|,\sigma \rangle \) By Lemma 14 it suffices to show that \(\emptyset; \Pi; \ell \vdash \|\text{param}_j (c,v_p)\| = \|\text{param}_j (c,v_p)\| \). By the well-formedness of parametrize simply requires that \(\emptyset; \Pi; k \vdash v_p \), \(\emptyset; \Pi; \ell \vdash c \), and \(\emptyset; \Pi; k \vdash \|\text{param}_j (c,v_p)\| \). The first two facts can be established by inverting \(\emptyset; \Pi; \ell \vdash \|\text{param}_j (c,v_p)\| \) which can be shown using Lemma 13. For the third, we first must establish that \(c = \|\|\text{ctx}(v_{v_a_1} \rightarrow v_{a_1} \leftarrow v_{a_1}), \ldots (v_{v_a_n} \rightarrow v_{a_n} \leftarrow v_{a_n}), v_f \rightarrow v_f, (v_{a_1} \rightarrow v_{a_1}), \ldots \| \). Since by Lemma 10 and repeated inversions we can show that \(\emptyset; \Sigma \vdash c : \tau \) ctc for some \(\tau \). Then by the remaining rule for monitor well-formedness, we simply must show that \(\emptyset; \Pi; \{k\}; \ell \); j \(\vdash c \) and \(\emptyset; \Pi; \ell \vdash v_f \). Both facts follow from inverting \(\emptyset; \Pi; \ell \vdash \|\text{param}_j (c,v_p)\| = v in \ell \|\text{param}_j (c,v_p)\| \) as before.

27. \(\langle E^f[\|\text{param}_j (c,v_p) := v_i\|,\sigma \rangle \rightarrow_{\text{ann}} \langle E^f[\|\text{param}_j (c,v_p) := v_i\|,\sigma \rangle \) By Lemma 14 it suffices to show that \(\emptyset; \Pi; \ell \vdash \|\text{param}_j (c,v_p) := v_i\| \). By the well-formedness rule for parameter assignment, we must show that \(\emptyset; \Pi; k \vdash v_p \) and \(\emptyset; \Pi; k \vdash \|\text{param}_j (c,v_p) := v_i\| \). As in the above cases, we use type focusing and inversion to demonstrate that \(c \) is not a context contract, and then Lemma 13 and repeated inversions to demonstrate the necessary well-formedness judgments.

28. \(\langle E^f[\|\text{check}_j (\|\#\|,e)\|,\sigma \rangle \rightarrow_{\text{ann}} \langle E^f[e],\sigma \rangle \) By Lemma 14 it suffices to show that \(\emptyset; \Pi; \ell \vdash e \). This follows from the fact that, by Lemma 13 \(\emptyset; \Pi; \ell \vdash \|\text{check}_j (\|\#\|,e)\| \).

29. \(\langle E^f[\|\text{check}_j (\|\#\|,e)\|,\sigma \rangle \rightarrow_{\text{ann}} \langle \text{error}_j \|,\sigma \rangle \) Trivial.

Lemma 13 (Label focusing for Annotated CtxPCF). If \(\ell; \Pi \vdash E^k[e] \) then \(\emptyset; \Pi; k \vdash e \).

Proof. Induction on \(E^k \).

Lemma 14 (Well-formed evaluation context plugs for Annotated CtxPCF). If \(\ell; \Pi \vdash E^k[e] \) and \(\emptyset; \Pi; k \vdash e' \) then \(\ell; \Pi \vdash E^k[e'] \).

Proof. Induction on \(E^k \).
Lemma 15 (Well-formed substitution for Annotated CtxPCF). If \(\Delta[x \mapsto \ell]; \Pi; k \vdash e_1 \) and \(\Delta; \Pi; \ell \vdash e_2 \) then \(\Delta; \Pi; k \vdash \{^x e_2 /_x\} e_1 \).

Proof. Mutual induction on well-formedness and well-formed contracts.

Lemma 16 (Weakening for Well-formedness for Annotated CtxPCF). If \(\Delta; \ell \vdash e_1 \) and \(r \not\in e_1 \), then \(\Delta; r \mapsto k; \Pi; \ell \vdash e_1 \).

Proof. Mutual induction on well-formedness and well-formed contracts.

Lemma 17 (Weakening well-formed contracts for Annotated CtxPCF). If \(\Delta; \Pi; \vec{k}; \vec{\ell}; j \triangleright c \), then \(\Delta; \Pi; \vec{k}; \vec{\ell}; j \triangleright c \) for all \(\vec{k} \subseteq \vec{k}' \) and \(\vec{\ell} \) such that \(k_i \subseteq \vec{k}' \) and \(\ell_j \subseteq \vec{\ell} \).

Proof. Induction on well-formed contracts.

Lemma 18 (Weakening label environments for well-formedness for Annotated CtxPCF). If \(\Delta; \Pi; \ell \vdash e \), then \(\Delta[\ell \mapsto \ell'] ; \Pi; \ell \vdash e \) for any \(\ell \) and \(\ell' \).

Proof. Mutual induction on well-formed contracts and well-formed expressions.

Lemma 19 (Weakening label environments for well-formed contracts for Annotated CtxPCF). If \(\Delta; \Pi; \vec{k}; \vec{\ell}; j \triangleright c \), then \(\Delta[\vec{k}; \vec{\ell}; \vec{\ell}; j \triangleright c \) for any \(\vec{\ell} \).

Proof. Mutual induction on well-formed contracts and well-formed expressions.

Lemma 20 (Well-formed imports for Annotated CtxPCF). If for \(\Delta = \{x_1 : \ell_1, \ldots , x_m : \ell_m\} \):

\(\Delta; \Pi \vdash m_1 \triangleright \Delta_1 \),

\(\ldots \)

\(\Delta_{n-1}; \Pi \vdash m_n \triangleright \Delta_n \), and

\(\Delta_n; \Pi; \ell_0 \vdash e \), and also

\(\Delta; \Pi; \ell \vdash v_1, \ldots , \Delta; \Pi; \ell \vdash v_m \) and \(\Delta; \Pi; \ell \vdash c_1, \ldots , \Delta; \Pi; \ell \vdash v_m \), then \(\ell_0; \Pi \vdash \text{import}[\ell(x_1, \ldots , x_m), (v_1, \ldots , v_m), (c_1, \ldots , c_m, m_1; \ldots ; m_n; e)] \).

Proof. Induction on the size of \(m_1; \ldots ; m_n; e \).

B.6 Surface Ctrl+CtxPCF

B.6.1 Surface Programs

Note. The following extend the syntax of Surface CtxPCF.

\[
\begin{align*}
\text{e} &::= \ldots \mid \text{make-tag} : (\tau \rightarrow \tau) \mid \text{reset} e \text{ in } e \mid \text{shift} e \text{ as } x \text{ in } e \mid \text{tag/c}(e, e, e) \\
\text{c} &::= \ldots \mid \text{tag/c}(c, c, c) \\
\tau &::= \ldots \mid (\tau \rightarrow \tau) \text{ tag}
\end{align*}
\]

B.7 Well-typed Surface Programs

Note. The following extend the typing rules of Surface CtxPCF.
\[
\begin{align*}
\Gamma \vdash \text{make-tag : } (\tau_d \rightarrow \tau_r) : (\tau_d \rightarrow \tau_r) \text{ tag} \\
\Gamma \vdash e_t : (\tau_d \rightarrow \tau_r) \text{ tag} \\
\Gamma \vdash \text{reset } e_t \text{ in } e_v : \tau_r \\
\Gamma \vdash \text{shift } e_t \text{ as } x \text{ in } e_v : \tau_d \\
\Gamma \vdash e_1 : (\tau_d \rightarrow \tau_r) \text{ ctc} \\
\Gamma \vdash e_2 : \tau_d \text{ ctc} \\
\Gamma \vdash e_3 : \tau_r \text{ ctc} \\
\Gamma \vdash \text{tag/c}(e_1, e_2, e_3) : ((\tau_d \rightarrow \tau_r) \text{ tag}) \text{ ctc}
\end{align*}
\]
B.8 Annotated Surface Ctrl+CtxPCF

Note. The following extend the syntax and typing rules of Surface Ctrl+CtxPCF unless stated otherwise.

B.8.1 Annotated Surface Programs

\[e ::= \ldots | \ell(\ell(x)) \]

B.8.2 Additional Typing Rules for Annotated Surface Programs

\[
\Gamma \vdash e : \tau
\]

\[
\begin{align*}
\Gamma \vdash x : \tau \\
\Gamma \vdash \ell(\langle k, x \rangle) : \tau
\end{align*}
\]

B.8.3 Well-formed Annotated Surface Programs

Note. The following extend the well-formedness rules of Annotated Surface CtxPCF.

\[
\Delta; \ell \vdash e
\]

\[
\begin{align*}
\Delta; \ell \vdash \text{make-tag} : (\tau_d \rightarrow \tau_r) \\
\Delta; \ell \vdash \text{reset} e_t \text{ in } e_v \\
\Delta; \ell \vdash \text{shift} e_t \text{ as } x \text{ in } e_v \\
\Delta; \ell \vdash \text{tag/c}(e_1, e_2, e_3)
\end{align*}
\]
B.9 Ctrl+CtxPCF

B.9.1 Programs

Note. The following extend the syntax of CtxPCF.

\[
\begin{align*}
e &::= \ldots \mid \text{make-tag} : (\tau \to \tau) \mid \text{reset } e \text{ in } e \mid \text{shift } e \text{ as } x \text{ in } e \mid \text{tag/c}(e, e, e) \\
v &::= \ldots \mid t(t) : (\tau \to \tau) \mid t^\ell(p_j^k)(c, c, c, v) \\
c &::= \ldots \mid \text{tag/c}(c, c, c) \\
\tau &::= \ldots \mid (\tau \to \tau) \text{ tag}
\end{align*}
\]

B.9.2 Well-typed Programs

Note. The following extend the typing rules of CtxPCF.

\[
\begin{align*}
\Gamma; \Sigma &\vdash e : \tau \\
\Gamma; \Sigma &\vdash \text{make-tag} : (\tau_d \to \tau_r) : (\tau_d \to \tau_r) \text{ tag} \\
\Gamma; \Sigma &\vdash e_t : (\tau_d \to \tau_r) \text{ tag} \quad \Gamma; \Sigma \vdash e_v : \tau_r \\
\Gamma; \Sigma &\vdash \text{reset } e_t \text{ in } e_v : \tau_r \\
\Gamma; \Sigma &\vdash \text{shift } e_t \text{ as } x \text{ in } e_v : \tau_r \\
\Delta; \ell &\vdash (\tau_d \to \tau_r) \text{ tag} \\
\Gamma; \Sigma &\vdash e_1 : (\tau_d \to \tau_r) \text{ ctc} \\
\Gamma; \Sigma &\vdash e_2 : \tau_d \text{ ctc} \\
\Gamma; \Sigma &\vdash e_3 : \tau_r \text{ ctc} \\
\Gamma; \Sigma &\vdash v : (\tau_d \to \tau_r) \text{ tag} \\
\Gamma; \Sigma &\vdash \text{tag/c}(e_1, e_2, e_3, \ell) : (\tau_d \to \tau_r) \text{ tag} \text{ ctc} \\
\Gamma; \Sigma &\vdash \sigma \\
\end{align*}
\]

\[
\begin{align*}
dom(\Sigma) = \text{dom}(\sigma) \quad \forall r \in \text{dom}(\sigma), \Gamma; \Sigma \vdash \Sigma(r) : \sigma(r) \quad \forall t \in \text{dom}(\sigma), \Gamma; \Sigma \vdash \Sigma(t) : \text{Unit} \\
\Gamma; \Sigma &\vdash \sigma
\end{align*}
\]

B.9.3 Evaluation Contexts

Note. The following extend the evaluation contexts of CtxPCF.

\[
\begin{align*}
E &::= \ldots \mid \text{reset } E \text{ in } e \mid \text{reset } v \text{ in } E \mid \text{shift } E \text{ as } x \text{ in } e \\
&\quad \mid \text{tag/c}(E, e, e) \mid \text{tag/c}(c, E, e) \mid \text{tag/c}(c, c, E) \\
E^\ell &::= [\ldots] \mid t^\ell(p_j^k)(c_1, c_2, c_3, E^\ell)
\end{align*}
\]
B.9.4 Reduction Semantics

Note. The following extend the reduction rules of CtxPCF.

\[
\begin{align*}
\langle E[\text{make-tag} : (\tau_1 \rightarrow \tau_2)], \sigma \rangle & \rightarrow \langle E[t(t) : (\tau_1 \rightarrow \tau_2)], \sigma[t \mapsto ()] \rangle \quad \text{where } t \text{ is fresh in } \sigma \\
\langle E[\text{reset } \ell T^k[t(t) : (\tau_d \rightarrow \tau_r)] \text{ in } v], \sigma \rangle & \rightarrow \langle E[v], \sigma \rangle \\
\langle E[\text{reset } \ell T^k[t(t) : (\tau_d \rightarrow \tau_r)] \text{ in } E'[\text{shift } \ell' T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)] \text{ as } x \text{ in } e]], \sigma \rangle & \rightarrow \langle E[\text{reset } \ell T^k[t(t) : (\tau_d \rightarrow \tau_r)] \text{ in } \{v'/x\}e'], \sigma \rangle \\
& \quad \text{where } v_k = \lambda y : \tau_d. \text{ reset } \ell T^k[t(t) : (\tau_d \rightarrow \tau_r)] \text{ in } E'[e_y] \text{ and } e_y = \text{ wrap}_{\ell'}[\ell' T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)], \text{ wrap}_{\ell}[\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)], v_k]] \\
& \quad \text{and } e' = \text{ wrap}_{\ell'}[\ell' T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)], \text{ wrap}_{\ell}[\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)], e]] \\
& \quad \text{and } E' \text{ does not contain } \text{ reset } \ell' T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)] \text{ in } E'' \\
\langle E[\text{\texttt{mon}^k}_{\ell'}(\text{tag/c}(c_1, c_2, c_3, v)], \sigma \rangle & \rightarrow \langle E[\text{\texttt{tag/p}^k}_{\ell'}(c_1, c_2, c_3, v)], \sigma \rangle \\
\end{align*}
\]

\[
\begin{align*}
\text{wrap}^+_{\ell'}[t(t) : (\tau_d \rightarrow \tau_r), e] & = e \\
\text{wrap}^+_{\ell'}[\text{\texttt{tag/p}^k}_{\ell'}(c_1, c_2, c_3, \ell T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)]), e] & = \text{\texttt{mon}^k}_{\ell'}(c_1, \text{ wrap}^+_{\ell'}[\ell' T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)], e]) \\
\text{wrap}^-_{\ell'}[t(t) : (\tau_d \rightarrow \tau_r), e] & = e \\
\text{wrap}^-_{\ell'}[\text{\texttt{tag/p}^k}_{\ell'}(c_1, c_2, c_3, \ell T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)]), e] & = \text{\texttt{mon}^k}_{\ell'}(c_1, \text{ wrap}^-_{\ell'}[\ell' T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)], e]) \\
\text{wrap}^+_{\ell'}[t(t) : (\tau_d \rightarrow \tau_r), e] & = e \\
\text{wrap}^+_{\ell'}[\text{\texttt{tag/p}^k}_{\ell'}(c_1, c_2, c_3, \ell T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)]), e] & = \text{\texttt{mon}^k}_{\ell'}(c_2, \text{ wrap}^+_{\ell'}[\ell' T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)], e]) \\
\text{wrap}^-_{\ell'}[t(t) : (\tau_d \rightarrow \tau_r), e] & = e \\
\text{wrap}^-_{\ell'}[\text{\texttt{tag/p}^k}_{\ell'}(c_1, c_2, c_3, \ell T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)]), e] & = \text{\texttt{mon}^k}_{\ell'}(c_2, \text{ wrap}^-_{\ell'}[\ell' T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)], e]) \\
\text{wrap}^+_{\ell'}[t(t) : (\tau_d \rightarrow \tau_r), e] & = e \\
\text{wrap}^+_{\ell'}[\text{\texttt{tag/p}^k}_{\ell'}(c_1, c_2, c_3, \ell T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)]), e] & = \text{\texttt{mon}^k}_{\ell'}(c_3, \text{ wrap}^+_{\ell'}[\ell' T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)], e]) \\
\text{wrap}^-_{\ell'}[t(t) : (\tau_d \rightarrow \tau_r), e] & = e \\
\text{wrap}^-_{\ell'}[\text{\texttt{tag/p}^k}_{\ell'}(c_1, c_2, c_3, \ell T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)]), e] & = \text{\texttt{mon}^k}_{\ell'}(c_3, \text{ wrap}^-_{\ell'}[\ell' T^{\ell'k'}[t(t) : (\tau_d \rightarrow \tau_r)], e])
\end{align*}
\]
B.10 Annotated Ctrl+CtxPCF

Note. The following extend the syntax and typing rules of Ctrl+CtxPCF unless stated otherwise.

B.10.1 Annotated Ctrl+CtxPCF Programs

\[e ::= \ldots \mid \ell \langle t \rangle(x) \mid \ell e \mid \ell (e) \mid [e]F \]
\[v ::= \ldots \mid \ell v \mid \ell (v) \]
\[c ::= \ldots \mid \ell (c) \mid \ell \ldots \mid \text{flat/c}(v) \ldots \mid \text{ctx/c}(v \Rightarrow v \leftarrow v \ldots v \Rightarrow v \leftarrow v \ldots) \]

B.10.2 Additional Typing Rules for Annotated Ctrl+CtxPCF Programs

\[\Gamma; \Sigma \vdash e : \tau \]
\[\Gamma; \Sigma \vdash \ell \langle (k) \rangle : \tau \]
\[\Gamma; \Sigma \vdash \ell e : \tau \]
\[\Gamma; \Sigma \vdash \ell (k) e : \tau \]
\[\Gamma; \Sigma \vdash [e]F : \tau \]

B.10.3 Annotated Evaluation Contexts

Note. The following extend the evaluation contexts of Annotated Ctrl+CtxPCF.

\[F ::= \ldots \mid \text{reset } F \text{ in } e \mid \text{reset } v \text{ in } F \mid \text{shift } F \text{ as } x \text{ in } e \]
\[\mid \text{tag/c}(F, e, e) \mid \text{tag/c}(c, F, e) \mid \text{tag/c}(c, c, F) \]
\[F^\ell ::= \ldots \mid \text{reset } F^\ell \text{ in } e \mid \text{reset } v \text{ in } e \mid \text{shift } F^\ell \text{ as } x \text{ in } e \]
\[\mid \text{tag/c}(F^\ell, e, e) \mid \text{tag/c}(c, F^\ell, e) \mid \text{tag/c}(c, c, F^\ell) \]
\[\ell T^k ::= [\cdot] \mid \ell \text{tag/p}^\ell_j(c_1, c_2, c_3, [\ell T^k]) \]

B.10.4 Annotated Reduction Semantics

Note. The following extend the reduction rules of Annotated CtxPCF.

\[\langle E^\ell | \text{make-tag} : (\tau_1 \rightarrow \tau_2), \sigma \rangle \rightarrow_{\text{ann}} \langle E^\ell | [t] : (\tau_1 \rightarrow \tau_2), \sigma[t \mapsto ()] \rangle \text{ where } t \text{ is fresh } \sigma \]
\[\langle E^\ell | \text{reset } [\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)]] \text{ in } v, \sigma \rangle \rightarrow_{\text{ann}} \langle E^\ell | [v], \sigma \rangle \]
\[\langle E^\ell | \text{reset } [\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)]] \text{ in } E^\ell^e | [\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)] as x in e], \sigma \rangle \]
\[\rightarrow_{\text{ann}} \langle E^\ell | \text{reset } [\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)] in \{v' / x\}], \sigma \rangle \]
\[\text{where } v_k = [\lambda y : \tau_d, \text{reset } \ell T^k[t(t) : (\tau_d \rightarrow \tau_r)] in E^\ell^e \langle e_y \rangle] \]
\[\text{and } v' = [\ell \text{wrap}_1^\ell [\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)], \text{wrap}_1^\ell [\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)], v_k]]] \]
\[\text{and } e_y = [\ell \text{wrap}_2^\ell [\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)], \text{wrap}_2^\ell [\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)], v_k]]] \]
\[\text{and } e' = [\ell \text{wrap}_3^\ell [\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)], \text{wrap}_3^\ell [\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)], e]]] \]
\[\text{and } E^\ell^e \text{ does not contain reset } [\ell T^k[t(t) : (\tau_d \rightarrow \tau_r)]] \text{ in } E^\ell_{\text{new}} \]
\[\langle E^\ell | \text{mon}_k^\ell (\ell \text{tag/c}(c_1, c_2, c_3), v), \sigma \rangle \rightarrow_{\text{ann}} \langle E^\ell | \text{tag/p}^\ell_j(c_1, c_2, c_3), v], \sigma \rangle \]
Note. The following metafunction replaces that of Annotated CtxPCF.

\[
\begin{align*}
\text{obl}[[\ell]^{\text{flat/c}}(v)] & = \ell^{\text{flat/c}}(v) \\
\text{obl}[[\ell]^{\text{param/c}}(c)] & = \ell^{\text{param/c}}(c) \\
\text{obl}[[\ell]^{c_d : \tau \to (c_v) \ c_v}] & = \ell^{c_d : \tau \to (c_v) \ c_v} \\
\text{obl}[[\ell]^{\text{ctx/c}}(v, (v \Rightarrow v \leftarrow v) \ldots , (v \Rightarrow v \leftarrow v) \ldots)] & = \ell^{\text{ctx/c}}(v, (v \Rightarrow v \leftarrow v) \ldots , (v \Rightarrow v \leftarrow v) \ldots) \\
\text{obl}[[\ell]^{\text{tag/c}}(c_1, c_2, c_3)] & = \ell^{\text{tag/c}}(c_1, c_2, c_3)
\end{align*}
\]
Theorem 5 (Type Soundness for Surface Ctrl+CtxPCF)

Proof. Direct consequence of Theorems 21 and 22.

and

Lemma 23 (Unique decomposition for Ctrl+CtxPCF Programs). For all well-typed programs\(p \) such that \(p \neq v, p \neq error_j \), and \(p \neq \text{module } \ell \text{ exports } x_{v_1} \text{ with } x_{e_1}, \ldots, x_{e_n} \text{ where } y_1 = e_1, \ldots, y_n = e_n \ldots; p' \), there are unique \(e' \), and \(E \) such that \(p = E[e'] \) and \(e' \) is one of the following:

1. one of the corresponding cases of the statement of Lemma 3
2. make-tag : \((\tau_1 \rightarrow \tau_2)\)
3. reset \(e' \text{thk}[\ell(t) : (\tau_d \rightarrow \tau_r)] \text{ in } v \)
4. reset \(e' \text{thk}[\ell(t) : (\tau_d \rightarrow \tau_r)] \text{ in } E'[\text{shift } e' \text{thk}[\ell(t) : (\tau_d \rightarrow \tau_r)] \text{ as } x \text{ in } e] \text{ where } E' \text{ does not contain } \text{reset } e' \text{thk}[\ell(t) : (\tau_d \rightarrow \tau_r)] \text{ in } E'' \)
5. $\text{shift}^e T^{\kappa_{k'}}[\ell(t) : (\tau_d \rightarrow \tau_r)]$ as x in e where E does not contain $\text{reset}^e T^{\kappa''_{k''}}[\ell(t) : (\tau_d \rightarrow \tau_r)]$ in E'

6. $\ell \text{mon}_{k'}^j(\text{tag/c}(c_1, c_2), v)$

Lemma 24 (Well-typed evaluation context plugs for Ctrl+CtxPCF). If $\Sigma \vdash E[e] : \tau, \emptyset; \Pi \vdash e : \tau', and \emptyset; \Pi \vdash e' : \tau'$ then $\Sigma \vdash E[e'] : \tau$.

Proof. Induction on E.

Lemma 25 (Type focusing for Ctrl+CtxPCF). If $\Sigma \vdash E[e] : \tau$ then $\emptyset; \Sigma \vdash e : \tau'$ for some τ'.

Proof. Induction on E.

Theorem 6 (Type Soundness for Annotated Surface Ctrl+CtxPCF). For all programs p of Annotated Surface Ctrl+CtxPCF such that $\vdash p : \tau$

\begin{itemize}
 \item $(p, \emptyset) \rightarrow \tau$ \text{ann}(v, \sigma) or;
 \item $(p, \emptyset) \rightarrow \tau$ \text{ann}(error_k^p, σ) or;
 \item $(p, \emptyset) \rightarrow \tau$ \text{ann}(ρ', σ) and there exist ρ'' such that $p' \rightarrow p''$.
\end{itemize}

Proof. Direct consequence of Theorems 26 and 27.

Lemma 26 (Type Progress for Annotated Ctrl+CtxPCF Terms). If $\Sigma \vdash p : \tau$, then either p is a value v, p is error_k^p, or $p \in E^l[\text{shift}^e T^{\kappa_{k'}}[\ell(t) : (\tau_d \rightarrow \tau_r)]]$ as x in e where E^l does not contain $\text{reset}^e T^{\kappa''_{k''}}[\ell(t) : (\tau_d \rightarrow \tau_r)]$ in E^l or for all σ such that $\emptyset; \Sigma \vdash \sigma$, then exist p' and σ' such that $\langle p, \sigma \rangle \rightarrow \langle p', \sigma' \rangle$.

Proof. By straight-forward case analysis on p using Lemmas 28 and 29.

Lemma 27 (Type Preservation for Annotated Ctrl+CtxPCF Terms). If $\Sigma \vdash p : \tau, \emptyset; \Sigma \vdash \sigma, and \ (p, \sigma) \rightarrow \text{ann} \langle \rho', \sigma' \rangle$, then either there exists $\Sigma' \supseteq \Sigma$ such that $\Sigma' \vdash \rho' : \tau$ and $\emptyset; \Sigma' \vdash \sigma'$, or $\rho' = \text{error}_k^p$.

Lemma 28 (Unique decomposition for Annotated Ctrl+CtxPCF). For all well-typed programs p such that $p \neq v$, $p \neq \text{error}_k^p$, and $p \neq \text{module} \ell$ exports x_{i_1} with $x_{c_1} \ldots$ where $y_1 = e_1, \ldots, y_n = e_n, \ldots ; p'$, there are unique e', ℓ', and E' such that $p = E'[e']$ and e' is one of the following:

1. one of the corresponding cases of the statement of Lemma 8
2. $\text{make-tag} : (\tau_1 \rightarrow \tau_2)$
3. reset $\ell e T^{\kappa}[\ell(t) : (\tau_d \rightarrow \tau_r)]$ in v
4. reset $\ell e T^{\kappa}[\ell(t) : (\tau_d \rightarrow \tau_r)]$ in $E'[\text{shift}^e T^{\kappa}[\ell(t) : (\tau_d \rightarrow \tau_r)]$ as x in e where E' does not contain reset $\ell e T^{\kappa}[\ell(t) : (\tau_d \rightarrow \tau_r)]$ in $E'[\text{reset}]$
5. shift $\ell e T^{\kappa}[\ell(t) : (\tau_d \rightarrow \tau_r)]$ as x in e where E does not contain reset $\ell e T^{\kappa}[\ell(t) : (\tau_d \rightarrow \tau_r)]$ in $E'[\text{reset}]$
6. $\ell \text{mon}_{k'}^j(\text{tag/c}(c_1, c_2), \ell, c_3) ; v$

Lemma 29 (Well-typed evaluation context plugs for Annotated Ctrl+CtxPCF). If $\Sigma \vdash E^k[e] : \tau, \emptyset; \Pi \vdash e : \tau'$, and $\emptyset; \Pi \vdash e' : \tau'$ then $\Sigma \vdash E^k[e'] : \tau$.

Proof. Induction on E^k.

Lemma 30 (Type focusing for Annotated Ctrl+CtxPCF). If $\Sigma \vdash E^k[e] : \tau$ then $\emptyset; \Sigma \vdash e : \tau'$ for some τ'.

Proof. Induction on E^k.

Theorem 7 (Annotation transparency). The following statements hold for Surface Ctrl+CtxPCF:
1. Let \(p \) be a well-typed and well-formed Annotated Surface Ctrl+CtxPCF program: \(\vdash p : \tau \) and \(\ell_0 \vdash p \). Let \(\bar{p} \) be the Surface Ctrl+CtxPCF expression that is like \(p \) but without annotations. If \((p, \varnothing) \rightarrow \downarrow \text{ann} (p', \sigma) \), then \((\bar{p}, \varnothing) \rightarrow \downarrow \text{ann} (\bar{p}', \sigma) \), where \(\bar{p}' \) is the Ctrl+CtxPCF program that is like \(p' \) but without annotations.

2. Let \(\bar{p} \) be a well-typed Surface Ctrl+CtxPCF program: \(\vdash \bar{p} : \tau \). Then there exists some Annotated Surface Ctrl+CtxPCF program \(p \) such that \(\vdash p : \tau \) and \(\ell_0 \vdash p \). Furthermore, if \((\bar{p}, \varnothing) \rightarrow \downarrow \text{ann} (\bar{p}', \sigma) \), then \((p, \varnothing) \rightarrow \downarrow \text{ann} (p', \sigma) \) for some \(p' \), where \(\bar{p}' \) is the Ctrl+CtxPCF program that is like \(p' \) but without annotations.

Proof. By a straightforward lock-step bi-simulation between the two reduction steps using the obvious annotation erasure function to relate the corresponding configurations in each step. For the second point of the theorem’s statement, we construct \(p \) from \(\bar{p} \) by adding to each imported variable in a term of \(\bar{p} \) the appropriate annotation. \(\square \)

Definition 2 (Complete monitoring). Ctrl+CtxPCF is a complete monitor if any only if for all \(p \) such that \(\vdash p : \tau \) and \(\ell_0 \vdash p \), either

\[
(p, \varnothing) \rightarrow \downarrow \text{ann} (p', \sigma), \quad \text{or} \quad (p, \varnothing) \rightarrow \downarrow \text{ann} (p', \sigma) \text{ and } p' = E^{\ell}[^{\ell'} \text{shift} \| \ell' \text{ mon}\} (p(t) : \tau_d \rightarrow \tau_r) || x] \text{ as } x \text{ in } \ell \text{ where } E^{\ell} \text{ does not contain } \ell', \text{ or}
\]

\[
\text{for all } p_1 \text{ and } \sigma_1 \text{ such that } (p_0, \varnothing) \rightarrow \downarrow \text{ann} (p_1, \sigma_1) \text{ there exists } p_2 \text{ and } \sigma_2 \text{ such that } (p_1, \sigma_1) \rightarrow \downarrow \text{ann} (p_2, \sigma_2), \text{ or}
\]

\[
(p, \varnothing) \rightarrow \downarrow \text{ann} (p_1, \sigma_1) \rightarrow \downarrow \text{ann} (\text{error}_j, \sigma_2) \text{ and } p_1 \text{ is of the form } E^{\ell}[^{\ell'} \text{ mon}\} (\ell^{\text{flat/c}}(p'), \ell^{\uparrow}) \text{ and for all such terms } p_1, \quad v = \langle k, v' \rangle \quad \text{and } k \in \bar{\ell}, \text{ or}
\]

\[
(p, \varnothing) \rightarrow \downarrow \text{ann} (p_1, \sigma_1) \rightarrow \downarrow \text{ann} (\text{error}_j, \sigma_2) \text{ and } p_1 \text{ is of the form}
\]

\[
E^{\ell}[^{\ell'} \text{ mon}\} (\ell^{\text{ctrl/c}}(v_{g_1} \Rightarrow v_{p_1} \leftarrow v_{v_1}), \ldots, v_{a}, (v_{g_a} \Rightarrow v_{p_a} \leftarrow v_{v_a}), \ldots)]
\]

and for all such terms \(p_1, \ell \in \bar{\ell} \).

Theorem 8. Ctrl+CtxPCF is a complete monitor.

Proof. As a direct consequence of Lemmas 26, 27, 31, and 32 we have that for all programs \(p_0 \) such that \(\vdash p_0 : \tau \) and \(\ell_0 \vdash p_0 \), either

\[\begin{align*}
(p, \varnothing) & \rightarrow \downarrow \text{ann} (p', \sigma), \text{ or} \\
(p, \varnothing) & \rightarrow \downarrow \text{ann} (p', \sigma) \text{ and } p' = E^{\ell}[^{\ell'} \text{ shift} \| \ell' \text{ mon}\} \{t(t) : \tau_d \rightarrow \tau_r\} || x] \text{ as } x \text{ in } \ell \text{ where } E^{\ell} \text{ does not contain } \ell', \text{ or}
\end{align*}\]

\[\text{for all } p_1 \text{ and } \sigma_1 \text{ such that } (p_0, \varnothing) \rightarrow \downarrow \text{ann} (p_1, \sigma_1) \text{ there exists } p_2 \text{ and } \sigma_2 \text{ such that } (p_1, \sigma_1) \rightarrow \downarrow \text{ann} (p_2, \sigma_2), \text{ or}
\]

\[\text{for all } p_0, \sigma_0 \rightarrow \downarrow \text{ann} (\text{error}_j, \sigma_2).
\]

In the last case, since \(\ell_0 \vdash p_0 \), we know that \text{error}_j does not appear in \(p_0 \). Therefore it must have been introduced by a reduction. In particular, it must have been the result of the reduction \(E^{\ell}[^{\ell} \text{ check}\} (\langle \ell^{\uparrow}\#\ell \rangle, e), \sigma_2) \rightarrow \downarrow \text{ann} (\text{error}_j, \sigma_2) \). Again, since \(\ell_0 \vdash p_0 \), \text{check}\} (\langle \ell^{\uparrow}\#\ell \rangle, e) \) must not occur in \(p_0 \). Hence it must be the result of a reduction. There are three rules that introduce checks:

1. \(E^{\ell}[^{\ell} \text{ mon}\} (\ell^{\text{flat/c}}(v_c) || v_{k}, v_{k'}), \sigma) \rightarrow \downarrow \text{ann} (E^{\ell}[^{\ell} \text{ check}\} (v_c, v_{k}, e), \sigma) \): In this case, we can deduce

\[
(p_0, \varnothing) \rightarrow \downarrow \text{ann} (E^{\ell}[^{\ell} \text{ mon}\} (\ell^{\text{flat/c}}(v_c) || \ell^{\uparrow} || v_{k'}), \sigma)
\]

\[
\rightarrow \downarrow \text{ann} (E^{\ell}[^{\ell} \text{ check}\} (v_c, v_{k}, e), \sigma)
\]

\[
\rightarrow \downarrow \text{ann} (E^{\ell}[^{\ell} \text{ check}\} (v_c, v_{k}, e), \sigma)
\]

2. \(E^{\ell}[^{\ell} \text{ mon}\} (\ell^{\text{flat/c}}(v_c), \sigma) \rightarrow \downarrow \text{ann} (E^{\ell}[^{\ell} \text{ check}\} (v_c, e), \sigma) \) where

\[
c = \text{ctx/c}(v_{c_{p_1}} \Rightarrow v_{p_1} \leftarrow v_{c_{p_1}}), \ldots, (v_{c_{p_a}} \Rightarrow v_{p_a} \leftarrow v_{c_{p_a}}), \ldots)
\]

and
\[e = \text{guard}_j ((w_{c_{q1}} ()), w_{c_{p1}}, w_{c_{z1}}, \ldots \text{guard}_j ((w_{c_{q_n}} ()), w_{c_{p_n}}, w_{c_{u_n}}, \text{ctx/}p^j \ (w_{a_{q_1}} \mapsto w_{a_{p_1}}, \ldots, w_1))): \]

In this case, we can deduce

\[\langle p_0, \varnothing \rangle \to_{\text{ann}} E^f[\text{mon}^k_j (\|\|\cdot\|\cdot, v)], \sigma_1 \]

\[\to_{\text{ann}} E^f[\text{check}_j (\langle v_{c} () \rangle), \sigma_1] \]

\[\to_{\text{ann}} E^f[\text{check}_j (\|\|\cdot\|\cdot, e)], \sigma_2 \]

\[\to_{\text{ann}} \langle \text{error}^j_j, \sigma_2 \rangle \]

By Lemma 32, we can deduce that for some \(\Pi \) such that \(\varnothing; \Pi \vdash \sigma_1, \ell_0; \Pi \vdash E^f[\text{mon}^k_j (\|\|\cdot\|\cdot, v)], \sigma_1 \). By Lemma 33, we derive \(\varnothing; \Pi; \ell \vdash E^f[\text{mon}^k_j (\|\|\cdot\|\cdot, v)], \sigma_1 \) and, thus by well-formedness that \(\ell \in \ell \).

3. \(E^f[\|\|\cdot\|\cdot, v], \sigma) \)

This must have been introduced by a reduction step \(E^f[\text{check}_j (\langle v_{c} () \rangle), \sigma] \)

Again, since \(\ell_0 \vdash p_0, p_0 \) does not contain \(\text{ctx/\cdot} \), we can derive \(\varnothing; \Pi; \ell \vdash E^f[\|\|\cdot\|\cdot, v], \sigma) \).

\[\langle p_0, \varnothing \rangle \to_{\text{ann}} E^f[\|\|\cdot\|\cdot, v], \sigma_1 \]

\[\to_{\text{ann}} E^f[\|\|\cdot\|\cdot, v], \sigma_1 \]

\[\to_{\text{ann}} E^f[\|\|\cdot\|\cdot, v], \sigma_1 \]

\[\to_{\text{ann}} E^f[\|\|\cdot\|\cdot, v], \sigma_2 \]

\[\to_{\text{ann}} \langle \text{error}^j_j, \sigma_2 \rangle \]

By Lemma 32, we can deduce that for some \(\Pi \) such that \(\varnothing; \Pi \vdash \sigma_1, \ell_0; \Pi \vdash E^f[\text{mon}^k_j (\|\|\cdot\|\cdot, v)], \sigma_1 \). By Lemma 33, we derive \(\varnothing; \Pi; \ell \vdash E^f[\|\|\cdot\|\cdot, v], \sigma_1 \), and, thus by well-formedness that \(\ell \in \ell \).

Combining these three cases with the results above suffice to show that CtxPCF is a complete monitor.

Lemma 31 (Progress). For all programs \(p \), stores \(\sigma \), store typings \(\Sigma \), and store labelings \(\Pi \) such that

- \(\Sigma \vdash p : \tau \)
- \(\varnothing; \Sigma \vdash \sigma \), and
- \(\ell_0; \Pi \vdash p \),

then either

\[p = v, \]

\[p = E^f[\text{shift} ||\|\cdot\|\cdot, \tau_0^k t(t) : (\tau_d \rightarrow \tau_r)] || as \ v \ in \ e \] where \(E^f \) does not contain \(\text{reset} \) \(||\|\·\|\·, \tau_0^k t(t) : (\tau_d \rightarrow \tau_r)] || \) in \(E^f ||\|\·\|\·, \tau_0^k t(t) || \) or

\[p = \text{error}^k_j, \] or

\[\langle p, \sigma \rangle \to_{\text{ann}} \langle p', \sigma' \rangle. \]

Proof. From Lemma 28, we know that there either \(p = v, p = \text{error}^k_j, \) or \(p = E^f[\text{shift} ||\|\cdot\|\cdot, \tau_0^k t(t) : (\tau_d \rightarrow \tau_r)] || as \ v \ in \ e \] where \(E^f \) does not contain \(\text{reset} \) \(||\|\·\|\·, \tau_0^k t(t) : (\tau_d \rightarrow \tau_r)] || \) in \(E^f ||\|\·\|\·, \tau_0^k t(t) || \) or

\[p = \text{module \ exports \ } x_{\eta_1} \ with \ x_{\eta_1}, \ldots \ where \ y_1 = c_1, \ldots, y_n = c_n; \ldots ; p', \] or there exist \(c, \ell \), and \(E^f \) such that \(p = E^f[e] \).
1. make-tag : (τ₁ → τ₂): By the reduction relation and Lemma 34 we get
\(E^f[\text{make-tag} : (τ₁ → τ₂), σ] \rightarrow \text{ann} (E^f[\langle t(t) : (τ₁ → τ₂) \rangle], σ[t → t])\) where \(t\) is fresh \(σ\).

2. \(\text{reset } \ell_1, \ell_2, \ldots, \ell_r : (τ_d → τ_r)\) in \(v\): Since \(Ω; Π; \ell \vdash \text{reset } \ell_i : (τ_d → τ_r)\) in \(v\), it must be the case that \(\ell_i = ∅\) \(Ω; Π; \ell \vdash v\). Thus by the reduction relation and Lemma 34 we have
\(E^f[\langle \text{reset } \ell_i : (τ_d → τ_r) \rangle] \rightarrow \text{ann} (E^f[v], σ)\).

3. \(\text{reset } \ell_1, \ell_2, \ldots, \ell_r : (τ_d → τ_r)\) in \(v\): With the same reasoning as in the previous case we derive that \(\ell_* = ∅\), \(\ell'_1 = ∅\), and \(k = 1\). Thus by the reduction relation and Lemma 34 and given that metatransformations \(\text{wrap}_r^*\) and \(\text{wrap}_r^\circ\) are total, we have
\(E^f[\langle \text{reset } \ell_i : (τ_d → τ_r) \rangle] \rightarrow \text{ann} (E^f[\langle τ_i : (τ_d → τ_r) \rangle], σ)\).

4. \(\text{mon} : (\|\tag/c_1(c_1, c_2)c_3)\|, v): With the same reasoning as in the previous case we derive that \(\ell_* = j\). Thus by the reduction relation and Lemma 34 we have
\(E^f[\langle \text{mon} : (\|\tag/c_1(c_1, c_2)c_3)\|, v) \rightarrow \text{ann} (E^f[\langle \tag/p_3(c_1, c_2)\|, v)\).

\[\text{Lemma 32 (Preservation). For all programs } p, \text{ stores } σ, \text{ store typings } Σ, \text{ and store labelings } Π \text{ such that}
\]

- \(Σ \vdash p : τ,
- Ω; Σ \vdash σ,
- \(∃_0; Π \vdash p, \text{ and}
- \langle p, σ \rightarrow \text{ann} (p, σ')\),

there exists a store labeling \(Π'\) such that

- \(Π' \supseteq Π,
- \(∃_0; Π' \vdash p\).

\[\text{Proof. By case analysis on the reduction } \langle p, σ \rightarrow \text{ann} (p', σ') \rangle \text{ (We only show here the reduction rules of Annotated CtxPCF that do not overlap with those of Annotated CtxPCF). The cases for the rules that overlap with those of Annotated CtxPCF transfer to the proof text to refer to lemmas for Annotated CtxPCF instead of the corresponding ones for Annotated CtxPCF:}
\]

- \(E^f[\text{make-tag} : (τ₁ → τ₂), σ] \rightarrow \text{ann} (E^f[\langle t(t) : (τ₁ → τ₂) \rangle], σ[t → t])\) where \(t\) is fresh \(σ\): Let \(Π' = Π[t \mapsto ℓ]\). We must show that \(Ω; Π'; \ell \vdash E^f[\langle τ_i : (τ_d → τ_r) \rangle]\). Since by Lemma 36, \(Ω; Π; \ell \vdash E^f[\langle τ_i : (τ_d → τ_r) \rangle]\), by Lemma 34 it suffices to show that \(Ω; Π; \ell \vdash E^f[\langle τ_i : (τ_d → τ_r) \rangle]\), which holds by inspection.

- \(E^f[\langle \text{reset } \ell_i : (τ_d → τ_r) \rangle] \rightarrow \text{ann} (E^f[\langle τ_i : (τ_d → τ_r) \rangle], σ)\): By Lemma 34 it suffices to show that \(Ω; Π; \ell \vdash E^f[\langle τ_i : (τ_d → τ_r) \rangle]\). As usual, by Lemma 33 and inversion of well-formedness, we obtain that \(Ω; Π; \ell \vdash E^f[\langle τ_i : (τ_d → τ_r) \rangle]\).

Furthermore by Lemma 38 we obtain \(\{y : \ell'\} : Π; l \vdash E^f[y : \ell']\). Thus by the rules for well-formedness and Lemma 34 we obtain \(Ω; Π; \ell \vdash E^f[\langle τ_i : (τ_d → τ_r) \rangle]\). From this fact and Lemma 38 we obtain that \(Ω; Π; \ell' \vdash E^f[y : \ell']\). Putting all the above facts together with Lemma 35 we derive that \(Ω; Π; \ell' \vdash E^f[\langle τ_i : (τ_d → τ_r) \rangle] \in \langle τ_i : (τ_d → τ_r) \rangle\).

- \(E^f[\text{mon} : (\|\tag/c_1(c_1, c_2)c_3)\|, v) \rightarrow \text{ann} (E^f[\langle \tag/p_3(c_1, c_2)\|, v)\).

\[\text{Lemma 33 (Label focusing for Annotated CtxPCF). If } Π; l \vdash E^f[\|e]\text{ then } Ω; Π; k \vdash l\text{.}
\]

\[\text{Proof. Induction on } E^f.\]
Lemma 34 (Well-formed evaluation context plugs for Annotated Ctrl+CtxPCF). If $\ell; \Pi \vdash E^k[e] \text{ and } \emptyset; \Pi \vdash e' \text{ then } \\
\ell; \Pi \vdash E^k[e']$.

Proof. Induction on E^k. □

Lemma 35 (Well-formed substitution for Annotated Ctrl+CtxPCF). If $\Delta[x \mapsto \ell]; \Pi; k \vdash e_1$ and $\Delta; \Pi; \ell \vdash e_2$ then $\Delta; \Pi; k \vdash \{e_2/x\}e_1$.

Proof. Mutual induction on well-formedness and well-formed contracts. □

Lemma 36 (Weakening for Well-formedness for Annotated Ctrl+CtxPCF). If $\Delta; \Pi; \ell \vdash e$ and $r \notin \Pi$, then $\Delta; \Pi[t \mapsto k]; \ell \vdash e$. If $\Delta; \Pi; \ell \vdash e_1$ and $t \notin \Pi$, then $\Delta; \Pi[t \mapsto k]; \ell \vdash \exp$.

Proof. Mutual induction on well-formedness and well-formed contracts. □

Lemma 37 (Weakening well-formed contracts for Annotated Ctrl+CtxPCF). If $\Delta; \Pi; k; \ell; j \gg c$, then $\Delta; \Pi[k'; \ell'; j \gg c$ for all k' and ℓ' such that $k \subseteq k'$ and $\ell \subseteq \ell'$.

Proof. Induction on well-formed contracts. □

Lemma 38 (Well-formed wrapping). Let $i \in \{1, 2, 3\}$ and e such that $\Delta; \Pi; \ell \vdash e$. If $e' = \text{wrap}_i^\ell E^k(T[t(t) : (\tau_d \rightarrow \tau_r)], e)$ then $\Delta; \Pi; \ell' \vdash e'$.

Proof. By lexicographic induction on the sizes of E^k and E^k. □
C. Example monitors

Note, in addition to the results that are described in Section 3.3, hooks may return an additional value add-lifetime specified using #:add-lifetime. This value is a set of delegations to be added to the global delegation set along with those of the add value. However, to control the size of the global delegation set, the library removes these delegations from the global delegation set when the garbage collector of Racket collects the wrapped function.

```
(define-monitor dac
 (monitor-interface make-object/c make-user/c grant/c revoke/c)
 (action
  [make-object/c (name setuser)
   #:on-create (do-create #:closure-principal (> current-principal (dim name)))
   #:on-apply (let ([owner (proj-principal closure-principal)]
                        [objdim (set-first (proj-dims closure-principal))])
                   (do-apply #:check (> @ current-principal (> closure-principal objdim use)
                                        (> closure-principal objdim use))
                              #:set-principal (if setuser owner #f)))]
  [make-user/c (name set-auth)
   #:on-create (let ([new-pcpl (pcpl name)])
                    (do-create #:add-lifetime (list (> current-principal (> new-pcpl use invoke) @ new-pcpl))
                              #:closure-principal new-pcpl))
   #:on-apply (do-apply #:check (> @ current-principal (> closure-principal use invoke) closure-principal)
                              #:set!-principal (if set-auth closure-principal #f)
                              #:set-principal (if set-auth #f closure-principal))]
  [grant/c (object recipient)
   #:on-create (do-create)
   #:on-apply (let ([recipient-principal (recipient-principal recipient)]
                         [object-principal (object-principal object)])
                  (do-apply #:add (list (make-lifetime (> recipient-principal object-principal) current-principal object))))]
  [revoke/c (object recipient)
   #:on-create (do-create)
   #:on-apply (let ([recipient-principal (> (recipient-principal recipient) use)]
                         [object-principal (object-principal object)])
                  (define (equal-recipient? p) (equal? p recipient-principal))
                  (define (matching-target? p) (equal? p object-principal))
                  (define (to-remove delegations current)
                      (filter (λ (d) (match d [(labeled (actsfor (? equal-recipient? l) (? matching-target? r)) ll)
                                      #:when (acts-for? current ll ll) #t] ![ #f])))
                  (do-apply #:remove (to-remove current-delegations current-principal)))])
  [extra
   (define use (dim 'use))
   (define invoke (dim 'invoke))
   (define (recipient-principal recipient)
     (cdr (make-user/c-authority recipient)))
   (define (object-principal object)
     (cond
      [(make-object/c? object) (> (cdr (make-user/c-authority object)) invoke))
      [(make-object/c? object) (let* ([pcpl (cdr (make-object/c-authority object))]
                                      (> pcpl use)))]])

Figure 11. Discretionary Access Control Monitor
```
Figure 12. Stack Inspection Monitor
(define-monitor history-based
 (monitor-interface make-permission permission? check-permission/c grant/c accept/c
 unprivileged/c privileged/c coerce-to-unprivileged)
 (monitor-syntax-interface define/rights)
 (action #:search (list use-static search-delegates-left)
 [check-permission/c (perm)
 #:on-create (do-create)
 #:on-apply (do-apply #:check (# (current-principal active)
 (T (T perm) (T perm))))
 #:(privileged/c perm))
 #:on-create (do-create #:check (# (current-principal T T))
 #:on-apply
 (let* ([callee (pcpl (gensym 'frame))]
 [static-principal (normalize (disj (list->set (map (λ (p) (T p)) perm))))]
 [to-remove (filter (match-lambda
 ([labeled (actsfor l r) ll]
 #:when (and (equal? l (current-principal enable))
 (not (equal? r (current-principal static)))
 #t]
 [... #f])
 (delegation-set->list current-delegations)]))]
 [to-add (cons (# (callee enable) (current-principal active) current-principal)
 (map (match-lambda
 ([labeled (actsfor l r) ll]
 [labeled (actsfor l (normalize (∨ r (callee static)))) ll]))
 to-remove))]
 [to-scoped (list (# (callee static) static-principal T)
 (# (callee active) (VAR callee enable) (callee static)) callee))])
 (do-apply #:add-to-add to-remove #:add-scoped-to-scope #:set-principal callee))]
 #:on-create (do-create)
 #:on-apply
 (do-apply #:add-scoped (list (# (callee enable) (current-principal active) current-principal)
 current-principal))]
 #:on-create (do-create #:add-lifetime (list (# (current-delegations) T T))
 #:on-apply (do-apply #:add (delegation-set->list closure-delegations)
 #:remove (delegation-set->list current-delegations)
 #:set-principal closure-principal))]
 #:on-create (do-create #:on-apply (do-apply #:set-principal ⊥))]
 #:define active (dim 'active))
 #:define enable (dim 'enable))
 #:define static (dim 'static))
 (define (use-static l r ll ds)
 (if (and (not (? (proj l)) (match r [[(proj top _) #t] [... #f]]) (set (# l static)) (set)))
 (define (make-permission name) (dim name))
 (define (permission? val) (dim? val))
 (define accept/c
 (make-contract #:name "accept/c"
 #:projection (λ (blame) (λ (val))
 (make-keyword-procedure
 (λ (k kds kwds args . other-args)
 (call/cc (λ (k)
 (let* ([cont (with-contract #:region expression accept/c #:result accept-context/c k)])
 (call-with-values (λ () (keyword-apply val k kds kwds args other-args)) cont)))))))))
 (define coerce-to-unprivileged
 (make-contract #:name "coerce-to-unprivileged"
 #:projection (λ (blame) (λ (val))
 (cond [[unprivileged/c? val] val]
 [[privileged/c? val] val]
 [[procedure? val] (((contract-projection unprivileged/c blame) val))
 [else val]])))))))
 #:define syntax
 (make-define/contract/free-vars/contract define/auth/contract
 (membrane/c coerce-to-unprivileged coerce-to-unprivileged)
 (membrane/c coerce-to-unprivileged coerce-to-unprivileged))
 #:define-syntax define/rights
 (make-set=!-transformer (lambda (stx) (syntax-case stx (set!))
 [[(set! define/rights e) (raise-syntax-error 'set! (format "cannot mutate ~a" 'define/rights))]
 [[define/rights (head . args) (right (.... ...)) ctc body (.... ...)]
 (let ([e (define/auth/contract (head . args) (and/c ctc (privileged/c (list right (.... ...))) body) (.... ...)]))
 (define/rights head (right (.... ...)) ctc body)
 #:define/auth head (and/c ctc (privileged/c (list right (.... ...))) body)))])))))
)

Figure 13. History-based Access Control Monitor
(define-monitor ocap
 (monitor-interface capability/c unprivileged-capability/c capability/c? unprivileged-capability/c? coerce-to-unprivileged-capability)
 (monitor-syntax-interface define/cap)
 (action #:search (list search-caps search-delegates-left)
 [capability/c #:on-create
 (let* ([child (pcpl (gensym 'capability))]
 [parent current-principal]
 [parenthood (⪰ @ (▶ parent caps) (▶ child invoke) @ child)]
 [endowment (▶ @ (▶ child caps) (→ (▶ parent caps) current-delegations) parent)]
 [validity (▶ (@ → parent current-delegations) parent parent)])
 (do-create #:add-lifetime (list list parenthood endowment validity) #:closure-principal child))
 #:on-apply
 (let (introductions
 (filter-map (λ (arg) (let (arg-cap (cdr arg))
 (▶ @ (▶ closure-principal caps) (▶ arg-cap invoke) current-principal))))
 [closure-args]))
 [return-hook
 λ (results)
 (let (result-introductions
 (map (λ (res) (make-lifetime (▶ @ current-principal caps) (▶ (cdr res) invoke))
 closure-principal (car res)))
 (filter id results)))]
 (do-return #:add result-introductions)))))
 (do-apply
 #:check (▶ @ current-principal (▶ closure-principal invoke) (▶ closure-principal invoke))
 #:add-lifetime introductions #:set-principal closure-principal #:on-return return-hook)))))
 [unprivileged-capability/c #:on-create
 (let* ([child (pcpl (gensym 'unprivileged))]
 [parent current-principal]
 [parenthood (▶ @ (▶ parent caps) (▶ child invoke) child)])
 (do-create #:add-lifetime (list parenthood) #:closure-principal child))
 #:on-apply
 (let (introductions
 (filter-map (λ (arg) (let (arg-cap (cdr arg))
 (▶ @ (▶ closure-principal caps) (▶ arg-cap invoke) current-principal))))
 [closure-args]))
 [return-hook
 λ (results)
 (let (result-introductions
 (map (λ (res) (make-lifetime (▶ @ current-principal caps) (▶ (cdr res) invoke))
 closure-principal (car res)))
 (filter id results)))]
 (do-return #:add result-introductions)))))
 (do-apply
 #:check (▶ @ current-principal (▶ closure-principal invoke) (▶ closure-principal invoke))
 #:add-lifetime introductions #:set-principal closure-principal #:on-return return-hook)))))
 (extra
 (define invoke (dim 'invoke)) (define caps (dim 'caps))
 (define (search-caps 1 r l l ds) (if (pcpl? l) (set (▷ 1 caps)) (set)))
 (define coerce-to-unprivileged-capability
 (make-contract #:name "coerce-to-unprivileged-capability" #:projection (λ (blame) (λ (val)
 (cond [(capability/c? val) val]
 [(unprivileged-capability/c? val) val]
 [(procedure? val) (((contract-projection unprivileged-capability/c blame) val)]
 [else val)])))))
 (syntax
 (define-syntax define/cap
 (make-set!-transformer (λ (stx) (syntax-case stx (set!)
 [set! binder e] (raise-syntax-error 'set! (format "cannot mutate ~a" 'binder))]
 [binder head body0 body (... ...)]
 #'(define/contract head capability/c body0 body (... ...)))"))))

Figure 14. Object-capabilities Monitor
(define-monitor driver-monitor
 (monitor-interface safe/c deprivilege/c switch-player/c check-player/c)

 (action #:search (list search-delegates-left)
 [safe/c
 #:on-create (do-create)
 #:on-apply (do-apply #:set-principal ⊤)]
 [deprivilege/c
 #:on-create (do-create)
 #:on-apply (do-apply #:set-principal ⊥)]
 [switch-player/c (name)
 #:on-create (do-create)
 #:on-apply (let ([pcpl (player->pcpl name)])
 (do-apply #:set-principal pcpl))]
 [check-player/c (name)
 #:on-create (do-create)
 #:on-apply (let ([pcpl (player->pcpl name)])
 (do-apply #:check (⊤ current-principal pcpl pcpl))))
)

(extra
 (define player-pcpls (make-weak-hash))
 (define (player->pcpl name)
 (hash-ref! player-pcpls name (thunk (pcpl name))))))

Figure 15. Dominion Monitor

(define-monitor keybindings-monitor
 (monitor-interface make-permission permission? check-and-switch-permissions/c enable-permissions/c permissions-closure/c)

 (action #:search (list search-delegates-left)
 [check/c (perms)
 #:on-create (do-create)
 #:on-apply (do-apply #:check (⊤ current-principal pcpl pcpl)
 #:set-principal pcpl)]
 [enable/c (perms)
 #:on-create (do-create)
 #:on-apply (do-apply #:set-principal (⊤ current-principal perms))
 #:on-apply (do-apply #:check (⊤ current-principal pcpl pcpl))
]
 [closure/c
 #:on-create (do-create)
 #:on-apply (do-apply #:set-principal (⊤ closure-principal)]
)

(extra
 (define (make-permission name) (pcpl name))
 (define permission? pcpl?)))

Figure 16. DrRacket Keybindings Monitor
(object/c

[add-canvas (check/c UnSafe)]

[add-undo (-> any/c
closure/c
any)]

[adjust-cursor (check/c ChangeEditorView)]

[after-edit-sequence (check/c InEditSequence)]

[after-load-file (check/c InLoadFile)]

[after-save-file (check/c InSaveFile)]

[auto-wrap (check/c SetSoftlineBreaks)]

[begin-edit-sequence (enable/c InEditSequence)]

[begin-write-header-footer-to-file (check/c WriteFile)]

[blink-caret (check/c ChangeEditorView)]

[can-do-edit-operation? (check/c InEditOperation)]

[can-load-file? (check/c InLoadFile)]

[can-save-file? (check/c InSaveFile)]

[clear-undos (check/c ClearHistory)]

[copy (and/c
c(check/c WriteClipboard)
(enable/c (\ W riteClipboard InCopy)))]

[copy-self (check/c Safe)]

[copy-self-to (check/c GetEditorInfo)]

[cut (check/c (\ Delete WriteClipboard))]

[dc-location-to-editor-location (check/c Safe)]

[default-style-name (check/c GetEditorInfo)]

[do-edit-operation (->a ([this any/c] [op symbol?])
([r any/c] [t any/c])
#:auth (op)

(condition ((symbol=? op 'undo) (check/c NavigateHistory))
((symbol=? op 'redo) (check/c NavigateHistory))
((symbol=? op 'clear) (check/c Delete))
((symbol=? op 'cut) (check/c (\ Delete WriteClipboard)))
((symbol=? op 'paste)
(and/c (check/c (\ ReadClipboard Insert))
(enable/c (\ InPaste ReadClipboard Insert))))
((symbol=? op 'select-all) (check/c Select))
((symbol=? op 'insert-text-box)
(and/c (check/c Insert)
(enable/c (\ InInsertBox Insert))))
((symbol=? op 'insert-pasteboard-box)
(and/c (check/c Insert)
(enable/c (\ InInsertBox Insert)))]

[move-position (->a ([this any/c] [code symbol?])
([extend? any/c] [kind symbol?])
#:auth (extend?)

(condition ((and (\ not (unsupplied-arg? extend?)) extend?)
(check/c (\ Select GetEditorInfo GetText SetInsertionPoint))])
[else (check/c (\ GetEditorInfo GetText SetInsertionPoint))]

; additional method policies
...

Figure 17. The contract for DrRacket's object
(define-monitor pkg-monitor
 (monitor-interface is-author/c is-curator/c as-user/c grant-curator/c revoke-curator/c
 authority-closure/c deprivilege/c)

(action)
 [is-author/c (pkg)]
 #:on-create (do-create)
 #:on-apply
 (let+ ([authors (string-split (hash-ref pkg 'author))]
 [authorpcpl (disj (list->set (map author->pcpl authors)))]
 (do-apply #:check (@ current-principal authorpcpl authorpcpl)))

 [is-curator/c]
 #:on-create (do-create)
 #:on-apply (do-apply #:check (@ current-principal curator curator))

 [as-user/c (user)]
 #:on-create (do-create)
 #:on-apply (do-apply #:check (@ current-principal (author->pcpl user) (author->pcpl user))
 #:set-principal (author->pcpl user))

 [grant-curator/c (user)]
 #:on-create (do-create)
 #:on-apply (do-apply #:add (list (@ (author->pcpl user) curator curator)))

 [revoke-curator/c (user)]
 #:on-create (do-create)
 #:on-apply (do-apply #:remove (list (@ (author->pcpl user) curator curator)))

 [authority-closure/c]
 #:on-create (do-create #: closure-principal current-principal)
 #:on-apply (do-apply #:set-principal closure-principal)

 [deprivilege/c]
 #:on-create (do-create)
 #:on-apply (do-apply #:set!-principal unpriv))

(extra)
 (define curator (pcpl 'curator))
 (define unpriv (pcpl 'unprivileged))
 (define pcpls (make-weak-hash))
 (define (author->pcpl author)
 (hash-ref! pcpls author (λ () (pcpl (string->symbol author)))))

Figure 18. Racket package index monitor

(provide)
 (contract-out
 [authenticate (and/c
 authority-closure/c
 (=>i ([operation symbol?]
 #:email [email string?]
 #:password [password string?]
 #:on-success [success (email) (→a () #:auth () (as-user/c email) any)]
 #:on-failure [failure (→ symbol? any)])]
 [result any/c]]))

Figure 19. The contract for the package index authenticate function