Extensible Access Control with Authorization Contracts

Citation

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:28552973

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Abstract

Existing programming language access control frameworks do not meet the needs of all software components. We propose an expressive framework for implementing access control monitors for components. The basis of the framework is a novel concept: the authority environment. An authority environment associates rights with an execution context. The building blocks of access control monitors in our framework are authorization contracts: software contracts that manage authority environments. We demonstrate the expressiveness of our framework by implementing a diverse set of existing access control mechanisms and writing custom access control monitors for three realistic case studies.

1. Introduction

An access control monitor mediates requests to call sensitive operations and allows each call if and only if the request possesses the necessary rights to call the operation. Broadly speaking, when an access control mechanism is presented with a call to a sensitive operation, it must be able to answer two questions. First, which rights are required for the call? And second, which rights does the request possess? The design of an access control mechanism specifies, implicitly or explicitly, the answers to these questions.

For example, Unix file permissions describe which users are allowed to call which operations on a file. The access control mechanism uses file permissions to determine what rights are necessary to call different sensitive operations. Each Unix process executes on behalf of a specific user, and a request to call an operation possesses the same rights as the user of the process that issues the request. Thus, file permissions answer the first question, and the rights of the user associated with a process answer the second question. Importantly, Unix associates users and processes in two different ways. By default, a new process runs on behalf of the same user as the process that spawned it. But a process can run on behalf of a different user if it runs an executable that has the setuid bit set. When a process invokes a setuid executable, the operating system launches a new process to run the executable and associates the new process with the user that owns the executable, rather than the user that invoked it. Hence, this feature creates services that provide restricted access to resources that an invoking user could not otherwise access.

Similar to operating systems, software components also need access control mechanisms to prevent unauthorized clients from calling sensitive operations while allowing authorized ones to do so. Thus, when responding to a request to call a sensitive operation, access control mechanisms for components must be able to answer the same two questions: which rights are necessary for the call and which rights the request possesses.

However, access control needs of components vary, and it is impossible to choose a single answer to these questions that satisfies all component authors. To make things worse, access control mechanisms for general purpose programming languages have made design choices that are not suitable for all application domains and are typically mutually incompatible. For example, Java stack inspection \cite{42} determines the rights associated with a call site by walking the stack from the current stack frame. In contrast, object-capability languages (e.g., E \cite{27} and Caja \cite{28}) determine rights by the lexical structure of the program: a code may call operations on exactly those resources that are reachable from variables in the code’s text.

In this paper we propose a new, extensible access control framework that allows component authors to design access control monitors that suit their needs. The framework supports the design and implementation of many different novel and existing access control monitors for software components. Moreover, because different monitors are implemented using a common framework, different software components within the same application can use different access control mechanisms.

The framework builds on a novel concept: the authority environment. Just as each execution context has a variable environment that maps variable identifiers to values, each execution context has an authority environment that associates the context with its rights to call operations. The rights that a call to a sensitive operation possesses are those possessed by the authority environment of the call’s execution context.

This technical report expands \cite{30} with additional examples and code listings, along with a formal definition and proof of complete monitoring for the contract system described in Section \cite{3.1}.
By analogy with dynamic and lexical scoping of variable environments, we identify two ways in which an execution context can receive authority:

1. **dynamically**, by inheriting the authority environment of the surrounding execution context, and
2. **lexically**, by capturing the authority environment of the execution context where it is defined.

Returning to the Unix file system example, a process receives authority dynamically when it inherits the user of the process that launched it. A process receives authority “lexically” when it runs a setuid executable.

Based on the correspondence with variable scoping, we define a framework for designing access control monitors as sets of monitor actions that manipulate authority environments (§3). We implement our framework as a library for Racket [17] without changes to the language’s runtime. We use higher-order contracts [16] to specify where an access control monitor should interpose on a program and how it should manage authority environments. Contracts are executable specifications attached to software components that support separation of concerns by removing defensive checks from code implementing functionality [24–26]. In the same way, our authorization contracts separate the task of access control from the program’s functionality.

The design of this framework presents four major contributions:

1. the introduction of **authority environments** as a unifying concept for access control mechanisms (§2),
2. the introduction of **context contracts** to check and enforce properties of execution contexts (§3.1),
3. a novel **authorization logic** for representing and querying authority in authority environments (§3.2), and
4. **authorization contracts** that specialize context contracts for managing authority environments and enforcing access control policies expressed in the logic (§3.3).

We have used the framework to implement diverse access control mechanisms: discretionary access control, stack inspection, history-based access control, and object-capabilities (§4). We demonstrate the practicality of our approach with three realistic case studies (§5).

2. Authority Environments

In this section, we introduce **authority environments** as a unifying concept for access control. First, we review the differences between lexical and dynamic scoping (§2.1). Then we describe the connection between lexical and dynamic scoping and access control (§2.2) and show how we can use scoping in the design of a framework for writing access control monitors (§2.3). Throughout, we use small examples in the Racket programming language [17].

2.1 Lexical and Dynamic Scoping

The scope of a variable binding is the spatial and temporal part of the program in which it is visible. A common way to categorize strategies for assigning scopes to bindings is as either **lexical** or **dynamic**. Earlier work distinguishes between the **scope** of a binding, which describes where the binding is visible in the program text, and the **extent** of a binding, which describes when the binding is visible during execution. Dynamic scope often refers to bindings that have dynamic extent and “indefinite” scope. Here, we use dynamic scope to refer to bindings that have dynamic extent and lexical scope, also called “fluid” scope [18, 36, 37].

Under lexical scoping, a variable refers to the binding from its closest binder in the textual structure of the program. For example, in the Racket expression below, the variable `x` in function `f` refers to the binding in the outer-most `let` statement. The evaluation of this expression returns 0 since the inner-most `let` statement has no effect on the value `x` binds within `f`.

```racket
(let ([x 0])
  (let ([f (lambda () x)])
    (let ([x 42])
      (f))))
```

In a programming language with fluid scoping, programmers can instead associate a binding with the dynamic extent of an expression. That binding is visible to any code that runs in the dynamic extent of the expression. For example, the following Racket expression defines a new fluidly-scoped variable `x` with default value 0. The `parameterize` expression binds `x` to the value 42 in the dynamic extent of its body. The variable `x` in the body of `f` refers to the most recent binding rather than the closest one in the program text. Since `f` is invoked within the `parameterize` expression, the program evaluates to 42 instead of 0.

```racket
(let ([x (make-parameter 0)])
  (let ([f (lambda () (x))])
    (parameterize ([x 42])
      (f))))
```

Fluid scoping is a useful programming construct because it allows the context of an expression to communicate with its callees without explicitly threading arguments through the program. For example, a library function for printing may offer a parameter that determines the standard output file. Instead of threading that file as an argument through every function call leading to the `printf` routine, a client program can instead set the parameter once and all calls to `printf` in the body of the program see the client-specified file.

2.2 Scoping for Access Control

This ability to pass contextual information from an execution context to an eventual callee closely matches the problem of correctly determining the authority of a request to call a sensitive operation. To demonstrate this relationship, consider the design of a web application with multiple users. A key component of this application is a login function that authenticates users and executes code on their behalf:
(define (login user guess onSucccess)
 (if (check-password? user guess)
 (run-as-user user onSucccess)
 (error "Wrong password!")))

This login function takes three arguments: the user attempting to authenticate, the password guess, and a callback onSucccess to invoke with the user’s rights if the password is correct. After checking the password, the login function changes the state of the program to indicate that the current user is now user and then calls onSucccess.

The body of onSucccess may attempt to access sensitive resources. For example, it may try to update a user’s profile. To avoid an unauthorized update, the update-profile function checks whether the current user has sufficient rights:

(define (update-profile profileUser text)
 (if (can-update? currentUser profileUser)
 ...
 (error "Unauthorized!")))

Function can-update? compares the current user with the user who owns the profile to determine whether the update is authorized. This code thus implicitly uses the authority of its context, i.e., the current user, in much the same way that code accesses the dynamically scoped bindings from its context. By managing authority as an implicit context in this way, we can avoid modifying the code between the decision to run a computation with particular authority and the call to the sensitive operation. This has two advantages. First, threading authority explicitly through the program reduces extensibility, since third party code would need to be aware of and correctly handle authority explicitly. Second, if the code is untrustworthy, it might attempt to subvert the access control checks that protect the sensitive operation by fabricating its own authority.

Another requirement of the security of this application is that only code running with the authority of the main loop is allowed to switch users. According to the Principle of Least Privilege [33], we should further limit the code that is allowed to switch users to just the login function, and switch to an unprivileged user for the rest of the program. Crucially, the body of the login function must still use the authority that was in its environment when it was created, i.e., the authority of the main loop. In a sense, for login, we wish to close over the authority of the main loop, in the same way that closures capture lexically scoped bindings.

To achieve this, we build on the analogy between scoping and access control and introduce the concept of an authority environment. An authority environment associates rights with an execution context, just as a variable environment associates bindings with an execution context. Just like variable environments, authority environments can be captured and associated with code, updated, and extended with new bindings for the dynamic extent of a computation. In this application, the authority environment of an execution context records the user on whose behalf the code executes. Section 2.3 shows how authority environments help enforce access control in our running example, including how to create a secure login function. Section 3 generalizes authority environments so that we can express a wide variety of access control mechanisms.

2.3 From Access Control to Authorization Contracts

Using the concept of an authority environment, we build an access control monitor that manipulates and inspects the authority environments of the example web application. The monitor consists of actions that describe how events in the execution of the application interact with its authority environment. We describe our framework for defining monitors in detail in Section 4. Here we explain only the features relevant to the example.

Figure 1 shows our example monitor. The monitor specifies three actions: setuid/c, chuser/c, and checkuser/c. Each action defines a higher-order function contract [16]. When one of these contracts is attached to a function, the contract captures the current authority environment and associates it with the function. When the function is called, the contract has access to both the authority environment at the call site and the authority environment that it has captured. The monitor configures each action-contract with two hooks: #:on-create and #:on-apply. By changing these hooks, monitor designers can implement actions that implement different forms of “lexically” and dynamically scoped authority environments.

Action chuser/c is parameterized with an argument user that identifies the user whose authority should be used during the execution of the body of a contracted function. The #:on-apply hook for chuser/c ignores the authority it has closed over and sets the active principal to user for the dynamic extent of the body of the contracted function, but only...
In Racket, a keyword argument is a (possibly optional) argument passed by
without losing the ability to safely authenticate as a different
string? which must be a
#:auth () setuid/c
The keyword argument
update-profile
This revised implementation of
#:keyword instead of position. A keyword is a symbol starting with
update-profile
A program
p is a sequence of modules followed by a top-level expression. A module simultaneously defines a collection of
values owned by a single component and a set of contracts for those values. Each module

module ℓ exports x_{v_1} with x_{c_1} . . . where y_1 = e_1 . . .
has a label ℓ and defines a set of values v_1, \ldots, v_n. Values within the module are visible only to subsequent modules in the program if they are exported. An export declaration x_v with x_{e_i} binds x_{e_i} in the rest of the program to the value defined as x_{e_i} in the where clause, but only after attaching to it the contract defined as x_{e_i} in the where clause. Metafunction import, shown in Figure 3, substitutes occurrences of x_{e_i} in the rest of the program with monitored values $\mon^\ell(c, v)$ that enforce the contract.

3.1.2 Higher-order Contracts

Term $\mon^\ell(c, v)$ attaches contract c to value v and monitors whether uses of v satisfy the contract. Labels j, k, and ℓ, identify, respectively, the module that imposed the contract, the module that provided the value, and the module that is the client of the value. The top-level expression of a program is identified by the distinguished label ℓ_0. These labels are used to assign blame when a contract is violated. The simplest contract is a flat contract $\flat(c, v)$ that takes a predicate v_ℓ as an argument. Flat contracts can be applied only to values of base types Int, Bool, and Unit. When the contract is attached to a value, the predicate is applied to the value. If the predicate returns true, the value passes to its context. Otherwise, the contract system stops the program and raises an error blaming the provider of the value.

Contract $\cd: \tau \to (c_r) r$ is a higher-order function contract. It specifies a contract c_d for the domain of the function and a contract c_r for the range of the function. In addition, it specifies a context contract c_c for the function. Context contracts, novel to this work, are higher-order contracts that enforce restrictions on the execution context of function calls. They are described in detail below. Attaching contract $\cd: \tau \to (c_r) r$ to a function returns a new value that enforces contracts on the argument and results of the function and applies the context contract c_c.

Contract $\cd: \tau \to (\lambda x : \tau. e_c) v_r$ is an indy-dependent contract for higher-order functions. This contract corresponds to the ->a contracts from Section 2. The contract is dependent since the contract uses the argument of a contracted function to choose a context contract for the function. Applying a function v with this contract has four steps. First, the argument is wrapped with the contract for the domain, \cd_d. Second, the wrapped argument is passed to the function $\lambda x : \tau. v_r$ to construct a context contract. Third, the resulting context contract is attached to v, which is applied to the wrapped argument. Finally, the contract for the range, c_r, is attached to the result of the application.

3.1.3 Parameters

Parameters are first-class values that can be used to access and install dynamic bindings. Parameters implement fluid scope because access to their dynamic bindings is controlled lexically by access to the parameter itself. The expression $\make parameter e$ creates a new parameter $p(r)$ with default value the result of e, where r is a fresh tag uniquely identifying the parameter. The default value is recorded in the store σ. Term $\paramize p(r) = e_1$ in e_2 installs the result of e_1 as the new value of the parameter $p(r)$ for the dynamic extent of e_2. Accessing the value of a parameter with term $?p(r)$ returns the value of the closest enclosing \paramize for $p(r)$ in the current evaluation context. If there is no such term, it returns the current value for r in the store. Similarly, term $p(r) := v$ mutates the current binding for the parameter, updating the parameter associated with either the closest enclosing \paramize for $p(r)$ in the current evaluation context or the value for r in the store, if there is no such expression.

The parameter contract $\param(c, v)$ is a higher-order contract that restricts uses of a parameter. A contracted parameter v reduces to a proxy $\param(c, r)$ that records the labels of the contract, provider, and client modules and intercepts uses of the parameter to enforce that values bound to the parameter meet contract c.

2: An indy-dependent contract is a dependent function contract that uses the “indy” strategy for blame assignment [9].
Figure 3. Reduction semantics
3.1.4 Context Contracts

To track properties of execution contexts, context contracts use parameters to install and access relevant state. A context contract interposes on programs at two key times: when the contract is attached to a function and when the contracted function is applied. At both times, the contract can inspect the current values of parameters to check that the current environment is satisfactory, capture the current value for later use, or change the parameterization of a call to the contracted function.

A context contract
\[
\text{ctx/c}(v_c, (v_b \Rightarrow v_{p_b} \leftarrow v_{v_b}), \ldots, v_a, (v_a \Rightarrow v_{p_a} \leftarrow v_{v_a}), \ldots)
\]

has four parts:
1. \(v_c\), a predicate that checks whether the context is appropriate when the contract is attached,
2. \((v_b \Rightarrow v_{p_b} \leftarrow v_{v_b}), \ldots\), a list of guarded parameterizations, described below, to close over when the contract is attached,
3. \(v_a\), a predicate that checks whether the context is appropriate when the contract function is called, and
4. \((v_a \Rightarrow v_{p_a} \leftarrow v_{v_a}), \ldots\), a list of guarded parameterizations to be installed around the body of the contracted function if the contract check succeeds.

The first two parts are evaluated when the contract is attached to a value. First, the predicate \(v_c\) is executed to allow the contract to check the current context. If the predicate returns \#f, a contract error is raised blaming the client of the contract. Otherwise, each guarded parameterization \((v_b \Rightarrow v_{p_b} \leftarrow v_{v_b})\) from part 2 is evaluated in turn. Each guarded parameterization specifies a guard function \(v_g\), a parameter \(v_{p_a}\), and a value function \(v_{v_a}\). If invoking the guard thunk \(v_g\) returns \#f, the corresponding value thunk \(v_{v_a}\) is executed to produce a new value. This value is “closed over” and re-installed for parameter \(v_{p_a}\) when the contracted function is applied. The predicate \(v_a\) and the remaining parameterizations are recorded in a proxy \(\text{ctx}/p\). Evaluating \(\text{ctx}/p\) in the contracted function produces a new value. This value is “closed over” and re-installed for parameter \(v_{p_a}\) when the contracted function is applied.

The proxy enforces additional checks and parameterizations when the contracted function is called. First, the parameter values captured when the contract was attached are reinstalled. This gives the evaluation of the proxy and the function call access to any bindings from when the contract was attached, in addition to any bindings that are present in the current evaluation context. With these captured bindings in place, the proxy first evaluates the predicate \(v_a\), which checks whether the current context is satisfactory. If the predicate returns false, a contract error is raised blaming the client \(\ell\). Otherwise, the guarded parameterizations of the proxy are evaluated in a similar fashion as before. However, any new bindings are installed just for the dynamic extent of the contracted function’s call.

Figure 4 demonstrates context contracts with a small example. The example involves two context contracts, \(\text{outer/c}\) and \(\text{inner/c}\), that communicate via parameter \(p\). The contracts ensure that function \(\text{inner}\) can be applied only in the dynamic extent of the function returned by \(\text{outer}\). Evaluating \((\text{inner 42})\) results in a contract error \(\text{error/\text{top}}\) blaming the context that applied \(\text{inner}\). Replacing this expression with \((\text{outer inner 42})\) evaluates to 42.

The ability to close over an environment is a key feature of authorization contracts. To see that context contracts can close over some part of the environment when a contract is applied, consider extending the example in Figure 4 with the contract \(\text{capture/c}\) from Figure 5. This contract captures the value of parameter \(p\) when the contract is applied, and reinstates that value for the dynamic extent of subsequent applications of the contracted value.

3.1.5 Complete Monitoring

Our contract system satisfies complete monitoring [9], an important correctness criterion for contract systems. Complete monitoring guarantees that a contract system correctly assigns blame to components that violate their contracts and, crucially, that the contract system can interpose on all uses of a value in a component that did not create that value. This property makes contracts suitable for interposing on programs to enforce access control policies. Moreover, because the interposition is local to individual components, an access control monitor can be installed around a component without a global enforcement mechanism or the cooperation of other components.

module \(\ell \) exports \text{inner with inner/c, outer with outer/c}
where \text{inner} = \lambda x : \text{Int} x,
\text{outer} = \lambda f : (\text{Int} \rightarrow \text{Int}) \ x : \text{Int} (f x),
true = \lambda _ : \text{Unit} \ #t,
\text{int/c} = \text{flat/c}(\lambda _ : \text{Int} \ #t),
\text{fun/c} = \lambda \text{ctx} : \text{ctx} \text{ctx} . (\text{int/c} : \text{Int} \rightarrow (\text{ctx} \text{int/c}),
\text{any/ctx} = \text{ctx/c}(\text{true} \text{true}),
\text{any/c} = (\text{fun/c any/ctx}),
p = \text{make-parameter} #f,
\text{check/ctx} = \text{ctx/c}(\text{true} \text{Unit} ?p),
\text{enable/ctx} = \text{ctx/c}(\text{true} \text{true}.((\text{true} \Rightarrow p \leftarrow \text{true})),
\text{enable/c} = (\text{fun/c enable/ctx}),
\text{inner/c} = (\text{fun/c check/ctx}),
\text{outer/c} = (\text{any/c} : (\text{Int} \rightarrow \text{Int}) \rightarrow (\text{any/ctx} \text{enable/c})

\[(\text{inner 42})\]

Figure 4. Context contracts enforcing nested applications.

module \(\ell \) exports ...
where ..., \text{cp} = \text{make-parameter} #f,
\text{capture/ctx} = \text{ctx/c}(\text{true},
((\text{true} \Rightarrow \text{cp} \leftarrow \text{Unit} \ ?p)),
\text{true},
((\text{true} \Rightarrow p \leftarrow \text{Unit} \ ?cp))

... ...;

Figure 5. A context contract that closes over parameter \(p\).

and \text{inner/ctx}, that communicate via parameter \(p\). The contracts ensure that function \(\text{inner}\) can be applied only in the dynamic extent of the function returned by \(\text{outer}\). Evaluating \((\text{inner 42})\) results in a contract error \(\text{error/\text{top}}\) blaming the context that applied \(\text{inner}\). Replacing this expression with \((\text{outer inner 42})\) evaluates to 42.

The ability to close over an environment is a key feature of authorization contracts. To see that context contracts can close over some part of the environment when a contract is applied, consider extending the example in Figure 4 with the contract \text{capture/c} from Figure 5. This contract captures the value of parameter \(p\) when the contract is applied, and reinstates that value for the dynamic extent of subsequent applications of the contracted value.

3.1.5 Complete Monitoring

Our contract system satisfies complete monitoring [9], an important correctness criterion for contract systems. Complete monitoring guarantees that a contract system correctly assigns blame to components that violate their contracts and, crucially, that the contract system can interpose on all uses of a value in a component that did not create that value. This property makes contracts suitable for interposing on programs to enforce access control policies. Moreover, because the interposition is local to individual components, an access control monitor can be installed around a component without a global enforcement mechanism or the cooperation of other components.
Put differently, complete monitoring guarantees that contracts can enforce the same set of properties as reference monitors: an arbitrary prefix-closed property of a sequence of events. For contracts, these events are the attachment of contracts to values and the use of contracted values. In contrast, for inlined reference monitors built with aspects, this set of events is determined by the point-cuts selected by the policy. In either case, the programmer must correctly identify relevant events and specify the policy, but can assume the policy is enforced.

The formal definition and proof of complete monitoring for our contract system are given in Appendix B.

3.2 Representing Authority

In principle, a programmer can use context contracts to enforce arbitrary properties of execution contexts such as access control, but in practice this requires the careful design of an appropriate representation of the relevant information as an environment, i.e., a set of parameters. In particular, for access control this requires a representation of the authority of an execution context.

The authority of an execution context describes the rights it has to perform sensitive operations. In different access control mechanisms, the form and organization of these rights varies. For example, in a web application, a session executes and

$q \top$

modules, or activation records. We assume a most trusted

domain $p \top q$ has the authority of either p or q.

If principal p trusts principal q, we write $q \geq p$, and say that q acts for p. The acts-for relation is reflexive and transitive, and induces a lattice structure over the set of principals, with conjunction as join, disjunction as meet, and \top and \bot as the top and bottom elements of the lattice.

Principals may assert the existence of trust relationships.

A delegation $p \geq q \otimes r$ means that principal r asserts that p acts for q (or, equivalently, that q delegates its authority to p). Of course, whether a principal s believes the assertion depends on whether s trusts principal r. (We differ from FLAM in that we describe only the integrity of delegations, not their confidentiality.)

Judgment $D : r \vdash p \geq q$ denotes that given the set of delegations D, principal r believes that principal p acts for principal q. Intuitively, r believes that p acts for q if that trust relationship can be derived using only delegations asserted by principals that r trusts.

Figure 6 presents the inference rules for the judgment $D : r \vdash p \geq q$. Rules Bot, Top, RefI, Trans, Conj-Left, Conj-Right, Disj-Left, and Disj-Right are standard and provide the underlying lattice structure for the acts-for relation. Rule Del captures the intuition that principal r trusts only delegations asserted by principals that it trusts, that is, delegations $p \geq q \otimes r$ where $D : r \vdash s \geq r$.

We have three additional principal constructors. Principal $p \alpha$ is the projection of the authority of principal p on dimension α. We use projections to limit or attenuate the authority of a principal, and to identify access rights. For example, $p \alpha \text{files}$ may refer to principal p’s authority restricted to p’s rights to access the file system. Similarly, principal $p \alpha \text{obj} \\otimes \text{invoke}$ (equivalently $p \alpha \text{invoke} \otimes \text{obj}$) might refer to the right to invoke a particular object belonging to principal p. Principal p can grant this right to another principal q by asserting a delegation: $q \geq p \alpha \text{obj} \\otimes \text{invoke} \otimes r$.

We leave projection dimensions unspecifed, and access control mechanisms can define their own dimensions. For any projection dimension α, principal p acts for principal $p \beta$, as captured in Rule Proj. Typically the converse does not hold, and so $p \alpha$ has strictly less authority than p.

Novel to this work, we introduce closure principals γp and δp. Given a set of delegations D and principal p,

$\begin{align*}
\text{Primitives} & : \quad p ::= a \mid b \mid \ldots \\
\text{Projection dimensions} & : \quad d ::= \alpha \mid \beta \mid \ldots \\
\text{Principals} & : \quad p,q,r,s ::= p \mid \top \mid \bot \mid p \land q \mid p \lor q \\
\text{Delegations} & : \quad A ::= p \geq p \otimes p \\
\text{Delegation sets} & : \quad D ::= \{ A, A, \ldots \}
\end{align*}$

Figure 6. Syntax of principals, delegations, and worlds

authority of both p and q. Similarly, the disjunctive principal $p \lor q$ has the authority of either p or q.

$\begin{align*}
\text{Primitives} & : \quad p ::= a \mid b \mid \ldots \\
\text{Projection dimensions} & : \quad d ::= \alpha \mid \beta \mid \ldots \\
\text{Principals} & : \quad p,q,r,s ::= p \mid \top \mid \bot \mid p \land q \mid p \lor q \\
\text{Delegations} & : \quad A ::= p \geq p \otimes p \\
\text{Delegation sets} & : \quad D ::= \{ A, A, \ldots \}
\end{align*}$
the left-closure principal \(p \) represents p with all of the trust relationships derivable from D where p delegates its authority to other principals. The right-closure principal \(q \) represents p with all of the trust relationships derivable from D where p acts for other principals. In our framework, delegations may change over time. Closure principals are useful because they allow us to capture trust relationships as they exist at particular moments in time. In particular, closure principals are a principled mechanism to describe how authority captured by a context contract should be combined with the current authority environment based on which parts of the closed-over authority environment are trusted by principals in the current authority environment.

Rule Closure-Left shows that \(D ; r \vdash p \geq q \) holds when there is some principal s such that at the time of closure creation (i.e., with delegation set \(D' \)), s believed that p acted for q (premise \(D' ; s \vdash p \geq q \)), and moreover, right now (i.e., with delegation set D) principal r trusts principal \(p \) (premise \(D ; r \vdash q \geq r \)). Typically, s and r are the same principal, meaning that r-at-time-D trusts the decisions made by r-at-time-\(D' \). Rule Closure-Right is similar and \(D ; r \vdash p \geq q \) holds when there is some principal s such that at the time the closure was taken s believed that p acted for q (premise \(D' ; s \vdash p \geq q \)), and principal r trusts s-at-time-\(D' \) (premise \(D ; r \vdash q \geq r \)).

To query whether a particular set of delegations satisfies an acts-for relation, we use a proof search algorithm adapted from FLAM [5]. We give examples of using delegations to implement different authorization mechanisms in Section 4.

Based on this logic, we represent an authority environment as:

1. a principal, who is responsible for the current execution context, and
2. a delegation set, which records the current trust relationships between principals.

The latter has two sub-parts: a global, mutable delegation set, and a set of delegations that are in place only for a currently executing context.

3.3 Authorization Contracts

Using authority environments, we can now introduce authorization contracts. Authorization contracts specialize context contracts in two ways. First, they prevent interference from untrustworthy code by using parameters that the rest of the program does not have access to. Second, they use a high-level representation of authority environments rather than directly manipulating parameters. Authorization contracts provide a structured way to describe how the underlying context contracts should manipulate authority environments.

Authorization contracts are defined as monitor actions using the \texttt{define-monitor} form ([]) . In this section, we model a pared-down version of \texttt{define-monitor} as an extension to the language model from Section 3.1. Figure 8 displays the syntax of the extension. The extension introduces new types, constructors, and operations for principals, delegations, and delegations sets, including an expression that evaluates an acts-for judgment: \(e ; e \geq e \). The \texttt{define-monitor} form corresponds to the \texttt{monitor} (a ...) form that can appear in the \texttt{where} clause of a module definition in the extended model.

Each \texttt{a} in \texttt{monitor} (a ...) is an action specification. An action specification \texttt{action x y τ ...} has a name (x), a set of arguments (y : τ, ...), and two terms (ce and ae) that define the action’s \texttt{#on-create} and \texttt{#on-apply} hooks.

The term for the \texttt{#on-create} hook has the form

\[
\text{check: } \texttt{cee} \ \text{add: } \texttt{cee} \ \text{remove: } \texttt{cee} \ \text{set-principal: } \texttt{cee} \\
\text{closure-principal: } \texttt{cee} \ \text{closure-delegations: } \texttt{cee}
\]

and specifies what the authorization contract should do when the contract is applied to a value. In particular it describes how to modify each part of the authority environment. Its field \texttt{check} accepts an acts-for judgment. If this judgement does not hold, a contract error is raised blaming the client of the contract. Field \texttt{add} accepts a set of delegations to add to the global delegation set. Field \texttt{remove} accepts a set of delegations to remove from the global delegation set, if present. Field \texttt{set-principal} changes the current principal to the given principal. Fields \texttt{closure-principal} and \texttt{closure-delegations} accept a principal and a set of delegations, respectively, and record the principal and delegations for use upon a call to the contracted function. Terms in each of these six fields can access the pieces of the current authority environment using \texttt{current-principal} and \texttt{current-delegations}.
which specifies what the authorization contract should do to implement a variety of access control mechanisms §4.

covers over the fresh parameters. The full compilation function
Each separately defined monitors from interfering with each other.

global delegation set, and scoped delegation set, plus a pair
of an action during the extent of the function call from modifying the
environment, the seven fields of an ae (pace)
the current principal and delegations from the authority
field requires a boolean value. If that value is #t, the current
authorization environment is extended with a principal for
the dynamic extent of the function call.

Similar to a ce term, it allows the configuration of the
contract’s behavior. As before, check accepts an acts-for
judgment and raises a contract error if it does not hold.
!

mutate the global delegation

variants requires capturing the principal but not the delegations
the closures close over. Otherwise, updates to the global, mutable
discretionary access control policy would be forgotten
when a setuid function runs.

Moreover, different access control mechanisms may re-
require authorization contracts that blend these different strate-
gies. For example, implementing setuid-like authority clo-
sures requires capturing the principal but not the delegations
the closures close over. Otherwise, updates to the global, mutable
discretionary access control policy would be forgotten
when a setuid function runs.

4. Putting Authorization Contracts to Work

As evidence of the usefulness and expressiveness of the framework, we implemented a variety of existing access
control mechanisms including discretionary access control,
stack inspection [42], history-based access control [1], and
object capabilities [27]. Before delving into the mechanisms,
we further explain define-monitor, the main linguistic tool
that our framework provides.

4.1 The define-monitor Form

Figure 8 shows the complete syntax of define-monitor. It has
two sections in addition to the action section we have seen
before: extra and syntax. The first defines extra functions
and contracts that the programmer wants to include in the in-
terface of a monitor. These are usually contracts that combine
two or more actions together or contracts that fix the argu-
ments of an action. The syntax section defines macros that
We extended the basic discretionary access control monitor without modifying any delegations. Action `make-object/c` wrapped function requires that the current principal at the call site is authorized for the object. Similarly, `make-user/c` takes a user and an object as arguments, and removes any delegation from the global delegation environment that grants the user right to invoke the object where the current principal acts for the principal that asserted the delegation.

4.2 A Discretionary Access Control Monitor

In a discretionary access control system, individual users can choose what policy to enforce on objects they control. We extended the basic discretionary access control monitor from Figure 1 with additional contracts for marking functions as objects owned by individual users, and for granting or revoking the right to invoke these functions. The resulting monitor is shown in Figure 1 in Appendix C. It defines four actions: `make-user/c`, `make-object/c`, `grant/c`, and `revoke/c`. Action `make-user/c` creates an authority closure that captures a fresh principal representing a new user. Invoking the wrapped function requires that the current principal has the required permission enabled and that all intervening frames have the required static permission; `doPrivileged`, which enables the static permissions of the current code for its dynamic extent, possibly using captured permissions instead of the current permissions; and `getContext`, which captures the permissions of the stack at some point in an execution and reinstating them for a later check.

Implementations of stack inspection provide the following primitives: `checkPermission`, which checks that a frame on the stack has the required permission enabled and that all intervening frames have the required static permission; `doPrivileged`, which enables the static permissions of the current code for its dynamic extent, possibly using captured permissions instead of the current permissions; and `getContext`, which captures the permissions of the stack at some point in execution. In addition, the implementation must provide a mechanism to associate static permissions with code.

To realize stack inspection using authorization contracts, a monitor must provide (1) actions that implement these primitives and (2) a way to grant static permissions to code.

In our monitor, the actions for (1) are `check-permission/c`, `do-privileged/c`, and `context/c`. To track which permissions are held by code on the stack, we use the authority environment to grant permissions to individual frames, each represented by a distinct principal. Each stack frame has three projections that are used to manage its authority. The static projection indicates the permissions granted to the code statically. The enable projection has the authority of the permissions enabled for this frame. The active projection represents permissions that would satisfy a privilege check.
principal has a particular permission if it acts for the corresponding projection of the \top principal.

We use one additional monitor action, privileged/c, to indicate the static permissions a piece of code possesses and to enforce that a stack frame’s active projection acts for exactly those permissions for which checkPermission should succeed. Action privileged/c takes a list of permissions (each of which is a projection of the \top principal). On an #:on-apply event, it creates a new principal callee to represent the new stack frame and adds delegations initializing these projections for the dynamic extent of the function:

$$\{ \geq @ (\triangleright \text{callee static}) \text{ permissions } \top \}$$
$$\{ \geq @ (\triangleright \text{callee enable})\quad (\triangleright \text{current-principal active})\quad \text{current-principal} \}$$
$$\{ \geq @ (\triangleright \text{callee active})\quad (\lor (\triangleright \text{callee enable}) (\triangleright \text{callee static}))\quad \text{callee} \}.$$

These delegations give callee the specified static permissions (by asserting that the callee’s static dimension acts for the conjunctive principle permissions), assert that the new frame inherits the active permissions from the previous frame, and require that the callee has both static and enabled permissions to make them active.

Tracking the authority of each frame in this way makes walking the stack unnecessary. Action check-permission/c only checks that the active projection of the current principal acts for all of the requested permissions.

Action do-privileged/c enables the current frame’s static permissions by adding a delegation from the frame’s static projection to its enable projection for the dynamic extent of the wrapped function.

Action context/c is used to capture the permissions of the current stack for future permission checks. It captures the current authorization environment when it is attached to a function. When it is invoked, it installs the same set of delegations as privileged/c, except that the first delegation that grants static permissions gets replaced with a delegation that derives permissions from the active permissions of the captured frame at the time they were captured:

$$\{ \geq @ (\triangleright \text{callee static})\quad (\triangleright (\triangleright \text{closure-principal} \text{ closure-delegations}) \text{ active}) \top \}.$$

The right-closure principal on the right hand side of this delegation acts for all of the principals that closure-principal acted for when the closure was created.

The monitor must also provide (2) a way to grant static permissions to code. Because Racket does not have class-loading facilities that would allow permissions to be granted to code at load-time, we use macros to attach authorization contracts to code that should have static permissions. In particular, the monitor provides a new definition form define/rights in its syntax section. This form works like the define form, but takes two additional arguments: a set of permissions and a contract to apply to the definition. It defines a function wrapped with the given contract and a privileged/c contract. In addition, the macro define/rights coerces any function arguments or free-variables appearing in the body of the function to authority closures by applying an additional contract unprivileged/c, which is defined in the extra section of the monitor. Action unprivileged/c switches to the \bot principal for the dynamic extent of the closure it wraps, preventing any check-permission/c actions from succeeding. Thus, these contracts prevent functions that were not defined with define/rights from using code that requires permissions.

The complete implementation of the monitor is given in Figure 12 in Appendix C, and Figure 10 shows an example program using the stack inspection monitor. There are three functions defined using define/rights. Two of these functions are trusted to access the filesystem: read-file and read-privileged. However, read-file should not be used directly, so it checks that the filesys permission has been enabled by one of its callers. Function read-privileged enables the filesys permission, but only calls read-file if the file is safe to read. Function malicious does not have the filesys permission but attempts to read "/etc/passwd" anyway, so invoking this function results in a contract violation. The contract violation says that the stack frame corresponding to the call to read-file does not have the necessary permission filesys.

4.4 A History-Based Access Control Monitor

Abadi and Fournet [1] observe that stack inspection fails to protect against attacks where the influence of untrusted code is no longer apparent from the call stack. As a remedy, they propose history-based access control (HBAC). In HBAC, the rights of an execution context depend not just on the

```racket
(define/rights (read-file file) (filesys) (check-permission/c filesys) ...
)
```

```racket
(define/rights (read-privileged file) (filesys)
do-privileged/c
(if (safe? file) (read-file file) #f))
```

```racket
(define/rights (malicious) (net)
any/c
(read-file "/etc/passwd")
```

Figure 10. Using the stack inspection monitor
rights of code currently on the execution stack, but also on the rights of all code that has previously been executed. HBAC has two primitives: grant and accept. grant has the same behavior as the do-privileged operator we implement for stack inspection. accept allows a component to take responsibility for code in its dynamic extent. After accept returns, it restores any privileges that were present before it was invoked.

Our implementation of a monitor for HBAC is very similar to the monitor for stack inspection, and is shown in Figure 13 in Appendix C. The primary difference between the two monitors is the definition of action privileged/c. In the HBAC monitor, in addition to initializing the three projections for the new frame, its #:on-apply event walks the call stack by reading the current delegations. For every frame on the call stack, it adds a disjunct with the callee’s static permissions to the delegation that granted permissions from that frame’s caller. For example, the delegation:

\(\langle \geq \rangle \ (\langle \rangle \ \text{parent enable}) \ (\langle \geq \rangle \ \text{grandparent active}) \) \ . \ \\ \ \ \ \ \ \ \)

After every accept/c, the monitor adds a disjunct with the current authority of the child frame.

This means that future attempts to use the parent frame’s permissions will be restricted to whatever rights the callee had, unless the parent frame specifically vouches for an action by enabling its own permissions.

We define accept/c in the extra section. accept/c uses the accept-context/c action to create an authority closure around its continuation. When the function accept/c wraps returns, accept/c invokes this continuation, restoring the authority environment before the wrapped function was called.

\(\langle \geq \rangle \ (\langle \rangle \ \text{parent enable}) \ (\lor \ (\langle \geq \rangle \ \text{grandparent active}) \ (\langle \geq \rangle \ \text{calle static})) \) \ . \ \\ \ \ \ \)

Grandparenthood amounts to a delegation:

\(\langle \geq \rangle \ (\langle \rangle \ \text{parent enable}) \ (\langle \rangle \ \text{grandparent active}) \) \ . \ \\ \ \)

4.5 An Object Capability Monitor

Authority closures are closely related to the idea of capabilities. A capability both designates a resource and confers the authority necessary to use it. An authority closure designates resources (those accessed by the wrapped function) and captures the authority that should be used to access those resources. Any code that can invoke an authority closure can exercise the authority of the closure, though that authority is attenuated by the functionality of the closure itself. For example, in our web application example, login is a capability that allows any code that invokes it to use the “root” user’s authority; however, the implementation of the login function ensures that this authority can be used only to switch to a different user after supplying the correct password.

In a memory-safe programming language, any reference to a value can be considered a capability that grants restricted access to some set of resources that can be accessed through it (by invoking or otherwise inspecting it). Object-capability languages like E, Joe-E, or Caja, embrace this fact as the basis of their security architecture. In an object-capability language, all sensitive resources are represented as objects. Access to these objects is controlled by structuring the language to limit the ways that objects acquire references to other objects:

1. by initial conditions: two objects may reference each other before a computation begins,
2. by parenthood: the creator of an object is initially the only object with a reference to it,
3. by endowment: an object can close over references to objects available in its parent’s environment, and
4. by introduction: an object can receive references to other objects passed as arguments to its methods or returned from methods it invokes.

These restrictions are sometimes referred to as “capability safety” and are designed to support modular reasoning about security. For example, the restrictions above are sufficient to enforce the property that “only connectivity begets connectivity;” that is, two components may communicate or share references only via a capability shared by both components.

We built a monitor to enforce capability safety. This monitor, shown in Figure 14 in Appendix C, defines two actions, capability/c and unprivileged-capability/c, which is the same as the capability/c, but does not grant any initial authority. These actions enforce capability safety by creating a new principal for each capability and using delegations to specify when one capability has the authority to invoke another. Their #:on-create hooks handle parenthood and endowment and their #:on-apply hooks handle introduction. Parenthood amounts to a delegation:

\(\langle \geq \rangle \ (\langle \rangle \ \text{parent caps}) \ (\langle \rangle \ \text{child invoke}) \) \ . \ \text{Similarly, endowment closes over the current authority of the parent and grants it to the child:}

\(\langle \geq \rangle \ (\langle \rangle \ \text{child caps}) \) \ . \ \\ \ \\ \)

We must also assert that the parent authorizes the use of its closed-over delegations for the rest of the execution:

\(\langle \geq \rangle \ (\langle \rangle \ \text{parent current-delegations}) \) \ . \ \\ \ \\ \)

Introduction is implemented by adding additional delegations granting callees authority over arguments they are passed, and vice versa for return values.

5. Case Studies

To evaluate the use of our framework in practical applications, we developed three case studies. The first adds simple
authorization contracts to the implementation of a card game to ensure that player’s moves affect only the parts of the game state they control. The second secures a plugin interface of the DrRacket development environment and demonstrates how the flexibility of the framework can support complex security mechanisms. The third, which mirrors the example from Section 2.2, replaces authorization checks in a web application with authorization contracts.

We evaluated the performance of our framework on each case study. The experiments were conducted on a MacBook Pro with a 2.6 GHz Intel Core i5 and 16GB of RAM running Mac OS X 10.11 and Racket 6.4.0.9. In the first two case studies, authorization contracts have significant impact on the performance of the benchmarks. However, both case studies are worst case scenarios: they have no existing code implementing access control (and so we are strictly adding functionality), and after adding contracts, they invoke many access control checks (tens of thousands in the case of the card game) while performing cheap operations. Moreover, in the DrRacket case study, the absolute overhead for each benchmark due to authorization contracts is less than 45ms, but the relative overhead is high since the baseline running time is less than 15ms. The third case study replaces existing access control checks with authorization contracts, with negligible impact on performance. Our implementation is a prototype, and we anticipate that optimizations in the implementation of our contracts can further reduce their overhead.

Preventing Cheating in a Card Game We have used authorization contracts to enforce a security policy for a functional implementation of the card game Dominion. The exact rules of Dominion do not matter for our purpose, except that each player collects cards in a local deck and attempts to outscore the rest of the players by playing cards from their deck. During each turn, players can play cards from their deck to either purchase additional cards or attack other players, forcing them to discard some of their cards.

In this implementation, each player is a program that runs in its own process and responds automatically to messages from a central broker. The broker maintains the shared inventory of cards and a mirror of each player’s local deck. Players perform moves by sending messages to the broker describing the move.

To perform a move, the player sends a message to the broker identifying a card to play. In response, the broker updates its copy of the game state to reflect the move and, if the move involves an attack on another player, informs the other player of the attack. The other player then has an opportunity to defend by choosing which card to discard and the broker again updates the game state.

The broker represents the local deck of each player as an immutable structure game that holds a list of player records. The first element in this list corresponds to the player who makes the next move. The broker is implemented as a core drive function that delegates to two functions: move and defend. Both functions perform functional updates to the relevant structures.

We enforce the policy that the broker only updates the current player’s deck or a defending player’s deck. The monitor that enforces this policy specifies three authorization contracts: deprive/c, which sets the principal for the dynamic extent of a function to ⊥; (switch-player/c name), which sets the principal for the dynamic extent of a function to the player with name name; and (check-player/c name), which checks before calling a function if the current principal is the player with name name.

To enforce the policy, we attach contract deprive/c to the function drive so that only authorized code can modify the game state during the game. The contract for the game structure, game/c, gives the accessor functions of each field of the player records in the game the contract (check-player/c name), where name is the name of the corresponding player. The contract for the move function is

\[
\text{move} \quad (\text{game/c}) \quad (\text{turn any/c}) \quad (\text{play any/c})
\]

and it authorizes the move function to act on behalf of the current player, i.e., (first (game-players game)). The contract for defend is

\[
\text{defend} \quad (\text{player/c}) \quad (\text{defense any/c})
\]

which similarly allows the function to update the state of the player who was attacked.

We created 10 benchmarks for the Dominion case study that each consists of a simulated game with 2-7 players. Adding authorization contracts increases running time by \(1.3 \sim 1.7\times\) at both the median and 99th percentile.

Securing a Plugin Interface We wrote a monitor to protect DrRacket from malicious or buggy third-party key bindings. First, we explain aspects of DrRacket’s design related to key bindings. Keystrokes sent to DrRacket are dispatched as method calls to a text% object which encapsulates the state of the editor. This object has methods that access and modify parts of DrRacket. For instance, the get-text method returns the content of the editor, while the set-padding method changes the inset padding used to display the editor’s content. Each text% object has a keymap% object that stores

\footnote{The implementation is part of the teaching material of a long running undergraduate Functional Programming course.}
registered key bindings and maps sequences of keystrokes to
the action they trigger. A keybinding action is an arbitrary
Racket function of two arguments: the current text% object
and an event% object, which describes the event that triggered
the action. On startup, DrRacket populates its text% object’s
key map with built-in key bindings. In addition, DrRacket
registers user-defined key bindings from configuration files.
Keybinding actions can inspect and modify almost any aspect
of DrRacket through the text% object. This gives users a
powerful interface for customizing DrRacket but makes key
bindings a source of vulnerabilities. For instance, a key
binding could accidentally erase the user’s code or snoop
on the editing session.

Our monitor restricts which text% object methods a key-
binding action can invoke. We group methods of text% that
can access or modify similar parts of DrRacket. For instance,
methods that write to the clipboard (e.g. cut and copy) belong
to the same group while methods that change how DrRacket
displays content (e.g. set-max-width and set-line-spacing)
belong to a second group. Each group has a corresponding
privilege that is required to invoke the group’s methods. For
example, the privileges ReadClipboard and ChangeEditorView
grant access to the methods mentioned above. Methods can
belong to multiple groups. Access control checks around each
method verify that the authority of a calling execution context
has the necessary privileges.

In addition to methods that require specific privileges to
invoke, text% has sensitive methods that should be invoked
only by another method of the text% object. For example,
the on-delete method should never be invoked directly as
its correctness depends on DrRacket’s state. Instead, key
bindings should invoke the delete method that subsequently
calls on-delete. To support this use case, we require an
additional privilege to call on-delete that is granted during
the dynamic extent of delete.

The stack-inspection-like access control mechanism we
have described so far is not sufficient. Some methods of text%
install callbacks that are triggered by subsequent events. For
example, add-undo registers a callback that runs when the
user wishes to undo the action of a key binding. This callback
should not run with the authority of its calling context, but
instead should use the privileges of the action that created
it. To achieve this, we create authority closures around any
callbacks registered by an action.

Our monitor represents each privilege as a unique prin-
cipal and represents sets of principals as conjunctions and
disjunctions of principals. It defines three actions: check/c,
enable/c, and closure/c. Upon an #:on-apply event, the first
action consumes principal perms and checks if the current
principal has permissions that imply perms. Then the action
switches the current principal to a principal that only has
permissions perms. When a function wrapped with enable/c
is applied, it switches the current principal to a principal that
has the same permissions as the current principal augmented
with perms. The #:on-create event of the third action creates
an authority closure. When the authority closure is applied, it
installs the closed-over principal.

We use the actions of the monitor to define an authoriza-
tion contract for the keybinding interface:

\[
\text{->a ([t text/c] [e (is-a?/c event%)])}
\]

\[
#:auth () (check/c perms) any
\]

where perms is a principal which encodes the privileges we
grant to the key binding and text/c is the object contract we
define for the editor’s text% object. text/c applies a contract
to each method of text% specifying whether the method
enables some permission, requires some permissions, or
creates an authority closure around one of its arguments. For
example, text/c gives the method blink-caret the contract
(check/c ChangeEditorView). In essence, text/c defines a
security policy for the editor.

To assess the monitor’s performance, we ran a series of
30 benchmarks, adapted from DrRacket’s test suite, that
simulate a sequence of keystrokes that trigger built-in key
bindings. We ran these benchmarks with the monitor off
and on. When the monitor is on, the prototype grants the
minimum set of privileges necessary for each key binding. For
each benchmark, we measured the time required to retrieve
and execute each key binding. Our measurements show that
the authority monitor increases median response time by
3–7× and increases response time at the 90th percentile by
3–5×. However, for an IDE, a response time fast enough for
interactive use is more important. Our prototype achieves this
goal with a maximum response time of 53ms.

Authentication in a Web Application The Racket package
system allows users to discover and install packages from a
public index service. Individual users can add new packages
or update old ones by logging into the index service web
application, which is implemented using the Racket web-server.
Requests to add or modify packages are issued to the appli-
cation as asynchronous http requests. The baseline imple-
mentation of the application uses macros to authenticate the
user and perform any required access control checks before
processing the request. For example, the jsonp/pkg/modify
endpoint authenticates the current user and checks that they
are an author of the package they are attempting to modify.
This approach to access control is brittle, since it requires that
the checks included for each endpoint accurately capture the
privileges required when processing the response.

Using authorization contracts, we are able to separate the
tasks of authentication and authorization in the index service
web application. Rather than performing a different set of
access control checks for each endpoint, all endpoints now
simply invoke an authenticate function that checks whether
the current session is valid and which user is logged in, then
invokes a procedure to process the request, like the login
function from Section 2.2. The access control policies for
sensitive operations like updating a package are enforced by
adding authorization contracts that implement the necessary checks to the web application’s data model. There are two types of checks: `{is-author/c pkg}` which checks that the logged in user is an author of package pkg, and `{is-curator/c}`, which checks whether the logged in user has “curator” status, which allows them to tag packages with information about their quality.

To evaluate the new implementation’s performance, we measured the latency of 1,000 repeated requests to modify a package record. Replacing inline checks with authorization contracts has minimal impact on performance. Median latency was 283ms for the baseline implementation versus 281ms with authorization contracts. At the 99th percentile, using authorization contracts latency was 338ms versus 330ms with the baseline implementation.

6. Related Work
The connection between scoping and access control has been implicit in prior work on security in programming languages but has never been a central concept for extensible access control. Morris's seminal paper “Protection in Programming Languages” [61] describes how lexical scope can be used to create security abstractions within a program. More recently, the object-capability paradigm has embraced lexical scope as an organizing security principle [27]. Wallach and Felten [41] note that “in some ways, [stack inspection] resembles dynamic variables (where free variables are resolved from the caller’s environment rather than from the environment in which the function is defined).” Phung et al. [32] use dynamic and lexical scoping to associate principals with executing code in order to correctly enforce security policies on programs that mix JavaScript and ActionScript code.

Inlined Reference Monitors An alternative approach to language-level access control is inlined reference monitoring. Reference monitors observe the actions taken by a system and intercede to prevent violations of a security policy [3]. They can enforce a large class of policies [34]. Inlined reference monitoring (IRM) weaves the implementation of a reference monitor into the program being monitored [13]. Many implementations of inlined reference monitoring rely on aspects to identify security relevant actions during program execution [6, 14, 15, 21]. Policies supported by these tools typically focus on access patterns for sensitive resources. While policies supported by our framework can be encoded this way, as in [13], Erlingsson and Schneider’s IRM implementation of Java stack inspection [14], policies where the authority of code depends on application state require duplicating code. A further disadvantage of IRMs is that they require a global transformation of the program to inline the security monitor. Because authorization contracts are applied at component boundaries, our framework requires only local modifications.

Authorization Logics Authorization logics give a formal language to express access control policies [1]. Authorization logics have been used to understand existing access control mechanisms, including Java stack inspection [41]. Aura [20] and Fine [38] implement access control using proof-carrying authentication, where proofs of formulas in an authorization logic are used as capabilities [41]. Our access control logic is inspired by the Flow-Limited Authorization Model [5], which uses projections to describe attenuated authority without requiring additional constructs such as roles or groups.

Contracts for Security Previous work has used contracts to enforce limited access control policies. Moore et al. [29] use contracts to constrain the use of capabilities in a secure shell scripting language. Dimoulas et al. [10] use contracts to control the flow of capabilities between components in object-capability languages. Heidegger et al. [19] use contracts to specify which fields of an object may be accessed by a component. However, each of these systems is specialized to enforce a specific type of access control policy. Disney et al. [11] introduce temporal higher-order contracts that enforce that sequences of function calls and returns match a specification. Schollier et al. [35]’s computational contracts can enforce a wide range of trace properties on programs. Unlike authorization contracts and temporal higher-order contracts, computational contracts use aspects to interpose on program events. Both of these systems support arbitrarily powerful monitors, but like inlined reference monitoring, provide limited support for writing complex access control policies like stack inspection or discretionary access control.

Scoped Aspects for Security Dutychyn et al. [12] are the first to identify a connection between modular access control and the scoping of aspects that implement authorization checks. They introduce constructs for lexical and dynamic aspect scoping and use them to enforce a simple security policy similar to the one we enforce in §2.3 with authorization contracts. With additional aspect scoping mechanisms, Toledo et al. [40] implement a complete Java stack inspection mechanism in a modular fashion. The exact relation between the expressiveness of scoped aspects and that of authorization contracts is an open question. However, as our case studies and example access control mechanisms demonstrate, authorization contracts are powerful enough to enforce a variety of access control policy classes with a single domain-specific abstraction: authority environments. Doing the same with aspects, if possible, requires brittle and complex encodings in terms of general-purpose advice and aspect scoping.

Acknowledgments
This material is based upon work supported by the National Science Foundation under Grant Numbers CCF-1438271, CNS-1524052, and CCF-1526324. This research is also supported by the Air Force Research Laboratory and a Google Faculty Research Award.
References

A. Details of Model

A.1 Evaluation Contexts

\[E ::= [i] | E e | v E | let x = E in e | if E then e else e | E e | E E | \delta E \]

\[p(\tau) = E \]

\[E \vdash E = e \]

\[E \vdash p(\tau) = E \]
A.3 Typing Judgments for Authorization Contract Extensions

$$\Gamma; \Sigma \vdash m \triangleright \Gamma'$$

$$a_1, \ldots, a_n = \text{action } x_{a_1}(y_{a_1}, \ldots) \ (ce, ae), \ldots, \text{action } x_{a_n}(y_{a_n}, \ldots) \ (ce, ae)$$

$$\varnothing; \Sigma \vdash e_1 : \tau_1 \ldots \{ y_1 : \tau_1, \ldots, y_{n-1} : \tau_{n-1} \}; \Sigma \vdash e_n : \tau_n$$

$$\{ y_1 : \tau_1, \ldots, y_n : \tau_n \}; \Sigma \vdash a_1 : \tau_{a_1} \ldots \{ y_1 : \tau_1, \ldots, y_n : \tau_n, \ldots, x_{a_1} : \tau_{a_1}, \ldots, x_{a_{n-1}} : \tau_{a_{n-1}} \}; \Sigma \vdash a_n : \tau_{a_n}$$

$$\{ y_1 : \tau_1, \ldots, y_n : \tau_n, \ldots, x_{a_1} : \tau_{a_1}, \ldots, x_{a_{n-1}} : \tau_{a_{n-1}} \}; \Sigma \vdash e_{n+1} : \tau_{n+1}$$

$$\forall 1 \leq i \leq m. (\exists 1 \leq h \leq m. x_i \equiv y_{h \tau} \land \tau_{h} \neq \tau \text{ ctc} \land \tau_{h} \neq \text{ctx ctc}) \lor (\exists 1 \leq h \leq m. x_i \equiv y_{h \tau} \land \tau_{h} \neq \tau \text{ ctc} \land \tau_{h} \neq \text{ctx ctc})$$

$$\Gamma, \Sigma \vdash \text{module } \ell \text{ exports } x_1 \text{ with } x_{a_1}, \ldots, x_{a_n} \text{ with } x_{a_{n'}} \text{ where } y_1 = e_1, \ldots, y_n = e_n, \text{ monitor } (a_1, \ldots, a_n), y_k = e_k, y_m = e_m, \Gamma' \downarrow \Sigma$$

$$\Gamma; \Sigma \vdash \emptyset : \Prin$$

$$\Gamma; \Sigma \vdash P : \Prin$$

$$\Gamma; \Sigma \vdash D : \Dim$$

$$\Gamma; \Sigma \vdash \text{new-principal} : \Prin$$

$$\Gamma; \Sigma \vdash new-dimension : \Dim$$

$$\Gamma; \Sigma \vdash e_p : \Prin$$

$$\Gamma; \Sigma \vdash e_{d} : \Dim$$

$$\Gamma; \Sigma \vdash \{ e \} : \DelSet$$

$$\Gamma; \Sigma \vdash \{ e \} : \DelSet$$

$$\Gamma; \Sigma \vdash e_1 : \DelSet$$

$$\Gamma; \Sigma \vdash e_2 : \DelSet$$

$$\Gamma; \Sigma \vdash e_1 \cup e_2 : \DelSet$$

$$\Gamma; \Sigma \vdash e_1 \setminus e_2 : \DelSet$$

$$\Gamma; \Sigma \vdash e_f : (\tau \rightarrow (\text{Del } \rightarrow \tau))$$

$$\Gamma; \Sigma \vdash (\text{fold } e_f e_1) : \tau$$

$$\Gamma; \Sigma \vdash \text{let } e_w \geq e_f e_1 : \tau$$

$$\Gamma; \Sigma \vdash e_w : \DelSet$$

$$\Gamma; \Sigma \vdash e_s : \Prin$$

$$\Gamma; \Sigma \vdash e_l : \Prin$$

$$\Gamma; \Sigma \vdash e_r : \Prin$$

$$\Gamma; \Sigma \vdash e_s \geq e_l \oplus e_r : \Del$$

$$\Gamma; \Sigma \vdash e_a : \Del$$

$$\Gamma; \Sigma \vdash \text{check} : \text{add} : \text{check} : \text{add} : \text{check}$$
A.4 Compiling Authorization Contract Extensions

\[
\begin{align*}
\Gamma; \Sigma \vdash \text{cee} : \tau & \quad \Gamma; \Sigma \vdash \text{ace} : \tau \\
\Gamma; \Sigma \vdash \text{ace} : \tau & \quad \Gamma[x \mapsto \tau_x]; \Sigma \vdash \text{ace} : \tau \\
\Gamma; \Sigma \vdash \text{cee} : \tau & \quad \Gamma[x \mapsto \tau_x]; \Sigma \vdash \text{cee} : \tau \\
\Gamma; \Sigma \vdash \text{current-delegations} : \text{DelSet} & \\
\Gamma; \Sigma \vdash \text{current-principal} : \text{Prin} & \\
\Gamma; \Sigma \vdash \text{closure-principal} : \text{Prin} & \\
\Gamma; \Sigma \vdash \text{closure-delegations} : \text{DelSet} & \\
\end{align*}
\]

\[
\text{compile [module } \ell \text{ exports } x_1 \text{ with } x_{c_1}, \ldots \text{ where } y_1 = e_2, \ldots; p] =
\text{compile-monitor [module } \ell \text{ exports } x_1 \text{ with } x_{c_1}, \ldots \text{ where } y_1 = e_2, \ldots; \text{compile}[p]]
\]

\[
\begin{align*}
\text{compile-monitor [module } \ell \text{ exports } x_1 \text{ with } x_{c_1}, \ldots \\
& \text{where } y_1 = e_1, \ldots; y_n = e_n, \\
& \begin{align*}
& p = \text{make-parameter } \top, d = \text{make-parameter } \emptyset, s = \text{make-parameter } \emptyset, \\
& cp = \text{make-parameter } \top, cd = \text{make-parameter } \emptyset, \\
& \text{curp} = \text{make-parameter } \top, \text{curd} = \text{make-parameter } \emptyset, \\
& x_{a_1} = \text{compile-action [action} x_{a_1} (y_{a_1} : \tau_{y_{a_1}}), \ldots) (\text{ce}_{a_1}, \text{ae}_{a_1}), \ldots, \text{action} x_{a_n} (y_{a_n} : \tau_{y_{a_n}}), \ldots) (\text{ce}_{a_n}, \text{ae}_{a_n}), \\
& \ldots \\
& x_{a_n} = \text{compile-action [action} x_{a_n} (y_{a_n} : \tau_{y_{a_n}}), \ldots) (\text{ce}_{a_n}, \text{ae}_{a_n}), \ldots, \text{action} x_{a_n} (y_{a_n} : \tau_{y_{a_n}}), \ldots) (\text{ce}_{a_n}, \text{ae}_{a_n}), \\
& \text{y}_{a_1 + 1}, \ldots; \text{y}_{a_n} = \text{e}_{a_1}, \ldots; \text{y}_{a_n} = \text{e}_{a_n} \\
& \text{where } p, d, s, cp, cd, curp, and curd are fresh
\end{align*}
\end{align*}
\]

\[
\begin{align*}
\text{compile-action [action} x (y : \tau_{y}), \ldots) (\text{ce}, \text{ae}), p, d, s, cp, cd, curp, curd] = \\
\lambda y : \tau_y, \ldots. \\
\text{ctx/c [compile-cc} \text{check } \text{[check} e_1 \text{ add } e_2 \text{ remove } e_3 \text{ set!-principal} : e_4 \text{ closure-principal} : e_5 \text{ closure-delegations} : e_6, p, d, s, curp, curd] = \\
\lambda _ : \text{Unit.} \\
\text{let } _ = \text{curp} := ?p \text{ in} \\
\text{let } _ = \text{curd} := ?d \cup ?s \text{ in} \\
\text{let } p_1 \geq p_2 \& p_1 = \text{compile-cc} [e_1, \text{curp}, \text{curd}] \text{ in} \\
\text{if } (\text{curd}) ; p_1 \vdash p_1 \geq p_2 \text{ then} \\
\text{let } \text{add} = \text{compile-cc} [e_2, \text{curp}, \text{curd}] \text{ in} \\
\text{let } \text{remove} = \text{compile-cc} [e_3, \text{curp}, \text{curd}] \text{ in} \\
\text{let } \text{setprin} = \text{compile-cc} [e_4, \text{curp}, \text{curd}] \text{ in} \\
\text{let } _ = d := (?d \cup \text{add}) / \text{remove} \text{ in} \\
\text{let } _ = p := \text{setprin} \text{ in} \\
\text{#1} \\
\text{else} #1 \\
\text{compile-cc} [\text{check} : e_1 \text{ add } e_2 \text{ remove } e_3 \text{ set!-principal} : e_4 \text{ closure-principal} : e_5 \text{ closure-delegations} : e_6, p, d, s, curp, curd] = \\
((\lambda _ : \text{Unit.} \#1) \Rightarrow cp \leftarrow (\lambda _ : \text{Unit.} \text{compile-cc} [e_5, \text{curp}, \text{curd}]))
\end{align*}
\]
A.6 Reduction Semantics for Authorization Contract Extensions

\[\text{compile-cee}([\text{check: } e_1 \text{ add: } e_2 \text{ remove: } e_3 \text{ scope: } e_4 \text{ set-principal?: } e_5 \text{ principal: } e_6 \text{ set!-principal: } e_7, p, d, s, cp, cd, curp, curd]) = \lambda _ : \text{Unit.} \]

\[\text{let } _ = \text{curp} := ?p \text{ in} \]
\[\text{let } _ = \text{curd} := ?d \cup ?s \text{ in} \]
\[\text{let } p_1 \geq p_2 \circ p_3 = \text{compile-cee}[e_1, \text{curp, curd, cp, cd}] \text{ in} \]
\[\text{if } (?\text{curd}) : p_3 \vdash p_1 \geq p_2 \text{ then} \]
\[\text{let add } = \text{compile-cee}[e_2, \text{curp, curd, cp, cd}] \text{ in} \]
\[\text{let remove } = \text{compile-cee}[e_3, \text{curp, curd, cp, cd}] \text{ in} \]
\[\text{let setprin } = \text{compile-cee}[e_7, \text{curp, curd, cp, cd}] \text{ in} \]
\[\text{let } _ = d := (?d \cup \text{add}) / \text{remove} \text{ in} \]
\[\text{let } _ = p := \text{setprin} \text{ in} \]
\[\#t \]
\[\text{else } \#t \]

\[\text{compile-aee}([\text{check: } e_1 \text{ add: } e_2 \text{ remove: } e_3 \text{ scope: } e_4 \text{ set-principal?: } e_5 \text{ principal: } e_6 \text{ set!-principal: } e_7, p, cp, cd, curp, curd]) = \]
\[(\text{compile-aee}[e_6, \text{curp, curd, cp, cd}] \Rightarrow p \leftarrow \text{compile-aee}[e_6, \text{curp, curd, cp, cd}]) \]

\[\text{compile-aee}([\text{check: } e_1 \text{ add: } e_2 \text{ remove: } e_3 \text{ scope: } e_4 \text{ set-principal?: } e_5 \text{ principal: } e_6 \text{ set!-principal: } e_7, s, cp, cd, curp, curd]) = \]
\[((\lambda _ : \text{Unit.} \#t) \Rightarrow s \leftarrow \text{compile-aee}[e_4, \text{curp, curd, cp, cd}]) \]

A.5 Authorization Contract Extension Evaluation Contexts

\[E ::= \ldots | E \vdash e | v \vdash e | E; e \vdash e | v; E \vdash e | E \vdash e \geq e | v; v \vdash E \geq e | v; v \vdash E \]
\[| E \vdash e \circ e | v \vdash E \vdash e | v \vdash v \vdash E | \{E\} | E \cup E | v \cup E | E \setminus E | E \setminus v \]
\[| (\text{fold } E e) | (\text{fold } v E e) | (\text{fold } v v E) \]

A.6 Reduction Semantics for Authorization Contract Extensions

\[\langle E[\text{new-principal}], \sigma \rangle \rightarrow \langle E[p], \sigma \rangle \text{ where } p \text{ is fresh} \]
\[\langle E[\text{new-dimension}], \sigma \rangle \rightarrow \langle E[d], \sigma \rangle \text{ where } d \text{ is fresh} \]
\[\langle E[(p_1 \geq p_1 \circ p_1, \ldots); p_s \vdash p_i \geq p_r], \sigma \rangle \rightarrow \langle E[\#t], \sigma \rangle \text{ if } \{p_1 \geq p_1 \circ p_1, \ldots ; p_s \vdash p_i \geq p_r\} \]
\[\langle E[(p_1 \geq p_1 \circ p_1, \ldots); p_s \vdash p_i \geq p_r], \sigma \rangle \rightarrow \langle E[\#t], \sigma \rangle \text{ if } \{p_1 \geq p_1 \circ p_1, \ldots ; p_s \vdash p_i \geq p_r\} \]
\[\langle E[(v_{1,1}, v_{1,1}) \cup (v_{2,2}, v_{2,2})], \sigma \rangle \rightarrow \langle E[(v_{3,1}, \ldots, v_{3,1})], \sigma \rangle \text{ where } \{v_{3,1}, \ldots, v_{3,1}\} = \{v_{1,1}, v_{1,1}\} \cup \{v_{2,2}, v_{2,2}\} \]
\[\langle E[(v_{1,1}, v_{1,1}) \setminus (v_{2,2}, v_{2,2})], \sigma \rangle \rightarrow \langle E[(v_{3,1}, \ldots, v_{3,1})], \sigma \rangle \text{ where } \{v_{3,1}, \ldots, v_{3,1}\} = \{v_{1,1}, v_{1,1}\} \setminus \{v_{2,2}, v_{2,2}\} \]
\[\langle E[\text{fold } \{v_j v\}], \sigma \rangle \rightarrow \langle E[v_j], \sigma \rangle \]
\[\langle E[\text{fold } \{v_1, v_2, \ldots ; v_j v\}], \sigma \rangle \rightarrow \langle E[\text{fold } \{v_2, \ldots ; v_j (v_j v_1)\}], \sigma \rangle \]
\[\langle E[\text{let } x \geq x \circ x = v_s \geq v_1 \circ v_r \text{ in } e], \sigma \rangle \rightarrow \langle E[(v_s, v_r/v_1, \ldots, v_1, v_r)], \sigma \rangle \]
B. Proof of complete monitoring

This appendix demonstrates that CtxPCF satisfies complete monitoring. Complete monitoring states that a contract system correctly assigns blame to components that violate their contracts and, crucially, that the contract system can interpose on all uses of a value in a component that did not create that value. We follow Dimoulas et. al.’s standard techniques for stating and proving complete monitoring. The formalization has two key aspects:

1. We develop an independent mechanism to provide a ground truth for ownership of values. To accomplish this, we devise an annotated version of the CtxPCF semantics that has the same behavior, but also keeps track of ownership by annotating values as they flow from one component to another. To ensure that the annotated semantics is truly an independent system for tracking ownership, the semantic rules that implement contract boundaries do not modify ownership annotations on values that flow through contracts.

2. The semantics of the annotated language are modified so that programs get stuck when a component accesses a “foreign” value, i.e., a value from another component that is not protected by the contract system.

Using this annotated semantics, complete monitoring can be stated as a soundness property that states that well-formed programs (those whose initial ownership annotations agree with the placement of contracts in the surface program) do not get stuck because components access “foreign” values. Using a straightforward subject-reduction technique, we show that CtxPCF (and Ctrl+CtxPCF, its extension with first-class control operators) satisfies complete monitoring.

B.1 Surface CtxPCF

B.1.1 Surface Programs

\[
p ::= \text{module } \ell \text{ exports } x_1, \ldots, x_n \text{ where } x = e, \ldots
\]

\[
m ::= x \mid v \mid e \mid \mu x : \tau. e \mid \text{let } x = e \text{ in } e \mid \text{if } e \text{ then } e \text{ else } e \mid e \oplus e \mid e \leq e
\]

\[
e ::= \text{make-parameter } e \mid \text{parameterize } e = e \in e \mid ?e \mid e ::= e
\]

\[
v ::= () \mid n \mid \#t \mid \#f \mid \lambda x : \tau. e \mid c
\]

\[
c ::= \text{flat}(c) \mid \text{param}(c) \mid e : \tau \rightarrow (e) c \mid e : \tau \rightarrow \alpha (\lambda x : \tau. e) c
\]

\[
\beta ::= \text{Unit} \mid \text{Int} \mid \text{Bool}
\]

B.1.2 Well-typed Surface Programs

\[
\Gamma \vdash p : \tau
\]

\[
\frac{}{\emptyset \vdash m_1 \triangleright \Gamma_1 \ldots \Gamma_{n-1} \vdash m_n \triangleright \Gamma_n \quad \Gamma_n \vdash e : \tau \quad \vdash m_1 ; \ldots ; m_n ; e : \tau}
\]

\[
\frac{}{\Gamma \vdash m \triangleright \Gamma'}
\]

\[
\frac{}{\emptyset \vdash e_1 : \tau_1 \ldots \{y_1 : \tau_1, \ldots, y_{n-1} : \tau_{n-1}\} \vdash e_n : \tau_n \quad \Gamma' = \{y_1 : \tau_1, \ldots, y_n : \tau_n\} \mid \{x_1, \ldots, x_{n'}\}}
\]

\[
\forall 1 \leq i \leq n', \exists 1 \leq h \leq n, x_i \equiv y_h \land \tau_h \neq \tau \quad \text{ctc} \land \tau_h \neq \text{ctc} \text{ctc}
\]

\[
\forall 1 \leq i \leq n', \exists 1 \leq h \leq n, x_i \equiv y_h \land \tau_h = \tau \quad \text{ctc}
\]

\[
\Gamma \vdash \text{module } \ell \text{ exports } x_1 \text{ with } x_{c_1}, \ldots, x_{n} \text{ with } x_{e_{n'}} \text{ where } y_1 = e_1, \ldots, y_n = e_n \triangleright \Gamma \uplus \Gamma'
\]
B.2 Annotated Surface CtxPCF

B.2.1 Annotated Surface Programs

\[e ::= \ldots | \ell(\ell(x)) \]

B.2.2 Additional Typing Rules for Annotated Surface Programs

\[
\begin{align*}
\Gamma \vdash x : \tau & \quad \Rightarrow \quad \Gamma \vdash \ell(\ell(x)) : \tau \\
\end{align*}
\]

B.2.3 Well-formed Annotated Surface Programs

\[
\begin{align*}
\ell_0 \vdash & p \\
\emptyset \vdash & m_1 \triangleright \Delta_1 \ldots \Delta_{n-1} \vdash m_n \triangleright \Delta_n \quad \ell_0 \vdash e \\
\ell_0 \vdash & m_1 \ldots m_n ; e \\
\Delta \vdash & m \triangleright \Delta' \\
\emptyset ; \ell \vdash & e_1 \ldots \{y_1 : \ell, \ldots, y_{n-1} : \ell\} ; \ell \vdash e_n \\
\Gamma' = \{y_1 : \ell, \ldots, y_n : \ell\} \{x_1, \ldots, x_{n'}\} \\
\Delta \vdash & \text{module exports } x_1 \text{ with } x_{c_1}, \ldots, x_{n'} \text{ with } x_{c_n}, \text{ where } y_1 = e_1, \ldots, y_n = e_n \triangleright \Delta \uplus \Delta'
\end{align*}
\]

\[
\begin{align*}
\Delta; \ell \vdash & c \\
\Delta; \ell \vdash () & \quad \Delta; \ell \vdash n & \quad \Delta; \ell \vdash \# & \quad \Delta; \ell \vdash \# & \quad \Delta(x) = \ell & \quad \Delta; \ell \vdash e_i, i \in \{1, 2\} & \quad \Delta; \ell \vdash e, i \in \{1, 2\} \\
\Delta; \ell \vdash e_i, i \in \{1, 2\} & \quad \Delta; \ell \vdash e_1 \leq e_2 & \quad \Delta[x \mapsto \ell]; \ell \vdash e & \quad \Delta; \ell \vdash \text{let } x = e_1 \text{ in } e_2 & \quad \Delta; \ell \vdash e_c & \quad \Delta; \ell \vdash e_i, i \in \{1, 2\} \\
\Delta; \ell \vdash \lambda x : \tau. e & \quad \Delta[x \mapsto \ell]; \ell \vdash e & \quad \Delta; \ell \vdash e_1 \quad \Delta; \ell \vdash e_2 & \quad \Delta; \ell \vdash e & \quad \Delta; \ell \vdash e_1 & \quad \Delta; \ell \vdash e_2 \\
\Delta; \ell \vdash e & \quad \Delta[x \mapsto \ell]; \ell \vdash e & \quad \Delta; \ell \vdash e_1 \quad \Delta; \ell \vdash e_2 & \quad \Delta; \ell \vdash e & \quad \Delta; \ell \vdash e_1 & \quad \Delta; \ell \vdash e_2 \\
\Delta; \ell \vdash e \quad \Delta; \ell \vdash e_1 & \quad \Delta; \ell \vdash e_2 & \quad \Delta; \ell \vdash e_3 & \quad \Delta; \ell \vdash e & \quad \Delta; \ell \vdash e \quad \Delta; \ell \vdash e_1 \quad \Delta; \ell \vdash e_2 & \quad \Delta; \ell \vdash e_3 \\
\Delta; \ell \vdash \text{make-parameter } e & \quad \Delta; \ell \vdash \text{parameterize } e_1 = e_2 \text{ in } e_3 & \quad \Delta; \ell \vdash \text{flat}(c(e)) & \quad \Delta; \ell \vdash \text{param}(c(e)) \\
\Delta; \ell \vdash e_1 & \quad \Delta; \ell \vdash e_2 & \quad \Delta; \ell \vdash e_3 & \quad \Delta; \ell \vdash e_1 \quad \Delta; \ell \vdash e_2 & \quad \Delta; \ell \vdash (e_2) e_3 \\
\Delta; \ell \vdash e_1 & \quad \Delta; \ell \vdash e_2 & \quad \Delta; \ell \vdash e_3 & \quad \Delta; \ell \vdash e_1 \quad \Delta; \ell \vdash e_2 & \quad \Delta; \ell \vdash e_3 \\
\Delta; \ell \vdash \text{ctx}(c(e_1, (e_{g_1} \Rightarrow e_{p_1} \Leftarrow e_{v_1}), \ldots, e_{g_n} \Rightarrow e_{p_n} \Leftarrow e_{v_n}), \ldots) & \quad \Delta; \ell \vdash k \vdash x & \quad \Delta; \ell \vdash \ell(\ell(x))
\end{align*}
\]
B.3 CtxPCF

B.3.1 Programs

\[
\begin{align*}
p &::= m; p \mid e \\
m &::= \text{module } \ell \text{ exports } x \text{ with } x, \ldots \text{ where } x = e, \ldots \\
e &::= v \mid e e \mid \mu x : \tau. e \mid \text{let } x = e \text{ in } e \mid \text{if } e \text{ then } e \text{ else } e \mid e \otimes e \mid \epsilon \leq e \\
& \quad \mid \text{make-parameter } e \mid \text{parameterize } e = e \text{ in } e \mid \? e \mid e := e \\
& \quad \mid \text{flat/c}(e) \mid \text{param/c}(e) \mid e : \tau \rightarrow (e) e \mid e : \tau \rightarrow_a (\lambda x : \tau. e) e \\
& \quad \mid \text{ctx/c}(e,(e \Rightarrow e) \ldots (e \Rightarrow e) \ldots) \\
& \quad \mid \ell \text{mon}^j_{e,e} \mid \text{guard}_j(e,v,v,e) \mid \text{install/p}_j(v,e,e) \mid \text{check}^j(e,e) \mid \text{error}^j \\
\end{align*}
\]

\[
\begin{align*}
v &::= () \mid n \mid \# \mid \# ! \mid \lambda x : \tau. e \mid c \mid p(r) \\
& \quad \mid \ell \text{param/p}_j^k(c,v) \mid \ell \text{ctx/p}_j^k(v,(v \Rightarrow v),\ldots,v) \mid \text{install/p}_j(v,v,v) \\
c &::= \text{flat/c}(v) \mid \text{param/c}(e) \mid c : \tau \rightarrow (e) c \mid c : \tau \rightarrow_a (\lambda x : \tau. e) c \\
& \quad \mid \text{ctx/c}(v,(v \Rightarrow v),\ldots,v,(v \Rightarrow v),\ldots) \\
\end{align*}
\]

\[
\begin{align*}
\tau &::= \beta \mid \tau \rightarrow \tau \mid \tau \text{ param} \mid \tau \text{ ctc} \mid \tau \text{ ctc} \\
\beta &::= \text{Unit} \mid \text{Int} \mid \text{Bool}
\end{align*}
\]

B.3.2 Well-typed Programs

\[
\Sigma \vdash p : \tau
\]

\[
\begin{align*}
\varnothing; \Sigma \vdash m_1 \triangleright \Gamma_1 \quad \ldots \quad \Gamma_{n-1}; \Sigma \vdash m_n \triangleright \Gamma_n \quad \Gamma_n; \Sigma \vdash e : \tau \\
\vdash m_1 ; \ldots ; m_n ; e : \tau
\end{align*}
\]

\[
\begin{align*}
\Gamma; \Sigma \vdash m \triangleright \Gamma' \\
\varnothing; \Sigma \vdash e_1 : \tau_1 \quad \ldots \quad \{ y_1 : \tau_1, \ldots, y_{n-1} : \tau_{n-1} \}; \Sigma \vdash e_n : \tau_n \\
\Gamma' = \{ y_1 : \tau_1, \ldots, y_n : \tau_n \} \mid \{ x_1, \ldots, x_{n'} \} \\
\forall 1 \leq i \leq n, \exists 1 \leq h \leq n, x_i \equiv y_h \land \tau_h \neq \tau \text{ ctc} \land \tau_h \neq \text{ctx ctc} \\
\forall 1 \leq i \leq n', \exists 1 \leq h \leq n, x_{i'} \equiv y_h \land \tau_h = \tau \text{ ctc} \\
\Gamma; \Sigma \vdash \text{module } \ell \text{ exports } x_1 \text{ with } x_{c_1}, \ldots, x_{c_{n'}} \text{ with } x_{c_{n'}} \text{ where } y_1 = e_1, \ldots, y_n = e_n \triangleright \Gamma \uplus \Gamma'
\end{align*}
\]

\[
\begin{align*}
\Gamma; \Sigma \vdash e : \tau
\end{align*}
\]

\[
\begin{align*}
\Gamma; \Sigma \vdash () : \text{Unit} \\
\Gamma; \Sigma \vdash n : \text{Int} \\
\Gamma; \Sigma \vdash \# : \text{Bool} \\
\Gamma; \Sigma \vdash \# ! : \text{Bool} \\
\Gamma(x) = \tau
\end{align*}
\]

\[
\begin{align*}
\Gamma; \Sigma \vdash e_1 : \text{Int} \quad i \in \{ 1, 2 \} \\
\Gamma; \Sigma \vdash e_1 + e_2 : \text{Int} \\
\Gamma; \Sigma \vdash e_1 \leq e_2 : \text{Bool} \\
\Gamma; \Sigma \vdash \text{let } x = e_1 \text{ in } e_2 : \tau
\end{align*}
\]

\[
\begin{align*}
\Gamma; \Sigma \vdash e_c : \text{Bool} \\
\Gamma; \Sigma \vdash e_i : \tau \quad i \in \{ 1, 2 \} \\
\Gamma; \Sigma \vdash \text{if } e_c \text{ then } e_1 \text{ else } e_2 : \tau \\
\Gamma; \Sigma \vdash \lambda x : \tau_1. e : \tau \rightarrow \tau_2 \\
\Gamma; \Sigma \vdash \mu x : \tau. e : \tau
\end{align*}
\]

\[
\begin{align*}
\Gamma; \Sigma \vdash e_1 \tau_1 \rightarrow \tau_2 \\
\Gamma; \Sigma \vdash e_2 \tau_1 \\
\end{align*}
\]
\[\begin{align*}
\Sigma(r) &= \tau \\
\Gamma; \Sigma \vdash p(r) : \tau \text{ param} \\
\Gamma; \Sigma \vdash e : \tau
\end{align*}\]

\[\begin{align*}
\Gamma; \Sigma \vdash e_1 : \tau \text{ param} & \quad \Gamma; \Sigma \vdash e_2 : \tau \\
\Gamma; \Sigma \vdash e_1 : e_2 : \text{ Unit}
\end{align*}\]

\[\begin{align*}
\Gamma; \Sigma \vdash e : \tau \\
\Gamma; \Sigma \vdash \text{ make-parameter } e : \tau \text{ param} \\
\Gamma; \Sigma \vdash e_1 : \tau_p \text{ param} & \quad \Gamma; \Sigma \vdash e_2 : \tau_p \\
\Gamma; \Sigma \vdash e_1 = e_2 \text{ in } e_3 : \tau
\end{align*}\]

\[\begin{align*}
\Gamma; \Sigma \vdash e : \beta \rightarrow \text{ Bool} \\
\Gamma; \Sigma \vdash \text{ flat/c(e)} : \beta \text{ ctc} \\
\Gamma; \Sigma \vdash \text{ param/c(e)} : (\tau \text{ param}) \text{ ctc} \\
\Gamma; \Sigma \vdash e : (\text{ typ}_d \rightarrow \tau_r) \text{ ctc}
\end{align*}\]

\[\begin{align*}
\Gamma; \Sigma \vdash e_d : \tau_d \text{ ctc} & \quad \Gamma; \Sigma \vdash e_r : \tau_r \text{ ctc} & \quad \Gamma; \Sigma \vdash e_c : \text{ ctx ctc} \\
\Gamma; \Sigma \vdash e_d : \tau_d \rightarrow (e_c) e_r : \tau_d \rightarrow \tau_r \text{ ctc}
\end{align*}\]

\[\begin{align*}
\Gamma; \Sigma \vdash \text{ e}_1 : \text{ Unit} \rightarrow \text{ Bool} & \quad \Gamma; \Sigma \vdash \text{ e}_2 : \text{ Unit} \rightarrow \text{ Bool} \\
\Gamma; \Sigma \vdash \text{ e}_g_{e_i} : \text{ Unit} \rightarrow \text{ Bool} & \quad \Gamma; \Sigma \vdash \text{ e}_{p_{e_i}} : \tau_{e_i} \text{ param} & \quad \Gamma; \Sigma \vdash \text{ e}_{v_{a_i}} : \text{ Unit} \rightarrow \tau_{e_i} \\
\Gamma; \Sigma \vdash \text{ ctc/c(e)}_1 (e_{g_{e_i}} \mapsto e_{p_{e_i}} \leftarrow e_{v_{a_i}}), \ldots, e_2 (e_{g_{e_i}} \mapsto e_{p_{e_i}} \leftarrow e_{v_{a_i}}), \ldots) : \text{ ctx ctc}
\end{align*}\]

\[\begin{align*}
\Gamma; \Sigma \vdash e_1 : \tau \text{ ctc} & \quad \Gamma; \Sigma \vdash e_2 : \tau \\
\Gamma; \Sigma \vdash \text{ mon}^j_{e_1, e_2} : \tau \\
\Gamma; \Sigma \vdash e_1 : \text{ ctx ctc} & \quad \Gamma; \Sigma \vdash e_2 : (\tau_d \rightarrow \tau_r) \\
\Gamma; \Sigma \vdash \text{ mon}^j_{e_1, e_2} : (\tau_d \rightarrow \tau_r)
\end{align*}\]

\[\begin{align*}
\Gamma; \Sigma \vdash \text{ check}^j_{e_1, e_2} : \tau \\
\Gamma; \Sigma \vdash \text{ e}_1 : \text{ Bool} & \quad \Gamma; \Sigma \vdash e_2 : \tau \\
\Gamma; \Sigma \vdash \text{ param}^j_{e_1, e_2} : \tau \text{ param} \\
\Gamma; \Sigma \vdash \text{ guard}^j_{e_g, e_{v_p}, e_{v_v}, e_f} : \tau_d \rightarrow \tau_r \\
\Gamma; \Sigma \vdash \text{ install/p}_{e_f} (e_{v_p}, e_{v_v}, e_f) : \tau_d \rightarrow \tau_r
\end{align*}\]

\[\begin{align*}
\Gamma; \Sigma \vdash e_g : \text{ Bool} & \quad \Gamma; \Sigma \vdash e_v : \text{ Unit} \rightarrow \tau & \quad \Gamma; \Sigma \vdash e_f : \tau_d \rightarrow \tau_r \\
\Gamma; \Sigma \vdash e_{v_p} : \tau \text{ param} & \quad \Gamma; \Sigma \vdash e_v : \tau \\
\Gamma; \Sigma \vdash e_f : \tau_d \rightarrow \tau_r
\end{align*}\]

\[\begin{align*}
\text{dom}(\Sigma) &= \text{dom}(\sigma) & \forall p \in \text{dom}(\sigma), \Gamma; \Sigma \vdash \Sigma(p) : \sigma(p) \\
\Gamma; \Sigma \vdash \sigma
\end{align*}\]
B.3.3 Evaluation Contexts

Note. Values v appearing in evaluation contexts are closed terms.

$$E ::= [\cdot] \mid E \mid v \mid E \mid \text{let } x = E \text{ in } e \mid \text{if } E \text{ then } e \text{ else } e \mid E \oplus e \mid v \oplus E \mid E \leq e \mid v \leq E \mid \text{make-parameter } E \mid ?E \mid E := e \mid p(r) := E \mid \text{parameterize } E = e \mid \text{parameterize } p(r) = E \text{ in } e \mid \text{parameterize } p(r) = v \text{ in } E$$

- $\text{flat/c}(E)$
- $\text{param/c}(E)$
- $\text{tag/c}(E)$
- $\text{ctx/c}(E)$
- $\text{module}(E)$
- $\text{guard}(E)$
- $\text{check}(E)$
- $\text{install}/p_j(v, E)$
- $\text{install}/p_j(v, E, v)$

B.3.4 Reduction Semantics

$$\langle \text{module } \ell \text{ exports } x_1 \text{ with } x_1, \ldots \text{ where } y_1 = v_1, \ldots, y_n = v_n, y_{e_1} = e_1, \ldots, y_{e_m} = e_m; p, \sigma \rangle \quad \rightarrow \quad \langle \text{module } \ell \text{ exports } x_1, \ldots \text{ where } y_1 = v_1, \ldots, y_n = v_n, y_{e_1} = e_1, \ldots, y_{e_m} = e_m; p, \sigma \rangle$$

$$\langle \text{module } \ell \text{ exports } x_1, \ldots \text{ where } \ldots x_1 = v_1, \ldots, x_{e_1} = c_1, \ldots; p, \sigma \rangle \quad \rightarrow \quad \langle \text{import}[\ell](x_1, \ldots, x_n, (v_1, \ldots, v_n, (c_1, \ldots, c_n), p)], \sigma \rangle$$

- $\langle E[(\lambda x : \tau. e)] v], \sigma \rangle \quad \rightarrow \quad \langle E[(\lambda x : \tau. e)] v], \sigma \rangle$
- $\langle E[\mu x : \tau. e], \sigma \rangle \quad \rightarrow \quad \langle E[\mu x : \tau. e] v], \sigma \rangle$
- $\langle E[\text{let } x = v \text{ in } e], \sigma \rangle \quad \rightarrow \quad \langle E[\text{let } x = v \text{ in } e], \sigma \rangle$
- $\langle E[\text{if } #f \text{ then } e_1 \text{ else } e_2], \sigma \rangle \quad \rightarrow \quad \langle E[e_1], \sigma \rangle$
- $\langle E[\text{if } #f \text{ then } e_1 \text{ else } e_2], \sigma \rangle \quad \rightarrow \quad \langle E[e_2], \sigma \rangle$
- $\langle E[v_1 \oplus v_2], \sigma \rangle \quad \rightarrow \quad \langle E[v], \sigma \rangle$ where $v = v_1 \oplus v_2$
- $\langle E[v_1 \leq v_2], \sigma \rangle \quad \rightarrow \quad \langle E[v], \sigma \rangle$ where $v = v_1 \leq v_2$
- $\langle E[\text{make-parameter } v], \sigma \rangle \quad \rightarrow \quad \langle E[p(r)], \sigma[r \mapsto v]\rangle$ where r is fresh in σ
- $\langle E[\text{parameterize } p(r) = v \text{ in } E'[?r]], \sigma \rangle \quad \rightarrow \quad \langle E[\text{parameterize } p(r) = v \text{ in } E'[?r]], \sigma \rangle$
- $\langle E[\text{parameterize } p(r) = v \text{ in } E'[?r]], \sigma \rangle \quad \rightarrow \quad \langle E[\text{parameterize } p(r) = v \text{ in } E'[?r]], \sigma \rangle$
- $\langle E[p := v], \sigma \rangle \quad \rightarrow \quad \langle E[p := v], \sigma \rangle$ where E does not contain parameterize $p(r) = v'$ in E''
- $\langle E[p := v'], \sigma \rangle \quad \rightarrow \quad \langle E[p := v'], \sigma \rangle$ where E does not contain parameterize $p(r) = v'$ in E''
\[\begin{align*}
&\langle E[\text{\textit{mon}}^k_j(\text{flat/c}(v_c),v)],\sigma\rangle \\
&\quad \rightarrow \langle E[\text{\textit{check}}^k_j((v_c,v),v)],\sigma\rangle \\
&\langle E[\text{\textit{mon}}^k_j(\text{param/c}(c),v)],\sigma\rangle \\
&\quad \rightarrow \langle E[\text{\textit{param/p}}^k_j(c,v)],\sigma\rangle \\
&\langle E[\text{\textit{mon}}^k_j(c_d : \tau \rightarrow (c_r)v)],\sigma\rangle \\
&\quad \rightarrow \langle E[[\text{\textit{mon}}^k_j(c_r,v)k\text{\textit{mon}}^k_j(c_d,x))]v],\sigma\rangle \\
&\text{where } x \text{ is fresh}
\end{align*}\]

\[\begin{align*}
&\langle E[\text{\textit{mon}}^k_j(c_d : \tau \rightarrow (\lambda x : \tau.\ c_r)v)],\sigma\rangle \\
&\quad \rightarrow \langle E[\lambda y : \tau_d.\ \text{\textit{mon}}^k_j(\text{\textit{mon}}^k_j(c_d,y)/x)c_r,\text{\textit{mon}}^k_j(c_r,v)k\text{\textit{mon}}^k_j(c_d,y))]v],\sigma\rangle \\
&\text{where } y \text{ is fresh}
\end{align*}\]

\[\begin{align*}
&\langle E[\text{\textit{mon}}^k_j(\text{ctx/c}(v_c,(v_{c_p_1} \leftarrow v_{c_{p_1}}),\ldots,(v_{c_{p_n}} \leftarrow v_{c_{p_n}}),v_a.(v_{a_{p_1}} \leftarrow v_{a_{p_1}},\ldots),v)],\sigma\rangle \\
&\quad \rightarrow \langle E[\text{\textit{check}}^k_j((v_c()\ldots,v_a()),\sigma)]v\rangle,\sigma\rangle \\
&\text{where } e = \text{\textit{guard}}_j((v_{c_p_1}()),v_{c_{p_1}},v_{c_{p_2}},\ldots,\text{\textit{guard}}_j((v_{a_{p_1}}()),v_{a_{p_1}},v_{a_{p_2}},\ldots,v))
\end{align*}\]

\[\begin{align*}
&\langle E[\text{\textit{ctx/p}}^k_j(v_a,(v_{a_{p_1}} \leftarrow v_{a_{p_1}}),\ldots,(v_{a_{p_n}} \leftarrow v_{a_{p_n}}),v_f)\ v],\sigma\rangle \\
&\quad \rightarrow \langle E[\text{\textit{check}}^k_j((v_a()),e)]v\rangle,\sigma\rangle \\
&\text{where } e = \text{\textit{guard}}_j((v_{a_{p_1}()},v_{a_{p_1}},v_{a_{p_2}},\ldots,\text{\textit{guard}}_j((v_{a_{p_n}()},v_{a_{p_n}},v_{a_{p_{n+1}}},v_f))
\end{align*}\]

\[\begin{align*}
&\langle E[\text{\textit{guard}}_j(\#t,v_p,v_u,e_f)],\sigma\rangle \\
&\quad \rightarrow \langle E[e_f],\sigma\rangle \\
&\langle E[\text{\textit{guard}}_j(\#t,v_p,v_u,e_f)],\sigma\rangle \\
&\quad \rightarrow \langle E[\text{\textit{install/p}}_j(v_p,(v_u()),e_f)],\sigma\rangle \\
&\langle E[\text{\textit{install/p}}_j(v_p,v_u,v_f)\ v],\sigma\rangle \\
&\quad \rightarrow \langle E[\text{\textit{parameterize}} v_p = v_u\ v_f)\ v],\sigma\rangle \\
&\langle E[\text{\textit{param/p}}_j^k(c,v)],\sigma\rangle \\
&\quad \rightarrow \langle E[\text{\textit{mon}}^k_j(c),\sigma]\rangle \\
&\langle E[\text{\textit{parameterize}} \text{\textit{param/p}}_j^k(c,v) = v\ in\ e)],\sigma\rangle \\
&\quad \rightarrow \langle E[\text{\textit{parameterize}} v_p = k\text{\textit{mon}}^k_j(c,v)\ in\ e)],\sigma\rangle \\
&\langle E[\text{\textit{param/p}}_j^k(c,v) := v],\sigma\rangle \\
&\quad \rightarrow \langle E[v_p := k\text{\textit{mon}}^k_j(c,v)],\sigma\rangle \\
&\langle E[\text{\textit{check}}^k_j(#t,e)],\sigma\rangle \\
&\quad \rightarrow \langle E[e],\sigma\rangle \\
&\langle E[\text{\textit{check}}^k_j(#t,v)],\sigma\rangle \\
&\quad \rightarrow \langle \text{\textit{error}}^k_j,\sigma\rangle
\end{align*}\]
B.4 Annotated CtxPCF

B.4.1 Annotated CtxPCF Programs

\[
\begin{align*}
e & ::= \ldots | \ell (\ell x) | \ell e | \ell (\ell e) | [e]^{\ell} \\
v & ::= \ldots | \ell v | \ell [v] \\
c & ::= \ldots | \ell [\ell flat/c(v)] \ldots | \ell [\ell param/c(c)] \ldots | \ell [\ell c: \tau \rightarrow (c)] \ldots \\
 & | \ell [\ell c: \tau \rightarrow \lambda x: \tau. e \ c \ldots | \ell [\ell ctx/c(v,(v \Rightarrow v) \ldots v,(v \Rightarrow v) \ldots)] \ldots] \\
 & | \ell [\ell flat/c(v)] \ldots | \ell [\ell ctx/c(v,(v \Rightarrow v) \ldots v,(v \Rightarrow v) \ldots)] \ldots]^{\ell}
\end{align*}
\]

B.4.2 Additional Typing Rules for Annotated CtxPCF Programs

\[
\begin{align*}
\Gamma; \Sigma \vdash e : \tau \\
\Gamma; \Sigma \vdash x : \tau & \quad \Gamma; \Sigma \vdash e : \tau & \quad \Gamma; \Sigma \vdash c : \tau & \quad \Gamma; \Sigma \vdash e : \tau \\
\ell (\ell x) : \tau & \quad \ell e : \tau & \quad \ell (\ell e) : \tau & \quad [e]^{\ell} : \tau
\end{align*}
\]
B.4.3 Annotated Evaluation Contexts

Note We write $\|^e\ell\|$ to denote that the ownership annotations (if present) in e are consistent with ownership by ℓ. That is, either e has no ownership annotations or all ownership annotations in e have owner ℓ: $\|^e\ell\| = \|^{e_1}\ell_1\| \ldots \|^{e_n}\ell_n\|$ where for all labels k and terms $e', e \neq \|^{e'}\ell\|$.

\[
E^\ell := F^\ell \\
E^{e_0} := F
\]

\[
F := [\cdot] \mid F \cdot e \mid v F \mid \text{let } x = F \text{ in } e \mid \text{if } E \text{ then } e \text{ else } e \mid F \oplus e \mid v \oplus F \\
\quad | \quad F \leq e \mid v \leq F \mid \text{make-parameter } F \mid \text{? } F \mid F := e \mid p(r) := F \\
\quad | \quad \text{parameterize } F = e \text{ in } e \mid \text{parameterize } \|^e\ell\|; p(r) = e \text{ in } e \mid \text{parameterize } \|^e\ell\| = v \text{ in } F
\]

\[
\text{flat}(c)(F) \mid \text{param}(c)(F) \mid F : \tau \rightarrow (c) e \mid c : \tau \rightarrow (F) e \mid c : \tau \rightarrow (v) F
\]

\[
F^\ell := F^\ell e \mid v F^\ell \mid \text{let } x = F^\ell \text{ in } e \mid \text{if } E \text{ then } e \text{ else } e \mid F^\ell \oplus e \mid v \oplus F^\ell \\
\quad | \quad F^\ell \leq e \mid v \leq F^\ell \mid \text{make-parameter } F^\ell \mid 2 F^\ell \mid j B^\ell[F := e] \mid j B^\ell[p(r) := F] \\
\quad | \quad j B^\ell[F := e] \mid j B^\ell[p(r) := F] \mid \text{parameterize } F^\ell = e \text{ in } e \mid j B^\ell[\text{parameterize } \|^e\ell\|; p(r) = e \text{ in } e]\mid j B^\ell[\text{parameterize } \|^e\ell\|] = v \text{ in } F^\ell \mid j B^\ell[\text{parameterize } \|^e\ell\|; p(r) = F^\ell]\mid j B^\ell[\text{parameterize } \|^e\ell\|] = F^\ell \mid j B^\ell[\text{parameterize } \|^{e_1}\ell_1\|; p(r) = F^\ell]\mid j B^\ell[\text{parameterize } \|^{e_1}\ell_1\|] = F^\ell
\]

\[
\text{install}(p_j(v,v,F)) \mid | F^\ell |^k
\]

\[
\ell B^k := \ell[k]:\]
\[
\ell B^l := \ell[l]\
\]
B.4.4 Annotated Reduction Semantics

\(\langle \text{module } \ell \text{ exports } x_1, \ldots \text{ where } y_1 = v_1, \ldots, y_n = v_n, y_{c_1} = e_1, \ldots, y_{c_m} = e_m; p, \sigma \rangle \)

\(\xrightarrow{\text{ann}} \langle \text{module } \ell \text{ exports } x_1, \ldots \text{ where } y_1 = v_1, \ldots, y_n = v_n, y_{c_1} = \{ v_{n/g_n} \} e_1, y_{c_2} = e_2, \ldots, y_{c_m} = e_m; p, \sigma \rangle \)

\(\langle \text{module } \ell \text{ exports } x_{v_1}, \ldots \text{ where } \ldots, x_{v_1} = v_1, \ldots, x_{v_1} = c_1, \ldots; p, \sigma \rangle \)

\[\xrightarrow{\text{ann}} \langle \text{import}[\ell, x_{v_1}, v_1, c_1, \ldots \text{ import}[\ell, x_{v_n}, v_n, c_n, p]], \sigma \rangle \]

\[(E^L[\fix{\lambda \alpha} \cdot e]_v[v], \sigma) \xrightarrow{\text{ann}} (E^L[\fix{\lambda \alpha} \cdot e]_v[x], \sigma) \]

\[(E^L[\fix{\mu \alpha} \cdot e], \sigma) \xrightarrow{\text{ann}} (E^L[\fix{\mu \alpha} \cdot e]_v[x], \sigma) \]

\[(E^L[\text{let } x = v \text{ in } e], \sigma) \xrightarrow{\text{ann}} (E^L[\fix{\mu \alpha} \cdot e]_v[x], \sigma) \]

\[(E^L[\text{if } \#t \text{ then } e_1 \text{ else } e_2], \sigma) \xrightarrow{\text{ann}} (E^L[e_1], \sigma) \]

\[(E^L[\text{if } \#t \text{ then } e_1 \text{ else } e_2], \sigma) \xrightarrow{\text{ann}} (E^L[e_2], \sigma) \]

\[(E^L[\text{if } \#t] \text{ where } v_1 = v_2], \sigma) \xrightarrow{\text{ann}} (E^L[\fix{\mu \alpha} \cdot e]_v[x], \sigma) \]

\[(E^L[\text{if } \#t] \text{ where } v_1 \leq v_2], \sigma) \xrightarrow{\text{ann}} (E^L[\fix{\mu \alpha} \cdot e]_v[x], \sigma) \]

\[(E^L[\text{make-parameter } \#tv], \sigma) \xrightarrow{\text{ann}} (E^L[\fix{\mu \alpha} \cdot e]_v[x], \sigma) \]

\[(E^L[\text{?p} \cdot p(r)], \sigma) \xrightarrow{\text{ann}} (E^L[\fix{\mu \alpha} \cdot e]_v[x], \sigma) \]

where \(\sigma(r) = v \) and \(E \) does not contain parameterize \(\ell B^k[p(r)] = v' \in k^2 B^k[E'] \)

\[(E^L[B^k[\text{parameterize } \#tv], \sigma) \]

\(\xrightarrow{\text{ann}} (E^L[B^k[\text{parameterize } \#tv], \sigma) \]

\[(E^L[B^k[\text{parameterize } \#tv], \sigma) \]

\(\xrightarrow{\text{ann}} (E^L[B^k[\text{parameterize } \#tv], \sigma) \]

\[(E^L[B^k[\text{parameterize } \#tv], \sigma) \]

\(\xrightarrow{\text{ann}} (E^L[B^k[\text{parameterize } \#tv], \sigma) \]

\[(E^L[B^k[\text{parameterize } \#tv], \sigma) \]

\(\xrightarrow{\text{ann}} (E^L[B^k[\text{parameterize } \#tv], \sigma) \]

\[(E^L[B^k[\text{parameterize } \#tv], \sigma) \]

\(\xrightarrow{\text{ann}} (E^L[B^k[\text{parameterize } \#tv], \sigma) \]

\[\text{mon}^k_j((\text{if } \#t \text{ flat/c}(v_c), \#tv], \sigma) \xrightarrow{\text{ann}} (E^L[\text{check}^k_j((v_c, v), \sigma), \sigma) \]

\[\text{mon}^k_j((\text{if } \#t \text{ param/c}(c), \#tv], \sigma) \xrightarrow{\text{ann}} (E^L[\text{check}^k_j((c, v), \sigma), \sigma) \]

\[\text{mon}^k_j((\text{if } \#t \text{ cld : } \tau \rightarrow (c_c, c_c), \#tv], \sigma) \xrightarrow{\text{ann}} (E^L[\text{check}^k_j((c_c, \lambda x : \tau, \#tv], \sigma), \sigma) \]

\[\text{mon}^k_j((\text{if } \#t \text{ mon } k_j((c_c, \lambda x : \tau, \#tv], \sigma), \sigma) \]

\[\text{where } x \text{ is fresh} \]

\[\text{mon}^k_j((\text{if } \#t \text{ mon } k_j((c_c, \lambda x : \tau, \#tv], \sigma), \sigma) \]

\(\xrightarrow{\text{ann}} (E^L[\lambda y : \tau_d, \#tv], \sigma) \]

\[\text{mon}^k_j((\text{if } \#t \text{ mon } k_j((c_c, \lambda x : \tau, \#tv], \sigma), \sigma) \]

\(\xrightarrow{\text{ann}} (E^L[\lambda y : \tau_d, \#tv], \sigma) \]

\[\text{where } y \text{ is fresh} \]

\[\text{mon}^k_j((\text{if } \#t \text{ cxt/c}(v_c, v_{c_1} \Rightarrow v_{c_1}, \ldots, v_{c_n} \Rightarrow v_{c_n}, v_{a_1}, v_{a_2}, \ldots) \#tv], \sigma) \]

\(\xrightarrow{\text{ann}} (E^L[\text{check}^k_j((v_c, v), \sigma), \sigma) \]

\[\text{where } e = \text{guard}_j((v_c, v), v_{c_1}, v_{c_2}, \ldots, \text{guard}_j((v_{c_1}, v), v_{c_1}, v_{c_2}, \ldots, v)) \]
\[
\langle E^E [\langle \ell \ell \text{ctx/p}_j \rangle (v_{a_1}, \ldots, v_{a_n} \mapsto v_{a_{p_1}}, \ldots, v_{a_{p_n}} \mapsto v_{a_{v_n}}), v_f)], \sigma \rangle
\]
\[
\rightarrow_{\text{ann}} \langle E^E [\langle \text{check} (v_{a}) (v_f), \sigma \rangle
\]
where \(e = \text{guard}_j ((v_{a_{p_1}}), \ldots, \text{guard}_j ((v_{a_{v_n}}), v_{a_{p_n}}, v_{a_{v_n}}, v_f)) \)
\[
\langle E^E [\text{guard}_j (\langle \ell \ell \# p \rangle, v_p, v_f)], \sigma \rangle
\rightarrow_{\text{ann}} \langle E^E (e_f), \sigma \rangle
\]
\[
\langle E^E [\text{guard}_j (\langle \ell \ell \# p \rangle, v_p, v_f)], \sigma \rangle
\rightarrow_{\text{ann}} \langle E^E (\text{install/p}_j (v_p, v_f)), \sigma \rangle
\]
\[
\langle E^E (\langle \ell \ell \text{install/p}_j \rangle, v_p, v_f), \sigma \rangle
\rightarrow_{\text{ann}} \langle E^E (\ell \ell \text{parameterize } v_p = v_v \text{ in } \ell \ell (v_f)), \sigma \rangle
\]
\[
\langle E^E (\ell \ell \text{param/p}_j (c, v_p)), \sigma \rangle
\rightarrow_{\text{ann}} \langle E^E (\ell \ell \text{parameterize } v_p = k \text{ mon}_j (c, v), \sigma \rangle
\]
\[
\langle E^E (\ell \ell \text{param/p}_j (c, v_p), = v \in \ell \ell B^E (e)), \sigma \rangle
\rightarrow_{\text{ann}} \langle E^E (\ell \ell \text{parameterize } v_p = k \text{ mon}_j (c, v), \sigma \rangle
\]
\[
\langle E^E (\ell \ell \text{check}_j (\langle \ell \ell \# p \rangle, e)), \sigma \rangle
\rightarrow_{\text{ann}} \langle E^E (e), \sigma \rangle
\]
\[
\langle E^E (\ell \ell \text{check}_j (\langle \ell \ell \# p \rangle, e)), \sigma \rangle
\rightarrow_{\text{ann}} \langle \text{error}, \sigma \rangle
\]

\[
\text{import} [k, x_1, \ldots, x_n, (v_1, \ldots, v_n), (c_1, \ldots, c_n), m_1; \ldots; m_n(e) =]
\]
\[
\text{import} [k, x_1, \ldots, x_n, (v_1, \ldots, v_n), (c_1, \ldots, c_n), m_1];
\]
\[
\ldots;
\]
\[
\text{import} [k, x_1, \ldots, x_n, (v_1, \ldots, v_n), (c_1, \ldots, c_n), e]
\]
\[
\text{module } \ell \text{ exports } x_{c_1}, \ldots \text{ where } y_1 = e_1, \ldots, y_n = e_n =
\]
\[
\text{module } \ell \text{ exports } x_{c_1}, \ldots \text{ where } y_1 = \{ \text{mon}_k (\text{obl} (c_1, (c, \ell), e, k) / (k e)), y_1 \}
\]
\[
\ldots
\]
\[
y_n = \{ \text{mon}_k (\text{obl} (c_1, (c, \ell), e, k) / (k e)), y_n \}
\]
\[
\text{import} [k, x_1, \ldots, x_n, (v_1, \ldots, v_n), (c_1, \ldots, c_n), e] =
\]
\[
\{ \text{mon}_k (\text{obl} (c_1, (c, \ell), e, k) / (k e)), y_n \}
\]

\[
\text{obl} (\ell \ell \text{flat} (c) (v), \ell \ell \tilde{k}, \ell \ell \tilde{e}) =
\]
\[
\ell \ell \text{flat} (c) (v)
\]
\[
\text{obl} (\ell \ell \text{param} (c) (e), \ell \ell \tilde{k}, \ell \ell \tilde{e}) =
\]
\[
\ell \ell \text{param} (c) (\text{obl} (c, \ell \ell \tilde{k}, \ell \ell \tilde{e}))
\]
\[
\text{obl} (\ell \ell \text{context} (c) v) v \mapsto v \ldots v, v \mapsto v \ldots) / (\ell \ell \tilde{k}, \ell \ell \tilde{e}) =
\]
\[
\ell \ell \text{context} (c) v, v \mapsto v \ldots v, v \mapsto v \ldots)
\]
B.4.5 Well-formed Annotated Programs

\[\ell_0; \Pi \vdash p \]

\[\emptyset; \Pi \vdash m_1 \triangleright \Delta_1 \quad \ldots \quad \Delta_{n-1}; \Pi \vdash m_n \triangleright \Delta_n \quad \Delta_n; \Pi \vdash e \]

\[\ell_0; \Pi \vdash m_1 : \ldots m_n : e \]

\[\Delta; \Pi \vdash m \triangleright \Delta' \]

\[\emptyset; \Pi; \ell \vdash e_1 \quad \ldots \quad \{y_1 : \ell, \ldots, y_{n-1} : \ell\}; \Pi; \ell \vdash e_n \]
\[\Gamma' = \{y_1 : \ell, \ldots, y_n : \ell\} \{x_1, \ldots, x_{n'}\} \]

\[\Delta; \Pi \vdash \text{module } \ell \text{ exports } x_1 \text{ with } x_{c_1}, \ldots, x_{n'} \text{ with } x_{c_{n'}}, \text{ where } y_1 = e_1, \ldots, y_n = e_n \triangleright \Delta \triangleright \Delta' \]

\[\Delta; \Pi; \ell \vdash e \]

\[\Delta; \Pi; \ell \vdash () \quad \Delta; \Pi; \ell \vdash n \quad \Delta; \Pi; \ell \vdash \#t \quad \Delta; \Pi; \ell \vdash \#i \]

\[\Delta; \Pi; \ell \vdash e_i \quad i \in \{1, 2\} \quad \Delta; \Pi; \ell \vdash e_1 \leq e_2 \]

\[\Delta; \Pi; \ell \vdash \let e = 1 \in e_2 \]

\[\Delta; \Pi; \ell \vdash e \]

\[\Delta; \Pi; \ell \vdash \lambda x : \tau. \ e \]

\[\Delta; \Pi; \ell \vdash \mu x : \tau. \ e \]

\[\Delta; \Pi; k \vdash e_1 \quad \Delta; \Pi; k \vdash e_2 \]

\[\Delta; \Pi; \ell \vdash \ell B^k[e_1 := e_2] \]

\[\Pi(r) = \ell \]

\[\Delta; \Pi; \ell \vdash p(r) \]

\[\Delta; \Pi; \ell \vdash \text{flat/c(e)} \]

\[\Delta; \Pi; \ell \vdash \text{param/c}(e) \]

\[\Delta; \Pi; \ell \vdash \text{make-parameter } e \]

\[\Delta; \Pi; \ell \vdash e_1 \quad \Delta; \Pi; \ell \vdash e_2 \]

\[\Delta; \Pi; \ell \vdash (\lambda x : \tau. \ e_2^\ell) \ e_3 \]

\[\Delta; \Pi; \ell \vdash e_1 : \tau \rightarrow_a (\lambda x : \tau. \ e_2^\ell) \ e_3 \]

\[\Delta; \Pi; \ell \vdash e_1 : \tau \rightarrow (e_2) \ e_3 \]

\[\Delta; \Pi; \ell \vdash e_{g_1} \quad \Delta; \Pi; \ell \vdash e_{p_1} \]

\[\Delta; \Pi; \ell \vdash e_{e_{g_1}} \quad \Delta; \Pi; \ell \vdash e_{e_{p_1}} \]

\[\Delta; \Pi; \ell \vdash e_{g_{a_1}} \quad \Delta; \Pi; \ell \vdash e_{p_{a_1}} \]

\[\Delta; \Pi; \ell \vdash e_{v_{a_1}} \]

\[\Delta; \Pi; \ell \vdash \text{ctx/c}(e_1, e_{g_1} \Rightarrow e_{p_{c_1}} \Rightarrow e_{v_{c_1}}), \ldots, e_2, (e_{g_{a_1}} \Rightarrow e_{p_{a_1}} \Rightarrow e_{v_{a_1}}), \ldots) \]

\[\Delta; \Pi; j \vdash e_1 \quad \Delta; \Pi; j \vdash e_2 \]

\[\Delta; \Pi; j \vdash e_g \quad \Delta; \Pi; j \vdash v_p \quad \Delta; \Pi; j \vdash v_v \quad \Delta; \Pi; \ell \vdash e_f \]

\[\Delta; \Pi; \ell \vdash \text{check}_j(e_1, e_2) \]

\[\Delta; \Pi; \ell \vdash \text{guard}_j(e_g, e_p, e_v, e_f) \]

\[\Delta; \Pi; \ell \vdash \text{guard}_j(e_g, e_p, e_v, e_f) \]
\[
\Delta; \Pi; \{k\}; \{\ell\}; j \triangleright c \quad \Delta; \Pi; k \triangleright v \\
\Delta; \Pi; \ell \triangleright \text{param/} p_j^k(c, v) \\
\Delta; \Pi; j \triangleright v_p \\
\Delta; \Pi; j \triangleright e_v \\
\Delta; \Pi; \ell \triangleright e_f \\
\Delta; \Pi; j \triangleright e \\
\Delta; \Pi; \ell \triangleright \ell' \langle x \rangle \\
\Delta; \Pi; \ell \triangleright e
\]
\[
c \neq \|\text{ctx/c}(e_1, e_{g_1} \Rightarrow e_{p_1} \leftarrow e_{v_1}); \ldots; e_2, e_{g_2} \Rightarrow e_{p_2} \leftarrow e_{v_2}); \ldots\|^{\ell'} \\
\Delta; \Pi; \{k\}; \{\ell\}; j \triangleright c \\
\Delta; \Pi; k \triangleright e
\]
\[
e_1 \neq e \\
\Delta; \Pi; j \triangleright e_1 \\
\Delta; \Pi; k \triangleright e_2 \\
\Delta; \Pi; \ell \triangleright \text{mon}_j^k([e_1], e_2) \\
\Delta; \Pi; \ell \triangleright \text{error}_j
\]
\[
\Delta; \Pi \vdash \sigma \\
\text{dom}(\Pi) = \text{dom}(\sigma) \\
\forall p \in \text{dom}(\sigma), \Delta; \Pi(p) \vdash \sigma(p) \\
\Delta; \Pi \vdash \sigma
\]
\[
\Delta; \Pi; k; \ell; j \triangleright c \\
\Delta; \Pi; j \triangleright e \\
\tilde{k} \subseteq \tilde{k} \\
\tilde{i} = \tilde{k} \cup \tilde{\ell} \\
\tilde{i}; \tilde{j}; j \triangleright c
\]
\[
\Delta; \Pi; k; \ell; j \triangleright e_1 \\
\Delta; \Pi; j \triangleright e_2 \\
\Delta; \Pi; k; \ell; j \triangleright e_3 \\
\Delta; \Pi; k; \ell; j \triangleright e_{\text{ctc}}
\]
\[
\Delta; \Pi; \ell \triangleright e_{g_1} \\
\Delta; \Pi; \ell \triangleright e_{p_1} \\
\Delta; \Pi; \ell \triangleright e_{v_1} \\
\Delta; \Pi; \ell \triangleright e_{g_2} \\
\Delta; \Pi; \ell \triangleright e_{p_2} \\
\Delta; \Pi; \ell \triangleright e_{v_2} \\
\tilde{\ell} \subseteq \tilde{\ell}
\]
\[
\Delta; \Pi; k; \ell; j \triangleright \|\text{ctx/c}(e_1, e_{g_1} \Rightarrow e_{p_1} \leftarrow e_{v_1}); \ldots; e_2, e_{g_2} \Rightarrow e_{p_2} \leftarrow e_{v_2}); \ldots\|^{\ell'}
\]
B.5 Metatheory of CtxPCF

Theorem 1 (Type Soundness for CtxPCF). For all programs \(p \) of CtxPCF such that \(\vdash p : \tau \)
- \((p, \emptyset) \rightarrow ^* (v, \sigma) \) or;
- \((p, \emptyset) \rightarrow (\text{error}^k, \sigma) \) or;
- \((p, \emptyset) \rightarrow ^* (\text{error}^k, \sigma) \) and there exist \(p'' \) such that \(p' \rightarrow p'' \).

Proof. Direct consequence of Lemmas 1 and 2.

Lemma 1 (Type Progress for CtxPCF Terms). If \(\Sigma \vdash p : \tau, \) then either \(p \) is a value \(v \), \(p \) is \(\text{error}^k \), or for all \(\sigma \) such that \(\emptyset; \Sigma \vdash \sigma, \) there exist \(p' \) and \(\sigma' \) such that \((p, \sigma) \rightarrow (p', \sigma') \).

Proof. By straight-forward case analysis on \(p \) using Lemmas 3, 4, and 5.

Lemma 2 (Type Preservation for CtxPCF Terms). If \(\Sigma \vdash p : \tau, \emptyset; \Sigma \vdash \sigma, \) and \((p, \sigma) \rightarrow (p', \sigma') \), then either there exists \(\Sigma' \supseteq \Sigma \) such that \(\Sigma' \vdash p' : \tau \) and \(\emptyset; \Sigma' \vdash \sigma', \), or \(p' = \text{error}^k \).

Proof. By straight-forward case analysis on the rules of the reduction semantics using Lemma 3 and Lemma 4.

Lemma 3 (Unique decomposition for CtxPCF). For all well-typed programs \(p \) such that \(p \neq v \), \(p \neq \text{error}^k \), and \(p \neq \text{module} \; \ell \; \text{exports} \; x_0, \ldots, x_n \), where \(y_1 = e_1, \ldots, y_n = e_n, \ldots ; p' \), there are unique \(e' \), and \(E \) such that \(p = E[e'] \) and \(e' \) is one of the following:

1. \(v_0 \)
2. \(\mu x : \tau \; e_0 \)
3. \(\text{let} \; x = v_0 \; \text{in} \; e_1 \)
4. \(\text{if} \; v_0 \; \text{then} \; e_1 \; \text{else} \; e_2 \)
5. \(v_0 \lor v_1 \)
6. \(v_0 \leq v_1 \)
7. \(\text{make-parameter} \; v_0 \)
8. \(\text{parameterize} \; v_0 = v_1 \; \text{in} \; e_2 \) where \(v_0 \neq p(r) \)
9. \(\text{parameterize} \; p(r) = v_1 \; \text{in} \; v_2 \)
10. \(?v_0 \)
11. \(v_0 := v_1 \)
12. \(\ell \; \text{mon}(c_0, v_1) \)
13. \(\ell \; \text{check}^k(v_0, e_1) \)
14. \(\ell \; \text{guard}_j(v_0, v_p, v_v, v_f) \)

Proof. By induction on the size of \(p \).

Lemma 4 (Well-typed evaluation context plugs for CtxPCF). If \(\Sigma \vdash E[e] : \tau, \emptyset; \Pi \vdash e : \tau', \) and \(\emptyset; \Pi \vdash e' : \tau' \), then \(\Sigma \vdash E[e'] : \tau \).

Proof. Induction on \(E \).

Lemma 5 (Type focusing for CtxPCF). If \(\Sigma \vdash E[e] : \tau \) then \(\emptyset; \Sigma \vdash e : \tau' \) for some \(\tau' \).

Proof. Induction on \(E \).

Theorem 2 (Type Soundness for Annotated CtxPCF). For all programs \(p \) of Annotated CtxPCF such that \(\vdash p : \tau \)
- \((p, \emptyset) \rightarrow ^* (v, \sigma) \) or;
- \((p, \emptyset) \rightarrow (\text{error}^k, \sigma) \) or;
- \((p, \emptyset) \rightarrow ^* (\text{error}^k, \sigma) \) and there exist \(p'' \) such that \(p' \rightarrow p'' \).

Proof. Direct consequence of Lemmas 6 and 7.

Lemma 6 (Type Progress for Annotated CtxPCF Terms). If \(\Sigma \vdash p : \tau \), then either \(p \) is a value \(v \), \(p \) is \(\text{error}^k \), or for all \(\sigma \) such that \(\emptyset; \Sigma \vdash \sigma, \) there exist \(p' \) and \(\sigma' \) such that \((p, \sigma) \rightarrow (p', \sigma') \).

Proof. By straight-forward case analysis on \(p \) using Lemmas 8, 9, and 10.
Lemma 7 (Type Preservation for Annotated CtxPCF Terms). If $\Sigma \vdash p: \tau, \emptyset; \emptyset \vdash \sigma$, and $\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle p', \sigma' \rangle$, then either there exists $\Sigma' \supseteq \Sigma$ such that $\Sigma' \vdash p': \tau$ and $\emptyset; \emptyset \vdash \sigma'$, or $p' = \text{error}^\ell_j$.

Lemma 8 (Unique decomposition for Annotated CtxPCF). For all well-typed programs p such that $p \neq v$, $p \neq \text{error}^\ell_j$, and $p \neq \text{module} \ell$ exports x_n with x_{e_1}, \ldots where $y_1 = e_1, \ldots, y_n = e_n, \ldots; p'$, there are unique e', ℓ', and $E^{\ell'}$ such that $p = E^{\ell'}[e']$ and e' is one of the following:
1. $v_0 \ v_1$
2. $\mu \ x : \tau, \ v_0$
3. $\text{let} \ x = v_0 \ in \ e_1$
4. if v_0 then e_1 else e_2
5. $v_0 \ \oplus \ v_1$
6. $v_0 \ \leq \ v_1$
7. $\text{make-parameter} \ v_0$
8. $\ell B^{\ell'}[\text{parameterize} v_0 = v_1 \ in \ j' B^{j'}[v_2]]$ where $v_0 \neq \|e^\ell \ p(r)\|
9. $\ell B^{\ell'}[\text{parameterize} \|e^\ell \ p(r)\| = v_1 \ in \ j' B^{j'}[v_2]]$
10. $? v_0$
11. $\ell B^{\ell'}[v_0 ::= v_1]$
12. $f \text{mon}^j_f[(v_0, v_1)]$
13. $\text{check}^k_f[(v_0, v_1)]$
14. $\text{guard}^k_g[(v_g, v_p, v_e, v_f)]$

Lemma 9 (Well-typed evaluation context plugs for Annotated CtxPCF). If $\Sigma \vdash E^k[e] : \tau, \emptyset; \emptyset \vdash e : \tau'$, and $\emptyset \vdash e' : \tau'$ then $\Sigma \vdash E^k[e'] : \tau$.

Proof. Induction on E^k.

Lemma 10 (Type focusing for Annotated CtxPCF). If $\Sigma \vdash E^k[e] : \tau$ then $\emptyset; \emptyset \vdash e : \tau'$ for some τ'.

Proof. Induction on E^k.

Theorem 3 (Annotation transparency). The following statements hold for Surface CtxPCF:
1. Let e be a well-typed and well-formed Annotated Surface CtxPCF program: $\vdash p : \tau$ and $\ell_0 \vdash p$. Let \bar{p} be the Surface CtxPCF expression that is like p but without annotations. If $(p, \emptyset) \rightarrow_{\text{ann}} \langle p', \sigma \rangle$, then $(\bar{p}, \emptyset) \rightarrow_{\text{ann}} \langle \bar{p}', \bar{\sigma} \rangle$, where \bar{p}' is the CtxPCF program that is like p' but without annotations.
2. Let \bar{p} be a well-typed Surface CtxPCF program: $\vdash \bar{p} : \tau$. Then there exists some Annotated Surface CtxPCF program p such that $\vdash p : \tau$ and $\ell_0 \vdash p$. Furthermore, if $(\bar{p}, \emptyset) \rightarrow_{\text{ann}} \langle \bar{p}', \bar{\sigma} \rangle$, then $(p, \emptyset) \rightarrow_{\text{ann}} \langle p', \sigma \rangle$ for some p', where p' is the CtxPCF program that is like p' but without annotations.

Proof. By a straightforward lock-step bi-simulation between the two reduction steps using the obvious annotation erasure function to relate the corresponding configurations in each step. For the second point of the Theorem, we construct p from \bar{p} by adding to each imported variable in a term of \bar{p} the appropriate annotation.

Definition 1 (Complete monitoring). CtxPCF is a complete monitor if any only if for all p such that $\vdash p_0 : \tau$ and $\ell_0 \vdash p$,
- $(p_0, \emptyset) \rightarrow_{\text{ann}} \langle v, \sigma \rangle$, or
- for all p_1 and σ_1 such that $\langle p_0, \emptyset \rangle \rightarrow_{\text{ann}} \langle p_1, \sigma_1 \rangle$ there exists p_2 and σ_2 such that $\langle p_1, \sigma_1 \rangle \rightarrow_{\text{ann}} \langle p_2, \sigma_2 \rangle$, or
- $(p_0, \emptyset) \rightarrow_{\text{ann}} \langle p_1, \sigma_1 \rangle \rightarrow_{\text{ann}} \langle \text{error}^\ell_j, \sigma_2 \rangle$ and p_1 is of the form $E^{\ell'}[f \text{mon}^k_f(\langle \text{flat}^c(p) \rangle^\ell, v)]$ and for all such terms p_1,
 $v = k^\ell v'$ and $k \in \ell'$
- $\langle p_0, \emptyset \rangle \rightarrow_{\text{ann}} \langle p_1, \sigma_1 \rangle \rightarrow_{\text{ann}} \langle \text{error}^\ell_j, \sigma_2 \rangle$ and p_1 is of the form
 $$E^{\ell'}[f \text{mon}^k_f(\langle \text{ctx}/c(v_{e_1}, v_{e_{u_1}} \rightarrow v_{p_{u_1}} \leftarrow v_{v_{u_1}}), \ldots, v_{a_1}(v_{g_{a_1}} \rightarrow v_{p_{a_1}} \leftarrow v_{v_{a_1}}), \ldots \rangle)]^\ell, v]$$
 and for all such terms $p_1, \ell \in \ell'$

Theorem 4. CtxPCF is a complete monitor.
Proof. As a direct consequence of Lemmas 5, 7, 11 and 12, we have that for all programs p_0 such that $\vdash p_0 : \tau$ and $\ell_0 \vdash p_0$, either

- $\langle p_0, \varnothing \rangle \rightarrow^\ast (v, \sigma)$, or
- for all p_1 and σ_1 such that $\langle p_0, \varnothing \rangle \rightarrow^\ast (p_1, \sigma_1)$ there exists p_2 and σ_2 such that $\langle p_1, \sigma_1 \rangle \rightarrow^\ast \langle p_2, \sigma_2 \rangle$, or
- $\langle p_0, \varnothing \rangle \rightarrow^\ast (\text{error}^j_\ell, \sigma_2)$.

In the last case, since $\ell_0 \vdash p_0$, we know that error^j_ℓ does not appear in p_0. Therefore it must have been introduced by a reduction. In particular, it must have been the result of the reduction $\langle E^f[\check{k}^j(||\#1||, e)], \sigma_2 \rangle \rightarrow^\ast \langle \text{error}^j_\ell, \sigma_2 \rangle$. Again, since $\ell_0 \vdash p_0, \check{k}^j(||\#1||, e)$ must not occur in p_0. Hence it must be the result of a reduction. There are three rules that introduce checks:

1. $\langle E^f[\mon^j_\ell(||\#1||, \ell)^\vec{k}, ||\#1||, v)], \sigma \rangle \rightarrow^\ast \langle E^f[\check{k}^j((v, v), v)], \sigma \rangle$: In this case, we can deduce

$$\langle p_0, \varnothing \rangle \rightarrow^\ast \langle \check{k}^j((v, v), v)], \sigma \rangle$$

By Lemma 12, we can deduce that for some Π such that $\varnothing; \Pi \vdash \sigma_1$, $\ell_0; \Pi \vdash E^f[\mon^j_\ell(||\#1||, ||\#1||, v)],$ and thus by well-formedness that $k \in \vec{k}$.

2. $\langle E^f[\mon^j_\ell(||\#1||, \ell)^\vec{k}, ||\#1||, v)], \sigma \rangle \rightarrow^\ast \langle E^f[\check{k}^j((v, v), ||\#1||, v)], \sigma \rangle$ where

- $c = \text{ctx}(v_c, (v_{c_1} \Rightarrow v_{c_p} \leftarrow v_{c_q}), \ldots v_{c_{p_1}} \Rightarrow v_{c_{p_2}} \leftarrow v_{c_{p_3}}), \ldots)$ and
- $e = \text{guard}_j((v_{c_1}()), v_{c_p}, v_{c_q}, \ldots)$

By Lemma 12, we can deduce that for some Π such that $\varnothing; \Pi \vdash \sigma_1$, $\ell_0; \Pi \vdash E^f[\mon^j_\ell(||\#1||, ||\#1||, v)],$ and thus by well-formedness that $\ell \in \vec{\ell}$.

3. $\langle E^f[\mon^j_\ell(||\#1||, \ell)^\vec{k}, ||\#1||, v)], \sigma \rangle \rightarrow^\ast \langle E^f[\check{k}^j((v, v), ||\#1||, v)], \sigma \rangle$ where $c = \text{ctx}(v_c, (v_{c_1} \Rightarrow v_{c_p} \leftarrow v_{c_q}), \ldots)$ and $e = \text{guard}_j((v_{c_1}(), v_{c_p}, v_{c_q}, \ldots)$

By Lemma 12, we can deduce that for some Π such that $\varnothing; \Pi \vdash \sigma_1$, $\ell_0; \Pi \vdash E^f[\mon^j_\ell(||\#1||, ||\#1||, v)],$ and thus by well-formedness that $\ell \in \vec{\ell}$.
Lemma 11 (Progress). For all programs p, stores σ, store typings Σ, and store labelings Π such that

- $\Sigma \vdash p : \tau$,
- $\emptyset; \Sigma \vdash \sigma$, and
- $e_0; \Pi \models p$,

then either

- $p = v,$
- $p = \text{error}_j$, or
- $(p, \sigma) \rightsquigarrow_{\text{ann}} (p', \sigma')$.

Proof. From Lemma 8 we know that there either $p = v$, $p = \text{error}_j$, or there exist ℓ^*, ℓ^*, and E^{ℓ^*} such that $p = E^{\ell^*}[e^*]$. The first two cases are immediate. If $p = \text{module } \ell \text{ exports } x_v \text{ with } x_{e_1}, \ldots \text{ where } y_1 = e_1, \ldots, y_n = e_n, \ldots ; p'$, then either p is one of the following:

1. $\text{module } \ell \text{ exports } x_v \text{ with } x_{e_1}, \ldots \text{ where } x_v = e_1, \ldots, x_{e_n} = e_1, \ldots, p'$: Then by the reduction relation we have

 $(p, \sigma) \rightsquigarrow_{\text{ann}} \langle \text{import}[[\ell,(x_1, \ldots, x_{e_1}),(\ell, y_1, \ldots, y_{e_1})], \sigma] \rangle$, since meta function import is total.

2. $\text{module } \ell \text{ exports } x_v \text{ with } x_{e_1}, \ldots \text{ where } x_v = e_1, \ldots, y_n = e_n, y_{e_1} = e_1, \ldots, y_{e_m} = e_m, p'$: Then by the reduction relation we have

 $(p, \sigma) \rightsquigarrow_{\text{ann}} \langle \text{export}[[\ell,(x_1, \ldots, x_{e_1}),(\ell, y_1, \ldots, y_{e_1})], \sigma] \rangle$.

In the final case, using Lemma 13 and $e_0; \Pi \models p$ we derive $\emptyset; \ell^* \models e^*$. We proceed by case analysis on e^*:

1. $v_0; v_1$: By assumption, we have $\Sigma \vdash E^{\ell^*}[v_0; v_1] : \tau$ and thus by Lemma 10 that $\emptyset; \Sigma \vdash v_0 : \tau_0$, for some τ_0. By the typing relation it must be the case that $\emptyset; \Sigma \vdash v_0 : \tau_0 \rightarrow \tau$ and $\emptyset; \Sigma \vdash v_0 : \tau_0$ for some τ_0. Since v_0 is a value with type $\tau_0 \rightarrow \tau$ and is well-formed (by further applications of Lemma 13) one of the following must be the case:

 - $v_0 = \|^{k} \lambda x : \tau_0 \rightarrow \tau. e_0\|$ for some x, e_0, and k. Similarly, v_1 can be decomposed such that $v_1 = \|^{j} v'_1\|$ for some v'_1 and 1. Since $\emptyset; \Pi; \ell^* \models \|^{k} \lambda x \rightarrow \tau_0. e_0\| \|^{j} v'_1\|$, we can deduce that $j = k = \ell^*$. Thus according to the reduction relation and Lemma 14 we have that $(p, \sigma) \rightsquigarrow_{\text{ann}} \langle \text{check}^k((v_a(0)), k^* v') \rangle, \sigma \rangle$.
 - $v_0 = \|^{k} \text{ctx/p}_j(v_a, (v_a_{p_1} \Rightarrow v_{a_{p_1}} \leftarrow v_{a_{p_1}}), \ldots, (v_a_{p_n} \Rightarrow v_{a_{p_n}} \leftarrow v_{a_{p_n}}), v_f)\|$, Since $\emptyset; \Pi; \ell^* \models \|^{k} \text{ctx/p}_j(v_a, (v_a_{p_1} \Rightarrow v_{a_{p_1}} \leftarrow v_{a_{p_1}}), \ldots, (v_a_{p_n} \Rightarrow v_{a_{p_n}} \leftarrow v_{a_{p_n}}), v_f)\| v_1$, we can deduce that $k = \ell^*$. Therefore by the reduction relation and Lemma 14 we have that

 $(p, \sigma) \rightsquigarrow_{\text{ann}} \langle \text{check}^k((v_a(0)), k^* v') \rangle, \sigma \rangle$.

2. $\mu x : \tau. e_0$: According to the reduction relation and Lemma 14 we have $(p, \sigma) \rightsquigarrow_{\text{ann}} \langle E^{\ell^*}[\{\ell^* \mu x : \tau. e_0 / x\} e_0], \sigma \rangle$.

3. let $x = v_0$ in e_1: Since $\emptyset; \Pi; \ell^* \models \text{let } x = v_0 \text{ in } e_1$, it must be the case that $\emptyset; \Pi; \ell^* \models v_0$, so $v_0 = \|^{k} v'_0\|$. Thus by the reduction relation and Lemma 14 we have $(p, \sigma) \rightsquigarrow_{\text{ann}} \langle E^{\ell^*}[\{\ell^* \mu x : \tau. e_0 / x\} e_0], \sigma \rangle$.

4. if v_0 then e_1 else e_2: Since $\emptyset; \Pi; \ell^* \models \text{if } v_0 \text{ then } e_1 \text{ else } e_2$, it must be the case that $\emptyset; \Pi; \ell^* \models v_0$, so $v_0 = \|^{k} v'_0\|$. By assumption, we have $\Sigma \vdash E^{\ell^*}[\text{if } v_0 \text{ then } e_1 \text{ else } e_2] : \tau$ and thus by Lemma 10 that $\emptyset; \Sigma \vdash v_0 : \|^{k} v'_0\|$. Thus according to the reduction relation and Lemma 14 we have either $(p, \sigma) \rightsquigarrow_{\text{ann}} \langle E^{\ell^*}[e_0], \sigma \rangle$ or $(p, \sigma) \rightsquigarrow_{\text{ann}} \langle E^{\ell^*}[e_1], \sigma \rangle$.

5. $v_0 + v_1$: By assumption, we have $\Sigma \vdash E^{\ell^*}[v_0 + v_1] : \tau$. By Lemma 10 we have $\emptyset; \Sigma \vdash v_0 + v_1 : \text{Int}$ and thus that $v_0 = \|^{k} v'_0\| \text{ and } v_1 = \|^{n} v'_1\|$. Since $\emptyset; \Pi; \ell^* \models \|^{n} v'_0\| + \|^{k} v'_1\|$, we can deduce by well-formedness that $k = j = \ell^*$. Thus according to the reduction relation and Lemma 14 we have that $(p, \sigma) \rightsquigarrow_{\text{ann}} \langle E^{\ell^*}[\{\ell^* \mu x : \tau. e_0 / x\} e_0], \sigma \rangle$.
6. $v_0 \leq v_1$: Similar to the case $v_0 \oplus v_1$.

7. make-parameter v_0: Since $\Sigma; \Pi; \ell^* \vdash \text{make-parameter } v_0$, it must be the case that $\Sigma; \Pi; \ell^* \vdash v_0$ and thus $v_0 = \|\ell^* v_0\|$ for some ℓ^*. Then by the reduction relation and Lemma 14, we have $(p, \sigma) \rightarrow_{\text{ann}} \langle E^{|\ell^* p(r)|}, \sigma[r \mapsto v_0]\rangle$, where p is fresh.

8. $\ell^* B^k[\text{parameterize } v_0 = v_1 \in j^* B^j(e_2)]$ where $v_0 \neq \|\ell^* p(r)\|$: By assumption, we have $\Sigma \vdash E^{|\ell^* B^k[\text{parameterize } v_0 = v_1 \in j^* B^j(e_2)]| : \tau$ and thus by Lemma 10 that $\Sigma; \vdash \ell^* B^k[\text{parameterize } v_0 = v_1 \in j^* B^j(e_2)] : \tau^*$ for some τ^*. By inversion, we can derive $\Sigma; \vdash v_0 : \tau^* \text{ param}$ and $\Sigma; \vdash v_1 : \tau^*$ for some τ^*. Decomposing $\Sigma; \Pi; \ell^* \vdash \ell^* B^k[\text{parameterize } v_0 = v_1 \in j^* B^j(e_2)]$ we have that $\ell = j = \ell^*$, $j^* = k$, $v_0 = \|\ell^* v_0\|$ and $v_1 = \|\ell^* v_1\|$ for some k. Further discriminating by $\Sigma; \vdash v_0 : \tau^* \text{ param}$ we have that either $v_0 = p(r)$ for some r or $v_0 = \|\text{param}/p_j^k(c, v_0^j)\|$ for some k^j and j^*. Since $v_0 \neq \|\ell^* p(r)\|$, it must be the case that $v_0 = \|\text{param}/p_j^k(c, v_0^j)\|$. Thus by the reduction relation and Lemma 14, we have that $(p, \sigma) \rightarrow_{\text{ann}} \langle E^{|\ell^* B^k[\text{parameterize } v_0 = k^j \text{ mon}_j^k(c, v_1^j) \in k^j \ell^* E^{|\ell^* p(r)|}}\rangle, \sigma\rangle$.

9. $\ell^* B^k[\text{parameterize } v_0 = v_1 \in j^* B^j(e_2)]$: Inverting $\Sigma; \Pi; \ell^* \vdash \ell^* B^k[\text{parameterize } v_0 = v_1 \in j^* B^j(e_2)]$ we have that $\ell = j = \ell^*$, $j^* = k$, $v_0 = \|\ell^* v_0\|$ and $v_2 = \|\ell^* v_2\|$. Thus by the reduction relation and Lemma 14, we have that $(p, \sigma) \rightarrow_{\text{ann}} \langle E^{|\ell^* v_0|}, \sigma\rangle$.

10. $?v$: By assumption, we have $\Sigma \vdash E^{|?v| : \tau$ and thus by Lemma 10 that $\Sigma; \vdash ?v : \tau^*$ for some τ^*. By inversion, it must be the case that $\Sigma; \vdash ?v : \tau^*$ for some τ^*. This, combined with the fact that $\Sigma; \Pi; \ell^* \vdash ?v$ allows us to derive that either $v_0 = \|\ell^* p(r)\|$ for some p or $v_0 = \|\ell^* \text{ param}/p_j^k(c, v_0)\|$. In the first case, we must consider two possibilities: when $E^{|\ell^* p(r)|}$ contains $\ell^* B^k[\text{parameterize } v_0 = ?v \text{ in } k^2 B^j(e_2)[E^{|\ell^* p(r)|}]]$ for some k, $？v$, k^j, j^*, j^ℓ, v^ℓ, and $E^{|\ell^* p(r)|}$ that doesn’t contain another parameterize expression for $p(r)$, and when $E^{|\ell^* p(r)|}$ does not contain such a context. We consider each of these cases in turn:

(a) $v_0 = \|\ell^* p(r)\|$ and $E^{|\ell^* p(r)|} = E^{|\ell^* B^j| \langle \ell^* B^j[\text{parameterize } v_0 = v_1 \in j^* B^j(e_2)]\rangle : \tau^*$ for some τ^*. By the reduction relation and Lemma 14, we have $\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{|\ell^* v_0|}, \sigma\rangle$.

(b) $v_0 = \|\ell^* p(r)\|$ and $E^{|\ell^* p(r)|} \neq E^{|\ell^* B^j| \langle \ell^* B^j[\text{parameterize } v_0 = v_1 \in j^* B^j(e_2)]\rangle : \tau^*$ for some τ^*. By the reduction semantics and Lemma 14, we have $\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{|\ell^* v_0|}, \sigma\rangle$ for some $\tau \in \tau^*$. This must be the case that $r \in \sigma$ since $\Sigma; \vdash \ell^* p(r) : \tau^*$ for some τ^*. By the reduction relation and Lemma 14, we have $\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{|\ell^* v_0|}, \sigma\rangle$.

(c) $v_0 = \|\ell^* \text{ param}/p_j^k(c, v_0)\|$: By the reduction relation and Lemma 14, we have $\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{|\ell^* v_0|}, \sigma\rangle$.

11. $\ell^* B^j[?v]:$ By assumption, we have $\Sigma \vdash \ell^* B^j[?v] : \tau$ and thus by Lemma 10 that $\Sigma; \vdash \ell^* B^j[v_0 := v_1] : \tau$. By inversion, it must be the case that $\Sigma; \vdash \ell^* B^j[v_0 := v_1] : \tau^*$ for some τ^*. This, combined with the fact that $\Sigma; \Pi; \ell^* \vdash \ell^* B^j[?v] \vdash \ell^* B^j[v_0 := v_1] \vdash \ell^* B^j[v_0 := v_1]$ allows us to derive that either $v_0 = \|\ell^* p(r)\|$ for some r or $v_0 = \|\ell^* \text{ param}/p_j^k(c, v_0)\|$. In the first case, we must consider two possibilities: when $E^{|\ell^* p(r)|}$ contains $\ell^* B^k[\text{parameterize } v_0 = ?v \text{ in } k^2 B^j(e_2)[E^{|\ell^* p(r)|}]]$ for some k, $？v$, k^j, j^*, j^ℓ, v^ℓ, and $E^{|\ell^* p(r)|}$ that doesn’t contain another parameterize expression for $p(r)$, and when $E^{|\ell^* p(r)|}$ does not contain such a context. We consider each of these cases in turn:

(a) $v_0 = \|\ell^* p(r)\|$ and $E^{|\ell^* p(r)|} = E^{|\ell^* B^j| \langle \ell^* B^j[\text{parameterize } v_0 = v_1 \in j^* B^j(e_2)]\rangle : \tau^*$ for some τ^*. By the reduction relation and Lemma 14, we have $\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{|\ell^* v_0|}, \sigma\rangle$.

(b) $v_0 = \|\ell^* p(r)\|$ and $E^{|\ell^* p(r)|} \neq E^{|\ell^* B^j| \langle \ell^* B^j[\text{parameterize } v_0 = v_1 \in j^* B^j(e_2)]\rangle : \tau^*$ for some τ^*. By the reduction semantics and Lemma 14, we have $\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{|\ell^* v_0|}, \sigma\rangle$ for some $\tau \in \tau^*$. This must be the case that $r \in \sigma$ since $\Sigma; \vdash \ell^* p(r) : \tau^*$ for some τ^*. By the reduction relation and Lemma 14, we have $\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{|\ell^* v_0|}, \sigma\rangle$.

(c) $v_0 = \|\ell^* \text{ param}/p_j^k(c, v_0)\|$: By the reduction relation and Lemma 14, we have $\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{|\ell^* v_0|}, \sigma\rangle$.

Thus by the reduction relation and Lemma 14, we have that $\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle E^{|\ell^* v_0|}, \sigma\rangle$.

(b) \(v_0 = \|^{\ell'} p(r) \| \) and \(E^{\ell'} \neq E^{\ell'}[L B_k] \) parameterize \(\|^{\ell'} p(r) \| = \nu' \in S_k B_k[E^{\ell'} \|^{\ell'} B_k \| \| v_0 = v_1 \|] \). By further applications of well-formedness, we can derive that \(v_1 = \|^{\ell'} v'_1 \| \) for some \(v'_1 \) and \(\ell' = \ell \). Thus by the reduction semantical and Lemma 14, we have \(\langle p, \sigma \rangle \rightarrow_{an} \langle E^{\ell'} \|^{\ell'} \| \| v_0 = v_1 \| \|, \sigma' \| r \rightarrow v'_1 \| \rangle \).

(c) \(v_0 = \|^{\ell'} \| p(v_1) \| \). By inverting \(\varnothing; \Pi; \ell' \rightarrow^{\ell'} B_k \| \| v_0 = v_1 \| \) we derive \(\ell' = \ell^* \). Thus by the reduction relation and Lemma 14, we have \(\langle p, \sigma \rangle \rightarrow_{an} \langle E^{\ell'} \|^{\ell'} \| \| v_0 = \kappa \| \| \|, \sigma \| \rangle \).

12. \(\|^{\ell'} m_0 \| \) (\(c_0, v_1 \)): Deconstructing \(c_0 \) we consider seven cases (for simplicity, we reduce \(\|^{\ell'} \ldots \|^{\ell'} c \| \ldots \|^{\ell'} \| c \) since well-formedness will ensure it):

(a) \(\|^{\ell'} \| flat/c(v_0) \| \): This case is a contradiction, since \(\varnothing; \Pi; \ell' \models^{\ell'} m_0 \| \| flat/c(v_0) \| , v_1 \| \) requires \(\varnothing; \Pi; j; \{ k \}; \ell \models^{\ell'} flat/c(v_0) \| \), which does not hold.

(b) \(\|^{\ell'} \| param/c(v_0) \| \): Since \(\varnothing; \Pi; \ell' \models^{\ell'} m_0 \| \| param/c(v_0) \| , v_1 \| \) we can deduce \(\ell = \ell^* \) and \(\ell' = j \). Thus by the reduction relation and Lemma 14, we have \(\langle p, \sigma \rangle \rightarrow_{an} \langle E^{\ell'} \|^{\ell'} \| \| v_0 = \kappa \| \| \|, \sigma \| \rangle \).

(c) \(\|^{\ell'} \| c_d : \ell' \rightarrow (c_0) \| \| \): Since \(\varnothing; \Pi; \ell' \models^{\ell'} m_0 \| \| c_d : \ell' \rightarrow (c_0) \| , v_1 \| \) we can deduce \(\ell = \ell^* \) and \(\ell' = j \). Thus by the reduction relation and Lemma 14, we have \(\langle p, \sigma \rangle \rightarrow_{an} \langle E^{\ell'} \|^{\ell'} \| \| c_d \| \| \|, \sigma \| \rangle \).

(d) \(\|^{\ell'} \| c_d : \ell' \rightarrow (c_0) \| \| \): Since \(\varnothing; \Pi; \ell' \models^{\ell'} m_0 \| \| c_d : \ell' \rightarrow (c_0) \| , v_1 \| \) we can deduce \(\ell = \ell^* \) and \(\ell' = j \). Thus by the reduction relation and Lemma 14, we have \(\langle p, \sigma \rangle \rightarrow_{an} \langle E^{\ell'} \|^{\ell'} \| \| c_d \| \| \|, \sigma \| \rangle \).

(e) \(\|^{\ell'} \| ctx/c(v_c : v_c \rightarrow v_c, v_c \rightarrow v_c) \| \| \| \): This case is a contradiction, since \(\varnothing; \Pi; \ell' \models^{\ell'} m_0 \| \| ctx/c(v_c : v_c \rightarrow v_c, v_c \rightarrow v_c) \| , v_1 \| \) requires \(\varnothing; \Pi; j; \{ k \}; \ell \models^{\ell'} ctx/c(v_c : v_c \rightarrow v_c, v_c \rightarrow v_c) \| , v_1 \| \), which does not hold.

(f) \(\|^{\ell'} \| flat/c(v_0) \| \): Since \(\varnothing; \Pi; \ell' \models^{\ell'} m_0 \| \| flat/c(v_0) \| , v_1 \| \) we can deduce \(\ell = \ell^* \) and \(\ell' = j \). Thus by the reduction relation and Lemma 14, we have \(\langle p, \sigma \rangle \rightarrow_{an} \langle E^{\ell'} \|^{\ell'} \| \| v_0 = \kappa \| \| \|, \sigma \| \rangle \).

(g) \(\|^{\ell'} \| ctx/c(v_c : v_c \rightarrow v_c, v_c \rightarrow v_c) \| \| \| \): Since \(\varnothing; \Pi; \ell' \models^{\ell'} m_0 \| \| ctx/c(v_c : v_c \rightarrow v_c, v_c \rightarrow v_c) \| , v_1 \| \) we can deduce \(\ell = \ell^* \) and \(\ell' = j \). Thus by the reduction relation and Lemma 14, we have \(\langle p, \sigma \rangle \rightarrow_{an} \langle E^{\ell'} \|^{\ell'} \| \| v_0 = \kappa \| \| \|, \sigma \| \rangle \).

13. \(\|^{\ell'} \| flat/c(v_0) \| \): By assumption, we have \(\Sigma \vdash E^{\ell'} \|^{\ell'} \| \| v_0 = \kappa \| \| \| \). By Lemma 10, we have \(\varnothing; \Sigma \vdash \|^{\ell'} \| \| v_0 = \kappa \| \| \| \). By inversion, \(\varnothing; \Sigma \vdash v_0 \| : \text{Bool} \). This combined with further decomposing \(\varnothing; \Pi; \ell' \models^{\ell'} \| \| \| \| v_0 \| \| \| \), is sufficient to derive that either \(v_0 = \|^{\ell'} \| \| \) or \(v_0 = \|^{\ell'} \| \| \). In the first case and appealing to Lemma 14, we have \(\langle p, \sigma \rangle \rightarrow_{an} \langle E^{\ell'} \| v_0 \| , \sigma \| \rangle \). In the latter, we have \(\langle p, \sigma \rangle \rightarrow_{an} \langle \|^{\ell'} \| \| \| , \sigma \| \rangle \).

14. \(\|^{\ell'} \| flat/c(v_0) \| \): By assumption, we have \(\Sigma \vdash E^{\ell'} \|^{\ell'} \| \| v_0 = \kappa \| \| \| \). By Lemma 10, we have \(\varnothing; \Sigma \vdash \|^{\ell'} \| \| v_0 = \kappa \| \| \| \). By inversion, \(\varnothing; \Sigma \vdash v_0 \| : \text{Bool} \). This combined with further decomposing \(\varnothing; \Pi; \ell' \models^{\ell'} \| \| \| \| v_0 \| \| \| \), is sufficient to derive that either \(v_0 = \|^{\ell'} \| \| \) or \(v_0 = \|^{\ell'} \| \| \). Using Lemma 14, we can now construct reductions for each case. In the first, we have \(\langle p, \sigma \rangle \rightarrow_{an} \langle E^{\ell'} \| v_0 \| , \sigma \| \rangle \). In the latter, we have \(\langle p, \sigma \rangle \rightarrow_{an} \langle \|^{\ell'} \| \| \| , \sigma \| \rangle \).

Lemma 12 (Preservation). For all programs \(p \), stores \(\sigma \), store typings \(\Sigma \), and store labelings \(\Pi \) such that:

- \(\Sigma \vdash p : \tau \).
- \(\varnothing; \Sigma \vdash \sigma \).
- \(\ell_0; \Pi \vdash p \), and
- \(\langle p, \sigma \rangle \rightarrow_{an} \langle p', \sigma' \rangle \),

there exists a store labeling \(\Pi' \) such that:

- \(\Pi' \supseteq \Pi \).
- \(\ell_0; \Pi' \vdash p' \).

Proof. By case analysis on the reduction \(\langle p, \sigma \rangle \rightarrow_{an} \langle p', \sigma' \rangle \):

\[\text{□} \]
Lemma 13 and well-formedness, we have that $\emptyset \vdash v_1, \ldots, v_n; y_1; e_1, y_2; e_2, \ldots, y_m; e_m; \rho, \sigma$.

Let $\Pi' = \Pi$. It suffices to show that given

- $\Pi \vdash \text{module } \ell \text{ exports } x_1 \text{ with } x_{c_1}; \ldots; \text{ where } x_1 = v_1; \ldots, x_n = v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.
- $\Pi \vdash \text{module } \ell \text{ exports } x_i \text{ with } x_{c_i}; \ldots; \text{ where } x_1 = v_1; \ldots, x_n = v_n; x_{c_i} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.

From the premise, we have that $\emptyset; \Pi; \emptyset \vdash v_1, \ldots, v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m \cup \Delta$. This suffices to show the desired result, except we must also show $\{y_1; e_1, \ldots, y_n; e_n; \ell; \rho, \sigma\}$, where $\rho' = m_1; \ldots, m_n; e$.

We also show $\{y_1; e_1, \ldots, y_n; e_n; \ell; \rho, \sigma\}$, where $\rho' = m_1; \ldots, m_n; e$.

By Lemma 14, it suffices to show that $\emptyset; \Pi; \emptyset \vdash \{e_1; v_1, e_2; v_2, \ldots, e_n; v_n\}$.

By Lemma 13 and well-formedness, we have that $\emptyset; \Pi; \emptyset \vdash v_1, \ldots, v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.

By Lemma 14, it suffices to show that $\emptyset; \Pi; \emptyset \vdash \{e_1; v_1, e_2; v_2, \ldots, e_n; v_n\}$.

By Lemma 13 and well-formedness, we have that $\emptyset; \Pi; \emptyset \vdash v_1, \ldots, v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.

By Lemma 14, it suffices to show that $\emptyset; \Pi; \emptyset \vdash \{e_1; v_1, e_2; v_2, \ldots, e_n; v_n\}$.

By Lemma 13 and well-formedness, we have that $\emptyset; \Pi; \emptyset \vdash v_1, \ldots, v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.

By Lemma 14, it suffices to show that $\emptyset; \Pi; \emptyset \vdash \{e_1; v_1, e_2; v_2, \ldots, e_n; v_n\}$.

By Lemma 13 and well-formedness, we have that $\emptyset; \Pi; \emptyset \vdash v_1, \ldots, v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.

By Lemma 14, it suffices to show that $\emptyset; \Pi; \emptyset \vdash \{e_1; v_1, e_2; v_2, \ldots, e_n; v_n\}$.

By Lemma 13 and well-formedness, we have that $\emptyset; \Pi; \emptyset \vdash v_1, \ldots, v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.

By Lemma 14, it suffices to show that $\emptyset; \Pi; \emptyset \vdash \{e_1; v_1, e_2; v_2, \ldots, e_n; v_n\}$.

By Lemma 13 and well-formedness, we have that $\emptyset; \Pi; \emptyset \vdash v_1, \ldots, v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.

By Lemma 14, it suffices to show that $\emptyset; \Pi; \emptyset \vdash \{e_1; v_1, e_2; v_2, \ldots, e_n; v_n\}$.

By Lemma 13 and well-formedness, we have that $\emptyset; \Pi; \emptyset \vdash v_1, \ldots, v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.

By Lemma 14, it suffices to show that $\emptyset; \Pi; \emptyset \vdash \{e_1; v_1, e_2; v_2, \ldots, e_n; v_n\}$.

By Lemma 13 and well-formedness, we have that $\emptyset; \Pi; \emptyset \vdash v_1, \ldots, v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.

By Lemma 14, it suffices to show that $\emptyset; \Pi; \emptyset \vdash \{e_1; v_1, e_2; v_2, \ldots, e_n; v_n\}$.

By Lemma 13 and well-formedness, we have that $\emptyset; \Pi; \emptyset \vdash v_1, \ldots, v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.

By Lemma 14, it suffices to show that $\emptyset; \Pi; \emptyset \vdash \{e_1; v_1, e_2; v_2, \ldots, e_n; v_n\}$.

By Lemma 13 and well-formedness, we have that $\emptyset; \Pi; \emptyset \vdash v_1, \ldots, v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.

By Lemma 14, it suffices to show that $\emptyset; \Pi; \emptyset \vdash \{e_1; v_1, e_2; v_2, \ldots, e_n; v_n\}$.

By Lemma 13 and well-formedness, we have that $\emptyset; \Pi; \emptyset \vdash v_1, \ldots, v_n; x_{c_1} = e_1; \ldots, y_m; e_m = e_m; \rho, \sigma$.
(by Lemma 14) $\varnothing; \Pi; \ell \vdash \vert f \vert$. The last holds by inspection. $\Pi(r) = k$ and $\varnothing; \Pi; k \vdash v$ hold by Lemma 13 and well-formedness or parameter assignment.

14. $(E^{[\ell]}B^k[\text{parameterize }] \vert^k v) = \vert^k v \in k B^k(E^{[\ell]}B^k[\text{parameterize }] \vert^k v) := \vert^k v \vert^k v)$, σ \rightarrow_{ann} $(E^{[\ell]}E^{[\ell]}B^k[\text{parameterize }] \vert^k v) = \vert^k v \in k B^k(E^{[\ell]}E^{[\ell]}B^k[\text{parameterize }] \vert^k v)$, σ where $E^{[\ell]}$ does not contain $E^{[\ell]}$. By Lemma 14 it suffices to show that $\varnothing; \Pi; \ell \vdash \vert^k v$ parameterize, with an application of Lemma 14 to show that $\varnothing; \Pi; \ell \vdash E^{[\ell]} \vert^k v$ since $\varnothing; \Pi; \ell' \vdash \vert^k v$.

15. $(E^{[\ell]}B^k[\text{parameterize }] \vert^k v) = \vert^k v \in k B^k(E^{[\ell]}v)$, σ \rightarrow_{ann} $(E^{[\ell]}[\text{check}]\vert^k v)$, σ: By Lemma 14 it suffices to show that $\varnothing; \Pi; \ell \vdash \vert^k v$, which follows from Lemma 13 and well-formedness.

16. $(E^{[\ell]}[\text{check}]\vert^k v)$, σ \rightarrow_{ann} $(E^{[\ell]}[\text{check}]\vert^k v)$, σ: By Lemma 14 it suffices to show that $\varnothing; \Pi; \ell \vdash \text{check}(\vert^k v, v, v)$, σ. In turn, we must show that $\varnothing; \Pi; j \vdash (v, v)$ and $\varnothing; \Pi; j \vdash v$. By Lemma 10 we can deduce that $\varnothing; \Sigma \vdash \text{mon}(\vert^k v) : \beta$ for some β, and thus that $\varnothing; \Sigma \vdash v : \beta$. Thus v is either λ, $\#$, $\#$, or an integer, and so $\varnothing; \Pi; \ell \vdash v$ for all ℓ.

17. $(E^{[\ell]}[\text{check}]\vert^k v)$, σ \rightarrow_{ann} $(E^{[\ell]}[\text{check}]\vert^k v)$, σ: By Lemma 14 it suffices to show that $\varnothing; \Pi; \ell \vdash \text{check}(\vert^k v, c, v)$, σ. In this way we have $\varnothing; \Pi; k \vdash v$ and $\varnothing; \Pi; k \vdash c$. Inverting the latter second time, we have that $\varnothing; \Pi; k \vdash v$ and $\varnothing; \Pi; j \vdash c$, which by Lemma 17 implies $\varnothing; \Pi; \ell \vdash c$. By Lemma 16, we have that $\varnothing; \Pi; \ell \vdash \text{mon}(\vert^k v)$.

18. $(E^{[\ell]}[\text{check}]\vert^k v)$, σ \rightarrow_{ann} $(E^{[\ell]}[\text{check}]\vert^k v)$, σ: By Lemma 14 it suffices to show that $\varnothing; \Pi; \ell \vdash \text{check}(\vert^k v, c, v)$, σ. We first must establish that $c = \exists \exists \text{cx}(v, c) \in \text{v}$. This follows from the fact that $\varnothing; \Pi; k \vdash \text{v}$, (since by Lemma 10 and repeated inactions we can show that $\varnothing; \Sigma \vdash c : \text{cx}$, which by well-formedness for contracts, we reduce what needs to be shown to $\varnothing; \Pi; k$).

19. $(E^{[\ell]}[\text{check}]\vert^k v)$, σ \rightarrow_{ann} $(E^{[\ell]}[\text{check}]\vert^k v)$, σ: By Lemma 14 it suffices to show that $\varnothing; \Pi; \ell \vdash \text{check}(\vert^k v, c, v)$, σ. We first must establish that $c = \exists \exists \text{cx}(v, c) \in \text{v}$. This follows from the fact that $\varnothing; \Pi; k \vdash \text{v}$, (since by Lemma 10 and repeated inactions we can show that $\varnothing; \Sigma \vdash c : \text{cx}$, which by well-formedness for contracts, we reduce what needs to be shown to $\varnothing; \Pi; k$).

20. $(E^{[\ell]}[\text{check}]\vert^k v)$, σ \rightarrow_{ann} $(E^{[\ell]}[\text{check}]\vert^k v)$, σ: By Lemma 14 it suffices to show that $\varnothing; \Pi; \ell \vdash \text{check}(\vert^k v, e)$, σ. To do so, we apply Lemma 13 and repeated inactions to deduce $\varnothing; \Pi; j \vdash v$, $\varnothing; \Pi; j \vdash e$, $\varnothing; \Pi; j \vdash v$, and $\varnothing; \Pi; \ell \vdash v$ and use these facts to demonstrate the necessary well-formedness property.
and Ω; ℓ ⊨ v. The latter holds by Lemma 13 and well-formedness. The former requires further showing that Ω; j ⊨ va, Ω; j ⊨ λ, and Ω; ℓ ⊨ e. This is straightforward, since we can derive Ω; j ⊨ va, Ω; j ⊨ va_a, Ω; j ⊨ va_p, Ω; j ⊨ va_a, Ω; j ⊨ va_p, and Ω; ℓ ⊨ v_f by Lemma 13 and repeated applications of well-formedness.

22. \((E^f[\text{guard}] (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle), \sigma) \rightarrow_{\text{ann}} (E^f[e_f], \sigma) \): By Lemma 14 it suffices to show that Ω; ℓ ⊨ e_f. This holds since by Lemma 13 and inversion Ω; ℓ ⊨ guard (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle), which requires that Ω; ℓ ⊨ e_f.

23. \((E^f[\text{guard}] (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle), \sigma) \rightarrow_{\text{ann}} (E^f[\text{install/p}] (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle), \sigma) \): By Lemma 14 it suffices to show that Ω; ℓ ⊨ install/p (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle), Ω; ℓ ⊨ (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle). By well-formedness, we must show that Ω; j ⊨ v_p, Ω; j ⊨ (v), Ω; ℓ ⊨ e_f. By Lemma 13 and inversion we have Ω; ℓ ⊨ guard (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle), which inverting again is sufficient to show the required well-formedness properties.

24. \((E^f[\text{install/p}] (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle), \sigma) \rightarrow_{\text{ann}} (E^f[\text{parameterize}] v_p = v_v in j \ell (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle), \sigma) \): By Lemma 14 it suffices to show that Ω; ℓ ⊨ \ell (\text{parameterize} v_p = v_v in j \ell (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle)). By the well-formedness rule for parameterize, we must show that Ω; j ⊨ v_p, Ω; j ⊨ v_v, and Ω; ℓ ⊨ (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle). By Lemma 13 and inversion we can derive Ω; ℓ ⊨ install/p (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle) and Ω; ℓ ⊨ v. Inverting the former, we can further infer Ω; j ⊨ v_p, Ω; j ⊨ v_v, and Ω; ℓ ⊨ v. All that remains to be show is Ω; ℓ ⊨ (\langle \ell, \emptyset, \emptyset, \emptyset, \emptyset \rangle), which follows through a single application of the well-formedness rule for application.

25. \((E^f[\text{param}] (\ell, c, v_p), \sigma) \rightarrow_{\text{ann}} (E^f[\text{mon}] (\ell, c, v_p), \sigma) \): By Lemma 14 it suffices to show that Ω; ℓ ⊨ \ell (\text{param} (\ell, c, v_p)): \tau' for some \tau'. By Lemma 10 we can derive Ω; \Sigma ⊨ ?\ell (\text{param} (\ell, c, v_p)): \tau' for some \tau'. By Lemma 13 and inversion we can derive Ω; ℓ ⊨ ?\ell (\text{param} (\ell, c, v_p)) and thus by inversion the required facts.

26. \((E^f[\text{BP}] (\text{parameterize} c, v_p), \sigma) \rightarrow_{\text{ann}} (E^f[\text{param}] (\ell, c, v_p), v in \ell (\text{BP} [\ell]), \sigma) \rightarrow_{\text{ann}} (E^f[\text{param}] (\ell, c, v_p), \sigma) \): By Lemma 14 it suffices to show that Ω; ℓ ⊨ \ell (\text{param} (\ell, c, v_p) = k \text{mon} (\ell, c, v) in k \ell (\ell)), which by the well-formedness of parameterize simply requires that Ω; k ⊨ v_p, Ω; ℓ ⊨ c, and Ω; ℓ ⊨ v. The first two facts can be established by inverting Ω; ℓ ⊨ \ell (\text{param} (\ell, c, v_p): v in \ell (\text{BP} [\ell])) by repeated inversions and the well-formedness rule for monitor well-formedness. For the third, we first establish that Ω; k ⊨ \ell (\text{mon} (\ell, c, v) = k \text{param} (\ell, c, v_p)). By Lemma 10 and repeated inversions we can show that Ω; \Sigma ⊨ c: ?\tau' \text{ ctc for some } \tau'. Then by the well-formedness rule for monitor well-formedness, we simply must show that Ω; ℓ ⊨ ?\ell (\ell); j ⊨ c and Ω; ℓ ⊨ v. Both facts follow from inverting Ω; ℓ ⊨ ?\ell (\ell); j ⊨ c and Ω; ℓ ⊨ v. The latter holds by Lemma 13 and repeated applications of well-formedness.

27. \((E^f[\text{BP}] (\ell, c, v_p), \sigma) \rightarrow_{\text{ann}} (E^f[kv := \text{mon} (\ell, c, v), \sigma) \): By Lemma 14 it suffices to show that Ω; ℓ ⊨ k v_p := k \text{mon} (\ell, c, v). By the well-formedness rule for parameter assignment, we must show that Ω; k ⊨ v_p and Ω; k ⊨ k \text{mon} (\ell, c, v). As in the above cases, we use type focusing and inversion to demonstrate that c is not a context contract, and then Lemma 13 and repeated inversions to demonstrate the necessary well-formedness judgments.

28. \((E^f[\text{check}] (\ell, e), \sigma) \rightarrow_{\text{ann}} (E^f[e], \sigma) \): By Lemma 14 it suffices to show that Ω; ℓ ⊨ e. This follows from the fact that, by Lemma 13 Ω; ℓ ⊨ check (\ell, e).

29. \((E^f[\text{check}] (\ell, e), \sigma) \rightarrow_{\text{ann}} (\text{error} [\ell, e], \sigma) \): Trivial.

Lemma 13 (Label focusing for Annotated CtxPCF). If \(ℓ; Π ⊨ E^k [e] \) then Ω; k ⊨ e.

Proof. Induction on E^k.

Lemma 14 (Well-formed evaluation context plugs for Annotated CtxPCF). If \(ℓ; Π ⊨ E^k [e] \) and Ω; k ⊨ e' then \(ℓ; Π ⊨ E^k [e'] \).

Proof. Induction on E^k.
Lemma 15 (Well-formed substitution for Annotated CtxPCF). If $\Delta[x \mapsto e]; \Pi; k \vdash e_1$ and $\Delta; \Pi; \ell \vdash e_2$ then $\Delta; \Pi; k \vdash \{^{\ell,e_2}/_x\}e_1$.

Proof. Mutual induction on well-formedness and well-formed contracts.

Lemma 16 (Weakening for Well-formedness for Annotated CtxPCF). If $\Delta; \Pi; \ell \vdash e_1$ and $r \not\in e_1$, then $\Delta; \Pi[r \mapsto k]; \ell \vdash e_1$.

Proof. Mutual induction on well-formedness and well-formed contracts.

Lemma 17 (Weakening well-formed contracts for Annotated CtxPCF). If $\Delta; \Pi; \vec{k}; \vec{\ell}; j \triangleright c$, then $\Delta; \Pi; \vec{k}; \vec{\ell}; j \triangleright c$ for all \vec{k}' and $\vec{\ell}'$ such that $\vec{k} \subseteq \vec{k}'$ and $\vec{\ell} \subseteq \vec{\ell}'$.

Proof. Induction on well-formed contracts.

Lemma 18 (Weakening label environments for well-formedness for Annotated CtxPCF). If $\Delta; \Pi; \ell \vdash e$, then $\Delta[x \mapsto \ell']; \Pi; \ell \vdash e$ for any x and ℓ' such that x is not in the free variables of e.

Proof. Mutual induction on well-formed contracts and well-formed expressions.

Lemma 19 (Weakening label environments for well-formed contracts for Annotated CtxPCF). If $\Delta; \Pi; \vec{k}; \vec{\ell}; j \triangleright c$, then $\Delta[x \mapsto \ell']; \Pi; \vec{k}; \vec{\ell}; j \triangleright c$ for any x and ℓ' such that x is not in the free variables of c.

Proof. Mutual induction on well-formed contracts and well-formed expressions.

Lemma 20 (Well-formed imports for Annotated CtxPCF). If for $\Delta = \{x_1 : \ell, \ldots, x_m : \ell\}$:

$\Delta; \Pi \vdash m_1 \triangleright \Delta_1,

\ldots

\Delta_{n-1}; \Pi \vdash m_n \triangleright \Delta_n$, and

$\Delta_n; \Pi; \ell_0 \vdash e$, and also

$\Delta; \Pi; \ell \vdash v_1, \ldots, \Delta; \Pi; \ell \vdash v_m$ and $\Delta; \Pi; \ell \vdash c_1, \ldots, \Delta; \Pi; \ell \vdash v_m$, then

$\ell_0; \Pi \vdash \text{import}[[\ell,(x_1,\ldots,x_m),(v_1,\ldots,v_m),(c_1,\ldots,c_m),m_1,\ldots,m_n];e]$.

Proof. Induction on the size of $m_1;\ldots;m_n;e$.

B.6 Surface Ctrl+CtxPCF

B.6.1 Surface Programs

Note. The following extend the syntax of Surface CtxPCF.

$$
e ::= \ldots | \text{make-tag} : (\tau \rightarrow \tau) | \text{reset} e \text{ in } e | \text{shift } e \text{ as } x \text{ in } e | \text{tag/c}(e,e,e)$$

c ::= \ldots | \text{tag/c}(c,c,c)

$\tau ::= \ldots | (\tau \rightarrow \tau) \text{ tag}$

B.7 Well-typed Surface Programs

Note. The following extend the typing rules of Surface CtxPCF.

\[
\Gamma \vdash e : \tau
\]
\[
\Gamma \vdash \text{make-tag} : (\tau_d \to \tau_r) : (\tau_d \to \tau_r) \\text{tag}
\]

\[
\Gamma \vdash e_i : (\tau_d \to \tau_r) \\text{tag} \quad \Gamma \vdash e_v : \tau_r
\]

\[
\Gamma \vdash \text{reset } e_i \text{ in } e_v : \tau_r
\]

\[
\Gamma \vdash e_1 : (\tau_d \to \tau_r) \ \text{ctc} \quad \Gamma \vdash e_2 : \tau_d \ \text{ctc} \quad \Gamma \vdash e_3 : \tau_r \ \text{ctc}
\]

\[
\Gamma \vdash \text{tag/c}(e_1, e_2, e_3) : ((\tau_d \to \tau_r) \ \text{tag}) \ \text{ctc}
\]

\[
\Gamma \vdash \text{shift } e_i \text{ as } x \text{ in } e_v : \tau_d
\]
B.8 Annotated Surface Ctrl+CtxPCF

Note. The following extend the syntax and typing rules of Surface Ctrl+CtxPCF unless stated otherwise.

B.8.1 Annotated Surface Programs

\[e ::= \ldots \mid \ell(\langle k \rangle x) \]

B.8.2 Additional Typing Rules for Annotated Surface Programs

\[
\begin{align*}
\Gamma \vdash e : \tau & \quad \Gamma \vdash x : \tau \\
\Gamma \vdash \langle k \rangle x : \tau & \quad \Gamma \vdash \ell(\langle k \rangle x) : \tau
\end{align*}
\]

B.8.3 Well-formed Annotated Surface Programs

Note. The following extend the well-formedness rules of Annotated Surface CtxPCF.

\[
\Delta;\ell \vdash e
\]

\[
\begin{align*}
\Delta;\ell \vdash \text{make-tag} : (\tau_d \to \tau_r) & \quad \Delta;\ell \vdash e_t & \quad \Delta;\ell \vdash e_v \\
\Delta;\ell \vdash e_t & \quad \Delta[x \mapsto \ell];\ell \vdash e_v & \quad \Delta;\ell \vdash \text{reset } e_t \text{ in } e_v \\
\Delta;\ell \vdash e_t & \quad \Delta[x \mapsto \ell];\ell \vdash e_v & \quad \Delta;\ell \vdash \text{shift } e_t \text{ as } x \text{ in } e_v \\
\Delta;\ell \vdash e_t & \quad \Delta;\ell \vdash e_t & \quad \Delta;\ell \vdash \text{tag/c}(e_1, e_2, e_3)
\end{align*}
\]
B.9 Ctrl+CtxPCF

B.9.1 Programs

Note. The following extend the syntax of CtxPCF.

```
\[ e ::= ... \mid \text{make-tag} : (\tau \to \tau) \mid \text{reset } e \text{ in } e \mid \text{shift } e \text{ as } x \text{ in } e \mid \text{tag/c}(e, e, e) \]
\[ v ::= ... \mid t(t) : (\tau \to \tau) \mid \text{tag/p}^k_j(c, c, c, v) \]
\[ \tau ::= ... \mid (\tau \to \tau) \text{ tag} \]
```

B.9.2 Well-typed Programs

Note. The following extend the typing rules of CtxPCF.

\[
\begin{align*}
\Gamma; \Sigma &\vdash e : \tau \\
\Gamma; \Sigma &\vdash \text{make-tag} : (\tau_d \to \tau_r) : (\tau_d \to \tau_r) \text{ tag} \\
\Gamma; \Sigma &\vdash \text{reset } e \text{ in } e : v : \tau_r \\
\Gamma; \Sigma &\vdash \text{shift } e \text{ as } x \text{ in } e : \tau_r \\
\Delta; \ell &\vdash (\tau_d \to \tau_r) \text{ tag} \\
\Gamma; \Sigma &\vdash \text{tag/c}(\ell \text{ tag/p}^k_j(c_1, c_2, c_3, v)) : (\tau_d \to \tau_r) \text{ tag} \\
\Gamma; \Sigma &\vdash \text{tag/c}(\ell \text{ ctc}) : (\tau_d \to \tau_r) \text{ tag} \\
\Gamma; \Sigma &\vdash \text{tag/c}(\ell \text{ ctc}) : (\tau_d \to \tau_r) \text{ tag} \\
\Gamma; \Sigma &\vdash \sigma \\
\end{align*}
\]

\[
\begin{align*}
\text{dom}(\Sigma) &\subseteq \text{dom}(\sigma) \\
\forall r \in \text{dom}(\sigma), \Gamma; \Sigma &\vdash \Sigma(r) : \sigma(r) \\
\forall t \in \text{dom}(\sigma), \Gamma; \Sigma &\vdash \Sigma(t) : \text{Unit} \\
\Gamma; \Sigma &\vdash \sigma \\
\end{align*}
\]

B.9.3 Evaluation Contexts

Note. The following extend the evaluation contexts of CtxPCF.

```
\[ E ::= ... \mid \text{reset } E \text{ in } e \mid \text{reset } v \text{ in } E \mid \text{shift } E \text{ as } x \text{ in } e \mid \text{tag/c}(E, e, e) \mid \text{tag/c}(E, c, e) \mid \text{tag/c}(c, c, E) \]
\[ \ell^T^k ::= [\ell] \mid \text{tag/p}^k_j(c_1, c_2, c_3, \ell^T^k) \]
```
B.9.4 Reduction Semantics

Note. The following extend the reduction rules of CtxPCF.

\[
\langle E[\text{make-tag } : (\tau_1 \rightarrow \tau_2)], \sigma \rangle \quad \rightarrow \quad \langle E[t(t) : (\tau_1 \rightarrow \tau_2)], \sigma[t \mapsto ()] \rangle \text{ where } t \text{ is fresh in } \sigma
\]

\[
\langle E[\text{reset } \ell^k t(t) : (\tau_d \rightarrow \tau_r)] \text{ in } v \rangle, \sigma \quad \rightarrow \quad \langle E[v], \sigma \rangle
\]

\[
\langle E[\text{reset } \ell^k t(t) : (\tau_d \rightarrow \tau_r)] \text{ in } E'[\text{shift } \ell^k t(t) : (\tau_d \rightarrow \tau_r)] \text{ as } x \in e \rangle, \sigma
\]

\[
\rightarrow \quad \langle E[\text{reset } \ell^k t(t) : (\tau_d \rightarrow \tau_r)] \text{ in } \{e'/x\}^e \rangle, \sigma
\]

where \(v_k = \lambda y : \tau_d. \text{reset } \ell^k t(t) : (\tau_d \rightarrow \tau_r) \text{ in } E'[e_y] \)

and \(e_y = \text{wrap}_2[\ell^k t(t) : (\tau_d \rightarrow \tau_r), \text{wrap}_1[\ell^k t(t) : (\tau_d \rightarrow \tau_r), v_k]] \)

and \(\ell^e = \text{wrap}_2[\ell^k t(t) : (\tau_d \rightarrow \tau_r), \text{wrap}_1[\ell^k t(t) : (\tau_d \rightarrow \tau_r), y]] \)

and \(E' \) does not contain \(\text{reset } \ell^k t(t) : (\tau_d \rightarrow \tau_r) \) in \(E'' \)

\[
\langle E[\text{mon}^k_f (\text{tag/c}(c_1, c_2, c_3), v)], \sigma \rangle \quad \rightarrow \quad \langle E[\text{tag/p}_f^k(c_1, c_2, c_3, v)], \sigma \rangle
\]
B.10 Annotated Ctrl+CtxPCF

Note. The following extend the syntax and typing rules of Ctrl+CtxPCF unless stated otherwise.

B.10.1 Annotated Ctrl+CtxPCF Programs

\[e ::= \ldots | \ell'(e) | \ell'^{(k)}(e) \]
\[v ::= \ldots | \ell'(v) \]
\[c ::= \ldots | \ell'(c) | \ell'^{(k)}(c) \]

B.10.2 Additional Typing Rules for Annotated Ctrl+CtxPCF Programs

\[\Gamma; \Sigma \vdash e : \tau \]
\[\Gamma; \Sigma \vdash \ell'((k) e) : \tau \]
\[\Gamma; \Sigma \vdash \ell'(e) : \tau \]
\[\Gamma; \Sigma \vdash \ell'^{(k)}(e) : \tau \]
\[\Gamma; \Sigma \vdash \ell'^{(k)}(c) : \tau \]

B.10.3 Annotated Evaluation Contexts

Note. The following extend the evaluation contexts of Annotated Ctrl+CtxPCF.

\[F ::= \ldots | \text{reset } F \text{ in } e \ | \text{reset } v \text{ in } F \ | \text{shift } F \text{ as } x \text{ in } e \]
\[F' ::= \ldots | \text{reset } F' \text{ in } e \ | \text{reset } v \text{ in } F' \ | \text{shift } F' \text{ as } x \text{ in } e \]
\[\ell'T' ::= [\cdot] | \ell'\text{tag/p}_3'(c_1,c_2,c_3,\ell'\ell'T'') \]

B.10.4 Annotated Reduction Semantics

Note. The following extend the reduction rules of Annotated CtxPCF.

\[\langle E'[-\text{make-tag}] : (\tau_1 \rightarrow \tau_2), \sigma \rangle \rightarrow_{\text{ann}} \langle E'[-\text{tag/p}_3] : (\tau_1 \rightarrow \tau_2), \sigma[t \mapsto ()] \rangle \text{ where } t \text{ is fresh } \sigma \]
\[\langle E'[-\text{reset}] \ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)], \sigma \rangle \rightarrow_{\text{ann}} \langle E'[\ell[v], \sigma \rangle \]
\[\langle E'[-\text{reset}] \ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)] \rangle \rightarrow_{\text{ann}} \langle E'[-\text{reset}] \ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)] \rangle \text{ in } E'[\ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)] \text{ as } x \text{ in } e], \sigma \rangle \]
\[\text{where } v_k = \ell'\ell\text{tag/p}_3 [\ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)]], \text{ and } v'_k = \ell'\text{wrap}_3 [\ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)], \ell'\text{wrap}_3 [\ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)], v_k] \]
\[\text{and } e_\gamma = \ell'\text{wrap}_3 [\ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)], \ell'\text{wrap}_3 [\ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)], e] \]
\[\text{and } e'_\gamma = \ell'\text{wrap}_3 [\ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)], \ell'\text{wrap}_3 [\ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)], e] \]
\[\text{and } e' \text{ does not contain reset } \ell'^{(k)}(\ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)]) \text{ in } E'^{\ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)]} \]
\[\langle E'[-\text{reset}] \ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)] \rangle \rightarrow_{\text{ann}} \langle E'[\ell'\ell'T'[\ell[t] : (\tau_d \rightarrow \tau_r)], \sigma \rangle \]
Note. The following metafunction replaces that of Annotated CtxPCF.

\[
\begin{align*}
\text{obl}[\ell[\text{flat/c}(v)]]_{\bar{k},\bar{l},\bar{j}} & = \ell[\text{flat/c}(v)]_{\bar{k},\bar{l},\bar{j}} \\
\text{obl}[\ell[\text{param/c}(c)]]_{\bar{k},\bar{l},\bar{j}} & = \ell[\text{param/c}(\text{obl}[c,\bar{k},\bar{l},\bar{j}] - \bar{k},\bar{l},\bar{j})] \\
\text{obl}[\ell[c_{d}:\tau \rightarrow (c_{e})_{c_{r}}]]_{\bar{k},\bar{l},\bar{j}} & = \ell[c_{d}:\tau \rightarrow (\text{obl}[c_{e},\bar{k},\bar{l},\bar{j}] - \bar{k},\bar{l},\bar{j})] \\
\text{obl}[\ell[\text{ctx/c}(v,(v \Rightarrow v \leftarrow v),\ldots,v,(v \Rightarrow v \leftarrow v),\ldots)]]_{\bar{k},\bar{l},\bar{j}} & = \lfloor \ell[\text{ctx/c}(v,(v \Rightarrow v \leftarrow v),\ldots,v,(v \Rightarrow v \leftarrow v),\ldots)]_{\bar{k},\bar{l},\bar{j}} \rfloor \\
\text{obl}[\ell[\text{tag/c}(c_{1},c_{2},c_{3})]]_{\bar{k},\bar{l},\bar{j}} & = \ell[\text{tag/c}(\text{obl}[c_{1},\bar{k},\bar{l},\bar{j}],\text{obl}[c_{2},\bar{k},\bar{l},\bar{j}],\text{obl}[c_{3},\bar{k},\bar{l},\bar{j}])]_{\bar{k},\bar{l},\bar{j}}
\end{align*}
\]
B.10.5 Well-formed Annotated Programs

Note. The following extend the well-formedness rules of Annotated CtxPCF.

\[
\Delta; \Pi \vdash \ell \\
\Delta; \ell \vdash e_1 \quad \Delta; \ell \vdash e_2 \\
\Delta; \ell \vdash \text{reset } e_1 \text{ in } e_2 \\
\Delta; \ell \vdash \text{shift } e_1 \text{ as } x \text{ in } e_2 \\
\Delta; \ell \vdash e_i \\
\Delta; \ell \vdash \text{tag}/c(e_1, e_2, e_3)
\]

\[
\Delta; \Pi \vdash \sigma \\
\begin{align*}
\text{dom}(\Pi) &= \text{dom}(\sigma) \\
\forall r \in \text{dom}(\sigma), \Delta; \Pi(r) &\vdash \sigma(r) \\
\forall t \in \text{dom}(\sigma), \Delta; \Pi(t) &\vdash \sigma(t)
\end{align*}
\]

\[
\Delta; \ell \vdash c
\]

\[
\Delta; \Pi \vdash \text{tag}/c[E(c_1), E(c_2), E(c_3)]
\]

B.11 Metatheory of Ctrl+CtxPCF

Theorem 5 (Type Soundness for Surface Ctrl+CtxPCF). For all programs \(p \) of Surface Ctrl+CtxPCF such that \(\vdash p : \tau \)

1. \(\langle p, \emptyset \rangle \rightarrow^{*} \langle v, \tau \rangle \) or;
2. \(\langle p, \emptyset \rangle \rightarrow^{*} \langle \text{error}^k_j, \sigma \rangle \) or;
3. \(\langle p, \emptyset \rangle \rightarrow^{*} \langle p', \sigma \rangle \) where \(p' = E[\text{shift}^\ell T^k'] [t(t) : (\tau_d \rightarrow \tau_v)] \) as \(x \) in \(e \) where \(E \) does not contain \(\text{reset} e' T^{\ell k'} [t(t) : (\tau_d \rightarrow \tau_v)] \) in \(E' \) or;
4. \(\langle p, \emptyset \rangle \rightarrow^{*} \langle p', \sigma \rangle \) and there exists \(p'' \) such that \(p' \rightarrow p'' \).

Proof. Direct consequence of Theorems 21 and 22

Lemma 21 (Type Progress for Ctrl+CtxPCF Programs). If \(\Sigma \vdash p : \tau \), then either \(p \) is a value \(v \), \(p \) is \(\text{error}^k_j \), \(p \) is \(E[\text{shift}^\ell T^k'] [t(t) : (\tau_d \rightarrow \tau_v)] \) as \(x \) in \(e \) where \(E \) does not contain \(\text{reset} e' T^{\ell k'} [t(t) : (\tau_d \rightarrow \tau_v)] \) in \(E' \), or for all \(\sigma \) such that \(\emptyset ; \Sigma \vdash \sigma \), there exists \(p' \) and \(\sigma' \) such that \(\langle p, \sigma \rangle \rightarrow \langle p', \sigma' \rangle \).

Proof. By straight-forward case analysis on \(p \) using Lemmas 23, 24 and 25

Lemma 22 (Type Preservation for Ctrl+CtxPCF Programs). If \(\Sigma \vdash p : \tau \), \(\emptyset \vdash \sigma \), and \(\langle p, \sigma \rangle \rightarrow \langle p', \sigma' \rangle \), then either there exists \(\Sigma' \vdash \Sigma \) such that \(\Sigma' \vdash p' : \tau \) and \(\Gamma ; \Sigma' \vdash \sigma' \), or \(p' = \text{error}^k_j \).

Proof. By straight-forward case analysis on the rules of the reduction semantics using Lemma 23 and Lemma 24

Lemma 23 (Unique decomposition for Ctrl+CtxPCF Programs). For all well-typed programs \(p \) such that \(p \neq v \), \(p \neq \text{error}^k_j \), and \(p \neq \text{module } \ell \text{ exports } x_{v_1} \text{ with } x_{c_1}, \ldots \) where \(y_1 = e_1, \ldots y_n = e_n, \ldots ; p' \), there are unique \(e' \), and \(E \) such that \(p = E[e'] \) and \(e' \) is one of the following:

1. One of the corresponding cases of the statement of Lemma 3
2. \(\text{make-tag } : (\tau_1 \rightarrow \tau_2) \)
3. \(\text{reset} e' T^k' [t(t) : (\tau_d \rightarrow \tau_v)] \) in \(v \)
4. \(\text{reset} e' T^k' [t(t) : (\tau_d \rightarrow \tau_v)] \) in \(E'[\text{shift}^\ell T^k'[t(t) : (\tau_d \rightarrow \tau_v)] \) as \(x \) in \(e \) where \(E' \) does not contain \(\text{reset} e' T^{\ell k'} [t(t) : (\tau_d \rightarrow \tau_v)] \) in \(E'' \)
Theorem 6 (Type Soundness for Annotated Surface Ctrl+CtxPCF). For all programs p of Annotated Surface Ctrl+CtxPCF such that $\vdash p : \tau$:

1. $(p, \emptyset) \rightarrow \varepsilon_{\text{ann}}(v, \sigma)$ or;
2. $(p, \emptyset) \rightarrow \varepsilon_{\text{ann}}(\text{error}_k, \sigma)$ or;
3. $(p, \emptyset) \rightarrow \varepsilon_{\text{ann}}(\langle p', \sigma \rangle)$ and $p' = E'[\text{shift} \| t^k \| t(t) : (\tau_d \rightarrow \tau_r) \|]$ as x in e where E' does not contain \text{reset} $\| t^k \| t(t) : (\tau_d \rightarrow \tau_r) \|$, or for all σ such that $\emptyset ; \Sigma \vdash \sigma$, there exist p' and σ' such that $\langle p, \sigma \rangle \rightarrow \langle p', \sigma' \rangle$.

Proof. Direct consequence of Theorems 26 and 27.

Lemma 26 (Type Progress for Annotated Ctrl+CtxPCF Terms). If $\Sigma \vdash p : \tau$, then either p is a value v, p is error_k, p is $E'[\text{shift} \| t^k \| t(t) : (\tau_d \rightarrow \tau_r) \|]$ as x in e where E' does not contain \text{reset} $\| t^k \| t(t) : (\tau_d \rightarrow \tau_r) \|$, or for all σ such that $\emptyset ; \Sigma \vdash \sigma$, there exist p' and σ' such that $\langle p, \sigma \rangle \rightarrow \langle p', \sigma' \rangle$.

Proof. By straight-forward case analysis on p using Lemmas 28 and 29.

Lemma 27 (Type Preservation for Annotated Ctrl+CtxPCF Terms). If $\Sigma \vdash p : \tau$, $\emptyset ; \Sigma \vdash \sigma$, and $(p, \sigma) \rightarrow_{\text{ann}} \langle p', \sigma' \rangle$, then either there exists $\Sigma' \supseteq \Sigma$ such that $\Sigma' \vdash p' : \tau$ and $\emptyset ; \Sigma' \vdash \sigma'$, or $p' = \text{error}_k$.

Lemma 28 (Unique decomposition for Annotated Ctrl+CtxPCF). For all well-typed programs p such that $p \neq \emptyset, p \neq \text{error}_k$, and $p \neq \text{module} e x v_1 \text{with} x c_1, \ldots, x c_n \ldots$ where $y_1 = e_1, \ldots, y_n = e_n, \ldots : p'$, there are unique e', ℓ', and E' such that $p = E'[\ell'][e']$ and ℓ' is one of the following:

1. one of the corresponding cases of the statement of Lemma 8
2. \text{make-tag} : $(\tau_1 \rightarrow \tau_2)$
3. \text{reset} $\| t^k \| t(t) : (\tau_d \rightarrow \tau_r) \|$ in v
4. \text{reset} $\| t^k \| t(t) : (\tau_d \rightarrow \tau_r) \|$ in $E'[\text{shift} \| t^k \| t(t) : (\tau_d \rightarrow \tau_r) \|]$ as x in e where E' does not contain \text{reset} $\| t^k \| t(t) : (\tau_d \rightarrow \tau_r) \|$
5. \text{shift} $\| t^k \| t(t) : (\tau_d \rightarrow \tau_r) \|$ as x in e where E' does not contain \text{reset} $\| t^k \| t(t) : (\tau_d \rightarrow \tau_r) \|$
6. \text{mon} $\| \text{tag} c_1 c_2 \| e c_3 \| v $

1. Let e be a well-typed and well-formed Annotated Surface Ctrl+CtxPCF program: $\vdash p : \tau$ and $\ell_0 \vdash p$. Let \bar{p} be the Surface Ctrl+CtxPCF expression that is like p but without annotations. If $(p, \varnothing) \to _{ann}^* \langle p', \sigma \rangle$, then $(\bar{p}, \varnothing) \to _{ann}^* \langle \bar{p}', \sigma \rangle$, where \bar{p}' is the Ctrl+CtxPCF program that is like p' but without annotations.

2. Let \bar{p} be a well-typed Surface Ctrl+CtxPCF program: $\vdash \bar{p} : \tau$. Then there exists some Annotated Surface Ctrl+CtxPCF program p such that $\vdash p : \tau$ and $\ell_0 \vdash p$. Furthermore, if $(\bar{p}, \varnothing) \to _{ann}^* \langle \bar{p}', \sigma \rangle$, then $(p, \varnothing) \to _{ann}^* \langle p', \sigma \rangle$ for some p', where \bar{p}' is the Ctrl+CtxPCF program that is like p' but without annotations.

Proof. By a straightforward lock-step bi-simulation between the two reduction steps using the obvious annotation erasure function to relate the corresponding configurations in each step. For the second point of the theorem’s statement, we construct p from \bar{p} by adding to each imported variable in a term of \bar{p} the appropriate annotation.

Definition 2 (Complete monitoring). Ctrl+CtxPCF is a complete monitor if any only if for all p such that $\vdash p_0 : \tau$ and $\ell_0 \vdash p_0$, either

1. $(p_0, \varnothing) \to _{ann}^* \langle v, \sigma \rangle$, or
2. $(p, \varnothing) \to _{ann}^* \langle p', \sigma \rangle$ and $p' = E^f[shift || t' : (\tau_d \to \tau_r)] || as x in e$ where E^f does not contain reset $|| t' : (\tau_d \to \tau_r)] ||$ in E^f, or
3. for all p_1 and σ_1 such that $(p_0, \varnothing) \to _{ann}^* \langle p_1, \sigma_1 \rangle$ there exists p_2 and σ_2 such that $(p_1, \sigma_1) \to _{ann}^* \langle p_2, \sigma_2 \rangle$, or
4. $(p_0, \varnothing) \to _{ann}^* \langle p_1, \sigma_1 \rangle$ and p_1 is of the form $E^f[mon^f_j(|| flat/c(p, v))]$ and for all such terms p_1, $v = || k' ||$ and $k \in \ell$.

Theorem 8. Ctrl+CtxPCF is a complete monitor.

Proof. As a direct consequence of Lemmas 26, 27, 31 and 32 we have that for all programs p_0 such that $\vdash p_0 : \tau$ and $\ell_0 \vdash p_0$, either

1. $(p_0, \varnothing) \to _{ann}^* \langle v, \sigma \rangle$, or
2. $(p, \varnothing) \to _{ann}^* \langle p', \sigma \rangle$ and $p' = E^f[shift || t' : (\tau_d \to \tau_r)] || as x in e$ where E^f does not contain reset $|| t' : (\tau_d \to \tau_r)] ||$ in E^f, or
3. for all p_1 and σ_1 such that $(p_0, \varnothing) \to _{ann}^* \langle p_1, \sigma_1 \rangle$ there exists p_2 and σ_2 such that $(p_1, \sigma_1) \to _{ann}^* \langle p_2, \sigma_2 \rangle$, or
4. $(p_0, \varnothing) \to _{ann}^* \langle error_j^f, \sigma_2 \rangle$.

In the last case, since $\ell_0 \vdash p_0$, we know that $error_j^f$ does not appear in p_0. Therefore it must have been introduced by a reduction. In particular, it must have been the result of the reduction $E^f[check_j^f(|| \#(e), v)]$ must not occur in p_0. Hence it must be the result of a reduction. There are three cases that introduce checks:

1. $E^f[mon_j^f(|| flat/c(v, c)|| k, v)]$ where $c = \text{ctx/c}(v, c)$ and $\vdash \sigma_j$, $\ell_0 \vdash E^f[check_j^f(|| \#(v, e), v)]$. By Lemma 32, we derive σ_2).

2. $E^f[mon_j^f(|| flat/c(v, c)|| k, v)]$ where $c = \text{ctx/c}(v, c)$ and $\vdash \sigma_j$, $\ell_0 \vdash E^f[check_j^f(|| \#(e), e)]$. By Lemma 33, we derive σ_2.)
$e = \text{guard}_j((v_{c_{p_1}}, v_{c_{p_2}}, \ldots) \rightarrow \text{guard}_j((v_{c_{p_n}}, v_{c_{p_n}})), c_{\text{ctx/p}}^j(v_{a,(v_{a_{p_1}} \Rightarrow v_{a_{p_1}}, \ldots,v_{p})))$: In this case, we can deduce

$$\langle p_0, \varnothing \rangle \rightarrow^{\text{ann}} E[[\text{mon}^k_j(\|v\|,v)], \sigma_1]$$

$$\rightarrow^{\text{ann}} E[[\text{check}_j^k((v_e(),e)], \sigma_1]$$

$$\rightarrow^{\text{ann}} E[[\text{check}_j^k(\|\#\|,e)], \sigma_2]$$

$$\rightarrow^{\text{ann}} \langle \text{error}_j, \sigma_2 \rangle$$

By Lemma 32, we can deduce that for some Π such that $\varnothing; \Pi \vdash \sigma_1; \ell_0; \Pi \vdash E[[\text{mon}^k_j(\|v\|,v)], \sigma]$. By Lemma 33, we derive $\varnothing; \Pi; \ell \vdash E[[\text{mon}^k_j(\|v\|,v)], \sigma]$. By well-formedness of $\ell \in \vec{\ell}$.

3. $\langle E[[\text{check}_j^k(\|v\|,v)], \sigma] \rightarrow^{\text{ann}} E[[\text{check}_j^k(\|\#\|,e)], \sigma] \rangle$ where $e = \text{guard}_j((v_{a_{p_1}}, v_{a_{p_2}}, \ldots, v_{a_{p_n}}, v_{p})): \Pi \vdash e$ does not contain $\text{ctx/p}^j(v_{a,(v_{a_{p_1}} \Rightarrow v_{a_{p_1}}, \ldots,v_{p}))).$ Again, since $\ell_0 \vdash p_0, p_0$ does not contain $\text{ctx/p}^j(v_{a,(v_{a_{p_1}} \Rightarrow v_{a_{p_1}}, \ldots,v_{p}))).$. This must have been introduced by a reduction step $\langle E[[\text{check}_j^k(\|v\|,v)], \sigma] \rightarrow^{\text{ann}} E[[\text{check}_j^k(\|\#\|,e)], \sigma] \rangle$ with $e = \text{guard}_j((v_{a_{p_1}}, v_{a_{p_2}}, \ldots, v_{a_{p_n}}, v_{p})): \Pi \vdash e$ does not contain $\text{ctx/p}^j(v_{a,(v_{a_{p_1}} \Rightarrow v_{a_{p_1}}, \ldots,v_{p}))).$ In this case, we can deduce a longer series of reductions

$$\langle p_0, \varnothing \rangle \rightarrow^{\text{ann}} E[[\text{check}_j^k(\|v\|,v)], \sigma_1]$$

$$\rightarrow^{\text{ann}} E[[\text{check}_j^k(\|\#\|,e)], \sigma_1]$$

By Lemma 32, we can deduce that for some Π such that $\varnothing; \Pi \vdash \sigma_1; \ell_0; \Pi \vdash E[[\text{mon}^k_j(\|v\|,v)], \sigma]$. By Lemma 33, we derive $\varnothing; \Pi; \ell \vdash E[[\text{mon}^k_j(\|v\|,v)], \sigma]$. By well-formedness of $\ell \in \vec{\ell}$.

Combining these three cases with the results above suffice to show that CtxPCF is a complete monitor.

Lemma 31 (Progress). For all programs p, stores σ, store typings Σ, and store labelings Π such that

- $\Sigma \vdash p : \tau$
- $\varnothing; \Sigma \vdash \sigma$
- $\ell_0; \Pi \vdash p$

then either

- $p = E[[\text{shift}]](\ell, \tau)$ such that $E[[\text{reset}]](\ell, \tau)$ is not contained in $E[[\ell]]$, or
- $p = \text{error}_j$, or
- $\langle p, \sigma \rangle \rightarrow^{\text{ann}} \langle p', \sigma' \rangle$.

Proof. From Lemma 28 we know that there either either $p = v, p = \text{error}_j$, or $p = E[[\text{shift}]](\ell, \tau)$ such that $E[[\text{reset}]](\ell, \tau)$ is not contained in $E[[\ell]]$, or $p = \text{module} \ell$ exports x_{p_1}, with x_{c_1}, where $x_1 = e_1, \ldots, y_n = e_n; \ldots p'$, or there exist e, ℓ, and $E[[\ell]]$ such that $p = E[[\ell]]$. The first three cases are immediate. If $p = \text{module} \ell$ exports x_{v_1}, with $x_{c_{v_1}}$, where $x_{v_1} = v_1, \ldots, x_{c_{v_1}} = c_{v_1}, \ldots p'$, then by the reduction relation we have $\langle p, \sigma \rangle \rightarrow^{\text{ann}} \langle \text{import}(\ell, x_{c_{v_1}}), (x_{v_1}, \ldots, y_n), (v_1, c_{v_1}, \ldots, c_{p'}) \rangle$, since meta function import is total. In the final case, using Lemma 33 and $\ell_0; \Pi \vdash p$ we derive $\varnothing; \Pi; \ell \vdash e$. We proceed by case analysis on e. (We only show here the reduxes from the reduction rules of Annotated Ctrl+CtxPCF that do not overlap with those of Annotated CtxPCF. The cases for the reduxes from the rules that overlap with those of Annotated CtxPCF transfer to this proof after adjusting the proof text to refer to lemmas for Annotated Ctrl+CtxPCF instead of the corresponding ones for Annotated CtxPCF):
1. make-tag : \((\tau_1 \rightarrow \tau_2)\): By the reduction relation and Lemma 34 we get
\((E^{0}[\text{make-tag}] :: (\tau_1 \rightarrow \tau_2), \sigma) \rightarrow_{\text{ann}} (E^{0}[\langle \ell(t) :: (\tau_1 \rightarrow \tau_2) \rangle], \sigma[t \mapsto \ell]) \) where \(t \) is fresh \(\sigma \).
2. reset \(\| t \rightarrow_k k_\ell E \| (t \rightarrow_k (\tau_d \rightarrow \tau_r)) \) in \(v \): Since \(\sigma; \Pi; \ell \vdash \text{reset} \| t \rightarrow_k k_\ell E \| (t \rightarrow_k (\tau_d \rightarrow \tau_r)) \| \) in \(v \), it must be the case that \(\ell' = \ell = \ell; \Pi; \ell \vdash v \). Thus by the reduction relation and Lemma 34, we have
\((E^{0} [\text{reset}] \| t \rightarrow_k k_\ell E \| (t \rightarrow_k (\tau_d \rightarrow \tau_r)) \| \) in \(v \), \(\sigma \rightarrow_{\text{ann}} (E^{0}[v], \sigma) \).
3. reset \(\| t \rightarrow_k k_\ell E \| (t \rightarrow_k (\tau_d \rightarrow \tau_r)) \| \) in \(v \): By the reduction relation and Lemma 34 and given that metafunctions \(\text{wrap}_v \) and \(\text{wrap}_i \) are total, we have \((E^{0}[\text{reset}] \| t \rightarrow_k k_\ell E \| (t \rightarrow_k (\tau_d \rightarrow \tau_r)) \| \) in \(E^{0} [\text{shift}] \| E^{0}[\text{reset}] \| (t \rightarrow_k (\tau_d \rightarrow \tau_r)) \| \) as \(x \) in \(e \) where \(E^{0} \) does not contain reset \(\| t \rightarrow_k k_\ell E \| (t \rightarrow_k (\tau_d \rightarrow \tau_r)) \| \) in \(E^{0} [\text{shift}] \| E^{0}[\text{reset}] \| (t \rightarrow_k (\tau_d \rightarrow \tau_r)) \| \) as \(x \) in \(e \).
4. mon : \(\| \text{tag/c} (c_1, c_2, c_3) \| (v) \): With the same reasoning as in the previous case we derive that \(\ell^* = \ell \).

\(\text{Lemma 32 (Preservation).} \) For all programs \(p \), stores \(\sigma \), store typings \(\Sigma \), and store labelings \(\Pi \) such that
* \(\Sigma \vdash p : \tau \),
* \(\sigma ; \Sigma \vdash _{\sigma} \),
* \(\ell_0 ; \Pi ; \vdash _{\ell} \), and
* \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle \ell', \sigma' \rangle \),

there exists a store labeling \(\Pi' \) such that
* \(\Pi' \supseteq \Pi \).
* \(\ell_0 ; \Pi ; \vdash _{\ell} \).

\(\text{Proof.} \) By case analysis on the reduction \(\langle p, \sigma \rangle \rightarrow_{\text{ann}} \langle \ell', \sigma' \rangle \) (We only show here the reduction rules of Annotated Ctrl+CtxPCF that do not overlap with those of Annotated CtxPCF. The cases for the rules that overlap with those of Annotated CtxPCF transfer to each other after applying the proof text to refer to lemmas for Annotated Ctrl+CtxPCF instead of the corresponding ones for Annotated CtxPCF):

\(\langle E^{0}[\text{make-tag}] :: (\tau_1 \rightarrow \tau_2), \sigma \rightarrow_{\text{ann}} (E^{0}[\langle \ell(t) :: (\tau_1 \rightarrow \tau_2) \rangle], \sigma[t \mapsto \ell]) \rangle \) where \(t \) is fresh \(\sigma \): Let \(\Pi' = \Pi[t \mapsto \ell] \). We must show that \(\sigma ; \Pi' ; \ell_0 \vdash E^{0}[\langle \ell(t) :: (\tau_1 \rightarrow \tau_2) \rangle] \), since by Lemma 36, \(\sigma ; \Pi' ; \ell_0 \vdash E^{0}[\text{make-tag}] :: (\tau_1 \rightarrow \tau_2) \), by Lemma 34, it suffices to show that \(\sigma ; \Pi' ; \ell \vdash E^{0}[\langle \ell(t) :: (\tau_1 \rightarrow \tau_2) \rangle] \), which holds by inspection.

\(\langle E^{0}[\text{reset}] :: t \rightarrow_k k_\ell E \| (t \rightarrow_k (\tau_d \rightarrow \tau_r)) \| \) in \(v \), \(\sigma \rightarrow_{\text{ann}} (E^{0}[v], \sigma) \): By Lemma 34, it suffices to show that \(\sigma ; \Pi ; \ell \vdash E^{0}[v] \). As usual, by Lemma 33 and inversion of well-formedness, we obtain that \(\sigma ; \Pi ; \ell \vdash_{\ell} v \).

\(\langle E^{0}[\text{reset}] :: t \rightarrow_k k_\ell E \| (t \rightarrow_k (\tau_d \rightarrow \tau_r)) \| \) in \(E^{0} [\text{shift}] :: E^{0}[\text{reset}] :: (t \rightarrow_k (\tau_d \rightarrow \tau_r)) \| \) as \(x \) in \(e \), \(\sigma \rightarrow_{\text{ann}} \langle E^{0}[v], \sigma \rangle \).

\(\text{Lemma 33 (Label focusing for Annotated Ctrl+CtxPCF).} \) If \(\ell ; \Pi \vdash E^{0}[e] \) then \(\sigma ; \Pi ; k \vdash e \).

\(\text{Proof.} \) Induction on \(E^{0} \).
Lemma 34 (Well-formed evaluation context plugs for Annotated Ctrl+CtxPCF). If $\ell; \Pi \vdash E^k[e]$ and $\varnothing; k \vdash e'$ then $\ell; \Pi \vdash E^k[e']$.

\textit{Proof.} Induction on E^k. \hfill \square

Lemma 35 (Well-formed substitution for Annotated Ctrl+CtxPCF). If $\Delta[x \mapsto \ell]; k \vdash e_1$ and $\Delta; \ell \vdash e_2$ then $\Delta; k \vdash \{x \mapsto e_2\} e_1$.

\textit{Proof.} Mutual induction on well-formedness and well-formed contracts. \hfill \square

Lemma 36 (Weakening for Well-formedness for Annotated Ctrl+CtxPCF). If $\Delta; \ell \vdash e$ and $t \notin \Pi$, then $\Delta; \ell[t \mapsto k] \vdash e$. If $\Delta; \ell \vdash e_1$ and $t \notin \Pi$, then $\Delta; \ell[t \mapsto k] \vdash \text{exp}$.

\textit{Proof.} Mutual induction on well-formedness and well-formed contracts. \hfill \square

Lemma 37 (Weakening well-formed contracts for Annotated Ctrl+CtxPCF). If $\Delta; \ell; k, \ell; j \triangleright c$, then $\Delta; k, \ell; j \triangleright c$ for all k' and ℓ' such that $k \subseteq k'$ and $\ell \subseteq \ell'$.

\textit{Proof.} Induction on well-formed contracts. \hfill \square

Lemma 38 (Well-formed wrapping). Let $i \in \{1, 2, 3\}$ and e such that $\Delta; \ell \vdash e$. If $e' = \text{wrap}_i \llbracket \ell T^k[t(t) : (\tau_d \rightarrow \tau_r)]\rrbracket, \text{wrap}_i \llbracket \ell T^k[t(t) : (\tau_d \rightarrow \tau_r), e]\rrbracket$ then $\Delta; \ell' \vdash e'$.

\textit{Proof.} By lexicographic induction on the sizes of ℓT^k and ℓT^k. \hfill \square
C. Example monitors

Note, in addition to the results that are described in Section 3.3, hooks may return an additional value add-lifetime specified using #:add-lifetime. This value is a set of delegations to be added to the global delegation set along with those of the add value. However, to control the size of the global delegation set, the library removes these delegations from the global delegation set when the garbage collector of Racket collects the wrapped function.

```
(define-monitor dac
 (monitor-interface make-object/c make-user/c grant/c revoke/c)
 (action
  [make-object/c (name setuser)]
  #:on-create (do-create #:closure-principal (> current-principal (dim name)))
  #:on-apply (let ([owner (proj-principal closure-principal)]
                   [objdim (set-first (proj-dims closure-principal))])
               (do-apply #:check (> @ current-principal (> closure-principal objdim use)
                             (> closure-principal objdim use))
                       #:set-principal (if setuser owner #f)))]
 [make-user/c (name set-auth)]
  #:on-create (let ([new-pcpl (pcpl name)])
              (do-create #:add-lifetime (list (> current-principal (> new-pcpl use invoke)
                                #f new-pcpl))
                    #:closure-principal new-pcpl))
  #:on-apply (do-apply #:check (> @ current-principal (> closure-principal use invoke)
                                 closure-principal)
               #:set!-principal (if set-auth closure-principal #f)
               #:set-principal (if set-auth #f closure-principal)])
 [grant/c (object recipient)]
  #:on-create (do-create)
  #:on-apply (let ([recipient-principal (recipient-principal recipient)]
                   [object-principal (object-principal object)])
               (do-apply #:add (list (make-lifetime (> recipient-principal object-principal)
                                      current-principal object))))]
 [revoke/c (object recipient)]
  #:on-create (do-create)
  #:on-apply (let ([recipient-principal (> (recipient-principal recipient) use)]
                   [object-principal (object-principal object)])
               (define (equal-recipient? p) (equal? p recipient-principal))
               (define (matching-target? p) (equal? p object-principal))
               (define (to-remove delegations current)
                     (filter (λ (d) (match d
                                      [(labeled (actsfor (? equal-recipient? l) (? matching-target? r)) ll)
                                       #:when (acts-for? current ll ll) #t]
                                      [...]#f)))
               (do-apply #:remove (to-remove current-delegations current-principal)))]
 [extra]
  (define use (dim 'use))
  (define invoke (dim 'invoke))

  (define (recipient-principal recipient)
    (cdr (make-user/c-authority recipient)))

  (define (object-principal object)
    (cond
     [(make-user/c? object) (> (cdr (make-user/c-authority object)) invoke))
     [(make-object/c? object) (let* ([pcpl (cdr (make-object/c-authority object))]
                                       (> pcpl use)))]))
```

Figure 11. Discretionary Access Control Monitor
Figure 12. Stack Inspection Monitor
(define-monitor history-based
 (monitor-interface make-permission permission? check-permission/c grant/c accept/c
 unprivileged/c privileged/c coerce-to-unprivileged)
 (monitor-syntax-interface define/rights)
 (action #:search (list use-static search-delegates-left)
 #:on-apply (do-apply #:check (>= @ (current-principal active) (> T perm) (> T perm))))
 #:on-apply (do-create #:check (>= @ current-principal T T))
 #:on-apply
 (let* ((callee (pcpl gensym 'frame)))
 [static-principal (normalize (disj (list->set (map (λ (p) (> T p)) perms)))])
 [to-remove (filter (match-lambda
 [[labeled (actsfor l r) ll]
 #:when (and (equal? l (current-principal enable))
 (not (equal? r (current-principal static)))
 #t]
 [... #f])
 (delegation-set->list current-delegations))])
 [to-add (cons (>= @ (callee enable) (current-principal active)) current-principal)
 (map (match-lambda
 [[labeled (actsfor l r) ll]
 #:when (or (>= r (callee static)))
 (to-remoce))])
 [to-scope (list (>= @ (callee static) current-principal T)
 (>= @ (callee active) (callee enable) (callee static) callee))]
 (do-apply #:add to-add #:remove to-remove #:add-scoped to-scope #:set-principal callee))]
 #:on-create (do-create)
 #:on-apply (do-apply #:add-scoped (list (>= @ (current-principal enable) (current-principal static)
 current-principal)))]
 #:on-create (do-create #:add-lifetime (list (>= @ (current-delegations) T T)))
 #:on-apply (do-apply #:add (delegation-set->list closure-delegations)
 #:remove (delegation-set->list current-delegations)
 #:set-principal closure-principal)]
 #:on-apply (do-apply #:set-principal ⊥)]
 #:on-create (do-create)
 #:on-apply
 (define active (dim 'active))
 (define enable (dim 'enable))
 (define static (dim 'static))
 (define (use-static l r ll ds)
 (if (and (not (proj? l)) (match r ([(proj top _) #t] [...] #f)))
 (set (>= l static))
 (set)))
 (define (make-permission name) (dim name)) (define (permission? val) (dim? val))
 (define accept/c
 (make-contract #:name "accept/c"
 #:projection (λ (blame) (λ (val))
 (make-keyword-procedure
 (λ (kwd$ kwd-args . other-args)
 (call/cc (λ (k)
 (let* ([cont (with-contract #:region expression accept/c #:result accept-context/c k)]
 [call-with-values (λ () (keyword-apply val kwd$ kwd-args other-args))
 cont)))))))))
 (define coerce-to-unprivileged
 (make-contract #:name "coerce-to-unprivileged"
 #:projection (λ (blame) (λ (val))
 (cond [[unprivileged/c? val] val]
 [[val] val]
 [[procedure? val] (((contract-projection unprivileged/c blame) val))
 [else val]]))))
 (define syntax
 (make-define/contract/free-vars/contract define/auth/contract
 (membrane/c coerce-to-unprivileged coerce-to-unprivileged)
 (membrane/c coerce-to-unprivileged coerce-to-unprivileged))
 (define/syntax define/rights
 (make-set!-transformer (lambda (stx) (syntax-case stx (set!))
 (set! define/rights e) (raise-syntax-error 'set! (format "cannot mutate ~a" 'define/rights))]
 (define/rights (head . args) (right ())))
 (define/auth/contract (head . args) (and/c ctc (privileged/c (list right ())))
 body ())))]
 :define/rights head (right ())))
 #:define/auth/contract (head/c ctc (privileged/c (list right ())))

Figure 13. History-based Access Control Monitor
(define-monitor ocap)
(monitor-interface capability/c unprivileged-capability/c
capability/c? unprivileged-capability/c?
coerce-to-unprivileged-capability)
(monitor-syntax-interface define/cap)
(action #:search (list search-caps search-delegates-left)
[capability/c
#:on-create
(let* ([child (pcpl (gensym 'capability))]
[parent current-principal]
[parenthood (⊑ (⊐ parent caps) (⊐ child invoke) child)]
[endowment (⊑ (⊐ child caps) (⊐ (⊐ parent caps) current-delegations) parent)]
[validity (⊑ (⊐ (parent current-delegations) parent) parent)])
(do-create #:add-lifetime (list parenthesis endowment validity) #:closure-principal child))
#:on-apply
(let ([introductions
(filter-map (λ (arg) (let ([arg-cap (cdr arg)])
(⊐ (⊐ closure-principal caps) (⊐ arg-cap invoke) current-principal)))]
[return-hook
(λ (results)
(let ([result-introductions
(map (λ (res) (make-lifetime (⊐ (⊐ current-principal caps) (⊐ cdr res) invoke))
closure-principal (car res)))
(filter id results)))]
(do-return #:add result-introductions)))]
(do-apply
#:check (⊐ (⊐ current-principal (⊐ closure-principal invoke) (⊐ closure-principal invoke))
#:add-lifetime introductions #:set-principal closure-principal #:on-return return-hook)))]
[unprivileged-capability/c
#:on-create
(let* ([child (pcpl (gensym 'unprivileged))]
[parent current-principal]
[parenthood (⊑ (⊐ parent caps) (⊐ child invoke) child)])
(do-create #:add-lifetime (list parenthesis) #:closure-principal child))
#:on-apply
(let ([introductions
(filter-map (λ (arg) (let ([arg-cap (cdr arg)])
(⊐ (⊐ closure-principal caps) (⊐ arg-cap invoke) current-principal)))]
[return-hook
(λ (results)
(let ([result-introductions
(map (λ (res) (make-lifetime (⊐ (⊐ current-principal caps) (⊐ cdr res) invoke))
closure-principal (car res)))
(filter id results)))]
(do-return #:add result-introductions)))]
(do-apply
#:check (⊐ (⊐ current-principal (⊐ closure-principal invoke) (⊐ closure-principal invoke))
#:add-lifetime introductions #:set-principal closure-principal #:on-return return-hook)))]
(extra
(define invoke (dim 'invoke)) (define caps (dim 'caps))
(define (search-caps l r ll ds) (if (pcpl? l) (set (> l caps)) (set)))
(define coerce-to-unprivileged-capability
(make-contract #:name "coerce-to-unprivileged-capability"
#:projection (λ (blame) (λ (val)
(cond [(capability/c? val) val]
[(unprivileged-capability/c? val) val]
[(procedure? val) (((contract-projection unprivileged-capability/c) blame) val)]
[else val)])))
(syntax
(define-syntax define/cap
(make-set!-transformer (λ (stx) (syntax-case stx (set!)
[(set! binder e) (raise-syntax-error 'set! (format "cannot mutate ~a" 'binder))
[(binder head body0 body (... ...))
#'(define/contract head capability/c body0 body (... ...))])))

Figure 14. Object-capabilities Monitor
(define-monitor driver-monitor
 (monitor-interface safe/c deprivilege/c switch-player/c check-player/c)

 (action #:search (list search-delegates-left)
 [safe/c
 #:on-create (do-create)
 #:on-apply (do-apply #:set-principal ⊤)]
 [deprivilege/c
 #:on-create (do-create)
 #:on-apply (do-apply #:set-principal ⊥)]
 [switch-player/c (name)
 #:on-create (do-create)
 #:on-apply (let ([pcpl (player->pcpl name)])
 (do-apply #:set-principal pcpl))]
 [check-player/c (name)
 #:on-create (do-create)
 #:on-apply (let ([pcpl (player->pcpl name)])
 (do-apply #:check (⪰ current-principal pcpl pcpl)))]

 (extra
 (define player-pcpls (make-weak-hash))
 (define (player->pcpl name)
 (hash-ref! player-pcpls name (thunk (pcpl name)))))
)

Figure 15. Dominion Monitor

(define-monitor keybindings-monitor
 (monitor-interface make-permission permission? check-and-switch-permissions/c
 enable-permissions/c
 permissions-closure/c)

 (action #:search (list search-delegates-left)
 [check/c (perms)
 #:on-create (do-create)
 #:on-apply (do-apply #:check (⪰ current-principal pcpl pcpl)
 #:set-principal pcpl)]
 [enable/c (perms)
 #:on-create (do-create)
 #:on-apply (do-apply #:set-principal (∧ current-principal perms))]
 [closure/c
 #:on-create (do-create)
 #:on-apply (do-apply #:set-principal closure-principal))]

 (extra
 (define (make-permission name) (pcpl name))
 (define permission? pcpl))))

Figure 16. DrRacket Keybindings Monitor
(object/c
[add-canvas (check/c UnSafe)]
[add-undo (-> any/c
 closure/c
 any)]
[adjust-cursor (check/c ChangeEditorView)]
[after-edit-sequence (check/c InEditSequence)]
[after-load-file (check/c InLoadFile)]
[after-save-file (check/c InSaveFile)]
[auto-wrap (check/c SetSoftlineBreaks)]
[begin-edit-sequence (enable/c InEditSequence)]
[begin-write-header-footer-to-file (check/c WriteFile)]
[blink-caret (check/c ChangeEditorView)]
[can-do-edit-operation? (check/c InEditOperation)]
[can-load-file? (check/c InLoadFile)]
[can-save-file? (check/c InSaveFile)]
[clear-undos (check/c ClearHistory)]
[copy (and/c
 (check/c WriteClipboard)
 (enable/c (\ WriteClipboard InCopy)))]
[copy-self (check/c Safe)]
[copy-self-to (check/c GetEditorInfo)]
[cut (check/c (\ Delete WriteClipboard))]
[dc-location-to-editor-location (check/c Safe)]
[default-style-name (check/c GetEditorInfo)]
[do-edit-operation (->a ([this any/c] [op symbol?])
 ([r any/c] [t any/c])
 #:auth (op)
 (cond
 [(symbol=? op 'undo) (check/c NavigateHistory)]
 [(symbol=? op 'redo) (check/c NavigateHistory)]
 [(symbol=? op 'clear) (check/c Delete)]
 [(symbol=? op 'cut) (check/c (\ Delete WriteClipboard))]
 [(symbol=? op 'paste) (and/c (check/c (\ ReadClipboard Insert))
 (enable/c (\ InPaste ReadClipboard Insert)))]
 [(symbol=? op 'select-all) (check/c Select)]
 [(symbol=? op 'insert-text-box) (and/c (check/c Insert)
 (enable/c (\ InInsertBox Insert)))]
 [(symbol=? op 'insert-pasteboard-box) (and/c (check/c Insert)
 (enable/c (\ InInsertBox Insert)))]
 [(symbol=? op 'insert-image) (and/c (check/c Insert)
 (enable/c (\ InInsertBox Insert)))]
 (any))]
[paste (and/c (check/c (\ ReadClipboard Insert))
 (enable/c (\ ReadClipboard Insert InPaste)))]
[move-position (->a ([this any/c] [code symbol?])
 ([extend? any/c] [kind symbol?])
 #:auth (extend?)
 (cond
 [(and (not (unsupplied-arg? extend?)) extend?)
 (check/c (\ Select GetEditorInfo GetText SetInsertionPoint))]
 [else (check/c (\ GetEditorInfo GetText SetInsertionPoint)) any])]
); additional method policies
...)

Figure 17. The contract for DrRacket's object
(define-monitor pkg-monitor
 (monitor-interface is-author/c is-curator/c as-user/c grant-curator/c revoke-curator/c
 authority-closure/c deprivilege/c)
 (action
 [is-author/c (pkg)]
 #:on-create (do-create)
 #:on-apply
 (let+ ([authors (string-split (hash-ref pkg 'author))]
 [authorpcpl (disj (list->set (map author->pcpl authors)))]
 (do-apply #:check (⪰ @ current-principal authorpcpl authorpcpl)))]
 [is-curator/c]
 #:on-create (do-create)
 #:on-apply (do-apply #:check (⪰ @ current-principal curator curator))]
 [as-user/c (user)]
 #:on-create (do-create)
 #:on-apply (do-apply #:check (⪰ @ current-principal (author->pcpl user) (author->pcpl user))
 #:set-principal (author->pcpl user))]
 [grant-curator/c (user)]
 #:on-create (do-create)
 #:on-apply (do-apply #:add (list (⪰ @ (author->pcpl user) curator curator)))]
 [revoke-curator/c (user)]
 #:on-create (do-create)
 #:on-apply (do-apply #:remove (list (⪰ @ (author->pcpl user) curator curator)))]
 [authority-closure/c]
 #:on-create (do-create #:closure-principal current-principal)
 #:on-apply (do-apply #:set-principal closure-principal)]
 (deprivilege/c
 #:on-create (do-create)
 #:on-apply (do-apply #:set!-principal unpriv))]
 (extra
 (define curator (pcpl 'curator))
 (define unpriv (pcpl 'unprivileged))
 (define pcpls (make-weak-hash))
 (define (author->pcpl author) (λ () (pcpl (string->symbol author)))))))

Figure 18. Racket package index monitor

(provide
 (contract-out
 [authenticate (and/c
 authority-closure/c
 ([operation symbol?]
 #:email [email string?]
 #:password [password string?]
 #:on-success [success (email) (->a () #:auth () (as-user/c email) any)]
 #:on-failure [failure (-> symbol? any)])]
 [result any/c)])

Figure 19. The contract for the package index authenticate function