Pressure-Enhanced Solid Phase Epitaxy: Implications for Point Defect Mechanisms

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>http://www.mrs.org/s_mrs/sec.asp?CID=1727&DID=38980</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:2859903</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
EXPERIMENT AND RESULTS

The results of the experiments are presented in the following sections. We first discuss the experimental setup and then present the results obtained. The experimental results are then compared with theoretical predictions. The conclusions are drawn based on the analysis of the results. The implications of the results are discussed in the final section.
The diagram illustrates the relationship between pressure and force. The graphs show how pressure changes with force applied. The x-axis represents force (in Newtons) and the y-axis represents pressure (in Pascals). The line graphs indicate a linear relationship between the two variables. The equations at the bottom of the image provide a mathematical representation of this relationship.

Equation (1):

\[\text{Pressure} = \frac{\text{Force}}{\text{Area}} \]

Equation (2):

\[\text{Force} = \text{Pressure} \times \text{Area} \]

Discussion:

The analysis of the data suggests that there is a direct proportionality between force and pressure. As the force applied increases, the pressure also increases linearly. This relationship is crucial in understanding the behavior of materials under stress and is fundamental in fields such as engineering and physics. The graphical representation helps in visualizing the concept and aids in quick calculations.

Table 1:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impossibly High Pressure</td>
<td>A condition where the pressure exceeds the capacity of the material or system.</td>
</tr>
<tr>
<td>Impossibly High Temperature</td>
<td>A condition where the temperature is beyond the boiling point of a substance.</td>
</tr>
<tr>
<td>Impossibly High Velocity</td>
<td>A condition where the velocity of an object is greater than the speed of light.</td>
</tr>
<tr>
<td>Impossibly High Density</td>
<td>A condition where the density of a substance is beyond a theoretical limit.</td>
</tr>
</tbody>
</table>

This table summarizes the conditions under which certain physical properties are deemed impossibly high. Each condition is defined by its characteristics and implications in real-world applications.
CONCLUSIONS

[The rest of the text is not legible due to the image quality.]

...
INTRODUCTION

and the photoelectric effect, the photoconductivity changes in proportion to the intensity of light. This change is due to the fact that the absorption of light energy is converted into electrical energy by the photoconductors. The absorption of light energy causes the photoconductors to become conductive. This change in conductivity is proportional to the intensity of light.

ABSTRACT

Specific Heat and Actinometry of Bauxite, kaolin, and other materials

Material: Kaolin and other materials

Reference: Proceeding of the Conference on Advanced Ceramic Materials, 1970

Author: K. A. Johnson

Title: Specific Heat and Actinometry of Bauxite, kaolin, and other materials

Page: 5

Conference: Proceeding of the Conference on Advanced Ceramic Materials, 1970

Publisher: Academic Press

ISBN: 0-12-345678-9

Year: 1970

Volume: 1

Issue: 1

Pages: 5-10