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Higher Nimbers in pawn endgames on large chessboards

Noam D. Elkies

Do ∗2, ∗4 and higher Nimbers occur on the 8 × 8 or larger boards?

— ONAE [Elkies 1996, p.148]

It’s full of stars!

— 2001: A Space Odyssey [Clarke 1968, p.193]

Abstract. We answer a question posed in [Elkies 1996] by construct-

ing a class of pawn endgames on m×n boards that show the Nimbers ∗k

for many large k. We do this by modifying and generalizing T.R. Daw-

son’s “pawns game” [Berlekamp et al. 1982]. Our construction works

for m ≥ 9 and n sufficiently large; on the basis of computational evi-

dence we conjecture, but cannot yet prove, that the construction yields

∗k for all integers k.

1. Introduction

In [Elkies 1996] we showed that certain chess endgames can be analyzed
by the techniques of combinatorial game theory (CGT). We exhibited such
endgames whose components show a variety of CGT values, including in-
tegers, fractions, and some infinite and infinitesimal values. Conspicuously
absent were the values ∗k of Nim-heaps of size k > 1. Towards the end
of [Elkies 1996] we asked whether any chess endgames, whether on the stan-
dard 8 × 8 chessboard or on larger rectangular boards, have components
equivalent to ∗2, ∗4 and higher Nimbers. In the present paper we answer
this question affirmatively by constructing a new class of pawn endgames
on large boards that include ∗k for many large k, and conjecture — though
we cannot yet prove — that all ∗k arise in this class.

Our construction begins with a variation of a pawns game called “Dawson’s
Chess” in [Berlekamp et al. 1982]. In §3 we introduce this variation and
show that, perhaps surprisingly, all quiescent (non-entailing) components of
the modified game are equivalent to Nim-heaps (Thm. 1). We then deter-
mine the value of each such component, and characterize non-loony moves
(Thm. 2). In §4 we construct pawn endgames1 on large chessboards that

1 More precisely, King-and-pawn endgames; the first two words are usually suppressed
because every legal chess position must have a White and a Black king.
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incorporate those components. These endgames do not yet attain our aim,
because the values determined in Thm. 2 are all 0 or ∗1. In §5 we modify
one of our components to obtain ∗2. In §6 we further study components
modified in this way, showing that they, too, are equivalent to Nim-heaps
(Thm. 3). We conclude with the numerical evidence suggesting that all
Nim-heaps can be simulated by components of pawn endgames on large
rectangular chessboards.

Before embarking on this course, we show in §2 a pair of endgames on the
standard 8 × 8 board in the style of [Elkies 1996] that illustrate the main
ideas, specifically the role of “loony moves”. Readers who are much more
conversant with CGT than with chess endgames will likely prefer to skim
or skip §2 on first reading, returning to it only after absorbing the theory
in §3. Conversely, chessplayers not fluent in CGT will find in §2 motivation
for the CGT ideas central to §3 and later sections.

2. An illustrative pair of endgames

We introduce the main ideas of our construction by analyzing the following
pair of composed endgames on the standard 8 × 8 chessboard:2Z Z Z ZZ Z Z Zp o p Z Z ZZ Z Z ZP O P Z Z ZZ Z j aZ Z p M P ZZ Z J L

Diag. 1A: whoever moves loses

Z Z Z ZZ Z Z Z pp o p Z Z ZZ Z Z Z PP O P Z Z ZZ Z j aZ Z p M P ZZ Z J L
Diag. 1B: whoever moves wins

Diagram 1A consists of two components. On the Kingside, seven men are
locked in a mutual Zugzwang that we already used in [Elkies 1996]. Both
sides can legally move in the Kingside, but only at the cost of checkmate

2 These are not pawn endgames, but all units other than pawns are involved in the
Kingside Zugzwang, and are thus passive throughout the analysis. We can construct plau-
sible positions where that Zugzwang, too, is replaced by one using only Kings and pawns,
but only at the cost of introducing an inordinate number of side-variations tangential to
the CGT content of the positions. For instance, replace files e–g in Diag. 1A by White
Kg1, Ph2 and Black Kh3, Pg2; in Diag. 1B, do the same and move the h5/h7 pawns to
e3/e5.
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(Qh1(2) Bxf2) or ruinous material inferiority. Thus the outcome of Dia-
gram 1A hinges on the Queenside component, with three adjacent pawns on
each side. We have not seen such a component in [Elkies 1996], but it turns
out to be a mutual Zugzwang: whichever side moves first, the opponent can
maneuver to make the last pawn move on the Queenside, forcing a losing
King move in the Kingside component. Thus a5 can be answered by bxa5
bxa5 c5, likewise c5 by bxc5 bxc5 a5, and b5 by axb5 axb5 c5. In this last
line, it is no better to answer axb5 with cxb5, since then c5 wins: if played
by Black, White will respond a5 and promote first, but Black c1Q will be
checkmate; while if White plays c5 and Black answers a5, White replies c6
and promotes with Black’s pawn still two moves away from the first rank,
winning easily.3 Note the key point that a5 or c5 must not be answered by
b5?, since then c5 (resp. a5) transfers the turn to the second player and wins
— but not cxb5? cxb5 (or axb5? axb5), regaining the Zugzwang.

Diagram 1B is Diag. 1A with the h5 and h7 pawns added; these form an
extra component which we recognize from [Elkies 1996] as having the value ∗.
Thus we expect that Diag. 1B is a first-player win, and indeed either side
can win by playing h6, effectively reducing to Diag. 1A. The first player can
also win starting on the Queenside: a5 bxa5 bxa5 (∗+∗ = 0), and likewise if
a5 is answered by b5 (c:b5 etc. wins, but not c5? h6). The first player must
not, however, start b5?, when the opponent trades twice on b5, in effect
transforming ∗ + ∗ into 0 + ∗, and then wins by playing h6.

Note the role of the move b5 in the analysis of both Diagrams 1A and 1B.
In the terminology of [Berlekamp et al. 1982], this is an “entailing move”:
it makes a threat (to win by capturing a pawn) that must be answered in
the same component. But, whether the rest of the position has value 0
(Diag. 1A) or * (Diag. 1B), the move b5 loses, because the opponent can
answer the threat in two ways, one of which passes the turn back (advancing
the threatened pawn to a5 or c5), one of which in effect retains the turn
(capturing on b5, then making another move after the forced re-capture).
Since the first option wins if the rest of the position has value 0, and the
second wins if the rest of the position has value ∗ (or any other nonzero

3 This part of the analysis explains why we chose this Kingside position from
[Elkies 1996]: the position of White’s King, but not Black’s, on its first rank makes it
more vulnerable to promoted pawns, exactly compensating for the White pawns being a
step closer to promotion than Black’s. In [Elkies 1996] this Kingside Zugzwang had the
Kings on f1 and f3, not e1 and e3; here we shifted the position one square to the left so
as not to worry about a possible White check by a newly promoted Queen on a8. Thus
1 b5 can be answered by 1. . . cxb5 as well as 1. . . axb5.
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Nimber), b5 is a bad move in either case. In [Berlekamp et al. 1982] such
an unconditionally bad move is called “loony” (see p.378). Since b5 is bad,
it follows in turn that, in either Diag. 1A or 1B, the entailing move a5 may
be regarded as the non-entailing “move” consisting of the sequence a5 bxa5
bxa5: the only other reply to a5 is b5, which is loony and so can be ignored.

We next show that this analysis can be extended to similar pawn configu-
rations on more than three adjacent files. We begin our investigation with
a simplified game involving only the relevant pawns.

3. A game of pawns

3.1: Game definition

Our game is played on a board of arbitrary length n and height 3. At
the start, White pawns occupy some of the squares on the bottom row, and
Black pawns occupy the corresponding squares on the top row. For instance,
Diag. 2 shows a possible starting position on a board with n = 12:o p o p o p o o p o pZ Z Z Z Z ZO P O P O P O O P O P

Diag. 2: A starting position

The pawns move and capture like chess pawns, except that there is no
double-move option (and thus no en passant rule). Thus if a file contains
a White pawn in the bottom row and a Black pawn in the top row, these
pawns were there in the initial position and have not moved; we call such a
file an “initial file”.

White wins if a White pawn reaches the top row, and Black wins if a Black
pawn reaches the bottom row. Thus there is no need for a promotion rule
because whoever could promote a pawn immediately wins the game. But it
is easy enough to prevent this, and we shall assume that neither side allows
an opposing pawn to reach its winning row. The game will then end in
finitely many moves with all pawns blocked, at which point the winner is
the player who made the last move. We shall sometimes call this outcome
a “win by Zugzwang”, as opposed to an “immediate win” by reaching the
opposite row.

For instance, from Diag. 2 White may begin 1 c2. Since this threatens
to win next move by capturing on b3 or d3, Black must capture the c2-
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pawn; if Black captures with the b-pawn, we reach Diag. 3A. Now Black
threatens to win by advancing this pawn further, so White must capture it;
but unlike Black’s capture, White’s can only be made in one way: if 2 dxc2?,
threatening to win with 3 cxd3, Black does not re-capture but instead plays
d2, producing Diag. 3B. Black then wins, since touchdown at d1 can only
be delayed by one move with 3 exd2 exd2 (but not 3. . . cxd2??, when 4 c3
wins instead for White!), and then 4. . . d1.o o p o p o o p o pZ p Z Z Z Z ZO P Z P O P O O P O P

Diag. 3A: After 1 c2 bxc2

o o o p o o p o pZ P o Z Z Z ZO P Z O P O O P O P
Diag. 3B: If then 2 dxc2? d2, winning

Thus White must play 2 bxc2 from Diag. 3A. This again threatens to win
with 3 cxd3, so Black has only two options. One is to re-capture with
2. . . dxc2, forcing White in turn to re-capture: 3 dxc2, reaching Diag. 3C.
Alternatively, Black may save the d3-pawn by advancing it to d2 (Diag. 3D).
This forces White to move the attacked pawn at e1. Again there are two
options. White may capture with 3 exd2, forcing Black to reply 3. . . exd2
(Diag. 3E), not cxd2? when White wins immediately with 4 c3. Alternatively
White may advance with 3 e2 (Diag. 3F), when Black again has two options
against 4 exf3, etc. Eventually the skirmish ends either with mutual pawn
captures (as in Diag. 3C or 3E) or when the wave of pawn advances reaches
the end of the component (3. . . f2 4 g2), leaving one side or the other to
choose the next component to play in.o o o p o o p o pZ P Z Z Z Z ZO Z O P O O P O P

Diag. 3C: After 2 bxc2 bxc2 3 dxc2

o o o p o o p o pZ P o Z Z Z ZO Z P O P O O P O P
Diag. 3D: Instead 2. . . d2o o Z p o o p o pZ P o Z Z Z ZO Z P Z P O O P O P

Diag. 3E: Then 3 exd2 exd2

o o o p o o p o pZ P o P Z Z Z ZO Z P Z P O O P O P
Diag. 3F: or 3 e2

As noted in the Introduction, this game is reminiscent of the game called
“Dawson’s Chess” in [Berlekamp et al. 1982, pp. 88 ff.]; the only difference
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is that in Dawson’s Chess a player who can capture a pawn must do so,
while in our game, as in ordinary chess, captures are optional.4 Because of
the obligation to capture, Dawson’s Chess may appear to be an entailing
game, but it is quickly seen to be equivalent to a (non-entailing) impartial
game, called “Dawson’s Kayles” in [Berlekamp et al. 1982]. Our game also
has entailing moves, and features a greater variety of possible components;
but we shall see that it, too, reduces to a non-entailing impartial game once
we eliminate moves that lose immediately and loony moves.

3.2: Decomposition into components

We begin by listing the possible components. We may ignore any files in
which no further move may be made. These are the files that are either
empty (such as the h-file throughout Diag. 3, the b-file in Diag. 3C–3F, and
the d- and e-files in 3C and 3E respectively) or closed. We say a file is
“closed” if it contains one pawn of each color, neither of which can move or
capture (the c-file in 3C–3F and the d-file in 3E–3F). One might object that
such a currently immobile pawn may be activated in the future; for instance
in Diagram 3D if White plays 3 exd2 then the dormant c-file may awake:
3. . . cxd2. But we observed already that this Black move loses immediately
to 4 c3. Since we may and do assume that immediately losing moves are
never played, we may ignore the possibility of 3. . . cxd2?, and regard the
c-file in Diag. 3D and the d-file in Diag. 3F as permanently closed.

By discarding empty or closed files we partition the board into components
that do not interact except when an entailing move requires an answer in
the same component. Thus at each point there can be at most one entailing
component (again assuming no immediately losing moves). We next describe
all possible components and introduce a notation for each.

A non-entailing component consists of m consecutive initial files, for some
positive integer m. We denote such a component by [m]. For instance,
Diag. 3A is [7]+[4]; Diag. 3C is [1]+[3]+[4]; and Diag. 3E is [1]+[2]+[4]. An
entailing component contains a pawn that has just moved (either vertically

4 Since Dawson was a chess problemist, we first guessed that the game analyzed here
was Dawson’s original proposal, before the modification in [Berlekamp et al. 1982]. But in
fact R.K. Guy reports in a 16.viii.1996 e-mail that Dawson did want obligatory captures
but proposed a misère rule (last player loses). Guy also writes: “I am aware of some
very desultory attempts to analyze the game in which captures are allowed, but little
was achieved, to my knowledge.” I thank Guy for this information, and John Beasley
who more recently sent me copies of pages from the 12/1934 and 2/1935 issues of The

Problemist Fairy Supplement in which Dawson proposed and analyzed his original game.
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or diagonally) to the second rank, threatening an immediate win, and can
be captured. We denote this pawn’s file by “:”. There are four kinds of
entailing component, depending on whether this pawn can be captured in
one or two ways and on how many friendly pawns defend it by being in
position to re-capture.

• If the pawn is attacked once and defended once, then the attacking and
defending pawns are on the same file (else the side to move can win imme-
diately as in Diag. 3B). Thus the “:” file is at the end of a component each
of whose remaining files is initial. We denote the component by [:m], where
m is the number of initial files in the component. For instance, Diag. 4A
shows [:5]. For the mirror-image of “[:m]”, we use either the same notation
or “[m:]”. Either side can move from [m + 1] to [:m] by moving the left- or
rightmost pawn. Faced with [:m], one must move the attacked pawn, either
by capturing the “:” pawn or by advancing it. Advancing yields [:(m − 1)]
(see Diag. 4B), unless m = 1 when the advance yields 0 since all files in the
component become blocked. Capturing yields [:.]+[m − 1] (see Diag. 4C),
where [:.] is the the component defined next.

• If the pawn is attacked once and not defended, then it has just captured,
and is subject to capture from an unopposed pawn. We denote the file with
one unopposed pawn by “.”. The capture is obligatory, and results in a
closed file. Therefore the adjacent “:” and “.” files to not interact with any
other components, even if they are not yet separated from them by empty
or closed files. We may thus regard these files as a separate component [:.],
which entails a move to 0. For instance, files b, c in Diag. 4C constitute [:.],
which is unaffected by the [4] on files d through g.Z o p o p oo Z Z ZZ P O P O P O
Diag. 4A: [:5]

Z o p o p oo P Z Z ZZ P Z P O P O
Diag. 4B: [:4]

Z o p o p oO Z Z ZZ P Z P O P O
Diag. 4C: [:.]+[4]

• If the pawn is attacked twice and defended twice, then the component of
the “:” file consists of that file, m initial files to its left, and m′ initial files to
its right, for some positive integers m and m′. We denote such a component
by [m:m′]. For instance, Diag. 5A shows [2:4]. We already encountered this
component after the move c2 from Diag. 2. The component [m:m′] entails a
capture of the “:” pawn. This yields either [m−1]+[.:m′] or [.:m]+ [m′−1],
where [.:m], defined next, is our fourth and last kind of entailing component,
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and [m − 1] (or [m′ − 1]) is read as 0 if m = 1 (resp. m′ = 1).

• If the pawn is attacked twice and defended once, then it is part of a
component obtained from [:.] by placing m initial files next to the “:” file,
for some positive integer m. Naturally we call such a component [.:m] (or
[m:.]). As explained in the paragraph introducing [:.], an initial file next to
the “.” file cannot interact with it, and thus belongs to a different component.
For instance, the two possible captures from [2:4] yield [1]+[.:4] (Diag. 5B,
also seen in Diag. 3A) and [.:2]+[3] (Diag. 5C). Faced with [.:m], one has
a single move that does not lose immediately: capture with the “.” pawn,
producing [:m], as seen earlier in connection with Diag. 3C.o p o p o p oZ P Z Z ZO P Z P O P O
Diag. 5A: [2:4]

o o p o p oZ p Z Z ZO P Z P O P O
Diag. 5B: [1]+[.:4]

o p o o p oZ p Z Z ZO P Z P O P O
Diag. 5C: [.:2]+[3]

We summarize the available moves as follows. It will be convenient to extend
the notations [m], [:m], [.:m], [m:m′] by allowing m = 0 or m′ = 0, with the
understanding that

[0] = [:0] = [0:0] = 0, [. :0] = [: .], [m :0] = [0:m] = [:m].

We then have:

• From [m], either side may move to [m1 :m2] for each m1,m2 ≥ 0 such
that m1 + m2 = m − 1.

• If m > 0 then [:m] entails a move to either [: .] + [m− 1] or [: (m− 1)].

• [: .] entails a move to 0.

• If m,m′ > 0 then [m :m′] entails a move to either [m − 1] + [. :m′] or
[m′ − 1] + [. :m].

• If m > 0 then [. :m] entails a move to [:m].

For instance, Diag. 3D shows [1]+[:3]+[4], moving either to [1]+[: .]+[2]+[4]
and thence to [1] + [2] + [4] (Diag. 3E), or to [1] + [:2] + [4] (Diag. 3F).

Our list of possible moves confirms that [m], [:m], [:.], [.:m], [m:m′] are
the only possible components: the initial position is a sum of components
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[mi], and each move from a known component that does not concede an
immediate win yields a sum of 0, 1, or 2 known components.

3.3: Analysis of components

Since in each component both sides have the same options, we are dealing
with an impartial entailing game. We could thus apply the theory of such
games, explained in [Berlekamp et al. 1982], to analyze each component. But
it turns out that once we eliminate loony moves the game is equivalent to
an ordinary impartial game, and thus that each component [m] is equivalent
to a Nim-heap of size depending on m.

Consider the first few m. Clearly [1] is equivalent to ∗1, a Nim-heap of
size 1. At the end of §2 we have already seen in effect that a move from [2]
to [:1] is loony: if the rest of the game has value 0, then the reply [:1]→0
wins; otherwise, the reply [:1]→[:.] forces [:.]→0, again leaving a forced win
in the sum of the remaining components. Thus also [3]→[1:1] is loony, be-
cause the forced continuation [1:1]→[.:1]→[:1] again leaves the opponent in
control. On the other hand, [3]→[:2] is now seen to force [:2]→[:.]+[1], since
the alternative [:2]→[:1] is known to lose. We thus have the forced combi-
nation [3]→[:2]→[:.]+[1]→[1], which amounts to a “move” [3]−→[1].5 More-
over, we have shown that this is the only reasonable continuation from [3].
Since [1] ∼= ∗1, we conclude that [3] is equivalent to a Nim-heap of size
mex({1}) = 0, i.e. a mutual Zugzwang, as we already discovered in the
analysis of Diags. 1A,1B.

What of [4] and [5]? From [4], there are again two options, one of which
can be eliminated because it leads to the loony [:1], namely [4]→[2:1] (after
[2:1]→[1]+[.:1]→[1]+[:1]). This leaves [4]→[:3], which in turn allows two
responses. One produces the sequence [4]→[:3]→[2]+[:.]→[2], resulting in
a value of 0. The other response is [4]→[:3]→[:2], which we already know
forces the further [:2]→[:.]+[1]→[1]∼= ∗1. In effect, the response to [4]→[:3]
can interpret the move either as [4] −→ [2] ∼= 0, or as [4] −→ [1] ∼= ∗1
with the side who played [4] → [: 3] on move again. We claim that the
latter option can be ignored. The reason is that the first interpretation wins
unless the remaining components of the game add to 0; but then the second
interpretation leaves the opponent to move in a nonzero position, and thus
also loses. We conclude that [4] is equivalent to an impartial game in which
either side may move to 0, and is thus equivalent to a Nim-heap of size

5 Here and later, we use an arrow “→” for a single move, and a long arrow “−→” for
a sequence of 3, 5, 7, . . . single entailing moves considered as one “move”.
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mex({0}) = 1. As to [5], there are now three options, only one excluded
by [:1], namely [5]→[3:1]. The option [5]→[2:2] (move the center pawn) forces
the continuation [2:2]→[1]+[.:2]→[1]+[:2]→[1]+[:.]+[1]→[1]+[1], and is thus
tantamount to [5] −→ [1] + [1] ∼= 0. This leaves [5]→[:4], which we show is
loony for a new reason. One continuation is [:4]→[:.]+[3]→[3], interpreting
the move as [5] −→ [3] ∼= 0. The other is [:4]→[:3], which as we have just
seen is equivalent to [:4]−→[2]. Since [2] ∼= 0, this continuation interprets
[5]→[:4] as a move to 0 followed by an extra move. Thus a move to [:4] always
allows a winning reply, namely [:4]→[:3] if the remaining components add
to 0, and [:4]→[:.]+[3] if not. Hence the move to [:4] is loony as claimed,
and [5] ∼= ∗(mex{0}) = ∗1.

The analysis of [1] through [5] shows almost all the possible behaviors in our
game; continuing by induction we prove:

Theorem 1. i) For each integer m ≥ 0, the component [m] is equivalent to
a Nim-heap of some size ǫ(m).
ii) A move to [:1] is loony. For each integer m > 1, a move to [:m] is either
loony or equivalent to a move to [m − 1] ∼= ∗(ǫ(m − 1)). The move is loony
if and only if a move to [: (m − 1)] is not loony and ǫ(m − 1) = ǫ(m − 2).
iii) For any positive integers m1,m2, a move to [m1 :m2] is either loony or

equivalent to a move to [m1 − 1] + [m2 − 1] = ∗(ǫ(m1 − 1)
∗

+ ǫ(m2 − 1)).
The move to [m1 :m2] is non-loony if and only both m1 and m2 satisfy the
criterion of (ii) for a move to [:m] to be non-loony.
iv) We have ǫ(0) = 0, ǫ(1) = 1, and for m > 1 the values ǫ(m) are given
recursively by

ǫ(m) = mex
m1,m2

(

ǫ(m1 − 1)
∗

+ ǫ(m2 − 1)
)

.

Here the mex runs over pairs (m1,m2) of nonnegative integers such that
m1 + m2 = m − 1 and a move to [m1 :m2] is not loony, as per the criteria
in parts (ii) [for m1m2 = 0] and (iii) [for m1m2 > 0]. For this equation we
declare that ǫ(−1) = 0.

In parts (iii) and (iv), “
∗

+” denotes the Nim sum: (∗k) + (∗k′) = ∗(k
∗

+ k′).
Thus, once parts (i)–(iii) are known for all components with fewer than m

initial files, (iv) is just the Sprague-Grundy recursion for impartial games.
Once (iv) is known for all m ≤ m0, so is (i). The arguments for (ii) and (iii)
are the same ones we used for components with up to 5 initial files. For
instance, for (iii) the move [m1 + 1 + m2] → [m1 : m2] forces a choice
among the continuations [m1:m2]→[m1 − 1]+[.:m2]→[m1 − 1]+[:m2] and
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[m1:m2]→[m1:.]+[m2 − 1]→[m1:]+[m2 − 1]. If a move to [:m1] or [:m2] is
loony then one or both of these continuations wins. Otherwise by (ii) both
continuations are tantamount to [m1 + 1 + m2] −→ [m1 − 1] + [m2 − 1]. p
Carrying out the recursion for ǫ(m), we quickly detect and prove a period-
icity:

Theorem 2. For all m ≥ 0 we have ǫ(m) = 0 if m is congruent to 0, 2,
3, 6, or 9 mod 10, and ǫ(m) = 1 otherwise. A move to [:m] is loony if and
only if m = 5k ± 1 for some integer k.

Proof : Direct computation verifies the claim through m = 23, which suffices
to prove it for all m as in [Berlekamp et al. 1982, pp. 89–90], since 23 is
twice the period plus the maximum number of initial files lost by a “move”
[m] −→ [m − 2] or [m1 + 1 + m2] −→ [m1 − 1] + [m2 − 1]. p
So, for instance, Diagram 2 is equivalent to ∗(ǫ(7)) + ∗(ǫ(4)) = ∗1 + ∗1 = 0
and is thus a mutual Zugzwang, a.k.a. P-position or previous-player win.
The next player thus might as well play a loony move such as 1 c2, in the
hope of giving the opponent Enough Rope [Berlekamp et al. 1982, p.17];
the only correct response is 1. . . bxc2 (Diag. 3A) 2 bxc2 d2! (Diag. 3D),
maintaining the win after either 3 exd2 exd2 (Diag. 3E) or 3 e2 (Diag 3F)
fxe2! 4 fxe2.

4. Embedding into generalized chess

Consider Diag. 6A, a pawn endgame on a chessboard of 9 rows by 12 files:Z Z Z Z Z Z kZ Z Z Z Z p OZ Z Z o Z Op o p o p Z o Z ZZ Z Z o P Z ZP O P O P Z P Z Z ZZ Z Z Z P Z oZ Z Z Z Z P oZ Z Z Z Z Z K
Diag. 6A: whoever moves wins (c5!)

Z Z Z Z Z Z kZ Z Z Z Z p OZ Z Z o Z OZ p Z p Z o Z ZZ p O O o P Z ZO Z Z P Z Z ZZ Z Z Z P Z oZ Z Z Z Z P oZ Z Z Z Z Z K
Diag. 6B: after 1 c5 . . . 4 e5

There are four components. In each of the top right and bottom right
corners, a King and three pawns are immobilized. Near the middle of the
board (on the g- and h-files), we have a mutual Zugzwang with three pawns
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on a side; a player forced to move there will allow an opposing pawn to
capture and soon advance to Queen promotion, giving checkmate. In the
leftmost five files we have a pawn game with initial position [5], arranged
symmetrically about the middle rank. An “immediate win” in this game
is a pawn that can promote to Queen in three moves, ending the game by
checkmate. We may thus assume that, as in our pawn game of the previous
section, both sides play to prevent an “immediate win”, and the leftmost
five files will eventually be empty or blocked. This is why we have chosen
a chessboard with an odd number of rows: with an even number, as on the
orthodox 8× 8 board, one side’s pawns would be at least one move closer to
promotion, and we would have to work harder to find positions in which, as
in Diags. 1A and 1B, an “immediate win” in the pawns game by either player
yields a chess win for the same player. Once play ends in the [5] component,
we see why the component in the g- and h-file is needed: the Zugzwangs
arising from the [m] components all end with blocked pawns, and if those
were the only components on the board then the chess game would end in
stalemate, regardless of which side “won” the pawns game. But, with the
g- and h-files on the board, the side who lost the pawns game must move in
the central Zugzwang and lose the chess game.

To see how this happens, suppose that White is to move in Diag. 6A. White
must start 1 c5, the only winning move by the analysis in the previous
section. Play may continue dxc5 2 dxc5 b5 (Black is lost, so tries to confuse
matters with a loony move) 3 axb5 (declining the rope 3 a5? e5) axb5 4 e5
(Diag. 6B). With all other pawns blocked, Black must now play 4. . . g6
5 hxg6 g5. If now 6 h7? g4 ends in stalemate, so White first plays 7 gxh5
(or even 7 h4), and then promotes the pawn on g6 and gives checkmate in
three more moves.

This construction clearly generalizes to show that any instance of our pawn
game supported on a board of length n can be realized by a King-and-pawn
endgame on any chessboard of at least n + 6 files whose height is an odd
number greater than 5.

5. Stopped files

By embedding our pawn game into generalized chess, we have constructed a
new class of endgames that can be analyzed by combinatorial game theory.
But we have still not attained our aim of finding higher Nimbers, because by
Thm. 2 all the components of our endgames have value 0 or ∗1. To reach ∗2
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and beyond, we modify our components by stopping some files. We illustrate
with Diag. 7A:Z Z Z Z Z Z kp Z Z Z Z Z p OO Z Z o Z Op o p o Z o o ZZ Z Z o P Z ZP O P O Z P Z O Zo Z Z Z P Z oP Z Z Z Z Z P oZ Z Z Z Z Z K
Diag. 7A: whoever moves wins

Z Z Z Z Z Z kp Z Z Z Z Z p OO Z Z o Z Op o o Z o o ZZ P Z Z o P Z ZZ P O Z P Z O Zo Z Z Z P Z oP Z Z Z Z Z P oZ Z Z Z Z Z K
Diag. 7B: after 1 b5 cxb5 2 axb5

We have replaced the component [5] of Diag. 6A by two components. One is
familiar: on the j-file (third from the right) we see [1] ∼= ∗1. On the leftmost
four files we have a new configuration. This component looks like [4], but
with four extra pawns on the a-file. These pawns are immobile, but have
the effect of stopping the file on both sides, so that a White pawn reaching
a6 or a Black pawn reaching a4 can no longer promote. Without these extra
pawns, Diag. 7A would evaluate to [4] + [1] ∼= ∗1 + ∗1 = 0 and would thus
be a mutual Zugzwang. But Diag. 7A is a first-player win, with the unique
winning move b5!. Indeed, suppose White plays b5 from Diag. 7A. If Black
responds 1. . . axb5 then White’s reply 2 axb5 produces [:2]+[1] and wins. So
Black instead plays 1. . . cxb5, expecting the loony reply 2 cxb5. But thanks
to the stopped d-file White can improve with 2 axb5!. See Diag. 7B. If now
2. . . a5, this pawn will get no further than a4, while White forces a winning
breakthrough with 3 c5, for instance 3. . . dxc5 4 dxc5 bxc5 5 b6 c4 6 b7
(Diag. 7C) and mates in two. Notice that the extra pawns on the a-file do
not stop the b-file: if Black now captures the pawn on b7 then the pawn on a7
will march in its stead. We conclude that in Diag. 7B Black has nothing bet-
ter than 2. . . axb5 3 cxb5, which yields the same lost position ([1] + [1] ∼= 0)
that would result from 2. . . axb5. After 1 b5 Black could also try the tricky
1. . . c5, attempting to exploit the a-file stoppage by sacrificing the a6-pawn.
After the forced 2 dxc5 (d5? axb5 3 axb5 j5 wins) dxc5 (Diag. 7D), White
would indeed lose after 3 bxa6? j5, but the pretty 3 a5! wins. However Black
replies, a White pawn will next advance or capture to b6, and three moves
later White will promote first and checkmate Black.
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Z Z Z Z Z Z kp Z Z Z Z Z p OO P Z Z o Z OZ Z Z o o Zo Z Z o P Z ZZ p Z Z P Z O Zo Z Z Z P Z oP Z Z Z Z Z P oZ Z Z Z Z Z K
Diag. 7C: after 6 b7

Z Z Z Z Z Z kp Z Z Z Z Z p OO Z Z o Z Op o Z Z o o ZZ P o Z o P Z ZP Z P Z Z P Z O Zo Z Z Z P Z oP Z Z Z Z Z P oZ Z Z Z Z Z K
Diag. 7D: after 1. . . c5 2 dxc5 dxc5

Diag. 7A remains a first-player win even without the [1] component on the
j-file (Diag. 7E). The first move d5 wins as in our analysis of [4]: either cxd5
cxd5 or c5 bxc5 bxc5 a5 produces a decisive Zugzwang. In fact, d5 is the
only winning move in Diag. 7E. The move c5 is loony as before (bxc5 bxc5
d5/dxc5). With the a-file stopped, a5 is loony as well. The opponent will
answer b5 (Diag. 7F), and if then cxb5 axb5!, followed by c5 and wins while
the pawn left on a5 is useless as in Diag. 7B. This leaves (from Diag. 7F)
c5, again producing the loony [:1]. Thus a5 is itself loony as claimed.Z Z Z Z Z Z kp Z Z Z Z Z p OO Z Z o Z Op o p o Z o Z ZZ Z Z o P Z ZP O P O Z P Z Z Zo Z Z Z P Z oP Z Z Z Z Z P oZ Z Z Z Z Z K
Diag. 7E: whoever moves wins

Z Z Z Z Z Z kp Z Z Z Z Z p OO Z Z o Z Op Z p o Z o Z ZO p Z Z o P Z ZO P O Z P Z Z Zo Z Z Z P Z oP Z Z Z Z Z P oZ Z Z Z Z Z K
Diag. 7F: after 1 a5 b5

Therefore the component in files a–d of Diag. 7A and Diag. 7E is equivalent
to an impartial game in which either side may move to either 0 (with d5)
or ∗1 (with b5). Hence this component has the value ∗2! On longer boards
of odd height ≥ 9, we can stop some of the files in [m] for other m. We next
show that each of the resulting components is equivalent to a Nim-heap,
some with values ∗4, ∗8 and beyond.
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6. The pawns game with stopped files

6.1: Game definition and components

We modify our pawn game by choosing a subset of the n files and declaring
that the files in that subset are “stopped”. A pawn reaching its opposite row
now scores an immediate win only if it is on an unstopped file.6 We require

that no two stopped files be adjacent. This requirement arises naturally
from our implementation of stopped files in King-and-pawn endgames on
large chessboards. As it happens, the requirement is also necessary for our
analysis of the modified pawns game. For instance, if adjacent stopped files
were allowed then a threat to capture a pawn might not be an entailing
move.

In the last section we already saw the effects of stopped files on the play of the
game. We next codify our observations. We begin by extending our notation
for quiescent components. In §3, such a component was entirely described
by the number m of consecutive initial files that the component comprises.
In the modified game, we must also indicate which if any of these m files is
stopped. We denote a stopped initial file by 1, and an unstopped one by 0.
A string of m binary digits, with no 1’s adjacent, then denotes a quiescent
component of m initial files. For instance, the component we called [m],
with no stopped files, now becomes [000 · · · 0] = [0m]; the component with
value ∗2 on files a–d of Diag. 7A is denoted [1000]. An initial file that may be
either open or closed will be denoted i (or i1, i2, etc.); an arbitrary “word”
of 0’s and 1’s will be denoted w (or w′, w1, w2, etc.).

A component comprising just one initial file, stopped or not, still has value
{0|0} = ∗1. In a component of at least two initial files, every move threatens
to capture and is entailing. This is true even if the file(s) of the threatened
pawn(s) is or are stopped, because an immediate win is then still threatened
by advancing in that stopped file, as we saw in Diag. 7D where White wins
by 3 a5!. (Here we need the condition that two adjacent files cannot both be
stopped: if in Diag. 7D the b-file were somehow stopped as well then 3 a5
would lose to either 3. . . bxa5 or 3. . . axb5.)

Consider first a move by the pawn on the first or last file of the component
(without loss of generality: the first), attacking just one pawn. As in §3, the
opponent must move the attacked pawn on the second file, either advancing
it or capturing the attacking pawn. In the latter case, the pawn must be

6 If the file is stopped, the pawn does not “promote”: it remains a pawn, and can make
no further moves. Recall that this was the fate of Black’s a5-pawn in Diag. 7C.
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re-captured, and the sequence has the effect of removing the component’s
first two files. In the latter case, the component becomes quiescent if it had
only two files (in which case the first move in the component was loony,
as before); otherwise the advanced pawn in turn attacks a third-file pawn,
which must capture or advance. But now a new consideration enters: if the
first file is stopped, then the capture loses immediately since the opponent
will re-capture from the first file and touch down on the second, necessarily
unstopped, file. (See Diag. 7F after 2 cxb5 axb5.) Note that the first
file, though closed, can still affect play for one turn after its closure if it is
stopped. We thus need a notation for such files, as well as stopped “:” files,
which may become closed. We use an underline: a stopped “:” file will be
denoted “:”, and a stopped blocked file will simply be denoted “ ”. Thus
the moves discussed in this paragraph are as follows, with each w denoting
an arbitrary word of positive length:

• From [0] or [1], either side may move to 0.

• From [0w] or [1w], either side may move to [:w] or [:w] respectively.

• a move to [:0], [:1], or [:0] is loony.

• [:0w] entails a move to [:.]+[w] or [:w]; [:0w] entails a move to [:.]+[w]
or [ :w]; and [:1w] entails a move to [:.]+[w] or [:w]. Each of [:.] and
[:.] entails a move to 0.

• [ :0] or [ :1] entails a move to 0; and [ :0w] or [ :1w] entails a move to
[:w] or [:w] respectively.

It remains to consider a pawn move in the interior of a quiescent component.
Such a move attacks two of the opponent’s pawns, and entails a capture. If
neither of the attacked pawns is on a stopped file, then either of them may
capture, forcing a re-capture from the same file, just as in the pawn game
without stopped files. If both pawns are on stopped files (see Diag. 8A), then
a capture from either of these files can be met by a capture from the other
file (Diag. 8B), forcing a further capture and re-capture to avoid immediate
loss. The first player may also choose to make the first re-capture from the
same file (Diag. 8C), but we can ignore this possibility because the opponent
can still re-capture again to produce the same position as before, but has
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the extra option of advancing the attacked pawn.o p o p o p o pZ O Z ZO P O O P O P
Diag. 8A (c, e files blocked)

o p o p Z p o pZ O Z ZO P Z O P O P
Diag. 8B

o p o p Z p o pZ O Z ZO P O Z P O P
Diag. 8C

Finally, if just one of the two attacked pawns lies on an unstopped file, it
may as well capture, forcing a re-capture in the same file: capturing with
the other pawn lets the first player capture from the stopped file, forcing a
further capture and re-capture to avoid immediate loss, and thus denying the
opponent the option to capture with one attacked pawn and then advance
the other. We next summarize the moves discussed in this paragraph that
we did not list before. Here w,w1 , w2 again denote arbitrary words, which
may be empty (length zero) except for the first item:

• From [w10w2 ] or [w11w2] with w1, w2 of positive length, either side
may move to [w1:w2] or [w1:w2] respectively.

• [w1i1:i2w2] entails a move to [w1]+[.:i2w2] or [w1i1:.]+[w2]; likewise,
[w1010w2 ] entails a move to [w10]+[.:w2] or [w1:.]+[0w2 ].

• [.:w] entails a move to [:w]; likewise, [.:w] entails a move to [:w].

• A move to [w11:1w2 ] is equivalent to a move to [w1] + [w2].

• A move to [w11:0w2 ] is equivalent to a move to [w1] + [:0w2 ].

Only the last two cases are directly affected by stopped files.

6.2: Reduction to Nim

Even with stopped files it turns out that our pawn game still reduces to an
impartial game, and thus to Nim, once immediately losing and loony moves
are eliminated:

Theorem 3. i) Each component [w] is equivalent to a Nim-heap of some
size ǫ(w).
ii) A move to [: i], or [:0i] is loony. For each w of positive length, a move to
[: iw] is either loony or equivalent to a move to [w] ∼= ∗ǫ(w). The move to
[:0w] or [:1w] is loony if and only if a move to [:w] or [:w] respectively is not
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loony and is equivalent to a move to ∗ǫ(w). For each w of positive length, a
move to [:0iw] is either loony or equivalent to a move to [iw] ∼= ∗ǫ(iw). The
move to [:00w] or [:01w] is not loony if and only if a move to [: w] or [:w]
respectively is not loony and is equivalent to a move to ∗(0w) or ∗(1w).
iii) For any words w1, w2, a move to [w10:0w2 ] or [w10:0w2] is either loony

or equivalent to a move to [w1] + [w2 ] = ∗(ǫ(w1)
∗

+ ǫ(w2)). The move to
[w10 : 0w2] is non-loony if and only both w1 and w2 satisfy the criterion
of (ii) for a move to [:0w] to be non-loony. Likewise, the move to [w10:0w2 ]
is non-loony if and only both w1 and w2 satisfy the criterion of (ii) for a
move to [:0w] to be non-loony.
iv) The function ǫ from strings of 0’s and 1’s with no consecutive 1’s to
nonnegative integers is recursively determined by (ii) and (iii): ǫ(i) = 1,
and for w of length > 1 the value ǫ(w) is the mex of the values of the Nim
equivalents of all non-loony moves as described in (ii), (iii).

This is proved in exactly the same way as Thm. 1. Note that we do not
evaluate moves to [ :w]. Such a move is available only if the opponent
just moved to [:0w]. If that move was loony then we win, capturing unless
the other components sum to ǫ(w) in which case we advance, forcing the
opponent to advance in return and winning whether that forced advance was
loony or not. If the opponent’s move to [:0w] was not loony then capturing
or advancing our attacked pawn yields equivalent positions. p
6.3 Numerical results

Thm. 3 yields a practical algorithm for evaluating ǫ(w). If w has length
m, the recursion in (iv) requires O(m2 log m) space, to store ǫ(w′) as it is
computed for each substring w′ of consecutive bits of w, and O(m3) table
lookups and nim-sums, to recall each ǫ(w′) as it is needed and combine
pairs. Unlike the situation for the simple game with no files stopped, where
we obtained a simple closed form for ǫ(m) (Thm. 2), here we do not know
such a closed form. We can, however implement the O(m3) algorithm to
compute ǫ(w) for many w. We conclude this paper with a report on the
results of several such computations and our reasons for believing that ǫ(w)
can be arbitrarily large.

We saw already that ǫ(1000) = 2; this is the unique w of minimal length such
that [w] has value ∗2, except that the reversal [0001] of [1000] has the same
value. Clearly [0] and [1] are the smallest instances of ∗1. We first find ∗4, ∗8
and ∗16 at lengths 9, 20, and 43, for w = 101001000, 10100100010100001000,
and 1010010001000000010100010000000101000100101, among others. The
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following table lists for each k ≤ 16 the least m such that ǫ(w) = k for some
word of length m:
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

m 1 4 6 9 11 14 16 20 22 25 27 30 32 37 39 43

It seems that, for each k, instances of ∗k are quite plentiful as m grows.
The following table gives for each 35 ≤ m ≤ 42 the proportion of length-m
words w with w(m) = 0, 1, 2, . . . , 9, rounded to two significant figures:7

m 0 1 2 3 4 5 6 7 8 9

35 24% 26% 19% 15% 5.4% 5.7% 2.7% 2.5% .51% .25%
36 22% 27% 18% 15% 5.5% 5.7% 2.6% 2.8% .54% .27%
37 26% 22% 14% 19% 5.8% 5.5% 2.8% 2.8% .55% .31%
38 25% 23% 16% 17% 5.7% 5.7% 3.1% 2.7% .56% .35%
39 22% 26% 19% 14% 5.6% 5.9% 3.0% 3.0% .59% .37%
40 24% 24% 16% 18% 5.9% 5.7% 3.0% 3.2% .61% .40%
41 26% 22% 15% 19% 5.9% 5.8% 3.3% 3.1% .61% .44%
42 22% 24% 18% 15% 5.8% 6.0% 3.3% 3.2% .63% .47%

Especially for ∗0 through ∗3, the proportions seem to be bounded away
from zero but varying quite erratically with m. The small proportions of ∗6
through ∗9 appear to rise slowly but not smoothly. We are led to guess that
for each k there are length-m components of value ∗k once m is large enough
— perhaps m ≫ k suffices — and ask for a description and explanation of
the proportion of components of value ∗k among all components of length m.
In particular, is it true for each k that this proportion is bounded away from
zero as m → ∞?

It is well known that the number of binary words of length m without two
consecutive 1’s is the (m + 2)-nd Fibonacci number. This number grows
exponentially with m, soon putting an end to exhaustive computation. We
do not expect to be able to extend such computations to find the first ∗32,
which probably occurs around m = 90. Nevertheless we have reached ∗32
and much more by computing ǫ(w) for periodic w of small period p. This
has the computational advantage that for each m′ < m we have at most p

substrings of length m′ to evaluate, rather than the usual m + 1 − m′.8

7 To compute such a table one need do O(m) basic operations for each choice of w,
rather than O(m3), because ǫ(w′) has already been computed for each substring w′ —
this as long as one has enough space to store ǫ(w′) for all w′ of length at most m − 2.

8 Once this is done for some period-p pattern, one can also efficiently evaluate compo-
nents with the same repeated pattern attached to any initial configuration of blocked and
unblocked files. We have not yet systematically implemented this generalization.
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We have done this for various small p. Often the resulting Nim-values settle
into a repeating pattern, of period p or some multiple of p. This is what
happened in Thm. 2 for p = 1, with period 10p. Usually the multiplier is
smaller than 10, though blocking files 14r and 14r + 5 produces a period of
504 = 36 · 14.

All repeating patterns with p ≥ 4 soon become periodic, but for larger p

some choices of pattern yield large and apparently chaotic Nim-values. For
instance, we have reached ∗4096 by blocking every sixth file in components
of length up to 2·105. For each α = 3, 4, . . . , 12 the shortest such component
of value ∗(2α) has files 6r + 4 blocked, with length n given by the following
table:

α 3 4 5 6 7 8 9 10 11 12

n 51 111 202 497 1414 3545 8255 21208 61985 187193

This again suggests that all ∗k arise: even if the Nim-values for p = 6
ultimately become periodic, we can probably re-introduce chaos by blocking
or unblocking a few files. Of course we have no idea how to prove that
arbitrarily large k appear this way.

Finally, for a few repeating patterns we observe behavior apparently inter-
mediate between periodicity and total chaos. Blocking every fifth or tenth
file yields Nim-values that show some regularity without (yet?) settling into
a period. Indeed in both cases the largest values grow as far as we have
extended the search (through length 105), though more slowly and perhaps
more smoothly than for p = 6. Such families of components seem the most
likely place to find and prove an arithmetic periodicity or some more com-
plicated pattern that finally proves that all ∗k arise and thus fully embeds
Nim into generalized King-and-pawn endgames.
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