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Abstract Regression discontinuity analyses can generate es-
timates of the causal effects of an exposure when a continu-
ously measured variable is used to assign the exposure to
individuals based on a threshold rule. Individuals just above
the threshold are expected to be similar in their distribution of
measured and unmeasured baseline covariates to individuals
just below the threshold, resulting in exchangeability. At the
threshold exchangeability is guaranteed if there is random
variation in the continuous assignment variable, e.g., due to
random measurement error. Under exchangeability, causal ef-
fects can be identified at the threshold. The regression discon-
tinuity intention-to-treat (RD-ITT) effect on an outcome can
be estimated as the difference in the outcome between indi-
viduals just above (or below) versus just below (or above) the
threshold. This effect is analogous to the ITT effect in a
randomized controlled trial. Instrumental variable methods
can be used to estimate the effect of exposure itself utilizing
the threshold as the instrument. We review the recent epide-
miologic literature reporting regression discontinuity stud-
ies and find that while regression discontinuity designs are
beginning to be utilized in a variety of applications in

epidemiology, they are still relatively rare, and analytic
and reporting practices vary. Regression discontinuity has
the potential to greatly contribute to the evidence base in
epidemiology, in particular on the real-life and long-term
effects and side-effects of medical treatments that are pro-
vided based on threshold rules – such as treatments for low
birth weight, hypertension or diabetes.

Keywords Regression discontinuity . Causal inference .

Quasi-experimental . Epidemiologicmethods . Econometrics

Introduction

Randomized controlled trials are typically considered the
gold standard for causal inference. Although most random-
ized controlled trials are designed to elicit unbiased esti-
mates of efficacy under ideal trial conditions, this may be
at the expense of external validity. For example, eligibility
criteria in trials may be designed to minimize loss to follow-
up but may lead to samples of patients that are not repre-
sentative of the broader population of patients who may
benefit from treatment. Other design features of trials may
limit generalizability of results. For example, a landmark
trial of HIV transmission following antiretroviral therapy
(ART) uptake required enrolled couples to be mutually
disclosed, monogamous, and stable, limiting the generaliz-
ability of the trial results to other relationship structures [1].
Furthermore, randomized controlled trials are frequently in-
feasible or unethical, for example, in situations where the
exposure cannot be randomized or in the absence of equi-
poise. Epidemiologists are therefore frequently tasked with
the identification of causal effects from observational data.
The most commonly used methods, such as multiple regres-
sion, matching, or probability weighting, rely on the

This article is part of the Topical Collection on Epidemiologic Methods

* Till Bärnighausen
tbarnighausen@africacentre.ac.za; tbaernig@hsph.harvard.edu

1 Department of Epidemiology, Harvard T.H. Chan School of Public
Health, 665 Huntington Avenue, Boston, MA, USA

2 Department of Global Health and Population, Harvard T.H. Chan
School of Public Health, 665 Huntington Avenue, Boston, MA, USA

3 Africa Centre for Population Health, PO Box 198,
3935 Mtubatuba, South Africa

4 Institute of Public Health, University of Heidelberg,
Heidelberg, Germany

Curr Epidemiol Rep (2016) 3:233–241
DOI 10.1007/s40471-016-0080-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s40471-016-0080-x&domain=pdf


untestable assumption of no unmeasured confounding.
Although this assumption may be reasonable if detailed data
on numerous covariates can be collected, this is not possible
in many situations, and these analyses may still be biased by
unmeasured and uncontrolled confounding of the exposure-
outcome relationship.

Quasi-experimental methods are a class of methods that
take advantage of exogenous sources of variation in exposure
assignment to emulate random treatment assignment, as in a
randomized controlled trial [2, 3]. An exogenous source of
variation, called the instrument in instrumental variable anal-
yses, is a variable that is a cause of the exposure but is other-
wise unrelated to the outcome and, as such, is outside or ‘ex-
ogenous’ to the causal structure under study. Examples in-
clude implementation of policies (e.g., China’s one-child pol-
icy [4]), calendar time (e.g., time trends in street lighting cov-
erage [5]), or genotypes determining phenotypes (i.e.,
Mendelian randomization) [6, 7]. By virtue of their use of an
exogenous source of variation, quasi-experiments do not re-
quire the assumption of no unmeasured confounding and,
thus, may be advantageous in scenarios where this assumption
is unlikely to hold.

The regression discontinuity design is a quasi-experimental
approach that was first described in 1960 in the educational
psychology literature [8]. The regression discontinuity design
can be thought of as an extension of instrumental variable
analysis, in circumstances where an exogenous source of var-
iation arises from a continuously measured random variable
that at least partially assigns treatment or other exposure based
on a threshold rule [9]. For example, prostate-specific antigen
(PSA) level has recently been utilized as an assignment vari-
able for determining eligibility for further prostate cancer
workup, as men with a PSA of over 4.0 ng/mL are eligible
for further screening and workup [10••]. If the assignment
variable determining treatment is a cause of treatment and is
not independently correlated with the outcome, then – in a
small range of values around the threshold that determines
treatment – patients on each side of the threshold are expected
to be similar with respect to all prognostic characteristics for
the outcome. Thus, all baseline covariates are expected to be
balanced between the two groups, as in a randomized con-
trolled trial where randomization guarantees that the exposure
is assigned exogenously.

Despite the considerable potential advantages that the re-
gression discontinuity design has for the identification of
causal effects in the absence of randomized controlled trials,
their application remains relatively uncommon in the epide-
miologic literature [11•, 12•]. Here, we review the regression
discontinuity design, the assumptions for estimation of causal
effects, and the estimation of complier average causal effects
using instrumental variable methods. We conclude by
reviewing recent applications of regression discontinuity de-
signs in epidemiology.

The Regression Discontinuity Design

Regression discontinuity designs can be applied in situations
where a threshold rule is used to determine treatment assign-
ment. In this situation, a continuous variable (the assignment
variable) is used, at least in part, to determine whether or not
an individual is assigned to a treatment. In the presence of
random variability in the assignment variable, patients imme-
diately above and below the threshold are expected to be sim-
ilar with respect to the distribution of all baseline covariates
and, thus, are expected to be exchangeable. Such random var-
iation can arise due to measurement error of biomarkers, sam-
pling variability, or other sources of variation that are unrelat-
ed to the exposure and the outcome. In the regression discon-
tinuity design, the threshold rule represents an exogenous
source of variation in (or the instrument for) treatment assign-
ment. The exchangeability assumption in regression disconti-
nuity is also often called the continuity assumption. Figure 1
illustrates the causal structure in the regression discontinuity
case in a directed acyclic graph.

In the potential outcomes framework of causal inference,
the primary challenge for identification of effects is identifi-
cation of the counterfactual [13]. In the binary treatment case,
identification of the individual counterfactual outcomes would
require observing the same individual’s outcome under two
different treatment scenarios, which is impossible in most
cases. Average causal effects can be identified, however, un-
der certain conditions when the population is on average ex-
changeable with a population under a different treatment sta-
tus. If the continuity, or exchangeability, assumption holds in a
regression discontinuity study, then individuals whose mea-
sured values are immediately below the threshold can serve as
a valid counterfactual for those immediately above the thresh-
old, as the distribution of baseline covariates is expected to be
the same in these two groups.

Randomized Controlled Trials in a Regression
Discontinuity Framework

When the assignment variable is a random number that is
generated by the researcher, the regression discontinuity de-
sign is equivalent to a randomized controlled trial [14]. For
example, if the assignment variable Z follows a uniform dis-
tribution over the range [0, 10], patients who are randomly
assigned a value of Z of ≥5 receive treatment, whereas those
who assigned a value of <5 do not. In this case, the assignment
variable is the random number Z and the threshold is 5. When
Z is randomly assigned, it is independent of potential out-
comes, and thus, the continuity assumption will hold. When
treatment is randomly assigned, and randomization is success-
ful, all patients on each side of the threshold will be exchange-
able. Of note, in randomized controlled trials, unlike in most
regression discontinuity designs, the effect estimated is an
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average effect in all patients in the analytic sample. In this
example, the causal effect of treatment can therefore be esti-
mated as the difference or ratio between E[Y|Z≥5] and
E[Y|Z<5], which is the ITT effect commonly estimated in ran-
domized controlled trials.

Sharp and Fuzzy Regression Discontinuity Designs

Regression discontinuity designs can be used in cases where
the assignment variable determines treatment either determin-
istically or probabilistically. ‘Sharp’ regression discontinuity
refers to situations, in which the assignment variable deter-
mines treatment deterministically (Fig. 2a). When the conti-
nuity assumption is met and there is exchangeability between
patients above and below the threshold, the difference in the
means at the threshold can be calculated, which can be
interpreted as the average causal effect (ACE) in the popula-
tion near the threshold in sharp regression discontinuity de-
signs. In this case, patients just below the threshold are uncon-
ditionally exchangeable with those just above the threshold.
The ACE on the outcome, Y, in a sharp regression discontinu-
ity design is thus identified at the threshold, c:

ACE ¼ limz↑cE Y i

�
�
�Zi ¼ z

h i

−limz↓cE Y i

�
�
�Zi ¼ z

h i

ð1Þ

Regression discontinuity designs can also be used in cases
where treatment is probabilistically assigned by the threshold.
This can occur in situations where treatment assignment is
only partially determined by the assignment variable. This
scenario is called ‘fuzzy’ regression discontinuity (Fig. 2b).
In fuzzy regression discontinuity, the ACE can be conceptu-
alized as similar to the ITT estimated in a randomized con-
trolled trial (the effect of the randomized treatment). In the
regression discontinuity case, the BITT^ (RD-ITT) is the effect
of presenting just below the threshold compared to just above

the threshold. The conceptual trial that the regression discon-
tinuity design is emulating would be a trial in which treatment
was randomly allocated for individuals in a narrow range

Fig. 2 . Illustration of the 'sharp' and the 'fuzzy' regression discontinuity
design. Hypothetical scenario depicting treatment assignment in the sharp
or deterministic (a) and fuzzy or probabilistic (b) regression discontinuity
design

Fig. 1. An illustration of the regression discontinuity design using a directed
acyclic graph. Directed acyclic graph (DAG) illustrating the regression dis-
continuity for the example of ART initiation and mortality. CD4 count is the
assignment variable, which is measured with error (depicted by the asterisk),
which is used to determine whether a patient is above or below the threshold,
and thus eligible for treatment. CD4Count* (CD4 countmeasuredwith error)

is in a box to depict that the analysis is restricted to only patients who are
immediately above and below the threshold. The DAG depicts that there are
no open backdoor paths between mortality and eligibility for treatment based
on the threshold, even in the presence of unmeasured confounding of ART
status and mortality
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around the threshold. In the absence of investigator-initiated
randomization, the threshold itself serves as the randomization
algorithm for the individuals around the threshold. In the
fuzzy regression discontinuity design, the ITT can be
interpreted as the effect of the threshold on outcomes for pa-
tients who present close to the threshold. Because this effect
can concern the effect of a policy, such as the CD4 count at
which a patient becomes eligible for immediate ART, the RD-
ITT identified in fuzzy regression discontinuity is commonly
viewed as the effect of interest from a policy perspective. In
the CD4 count example, the regression discontinuity analysis
would yield evidence of the effect of immediate eligibility for
treatment compared to monitoring for eligibility and treatment
initiation at a later time point, for individuals who are present-
ing to care with CD4 counts close to the threshold [12•].

Regression Discontinuity with Non-Randomized
Assignment Variables

Regression discontinuity designs can be viewed as analo-
gous to randomized controlled trials in some circum-
stances when the assignment variable is non-randomized.
When the assignment variable is measured with random
error, the continuity assumption is expected to hold for
patients near the threshold [12•]. Random measurement
error is commonly found in applications in epidemiology.
An example of an assignment variable measured with ran-
dom error is CD4 count, which is used to determine ART
eligibility among HIV-positive patients [15, 16]. In addi-
tion to random measurement error, CD4 counts are affect-
ed by exogenous factors, such as exercise [17], exposure
to diesel exhaust [18], and smoking [19]. These factors
result in substantial variability in CD4 count measurement.
When the variability is exogenous to the causal structure
under study, whether or not a patient presents immediately
below (and thus is eligible for immediate treatment) or
immediately above (and thus ineligible for immediate treat-
ment) is random with respect to the causal structure,
resulting in exchangeability in patients who are near the
threshold. In this scenario, the assignment variable mimics
a random variable for patients who are close to the thresh-
old, allowing for estimation of causal effects. Importantly,
unlike in the randomized controlled trial, where the causal
effect is identified for the entire patient population, in the
regression discontinuity design, the causal effect is only
identified at the threshold (unless additional assumptions
are evoked) [20].

As part of a regression discontinuity analysis, evidence of a
treatment effect can be easily visualized. Figure 3a demon-
strates a scenario, in which there is a treatment effect.
Evidence of the discontinuity in outcomes is evident at the
threshold. Conversely, Fig. 3b demonstrates a scenario in

which the effect is null. Notably, there is no discontinuity in
outcomes at the threshold in this scenario.

In practice, identifying effects immediately at the threshold
is infeasible in most scenarios, as few subjects will be imme-
diately above or below the threshold. To estimate effects, in-
formation from patients on each side of the threshold must be
used. This can be done by fitting a regression model with the
form:

E Y i

�
�
�Zi

h i

¼ β0 þ β11 Zi < c½ � þ β2 Zi−cð Þ

þ β3 Zi−cð Þ*1 Zi < c½ � ð2Þ

where β1 is the difference in the cutoff (equivalent to the
effect of eligibility for treatment as defined by the threshold),
β2 is the slope of the line below the threshold, and β2 + β3 is
the slope of the line above the threshold. In order to validly
estimate causal effects, it is thus necessary to correctly specify

Fig. 3. Visualizing treatment effects in regression discontinuity
analyses. Illustration of the probability of outcome in the presence (a)
and absence (b) of a treatment effect in a hypothetical scenario. In the
case of a treatment effect, a discontinuity in probability of outcome can be
visually seen at the threshold, whereas no discontinuity is seen, when
there is no treatment effect
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the functional form for the outcomes as a function of the
assignment variable Z. Typically, models are presented with
a range of bandwidths around the threshold [11•]. As the
bandwidths get wider, more patients are included in the anal-
ysis, and the analysis will have greater statistical power.
However, the importance of correctly specifying the function-
al form is greater at wider bandwidths compared to narrower
bandwidths. Although these models can ‘borrow’ information
from individuals further from the threshold and improve sta-
tistical power, it is important to correctly adjust for residual
confounding by the assignment variable. Of note, even in
models using wider bandwidths, the interpretation of the effect
is still local to individuals who are close to the threshold. A
bias-variance trade-off exists in selection of bandwidths,
where wider bandwidths will be more powerful at the expense
of increased risk of bias, and narrower bandwidths are less
powerful but are likely to be less biased. Models using larger
bandwidths often assess robustness through the inclusion of
higher-order polynomials or splines, but effect size estimates
are increasingly sensitive to model specification as bandwidth
increases.

The assumptions for causal identification with regression
discontinuity are summarized in Table 1. Whereas in the case
where the assignment variable is randomly generated by the
researcher the continuity (or exchangeability) assumption
should hold if randomization were successful, in regression
discontinuity designs with non-randomized assignment vari-
ables, evaluation of the plausibility of the continuity assump-
tion is particularly important. In practice, this can be done by
demonstrating that the assignment variable is continuous at
the threshold (for example, by demonstrating in a histogram
that there is no evidence of manipulation of the assignment
variable at the threshold) and by demonstrating balance of
covariates at baseline. Balance can be visually examined by
presenting the distribution of baseline covariates by the con-
tinuous assignment variable. Such tests fulfill the same func-
tion as balance tests in randomized controlled trials.

The two additional identifying assumptions required for
causal inference include consistency and positivity. The con-
sistency assumption is that an individual’s potential outcome
had they received the treatment they actually received is equal
to the individual’s observed outcome [21, 22]. To ensure con-
sistency, interventionsmust bewell defined [23]. In regression
discontinuity, this assumption is generally expected to be met,
as interventions are assigned by an assignment variable and
thus are not biological variables, such as body weight, which
could be Bassigned^ via a variety of mechanisms [23]. While
biological variables may serve as assignment variables (e.g.,
blood pressure or blood sugar), they are used to assign a treat-
ment that is, by definition of being determined by an assign-
ment variable, well defined. The second assumption, positiv-
ity, implies that the probability of each treatment level is non-
zero for each combination of treatment and confounder [24].

In the regression discontinuity design, the positivity assump-
tion is met when there are individuals both above and below
the threshold.

Instrumental Variable Methods for Estimating Complier
Average Causal Effects in Regression Discontinuity
Designs

In the fuzzy regression discontinuity design, the effect of treat-
ment among those who take treatment because of the threshold
rule can be identified using instrumental variable methods [25].
In this case, the threshold rule is an instrument for treatment. In
the instrumental variable framework, the population of patients
can be divided in to four latent subtypes: (1) the compliers, who
are the subset of the population who follow the treatment regi-
men assigned to them by the threshold; (2) the defiers, who are
the subset who do the opposite of what the threshold assigns
them to; (3) the never takers, who do not take treatment regard-
less of which side of the threshold they are on; and (4) the always
takers, who always take treatment regardless of what side of the
threshold they are on. Instrumental variablemethods can be used
within the regression discontinuity framework to identify the
causal effect among the compliers, known as the complier aver-
age causal effect (CACE), where the instrument is eligibility for
treatment (i.e., the threshold). This effect is generalizable only to
the compliers, although as a latent subtype, the subpopulation is
not empirically identifiable [26]. Complier average causal effects
can also be recovered in randomized controlled trials when there
is noncompliance to the assigned treatment.

The CACE can be calculated in the regression discontinuity
framework via the Wald instrumental variable estimator under
identical identifying assumptions. The CACE can be estimated
by scaling the effect of the threshold (RD-ITT) identified in
Eq. 1 by the difference in the probability of treatment at the
threshold (i.e., the probability of receiving treatment given pre-
sentation below vs. above the threshold). The instrumental var-
iable estimator in the case of regression discontinuity can be
defined as:

CACE ¼
limz↑cE Y i

�
�
�Zi ¼ z

h i

−limz↓cE Y i

�
�
�Zi ¼ z

h i

limz↑cPr T i ¼ 1
�
�
�Zi ¼ z

h i

−limz↓cPr T i ¼ 1
�
�
�Zi ¼ z

h i

ð3Þ

In the case of sharp regression discontinuity, the denomi-
nator of Eq. 3 is equal to 1, because the threshold assigns
treatment perfectly. Thus, in sharp regression discontinuity,
the RD-ITT is equivalent to the CACE and can be interpreted
as the average causal effect. In fuzzy regression discontinuity,
the CACE is generally expected to be further from the null
than the RD-ITT, and the greater the difference between treat-
ment assignment and actual treatment status, the greater the
difference between the RD-ITT and the CACE. The
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significance of the effect of the threshold remains a valid test
of the null hypothesis in CACE estimation using the instru-
mental variable estimator: if the RD-ITT is null, the CACE
will be null as well.

The identification of the CACE requires several additional
assumptions beyond those required for identification of the
ITT in regression discontinuity designs. The assumptions are
identical to those necessary in instrumental variable analyses
[25]. First, the identified effect is the effect among the com-
pliers (i.e., the effect among individuals who took treatment
because of the threshold rule).

The identification of the CACE also requires the assumption
of the exclusion restriction, i.e., the effect of the threshold (the
instrument in the broader instrumental variable framework) on-
ly affects the outcome Y via actual treatment status T. The
exclusion restriction is the fundamental assumption that under-
lies any instrumental variable analysis. In the randomized con-
trolled trial case, randomization ensures that the exclusion re-
striction is met (if there is effective masking of treatment allo-
cation). When the assignment variable is not randomized, the
plausibility of the exclusion restriction can be evaluated via
knowledge of the causal structure under study. In the regression
discontinuity case, the exclusion restriction is expected to hold
for individuals who are near the threshold. When wider band-
widths are used, the exclusion restriction will hold conditional
on the assignment variable, when the assignment variable is
included in the regression model. Of note, the exclusion restric-
tion is not required for the calculation of the RD-ITT (the effect

of the threshold on outcomes). The RD-ITT represents a popu-
lation effect of the threshold itself. Although, in the fuzzy re-
gression discontinuity case, some individuals may not have
taken treatment as assigned by the threshold, the RD-ITT is
simply the population effect of the threshold. It is only when
calculating the CACE – i.e., when we are attributing the effect
of the threshold to the effect of treatment itself – that the exclu-
sion restriction must be met.

Finally, the monotonicity assumption must hold: No pa-
tients who would have taken up treatment if ineligible would
not take up treatment if eligible (i.e., there are no defiers in the
population). As a latent subtype, the population of patients
who would be defiers is not identifiable. This assumption is
therefore not empirically verifiable; however, knowledge of
the causal structure may elucidate whether or not the mono-
tonicity assumption is likely met.

Tests for Determination of the Optimal Bandwidth

Recent work has described data-driven tests for selection of
the optimal bandwidth for the regression discontinuity design
[27, 28]. These methods are meant to assist the researcher with
objective selection of the optimal bandwidth for their applica-
tion, considering the bias-variance trade-off discussed above,
rather than relying on arbitrary bandwidths. The objective of
the optimal bandwidth estimators is to give researchers a ref-
erence point, from which they can assess the robustness of
results to bandwidth variation in sensitivity analyses.

Table 1 Assumptions of the
regression discontinuity design Assumption Tests of assumptions

Assignment variable is measured
continuously

•Verification that the assignment variable is measured and reported
continuously

•Knowledge that outcomes are measured for subjects regardless of
whether or not they received treatment

•Verification of how treatment is assigned to patients

Continuity of the assignment variable
at the threshold

•Check for potential manipulation with a histogram of the
assignment variable

•Bunching at the threshold could indicate possible manipulation

Exchangeability
(the continuity assumption)

•Covariate balance tests to demonstrate a balance of baseline
covariates above and below the threshold

•Plots of baseline covariates around the threshold to demonstrate
that there is no discontinuity in factors that may be correlated
with the assignment variable

•Inclusion of baseline covariates as sensitivity analysis in the
regression discontinuity model. These models should have point
estimates that are similar to models without baseline covariates if
the continuity of potential outcomes assumption holds

Consistency •Assessment of how well defined the exposure of interest is

Positivity •Ensure that there are individuals both above and below the
threshold in the population

No misspecification of the functional
form of the assignment variable

•Robustness checks, including flexible functional forms for the
assignment variable, especially for models with wider
bandwidths around the threshold
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Opportunities for Regression Discontinuity with Big Data

Regression discontinuity may offer opportunities for causal
inference in the era of ‘big data’, i.e., data that is large in
volume, arrives with high velocity, and is typically combined
from a wide variety of sources. Data that are routinely collect-
ed, such as program monitoring data or electronic health data
from national health systems, may provide opportunities for
estimation of causal effects without randomized controlled
trials, with the use of regression discontinuity. In clinical set-
tings of routine data collection at large scale, measurement of
potential assignment variables that determine treatment in-
cludes CD4 count for ART, intraocular pressure for glauco-
ma treatment, blood sugar for diabetes treatment, and blood
pressure for antihypertensive treatment. Programmatically,
routine monitoring data can sometimes be used to evaluate
the causal impact of a novel intervention when intervention
assignment is determined by thresholds, e.g., a date in calendar
time or a minimum prevalence of a particular disease. Big
datasets are particularly well suited to regression discontinuity
analysis due to the large number of observations they are likely
to contain. Because regression discontinuity must focus on the
population near the relevant cutoff point, big data offers op-
portunities for sufficiently powered studies even with narrow
bandwidth.

Applications of the Regression Discontinuity Design
in Epidemiology

Although application of the regression discontinuity design in
epidemiology remains rare [11•], there have been several re-
cent examples in the epidemiologic literature. Examples in-
clude the effect of relative younger age compared to their
peers at entry to school on suicide [29], low-intensity tele-
phone counseling on detection of metabolic syndrome [30],
increased schooling on HIV status [31], human papillomavi-
rus (HPV) vaccination on sexual behavior [32] and cervical
dysplasia [33••], and the efficacy of prostate-specific antigen
screening for detection of prostate cancer [10••]. These stud-
ies, reviewed below, report a range of practices in terms of
discussion of the assumptions required for identification of
causal effects and in their use of the CACE.

Matsubayashi and Ueda [29] report the effect of relative
age in a grade (i.e., children who are on the younger end of the
distribution of ages in a given grade) on suicide mortality. The
authors utilize date of birth as the assignment variable and the
school entry cutoff as the threshold rule. In expectation, indi-
viduals born just after the cutoff date (younger relative age)
should have similar baseline characteristics to those just be-
fore the cutoff (older relative age). Although the authors report
that the data generating process (exogenous variation in rela-
tive age due to the threshold) should result in a balance of

baseline characteristics, a balance table is not presented. The
authors report results for a range of bandwidths around the
threshold (7 to 28 days). The authors discuss possible manip-
ulation of the threshold by parents, getting their children into
school earlier, but do not present a histogram of distribution of
birth dates around the threshold. The CACE is not reported or
discussed, and the results thus represent the effect of being
born just before the cutoff date for starting school.

Yi et al. [30] present results for the effect of a telephone
counseling intervention on untreated metabolic syndrome.
Enrollees in the NHIS Metabolic Syndrome Management
Programme were considered high risk if they had three or
more metabolic syndrome criteria, whereas those with two
or fewer were considered low risk. The authors divide the
patient population into low- and high-risk groups and further
subdivide the high-risk group into those who participated in
the counseling intervention. Although this situation represents
a fuzzy regression design, because not all enrollees in the
high-risk group received the intervention, rather than calculat-
ing the CACE, an analysis comparing those who received the
counseling session to the control was presented. This ap-
proach is identical to a per-protocol analysis in a randomized
controlled trial, an analytic strategy that is known to suffer
potential selection bias if there are factors associated with
actual receipt of the intervention that are also associated with
the outcome [34].

Behrman [31] reports the effect of primary schooling on
adult HIV status among women in Malawi and Uganda. The
author uses eligibility for the universal primary education
(UPE) policy implemented in the nineties (age 13 or younger
at policy implementation versus older) as the threshold vari-
able and birth cohort as the assignment variable. The author
discusses that this is a case of fuzzy regression discontinuity
because there is grade repetition, meaning that some girls who
are beyond the age of primary school will be exposed to UPE,
as well as noncompliance, as some girls who are eligible for
UPE will not attend school. The CACE, estimated using in-
strumental variable methods, is reported as the estimand of
interest due to the fuzzy nature of the data, and the author
discusses the exclusion restriction assumption. Sensitivity
analyses are presented for a range of ages around the cutoff.

Smith et al. present the effect of HPV vaccination on cervical
dysplasia and anogenital warts [33••] and sexual behaviors [32].
The assignment variable, birth date, was categorized into quar-
ter years, and the threshold rule was birth on or after January 1,
1994 (eligible) versus earlier than January 1, 1994 (ineligible).
The CACE was presented for each of the outcomes and calcu-
lated using instrumental variable methods in addition to the ITT.
The authors discuss the differences in interpretation of the ITT
and CACE but do not discuss the additional assumptions nec-
essary for causal interpretation of the CACE.

Finally, Shoag et al. [10••] report a re-analysis of the
Prostate Lung Colorectal and Ovarian (PLCO) trial focusing
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on the efficacy of prostate-specific antigen (PSA) screening
for prostate cancer detection undertaken due to concerns about
the high rate of PSA screening in the control arm. The authors
used a regression discontinuity design in the screening arm of
the trial to re-analyze the data, using a PSA of 4.0 ng/mL as
the threshold for further prostate cancer workup (further
screening) and PSA itself as the assignment variable. Using
the regression discontinuity design in the screening arm of the
trial, the authors were able to replicate the overall trial results
that there was no decrease in prostate cancer-specific or over-
all mortality as a result of additional prostate cancer screening.

Conclusions

Regression discontinuity designs offer the opportunity to
identify causal effects in the absence of randomized controlled
trials by taking advantage of an exogenous source of variation
in treatment assignment induced by a threshold rule. This may
offer advantages over traditional epidemiological methods,
which adjust for observed covariates, in that the data generat-
ing process is expected to result in a balance of both observed
and unobserved covariates at baseline. This data generating
process can be conceptualized analogously to that of a trial,
where the random variation in treatment assignment is inves-
tigator assigned, rather than due to another exogenous source.
This framework facilitates interpretation of the effect of treat-
ment eligibility and extensions to the CACE. As in a random-
ized controlled trial, the ITTmay be interpreted as the effect of
treatment assignment, and the CACE is the effect of treatment
among the compliers.

Recent applications of regression discontinuity design dem-
onstrate a variety of practices and room for improvement in
analysis and reporting. Although several of the studies we
reviewed included estimation of the CACE, thorough discus-
sions of the additional assumptions required for this effect
estimation were infrequently included. Furthermore, calcula-
tion of the per-protocol effect in the regression discontinuity
framework is likely to suffer from selection bias, as in a ran-
domized controlled trial. Restriction to the subgroup that ad-
hered to treatment would lead to selection bias, if there were
factors associated both with actual treatment status and the
outcome in the causal structure. As a best practice, instrumen-
tal variable methods should be used for estimating the effect of
treatment itself on outcomes. Researchers who include the
CACE in their analyses should include a discussion of the
exclusion restriction and its plausibility given the context and
the particular treatment assignment rule under study, in addi-
tion to assessment of the other assumptions necessary for iden-
tification of the RD-ITT.

There are several important limitations to consider with any
regression discontinuity design. Perhaps most importantly, ef-
fects from regression discontinuity designs can only be

generalized to individuals with assignment variable values that
are close to the threshold. When interpreting the results of re-
gression discontinuity analyses, careful attention should be
paid to the population to whom effects can be generalized.
Regression discontinuity designs also require relatively large
sample sizes to achieve adequate statistical power, due to the
need to restrict the sample to individuals who are close to the
threshold.

The studies described above demonstrate a variety of re-
search questions that can be assessed using regression discon-
tinuity designs, ranging from social to clinical exposures and
outcomes. In randomized controlled trials, regression discon-
tinuity designs can be used to complement results when there
are issues with the internal validity of the primary analysis. In
cohorts, regression discontinuity can generate strong causal
evidence that may not be possible with other methodologies
used for observational data. These analyses can yield causal
evidence from real-world settings, without the artificiality of-
ten introduced through the processes in randomized controlled
trials and thus with a high likelihood of external validity.
Given the frequency with which threshold rules are used in
clinical practice to determine treatment eligibility, regression
discontinuity designs have the potential to greatly contribute
to the generation of high-quality evidence in epidemiology.
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