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A commentary on

XBP-1 Is a Cell-Nonautonomous Regulator of Stress Resistance and Longevity

by Taylor, R. C., and Dillin A. (2013). Cell 153, 1435–1447. doi: 10.1016/j.cell.2013.05.042

The life expectancy in the world’s population is increasing, highlighting the need of better
understanding of the cellular and molecular pathways that drive the aging process. Because aging is
the major risk factor to develop neurodegenerative conditions such as Alzheimer’s and Parkinson’s
disease, the number of patients affected is constantly increasing, representing a major social and
economic problem. Importantly, abnormal protein aggregation is a transversal pathological event
of most aging-related brain diseases, suggesting that the ability of neurons to handle alterations
in the proteome is specifically altered (Kaushik and Cuervo, 2015). Several hallmarks of aging
have been identified at the cellular and molecular level (Lopez-Otin et al., 2013; Kennedy et al.,
2014), highlighting alterations in protein homeostasis or proteostasis. In fact, studies in simple
model organisms indicate that the buffering capacity of the proteostasis network (PN) is reduced
during aging (Douglas and Dillin, 2010; Mardones et al., 2015). The PN can be decomposed
in different interrelated sub-networks including mechanisms responsible for protein synthesis,
translation, folding, trafficking, quality control, secretion, and degradation (Balch et al., 2008).
Sustained dysfunction of one or more components of the PN may translate into cell dysfunction
and even proteotoxicity (Figure 1).

Around 30% of the total proteome is synthetized at the endoplasmic reticulum (ER), an essential
compartment involved in calcium handling, lipid synthesis among other functions. Different
physiological and pathological stimuli can alter the function of this organelle, resulting in the
accumulation of misfolded proteins. Importantly ER stress has been proposed as a central driver of
several neurodegenerative conditions (Hetz and Mollereau, 2014). ER stress triggers the activation
of the unfolded protein response (UPR), a central homeostatic pathway that orchestrates cells
adaptation (Hetz et al., 2015). Studies in Caenorhabditis elegans and rats indicate that the activity
of the UPR is drastically ablated during aging (Paz Gavilan et al., 2006; Naidoo et al., 2008; Ben-Zvi
et al., 2009; Gavilan et al., 2009; Taylor and Dillin, 2013). The UPR is mediated by three main stress
sensors located at the ER membrane including ATF6, PERK, and IRE1 (Ron and Walter, 2007).
In brief, activation of IRE1 controls to the expression of the transcription factor XBP1s, leading to
the upregulation of genes related with protein quality control, folding, ERAD, among other targets
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FIGURE 1 | Global proteostasis network impairment during aging. Aging is the main risk factor to develop most neurodegenerative conditions and new

evidence has pointed out to a progressive decline in the buffering capacity of the proteostasis network (PN) to handle cellular stress. The PN is formed by different

interrelated sub-networks including mechanisms responsible for protein translation, folding, synthesis, protein quality control, trafficking, secretion, and degradation

(ERAD, proteasome, autophagy). Proteostasis breakdown during aging may result in proteotoxicity and the development of neurodegenerative diseases such as

Alzheimer’s and Parkinson’s disease.

(Hetz et al., 2015). PERK phosphorylates eIF2α; inhibiting the
translation of proteins into the ER, in addition to induce the
expression of the transcription factor ATF4 regulating genes
involved in the antioxidant response, amino acid metabolism
and folding. Under irreversible ER stress ATF4 is essential
to trigger apoptosis. ATF6 encodes a transcription factor
in its cytosolic domain that upon processing is realized to
control gene expression. Altogether, the activation of the UPR
enforces adaptive mechanisms to sustain proteostasis or trigger
cell demise when protein misfolding cannot be mitigated
determining cell fate.

Several studies in model organisms have uncovered the
significance of UPR signaling to the aging process. IRE1 is
the only ER stress sensor expressed in yeast and contributes

to lifespan extension (Labunskyy et al., 2014), consistent with
the fact that UPR activation in this organism is a relevant
feature involved in the health span control triggered by caloric
restriction (Choi et al., 2013). Similarly, genetic modifications
that enhance the activity of the UPR improve replicative lifespan
in Saccharomyces cerevisiae (Cui et al., 2015). Studies inC. elegans
demonstrated that ablating the expression of XBP1 reduces life
expectancy, associated with altered FOXO and insulin/IGF-1
signaling, a canonical aging pathway (Henis-Korenblit et al.,
2010). Importantly, another report indicated that the ectopic
expression of XBP1s in neurons has a significant effect in
increasing lifespan in C. elegans (around 30%), representing one
of the strongest aging modulator described so far in this specie
(Taylor and Dillin, 2013). In D. melanogaster, the occurrence
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of ER stress and chronic inflammation alters the stem cell
pool in the gut, affecting intestinal homeostasis during aging
(Wang et al., 2014). Unexpectedly, a recent study indicated that
chronic PERK signaling limits lifespan by controlling intestinal
homeostasis, having important consequences to organismal
health (Wang et al., 2015). In mammals, it was reported that the
capacity to response to ER stress and activate IRE1 is attenuated
in macrophages during aging, increasing the susceptibility to
apoptosis (Song et al., 2013). Accordantly, aged rats present
more pro-apoptotic UPR components as opposed to adaptive
mediators such as BIP, calnexin, and PDI after ER stress induction
(Paz Gavilan et al., 2006; Naidoo et al., 2008). In contrast, during
the aging process B cells, osteoclasts, adipocyte tissue, the retina,
and muscle experience elevated levels of ER stress and UPR
activation (Chalil et al., 2015; Ghosh et al., 2015; Lenox et al.,
2015; Baehr et al., 2016; Kannan et al., 2016). These observations
suggest that aging maybe associated with accumulative damage
to the ER rather than an attenuation of UPR responses. However,
the role of ER proteostasis impartment in mammalian aging
needs to be functionally defined.

The UPR is emerging as a key player in the integration
of systemic responses to handle proteostasis alterations at the
whole organism, governed by the central nervous system (Sun
et al., 2012; Taylor and Dillin, 2013). In addition to regulate the
intrinsic capacity of the cell to respond to ER stress, activation
of IRE1 in neurons engages an organismal reaction to promote
stress resistance and longevity on a cell-nonautonomous manner
(Taylor andDillin, 2013). Interestingly, the activation of XBP1s in
neurons per se was irrelevant to sustain organismal homeostasis,
suggesting that the nervous system operates as a global adjustor
of proteostasis, where the effectors in terms of enforcing aging
resistance operate in the periphery, highlighting the intestine.
Importantly, other studies have shown a similar mode of
control for the heat shock response and the innate immunity
in C. elegans (reviewed in Mardones et al., 2015). Similarly, in
flies activation of PERK engages cell-nonautonomous responses
in the gut during aging (Wang et al., 2015). The concept cell-
nonautonomous UPR was recently validated in mammals, where
the expression of XBP1s in the hypothalamus propagates signals
to the periphery (i.e., the liver) to adjust energy metabolism
(Williams et al., 2014). However, the specific mechanism of
proteostasis control in mammals and the neuronal circuits
mediating the propagation of UPR signals between cells remain
to be determined. Importantly, in C. elegans the propagation of
ER stress signals to the periphery depends on neurotransmitters,
suggesting that signalingmechanismsmaymediate the activation

of UPR-like responses in the targeted tissue probably on a
stress-independent manner (Taylor and Dillin, 2013). In this
line, we recently reported that XBP1s has a novel function
in controlling synaptic plasticity and behavior in mammals,
where growth factors like BDNF can engage the pathway
(Martinez et al., 2016).

Although several studies are placing the ER PN as a
relevant adjustor of organismal aging in several species, its
actual impact to human aging remains to be established.
Many important questions need to be solved in this emerging
field: Why is the UPR buffering capacity attenuated during

aging? How does the nervous system control organismal
proteostasis? Is there a connection between ER stress and aging
in protein misfolding disorders affecting the nervous system?
Can we exploit the control of cell-nonautonomous UPR as a
therapeutic strategy to delay aging? Importantly, recent studies
suggest that oxidative damage could directly modify UPR stress
sensors, ablating adaptive responses (Nakato et al., 2015). In
addition, the redox status of the ER is altered during aging in
C. elegans, suggesting that intrinsic physiological alterations to
this subcellular compartment may underlay the reduced capacity
of the pathway to handle proteostasis alterations when cells get
old (Kirstein et al., 2015). Several novel drugs are available to
fine-tune the UPR and reduce ER stress levels (Hetz et al., 2013),
which promises new avenues to intervene brain aging which may
reduce the risk to develop neurodegenerative diseases, improving
health span.
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