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RESEARCH ARTICLE Open Access

OGS2: genome re-annotation of the jewel
wasp Nasonia vitripennis
Alfredo Rago1†, Donald G. Gilbert2*†, Jeong-Hyeon Choi3, Timothy B. Sackton4, Xu Wang5, Yogeshwar D. Kelkar6,
John H. Werren7* and John K. Colbourne1*

Abstract

Background: Nasonia vitripennis is an emerging insect model system with haplodiploid genetics. It holds a key
position within the insect phylogeny for comparative, evolutionary and behavioral genetic studies. The draft genomes
for N. vitripennis and two sibling species were published in 2010, yet a considerable amount of transcriptiome data
have since been produced thereby enabling improvements to the original (OGS1.2) annotated gene set. We describe
and apply the EvidentialGene method used to produce an updated gene set (OGS2). We also carry out comparative
analyses showcasing the usefulness of the revised annotated gene set.

Results: The revised annotation (OGS2) now consists of 24,388 genes with supporting evidence, compared to 18,850
for OGS1.2. Improvements include the nearly complete annotation of untranslated regions (UTR) for 97 % of the genes
compared to 28 % of genes for OGS1.2. The fraction of RNA-Seq validated introns also grow from 85 to 98 % in this
latest gene set. The EST and RNA-Seq expression data provide support for several non-protein coding loci and 7712
alternative transcripts for 4146 genes. Notably, we report 180 alternative transcripts for the gene lola.
Nasonia now has among the most complete insect gene set; only 27 conserved single copy orthologs in
arthropods are missing from OGS2. Its genome also contains 2.1-fold more duplicated genes and 1.4-fold
more single copy genes than the Drosophila melanogaster genome. The Nasonia gene count is larger than
those of other sequenced hymenopteran species, owing both to improvements in the genome annotation
and to unique genes in the wasp lineage.
We identify 1008 genes and 171 gene families that deviate significantly from other hymenopterans in their rates of
protein evolution and duplication history, respectively. We also provide an analysis of alternative splicing that reveals
that genes with no annotated isoforms are characterized by shorter transcripts, fewer introns, faster protein evolution
and higher probabilities of duplication than genes having alternative transcripts.

Conclusions: Genome-wide expression data greatly improves the annotation of the N. vitripennis genome, by
increasing the gene count, reducing the number of missing genes and providing more comprehensive data
on splicing and gene structure. The improved gene set identifies lineage-specific genomic features tied to
Nasonia’s biology, as well as numerous novel genes.
OGS2 and its associated search tools are available at http://arthropods.eugenes.org/EvidentialGene/nasonia/,
www.hymenopteragenome.org/nasonia/ and waspAtlas: www.tinyURL.com/waspAtlas.
The EvidentialGene pipeline is available at https://sourceforge.net/projects/evidentialgene/.

Keywords: Genome annotation, Hymenoptera, Parasitoid wasp, Transcriptome, Alternative gene splicing, Gene
duplication, Histones, Protein evolution
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Background
The jewel wasp Nasonia vitripennis belongs to the
superfamily Chalcidoidea, which is a vast group of
hymenopterans that consists mostly of parasitoids that
deposit their eggs in or on other arthropods. Parasitoids
play an important role at controlling insect populations
and are used extensively as an alternative to pesticides
[1]. Nasonia is the genetic model system for parasitoids
and a model for evolutionary and developmental genetic
studies [2, 3]. As an hymenopteran, it provides a study
system with naturally occurring haploid stages (males)
and is a non-social relative to the ant and bee lineages,
having diverged from them approximately 170–180
MYA [4, 5]. The Nasonia genus includes at least four
species [6] that are partially to completely reproductively
isolated by the bacterial parasite Wolbachia, yet can be
crossed after its removal [7, 8], allowing the study of
speciation from both a genetic [9–12] and non-genetic
[13] perspective. The draft genome assembly of N.
vitripennis was published in 2010 [4]. At that time, it
provided a first comparative study of hymenopteran ge-
nomes with reference to the honeybee, Apis mellifera.
The N. vitripennis genome project also included genome
sequences for the cross-fertile species N. giraulti and N.
longicornis, which were aligned to the N. vitripennis
reference genome assembly. Utilizing information from
these genomes, advancements have been made in areas
as diverse as behavioural ecology [14], speciation [10,
11], immune responses [15] and DNA methylation [16].
In the coming years, projects such as the i5K and

1KITE [5] will continue to deliver new insect genomes
and transcriptomes to the research community, with the
goal of improving genomic knowledge for this most spe-
ciose animal clade [17]. Expanding the taxonomic
breadth and number of well annotated genomes is im-
portant to develop new research avenues, and several
quality measures are necessary for the accurate inter-
pretation of comparative genomic, transcriptomic and
epigenomic data [18]. Completeness (the number of re-
ported genes compared to the actual number of genes in
the organisms’ gene set) is one such measure; an incom-
plete gene set may exclude the true causal genes respon-
sible for trait variation in quantitative genetic analyses
and confound the interpretation of genome-wide associ-
ation studies. The accuracy and reliability of gene
models are equally important for genetic and genomic
studies. Erroneous models can arise either from the frag-
mentation of true genes or by falsely joining neighboring
genes (also termed fused or chimeric models, not to be
confounded with their biological counterparts) because
of mismatched splice sites, missing exons, or the addition
of spurious exons. False models are especially problematic
for the functional study of genes by misrepresenting their
true expression levels. Finally, an accurate annotation of

untranslated regions is required to investigate post-
transcriptional regulation. Untranslated regions (UTRs)
consist of 5′ and 3′ terminal portions of the mRNAs, as
well as introns that are removed from the final mRNA via
splicing. UTRs are functionally relevant since they are
often targets for regulatory mechanisms such as micro-
RNAs mediated regulation [19, 20], ribosomal binding
affinity [21] and transcript localization [22].
The quality of genome annotations is improved by

using more sequence data of gene transcripts. These
data often expand the initially reported gene repertoires,
indicating that (except for a few model species) current
gene inventories are still far from completion. The gene
numbers and accuracy of annotations for model species
have generally increased over decades of work (e.g. 10 %
more genes and 200 % more alternates for Arabidopsis
over 15 years [23]). Species specific, targeted strategies
are employed to refine the annotated gene sets. For
example, by applying specific targeted solutions to the
technical challenges of annotating the honey bee gen-
ome (largely because of its unusual base composition),
its initial count of ca 10,000 genes [24] increased to a
more acceptable gene count of 15,314 [25]. Improving a
gene set’s quality however does not necessarily require
targeted strategies. Integrating multiple gene-model con-
struction algorithms and incorporating novel expression
data can often provide sufficient evidence to improve
existing models while also uncovering new loci and their
variants. This is especially true if the source data are
tissue-specific or include novel environmental conditions
and developmental stages, which are likely to reveal the
expression of specialized genes or transcripts [26, 27].
For example, the Anolis carolinensis gene set was up-
dated in 2013 by adding tissue and embryonic specific
RNA-Seq datasets, which provided sufficient new data to
increase the overall gene count from 17,792 to 22,962
genes and from 18,939 to 59,373 transcripts – an in-
crease of 29 % and 210 % respectively [28]! These case
studies indicate that we are still far from reaching the
point of diminishing returns on investments at improv-
ing the annotation of eukaryote genomes. As such, the
genomics community is aware that updates to integrate
novel expression and sequence data must remain a pri-
ority in order to provide a more accurate representation
of the real biological background of animals.
The construction of a biologically accurate gene set for

any species is a complex process, where all data sources
of gene evidence should be compared to resolve discrep-
ancies; for each possible artifact there are biologically
true equivalents to consider (gene fusions, functional
fragments from partial duplication events, exons that be-
come disrupted or functional during evolution). Each
data source of evidence can also introduce measurement
errors while each gene modeling or assembly method
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can produce flawed models at a non-deterministic fre-
quency. Therefore, a consensus approach is perhaps the
best way at resolving discrepancies among gene struc-
tures and to eliminate errors. This approach is imple-
mented by the EvidentialGene method [29] described
below.
We report on a more comprehensive official gene set

for N. vitripennis (OGS2), which vastly improves our un-
derstanding of its genome biology. Since its public re-
lease in 2012 [30], OGS2 has been used in a number of
studies [11, 14–16, 31] and as a resource for comparative
genomics (e.g., through databases such as OrthoDB [32,
33]). Here we describe N. vitripennis OGS2 in detail and
compare it to the earlier annotation set using several
quality measures. We use OGS2 for a comparative ana-
lysis of gene family expansion and sequence evolution
with reference to other hymenopteran genomes. Finally,
we reveal the usefulness of the novel gene set by pre-
senting a multi-factorial analysis of the features that
characterize alternatively spliced genes, demonstrating
that genes with annotated isoforms are characterized by
longer transcripts, greater number of introns, slower rate
of protein evolution and lower probabilities of duplica-
tion when compared to genes with no alternate
transcripts.

Results and discussion
Source data and gene model construction
RNA-Seq produced 187,823,326 single-end sequence
reads and included 124,188 paired-end and 51,665
single-end EST sequences from previously published
([4]; SOM) and unpublished data sets. The reads were
mapped onto the draft Nvit_1.0 genome and assembled
into gene transcripts using three methods (Cufflinks,
Velvet and PASA) with six different sets of parameters
producing between 46,259 and 242,217 de-novo con-
structed mRNA (Table 1). Twenty one thousand, six
hundred and one (21,601) and 10,426 constructed
mRNA aligned to the final gene models by 10 % and
95 % overlap, respectively (Table 1). The multiple-
constructed mRNAs for each gene were evaluated by
three classes of evidence-based criteria, which were then
combined to calculate weighted-evidence scores result-
ing in a final pick of 44,164 transcripts of which 7,837
are alternate splice variants (Table 1). These Nasonia
transcript assemblies were also used to construct NCBI’s
gene set (NCBI build 2.1; http://www.ncbi.nlm.nih.gov/
genome/guide/wasp/release_notes.html).
During the development of this updated gene set, sev-

eral advances in the use of complex gene evidence for
producing and selecting accurate and complete gene sets
were tested and employed. We used an automated
method of selecting gene models that best fit the range
of gene evidence, including reference proteins, expressed

sequence reads (EST, RNA-Seq), and whole genome
tiling array expression. Our method also included a per-
locus assessment and classification of the agreements
among the various types of gene evidence, because each
gene modeler produces locus-specific models that best
fit the evidence. Testing and refining the evidence
scores, with expert assessment and direction, is a core
component of this process.
We found that expression evidence from tiling arrays

and RNA-Seq accurately track gene structures, by
sharply rising at the start of exons and dropping at their
ends, on average (Additional file 1: Figure S1). Therefore,
combining both sources of evidence improve the delin-
eation of gene structures. We learned during our gene
modeling efforts that tiling array expression data were
problematic when using available modeling tools, despite
the high average accuracy for gene structure, as they
only consist of exon data, without defining individual
gene end points nor intron splice sites at nucleotide
resolution. As a result, genes modeled with strong con-
tributions from tiling expression were often aberrant
(Additional file 1: Figure S2), with UTRs much longer
than coding sequences, overlapping two or more refer-
ence protein models, and extending through introns
defined using other evidence. While average tiling ex-
pression matches gene structure well, for individual loci
that exon signal is obscured by lack of precise gene end
point and intron signals, which are however available
from RNA-Seq reads and assemblies.
RNA reads and assemblies were more reliable for pre-

cisely defining gene structures by providing evidence in

Table 1 Gene evidence sources for Nasonia vitripennis OGS2.
Mapping results of ESTs and RNA-Seq reads with >95 % coverage
of length >100 bp to the assembled N. vitripennis genome
(Nvit_1.0) using three mapping software and six parameters.
An average of 2.5 % of reads are multiply mapped by GSNAP,
measured over 8 RNA-Seq libraries. Number of constructed
transcript assemblies matching the final gene model by 10 % and
95 % sequence overlap is also indicated

RNA assemblies Mapped to
genome

10 % of
gene

95 % of
gene

Cufflink 10 46,259 40,853 12,386 4902

Cufflink 08 71,761 56,640 14,317 5287

Velvet p2 121,672 95,360 16,190 7706

Velvet p3 151,038 116,591 17,556 7851

Velvet p4 242,217 122,194 16,406 6874

PASA 69,805 69,805 13,099 6253

All genes 21,601 10,426

Alt. Transcripts 7,837

RNA read counts EST paired 124,188

EST single 51,665

RNA-Seq single 187,823,326
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four forms: (1) reads mapped to the genome (exon
parts), (2) introns from splice-mapped reads on genome,
(3) full or partial transcripts assembled onto the genome
and (4) assembled de-novo structures without the gen-
ome. These all contributed different and important as-
pects of gene structure evidence for modeling. Intron-
exon splice sites are particularly reliable evidence of gene
structures; each intron is measured by expressed reads
that are splice-mapped to a genome, where the accuracy
of the splice point increases with read coverage over that
point. On the other hand, assembled transcripts can cap-
ture a gene fully, without further modeling; however,
they also exhibit more errors of fragmentation or over-
extension (gene joins) that must be assessed using other
sources of evidence. De-novo assembled transcripts have
the unique advantage of being unaffected by large breaks
in genes on the genome, long introns and transposons,
and mis-assemblies. Unlike the gene predictor algo-
rithms, transcript assembly methods are also not focused
on modeling coding sequences, and thus better recon-
struct non-coding transcripts. The main drawback of the
available RNA-Seq data for this study is that they were
generated by early-generation instruments and chemis-
tries (Illumina and Roche-454), which produced se-
quence reads of lower quality and quantity than desired
for obtaining many complete gene assemblies. Yet these
were usefully combined with other gene evidence and
predictor methods. The complete EvidentialGene con-
struction pipeline software, along with the Nasonia-spe-
cific configurations and methods, is available for public
use at http://arthropods.eugenes.org/EvidentialGene/
nasonia/ and https://sourceforge.net/projects/evidential-
gene/ [30, 34].
A final set of 36,327 distinct loci, selected by Eviden-

tialGene methods was compared to other available and
draft Nasonia gene sets (Tables 2 and 3). The predicted
models include UTRs based on expression data and gen-
ome gene signals. Putative long non-coding genes
(lncRNA) from the transcript assemblies – those with
weak coding potential and no homology to reference
proteins – were retained in the full gene set. The models
and EST evidence were assessed with PASA for valid al-
ternate transcripts. Gene proteins were annotated with
Uniprot descriptions, and classified by evidence scores,
including transposable elements.
Finally, 24,388 constructions were chosen to be “good

models” (Table 2), having the best match to EST and
protein homology evidence. Models excluded from the
“good” set include: (1) those with expressed RNA assem-
blies but with weak or no coding potential, (2) most of
those with significant homology to known transposon
proteins, and (3) those with minor or no expression and
protein evidence from the quality assessment. However,
385 genes having homology to putative transposon

proteins but also with expression and homology to other
insect species genes were retained as an indeterminate
subset annotated as “expressTE”. We used the “good
models” set for all downstream analyses, but note in-
stances where the remainders include some genes of
biological value.

Gene model quality assessment
We compared the relative contribution of both expres-
sion and homology to the construction of gene models
in OGS2. Details of this evidence scoring of gene models
are described in the Methods section, with results sum-
marized in Table 3 for each evidence type, and is here
presented as percentages of evidence that overlaps or is
recovered in gene models on the genome assembly. Ex-
pression data supports 17,925 genes (74 % of OGS2) at
strong (>2/3 overlap) or medium (>1/3 overlap) levels of
evidence. Strong or medium homology support is
present for 17,238 genes (71 % of OGS2). The intersec-
tion of strong and medium support from both lines of
evidence contains 12,912 genes (53 % of OGS2, Fig. 1),
suggesting a high degree of convergence (p-value = 2E-
14, Fisher’s exact test).
While still significant (p-value = 1E-8, Fisher’s exact test,

N = 13,861), the level of convergence between expression

Table 2 Summary of the improved Official Gene Set (OGS2)
comparing all gene constructions to good constructions having
expression and/or homology evidence and to the previous
OGS1.2 gene models. Percentages are of the total number of
genes for the set

Summary Statistics OGS2
All Models

OGS2
Good Models

OGS1.2
Final Models

Genes 36,327 24,388 18,850

Protein coding genes 25,725 (71 %) 24,388 15,566a

Non-coding genes 3,997 (11 %) 0 0

Transposon protein
genes

6,605 (20 %) 385a 2,935a

Single transcript genes 32,079 (88 %) 20,243 (83 %) 18,759 (99.5 %)

Genes assigned to
orthologb

15,176 (42 %) 15,173 (62 %) –

Transcripts 44,164 32,101 18,941

Alternative transcripts 7837 7712 91

Mean isoforms per gene 1.22 1.32 1

Complete proteins 41,256 (93 %) 30,521 (95 %) 18,941 (100 %)

Median transcript length 1571 bp 1603 bp 1176 bp

Median CDS length 777 bp 981 bp 1032 bp

Transcripts with UTR 41,313 (94 %) 30,512 (95 %) 5264 (28 %)
a2,935 OGS1.2 models are classified with strong homology to transposon
proteins during OGS2 work, 385 models with expression and other insect
homology but also transposon homology were retained in OGS2 “good”
model set
b5,763 additional genes of OGS2 have significant protein homology, but are
not assigned as orthologs in OrthoMCL orthology analysis, 3,454 of 24,388
“good” models lack significant homology, but have expression evidence
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and orthology support decreases to 44 % for the subset of
duplicated genes, likely due to a reduced relative support
of expression data (Fig. 1). The decrease in expression
support can be explained by a more restricted expression
profile for paralogs, which often arises after gene duplica-
tion events [35]. Therefore, further transcriptomic data
from different tissue types and conditions should increase
the level of convergence between the orthology and ex-
pression sets. Conversely, genes without duplicates show
greater convergence between orthology and expression
support (81 % of 24,388 genes, Fig. 1).
Most of the 24,388 OGS2 genes that map to the N.

vitripennis genome assembly (Additional file 2: Table S1)
also map to the genome assemblies of sibling species N.
longicornus and N. giraulti [4] using GMAP [36]; 664 do
not map to N. longicornus, and 735 do not map to N.
giraulti (391 are missing in both, yet 50 of these have
non-wasp orthologs). All 4,141 high identity paralog loci

from N. vitripennis map to assemblies of both siblings,
though some are overlapping loci (Additional file 2:
Table S1). The majority of paralog mapping patterns are
the same for all 3 species (i.e., their relative positions are
shared for all three species): 83 % (3442/4141) of the
paralogs for all species, 99 % (4098/4141) of the paralogs
for 2 or 3 species. The differences include both real bio-
logical differences and assembly errors. Of the 2481
paralogs on separate scaffolds of the N. vitripennis gen-
ome, 328 overlap first paralog spans in other species,
therefore may be missing or mis-assembled. Of 239 tan-
demly arrayed paralogs in N. vitripennis, 128 are also
tandem in other species, 101 are on separate scaffolds in
other species, and 69 overlap first paralog spans in other
species (ie. missing or mis-assembled).
We also report that 3558 genes (15 % of OGS2) have

no homology support and are therefore annotated only
by means of expression data, and that 1818 genes (7.5 %

Table 3 The types of evidence and levels of support for Nasonia vitripennis gene sets (OGS2 and others). Sequence-level statistics for
the different types of evidence are given as proportions of the gene sets that are validated. Gene structure level statistics (ESTgene,
Progene, RNAgene) are counts of the number of models that reach three structure level agreements. Homology level statistics are
counts of the number of models and proportions matching proteins of reference species and paralogous (same species) proteins.
See Methods section for details on the evidence types and the statistics that were measured

Evidence Available evidence Statistic OGS1.2 Evidence-prediction set OGS2 OGS2 Good genes NCBI RefSeq Full-length RNA-Seq
assembly

EST 18 Mb Seq. Overlap 0.506 0.814 0.768 0.715 0.672 0.724

Protein 26 Mb Seq. Overlap 0.674 0.696 0.729 0.693 0.616 0.612

RNA 46 Mb Seq. Overlap 0.381 0.551 0.599 0.54 0.468 0.571

RefSeq 17 Mb Seq. Overlap 1 0.934 0.958 0.908 0.857 0.839

Intron 66,593 Splices Hit 0.846 0.965 0.981 0.969 0.903 0.975

TAR 75 Mb Seq. Overlap 0.292 0.850 0.533 0.443 0.37 0.386

Transposon 28 Mb Seq. Overlap 0.168 0.282 0.406 0.099 0.009 0.039

ESTgene 10,194 Perfect 2737 3996 4952 4900 3631 4293

ESTgene 10,194 Equal 66 % 3491 5059 6283 6198 4284 5187

ESTgene 10,194 Some 6263 9940 11,313 11,157 7123 8373

Progene 44,040 Perfect 4808 6713 8048 8010 6215 4935

Progene 44,040 Equal 66 % 7759 12,217 14,046 13,837 9003 8567

Progene 44,040 Some 11,563 18,173 21,759 19,718 10,861 18,457

RNAgene 28,016 Perfect 6004 9531 14,899 13,804 8502 28,016

RNAgene 28,016 Equal 66 % 8173 13,552 18,829 17,608 10,202 28,016

RNAgene 28,016 Some 11,933 19,602 24,936 22,179 12,258 28,016

Homolog 11,683 Matches 16,174 16,669 23,994 17,341 11,950 13,187

Homolog 11,683 Found 10,426 10,593 11,683 11,683 9323 9650

Homolog 11,683 Bits/Amino Acid 0.449 0.424 0.416 0.455 0.562 0.558

Paralog Matches 12,843 14,503 19,423 12,576 7904 10,520

Paralog Bits/Amino Acid 0.459 0.45 0.564 0.517 0.554 0.635

Genome Coding Seq. 28 Mb 31 Mb 36 Mb 29 Mb 10 Mb 16 Mb

Genome Exon Seq. 29 Mb 52 Mb 70 Mb 45 Mb 24 Mb 24 Mb

Genome Gene count 18,941 23,605 36,327 24,388 12,989 20,926
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of OGS2) have no expression support and are therefore
annotated only by means of orthology matching. Eight
hundred and thirty-three (833) genes in OGS2 are
expert-curated including 38 that span different scaffolds,
odorant genes, and other cases that could not be anno-
tated automatically. Finally, 374 transcripts have complete
proteins from transcript assemblies that do not match
genome sequence due to genome gaps and frame-shifts.

Gene set completeness
We assessed the level of completeness of the OGS2 gene
set using OrthoMCL to classify genes into orthologous
gene families that are common to arthropods (Tables 4
and 5). The comparison of genes among nine species
indicates that OGS2 is equally or more complete than
the other insect gene sets, having fewer missing gene
families, and similar numbers of orthologous gene

Ortholog Paralog (all)

0

5000

10000

Low Orthology Expression Expression
 and 

 Orhtology

Low Orthology Expression Expression
 and 

 Orhtology

Low Orthology Expression Expression
 and 

 Orhtology
Evidence support

co
un

t

Fig. 1 Number of genes with strong (>2/3 overlap) or medium (>1/3 overlap) support from sequence orthology, evidence of transcription, or both.
Panels show the source of evidence for genes within the ortholog and paralog subsets and the whole OGS2

Table 4 Number of insect genes classified to gene families (GF) that are common among the arthropods by OrthoMCL (ARP9, version
arp11u11). Five out of nine insect species are summarized. Dupl and Singl designate the proportion duplicated and singleton genes
relative to the median found among insects (Dupl:5000, Singl:10000)

Gene Families (GF) Gene Counts Proportions

Gene Sets GF Ortholog GF GF missing
genes

Genes Species specific
genes

Species specific
paralogs

Single ortholog
genes

Duplicated ortholog
genes

Dupl Singl

Nasonia OGS2 10,293 8983 92 24,296 5446 6686 8239 3925 2.1 1.4

Apis 8591 8560 170 10,145 987 88 8182 888 0.2 0.9

Harpegnathos 9633 9291 107 15,029 2943 1567 8710 1809 0.7 1.2

Tribolium 8893 8388 116 16,985 4586 2163 7608 2628 1.0 1.2

Drosophila 8464 7636 187 14,289 2824 2556 6994 1915 0.9 1.0
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groups and single copy orthologs. Additionally, OGS2
reveals that Nasonia has twice the number of duplicated
genes than Drosophila melanogaster or Tribolium casta-
neum, both with homology (in-paralogs) and without
(unique duplicates), plus a greater number of unique sin-
gletons. Measures of protein sizes and alignment score
(Table 5) indicate that OGS2 genes are larger on average
than genes from other versions of the Nasonia anno-
tated gene sets, yet near to the Apis mellifera ortholog
gene sizes.
The transcript assemblies contain 62 orthologous gene

groups that are not included within OGS2 because these
transcripts are only poorly positioned onto the Nasonia
genome assembly. These may be included in a more
complete gene set as transcript assemblies, but are
not yet part of this genome-mapped OGS2 gene set
(Additional file 2: Table S2). A total of 75 orthologous
gene groups are missing in Nasonia but present in 9 other
insect genomes (Additional file 2: Table S3).
We also used the OrthoDB method to independently

assess completeness. We counted the number of missing
conserved single-copy genes that are otherwise present
among the sequenced Arthropoda (Benchmarking Sets
of Universal Single-Copy Orthologs [BUSCO] in
OrthoDB Release-6), as well as the multi-copy Nasonia
genes that are otherwise classified as single copy in other

Arthropoda. For the majority of gene families, there
were no discrepancies between the results obtained from
OrthoDB and OrthoMCL. Although the BUSCO results
suggest that OGS2 lacks 67 of the 3377 (2 %, listed in
Additional file 3) conserved ortholog groups, further
analyses found all but 27. Conserved families missing in
Nasonia OGS2 according to OrthoDB can be attributed
to (i) genome artifacts (10 missing genes were found
split across assembly scaffolds, or lost in gaps but found
in transcript assembly), (ii) gene model artifacts (9 loci
were apparent join errors appended to a second gene
protein), (iii) OrthoDB discrepancies at classifying pro-
teins to families (25 loci were assigned to different gene
families by OrthoMCL and by OrthoDB family).
Twenty-seven conserved single copy genes are either
truly missing or sufficiently diverged to avoid detection.
This number is comparable to those in other Arthro-
poda, which lack a number of BUSCO genes ranging
from 3 (Drosophila erecta) to 708 (Strigamia maritima),
with a median of 42.
Experimental evidence supports the lineage-specific

gene loss for the three BUSCO genes involved in devel-
opmental regulation: short gastrulation (sog, OG
EOG6S4MX5), spaetzle 3 (OG EOG61C5BT) and
daughters against dpp (Dad or smad6, OG
EOG69CNQ7). Despite their ultra-conserved status
across currently sequenced arthropods, detailed investi-
gations of Nasonia development suggest that those
genes are truly absent from its genome due to modifica-
tions in the BMP signaling pathway [37] rather than be-
cause of omissions in the current annotation.
Since genes in the BUSCO set are defined as single-

copy in 90 % of 30 arthropod species, we compared the
number of duplicated BUSCO genes in OGS2 to esti-
mate the fraction of potential false gene duplications.
We counted 141 (4 %) multiple-copy OGS2 of the total
3377 BUSCO single-copy gene families (Additional file
4). Of those, 62 (44 %) are reported as duplicates
uniquely for Nasonia, 61 for Nasonia plus one additional
species, and 18 for Nasonia plus two other species.
Other species have similar rates of duplicated single-
copy genes: 78 for Apis mellifera and Harpegnathos
saltator, 96 for Pogonomyrmex barbatus, 119 for Atta
cephalotes (all Hymenoptera), 107 for Anopheles, and
437 for Aedes mosquitos. Nasonia OGS2 is therefore
well within the observed range of duplications of
BUSCO genes.
To further assess whether the reported duplicates are

likely to be false models, we removed the best supported
gene from each orthologous group and measured the
expression support of the remaining models. One
hundred and fifty-three (153) out of 175 genes (87 %)
show medium or strong support for expression and only 2
have no expression support. Lineage-specific duplications

Table 5 Gene set quality measurements, including deviation of
protein size from the group median, and maximal bit score per
species in pairwise comparisons within the arthropod orthology
groups. The bit score measures both gene model artefacts of
alternative gene sets within species, and evolutionary divergence.
Protein sizes may be more evolutionarily conserved, and may
detect artefacts across and within speciesa

Gene set Average homology
bitscore

Protein size
deviation
from median

Percent shorter than 2
standard deviations
from median

Nasonia OGS2 727.6 −7.7 3.2

Nasonia NCBI 722.3 −7.8 2.7

Nasonia OGS1.2 683.5 −12.7 4

Apis 733.9 −0.3 2.4

Harpegnathos 694.3 −30 7.3

Tribolium 552 −26.1 4.5

Drosophila 508.7 54.5 1.3
aFor each orthology group, the median protein size of all genes among the
species within the group is determined. Then for each species gene set, the
maximal BLASTp bit score of a gene within that group is recorded as metric
#1, and the protein size difference from the group median of that maximal
match is recorded as metric #2. These metrics are averaged for all groups per
species, and reported as average bit score, as average size deviation, and as
percentage of size outliers (2 standard deviations below median sizes).
These gene set quality measurements are provided by the Evigene scripts:
“eval_orthogroup_genesets.pl” and “orthomcl_tabulate.pl”. Partial gene models
are a common artefact of draft gene sets, indicated by both a negative deviation
from group median sizes, and larger percentage of outliers. A similar calculation
is part of the OrthoDB methodology [108]
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are supported by the observation that the majority of
genes belonging to ultra-conserved ortholog groups dis-
play moderate to strong expression, even after removing
the most supported duplicate and map to different gen-
omic locations (data not shown).

Improvements in genome annotation
OGS2 improves our knowledge of the Nasonia genome
in several ways (Table 2). First, the number of annotated
genes climbs from 18,850 to 24,388 (an increase of
29 %). This greater completeness of the Nasonia gene
set is corroborated by the sharp decrease in Arthropod
ortholog groups missing from the Nasonia genome.
OGS1.2 lacked 609 ortholog groups that are present in
all other Arthropoda (OrthoDB Release-5). Only 331
conserved OGs are now missing from OGS2 when com-
pared to the same subset of species (OrthoDB Release-6)
and 253 when considering all currently available arthro-
pod species.
The spans of coding exons are very similar between

OGS2 and OGS1.2 for 10,583 loci, which have a median
percent equivalence of 92 % between both sets. Changes
in coding sequences are mostly attributable to error cor-
rection such as splitting and merging of models: 1617
original gene models (10 % of OGS1.2) have been split
into separate genes in OGS2, while 3555 OGS2 genes
(15 % of OGS2) contain a portion of an OGS1.2 split
gene, and 494 OGS2 genes result from the joining of
two or more OGS1.2 fragment genes (30 from three or
more). Moreover, the proportion of genes with UTR ex-
tensions is now near complete: 23,069 (95 %) of OGS2
gene models have annotated UTRs compared to only
5,264 genes (28 %) within OGS1.2. These gene models
match 98 % of 66,593 intron locations on the genome
assembly, identified by multiple reads of expressed RNA
(>3; Table 3), compared to 85 % within OGS1.2 and
90 % within NCBI-11 RefSeq. Intron splice sites are
strong indicators of genes, including species-specific
genes. This measure therefore indicates a high level of
gene set completeness, independent of protein hom-
ology. Finally, OGS2 dramatically increased the number
of annotated transcripts from 91 alternate transcripts in
91 genes (0.5 % of OGS1.2, Additional file 2: Table S4 in
[4]) to 7712 transcripts among 4146 genes (17 % of
OGS2). Therefore, OGS2 increases the completeness
of the reported Nasonia gene repertoire and the qual-
ity of gene models as well as allowing a first overview
of Nasonia transcriptional diversity.
The current release also increases the diversity of an-

notated wasp genes. Of all OGS2 gene models, 12,296
(50 %) could not be assigned a putative function via
orthology with other annotated genes. Four thousand,
six hundred and fifty-six (4656) genes from this subset
(38 %) could be assigned to 2334 arthropod orthologous

groups, 490 of which (21 %) are present as multiple copy
in Nasonia. The remaining 7640 genes with no known
function are found exclusively in OGS2 and could not
be assigned to orthologous groups shared with other ar-
thropods (OrthoDB, release 6). This subset is likely to
include both incorrect models and innovations along the
wasp lineage. Three thousand, nine hundred and eighty-
three (3983) of those Nasonia-only genes (52 %) are
present as duplicates in OGS2, a proportion that is
significantly greater than that reported for the whole
genome (fisher’s exact test, p-value < 2.2E-16). Of the
7640 lineage-specific genes with no annotated function,
4498 (59 %) have been newly annotated in OGS2.

Mapping of OGS2 to Nasonia vitripennis 2.1 genome
reference assembly (Nvit_2.1)
To facilitate the broad use of the new OGS2 Nasonia
gene set, we mapped it to the latest assembly (Nvit_2.1),
using the UCSC LiftOver tools. The gene set is almost
unchanged when transferred to the newer coordinate
system. Out of 226,902 exons in the Nvit_1.0 gene set,
226,441 (99.8 %) can be successfully mapped to the
Nvit_2.1 assembly. Focusing on transcript models, we
find that 98.7 % of transcript models are identical be-
tween coordinate systems (43,590 out of 44,164). Of the
574 transcript models that differed between coordinate
systems, 167 have all exons present but with small
changes in the length of either exons or introns. For
example, one exon is 170 bp shorter in the newer as-
sembly for locus Nasvi2EG031848t1. An additional
155 genes are missing all their exons, and 252 are
missing at least one exon but are present as partial
models in Nvit_2.1.
In addition to the General Feature Format file (GFF)

with gene models in the Nvit_1.0 coordinate system, we
also provide a reduced GFF (only exon and CDS fea-
tures) with features mapped to Nvit_2.1 coordinates, a
table with the status of each transcript in the new
assembly, and UCSC-style liftOver chains to convert
between Nvit_2.1 and Nvit_1.0 (Additional file 5). A
relational file matching gene models between OGS1.2,
OGS2.0 and NCBI-101 based on genome assembly loca-
tions is also included (Additional file 6).

NCBI 2014 gene annotation of Nasonia
When OGS2 was produced in 2011, its quality metrics
ranked above Nasonia gene sets of NCBI and OGS1.2
(Tables 2 and 3). Since then, the NCBI gene set has im-
proved along with enhancements to NCBI’s Eukaryote
Genome Annotation Pipeline [38], producing Nasonia
vitripennis Annotation Release 101 in 2014 (which we
abbreviate as NCBI-101). These improvements partly re-
sulted from greater use of RNA expressed sequences,
and improvements at identifying related insect gene sets
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for consensus orthology. Among this project’s contribu-
tions were its RNA assemblies for Nasonia that NCBI
used for gene modelling.
The NCBI-101 Nasonia gene set includes 13,141

protein-coding gene loci, 24,626 transcripts, and 945
noncoding or pseudogenic genes. We compared
protein-coding exon spans of the OGS2 genes that
were lifted onto assembly Nvit_2.1 with those of NCBI-
101 mRNA loci, using exon locations on the newer
assembly. Model equivalences are measured as percent-
age of base overlap of coding-exon and full exon loca-
tions on the same genome assembly. These model
equivalences are tabulated in Additional file 6. Of the
NCBI loci, 12,319 (93 %) genes have at least some
equivalence to OGS2 loci; a majority of 8400 (64 %)
genes have nearly identical coding spans at > = 95 %
equivalence, and 10,820 (82 %) genes are mostly the
same (> = 66 % equal). The non-equivalent loci, with
no exon overlap, include 11,535 (47 %) of the OGS2
“good” set and 867 (7 %) of the NCBI-101 set, plus 574
OGS2 loci noted above that are not properly located
on the Nvit_2.1 assembly.
Protein homology to other insects is very similar for

NCBI-101 and the OGS2 gene sets. Of the conserved
eukaryotic protein domains in NCBI’s Conserved Do-
main Database, we find 9165 domains in NCBI-101 and
9347 in OGS2 from 9505 total aligned domains using
RPSBlast, having similar alignment lengths (average 233
aa for NCBI-101, 235 aa for OGS2). Among the
complete proteins of related species and gene families
identified with OrthoMCL (see Methods section), NCBI-
101 contains 68 % of the gene families compared to
67 % for OGS2, both with average 85 % alignment to
these proteins.
Of the 11,535 non-equivalent OGS2 loci, 85 % are

expressed genes with homolog alignments ranging from
none to full; the remainder is supported only by protein
homology. Expressed paralogs are the most common
(6296/11,535, 55 %) subclass. Of 867 non-equivalent
NCBI-101 loci, 512 have uncharacterized proteins, and
21 have model exceptions on this genome assembly
(frameshifts, mis-maps). Of 339 NCBI-101 loci with
characterized products, many are those we identified in
the Nasonia transcript assemblies that were not located
in our genome gene models (Additional file 2: Table S2).
Also, 389 of the extra NCBI-101 loci are found within
our OGS2 full (“not-good”) gene set; 76 of those are
characterized proteins. Recent experiments have demon-
strated that these “extra” loci in OGS2 are biologically
significant. For example, of the 248 OGS2 genes that are
immune responsive [15], 94 (38 %) are not among the
NCBI-101 loci. Nasonia genes expressed in brain and
nervous tissue [31] include 39 of 304 (13 %) not among
the NCBI-101 gene set.

Expanded gene families
Our examination of the updated gene families of OGS2
identified 411 Arthropoda ortholog groups that have du-
plicated exclusively in the Nasonia lineage (4 % of all
ortholog groups within OGS2). These groups consist of
1230 genes, of which 599 loci (49 %) have no assigned
homolog (Additional file 7). The most frequent category
among annotated expanded genes within the “good
models” set is that of transposon associated proteins
(102 genes, 30 ortholog groups), followed by kinases/
phospatases (38 genes, 16 ortholog groups) and odorant
receptors (23 genes, 7 ortholog groups). The enzyme 5-
hydroxyprostaglandin dehydrogenase (6 paralogs, 2
ortholog groups) also shows an evolutionarily interesting
lineage-specific expansion. This protein is essential for
male pheromone processing, and is a prime candidate
for driving mate selection and speciation, based on
positional cloning of genes involved in pheromone dif-
ferences between Nasonia species [11].

Protein evolution in Hymenoptera
We calculated the sequence divergence of each Nasonia
gene from its orthologs in both ants and bees. We then
selected Nasonia genes that have a significantly higher
or lower proportion of sequence divergence to ant and
bee orthologs when compared to the rest of the Nasonia
gene set (see Methods section for details). This method
identified 504 genes (the most extreme 5 % of the fre-
quency distribution) for both the rapidly and the slowly
evolving gene categories (Fig. 2a; Additional file 8).
We also adopted a more stringent approach by meas-

uring the divergence scores of Nasonia genes against
genes of the ant and bee lineages separately, then
selecting only those genes that scored as rapidly or
slowly diverging in both. This intersection method
identified 596 and 394 genes that have differentially ac-
celerated or slowed evolutionary rates in the Nasonia
clade, respectively (Fig. 2b; Additional file 8). We note
that both methods are unrooted, which therefore iden-
tify genes with greater divergence in Nasonia relative to
bees and to ants, not to the common ancestor of these
three lineages.
In all subsets, the most significantly enriched Gene

Ontology terms are “nuclear location” for the cellular
component category, “DNA/chromatin binding” for the
molecular function category and “transcriptional regula-
tion” for the biological process category. These data are
consistent with the view that evolution of unique meta-
zoan traits occurs more by changes in transcriptional
regulators rather than in structural proteins [39, 40].

Histone genes
Although histone genes are generally highly conserved,
we identified several members of the histone complex
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with sequences that evolved relatively rapidly in the
Nasonia lineage. Specifically, we observe a greater rate
of sequence divergence for the histone proteins H2A
when compared to ant and bee variants. Histone H2A
proteins package DNA into chromatin and are impli-
cated in epigenetically mediated gene expression regula-
tion in vertebrates [41–43]. Regulatory variants of H2A
histones are also present in the Apis mellifera genome
[44]. There are currently twenty-four (24) H2A genes
within OGS2, 22 of which are assigned to a single ortho-
log group (OG) (Arthropoda OG EOG6VT4F0) and 18
of which are assigned to a single Hymenoptera group
(OG EOG65QGR3). Compared to other Hymenoptera,
this ortholog group is more rapidly evolving in Nasonia
and has a greater number of paralogs: four times greater
than Linepithema humile (the 2nd highest number with
only five copies). However, we cannot rule out that the
number of H2A genes in other hymenopterans is under-
estimated, especially considering the comparable num-
ber of H2A genes that are found in other arthropods
(e.g. 21 in Daphnia pulex, 22 in the Culex quinquefas-
ciatus, 22 in Drosophila melanogaster). As of now, only
two Nasonia H2A genes have strong homology with
genes within Hymenoptera, while most others have
higher scoring sequence similarity matches (using Blast)
among vertebrate histones. This pattern can be

explained by a lineage specific increase in protein se-
quence evolution, which would decrease the similarity
between histones of Nasonia and of other hymenop-
terans, and therefore increase their relative similarity to
those of more distantly related species by a phenomenon
called long-branch attraction. Thus, even though the
match to vertebrate seems better than to hymenoptera,
this result is most likely an artifact, yet is still indicative
of a faster evolutionary rate of Nasonia histones com-
pared to those of other hymenoptera.
Histone H3 is known to exhibit a wide range of modifi-

cations, many of which have known effects on the tran-
scriptional status of the underlying genes [27, 45]. Several
Nasonia H3 proteins (Hymenoptera OG EOG6R4ZDK)
appear to significantly evolve less rapidly when compared
to ant and bee orthologs. We find that this apparently
slower evolutionary rate of this orthologous group is due
to a mis-identification of this OG, which is comprised of
at least two different paralogs at the base of the hymenop-
teran lineage (Additional file 9). One of these putative
sub-groups is retained in two copies across all Hymenop-
tera. The other sub-group is present in 2–4 copies in most
Hymenoptera; yet Nasonia has 14 copies. The combin-
ation of an artefactual fusion of two OGs and unequal rep-
resentation of Nasonia duplicates between the two groups
is therefore the cause for an apparent slower relative

a b

Fig. 2 Protein divergence of OGS2 genes against orthologs in other Hymenoptera. Every point represents a gene mapped on three coordinates
originating from the corners. Each gene’s distance from a corner is proportional to the average amino-acid distance of orthologs between the
two clades. AB = ant to bee distance; AN = ant to Nasonia distance; BN = bee to Nasonia distance. Diverging genes are highlighted in orange (fast)
and blue (slow) as detected by the compound ratio (A) and intersection of ratios (B). See materials and methods for full description
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evolutionary rate; the the correct interpretation consists of
a lineage-specific expansion. Nasonia also retains an H3
gene of the OrthoDB group EOG62V6ZW, which is
shared with other arthropods but not with other Hymen-
optera, and and H3 gene of the OrthoDB group
EOG6ZCRM6, which is seemingly lost in the bee lineage.
The Nasonia H2B histone proteins are encoded by 21

genes; only four are assigned to an ortholog group
containing other hymenopteran genes (EOG6Z8X7C of
OrthoDB, whereas 8 are assigned to an OrthoMCL
group). All genes are diverging at comparable rates while
Nasonia’s copy number within this orthology group is
similar to that of other hymenopterans (5 in Pogonomyr-
mex barbatus and Atta cephalotes). The remaining
seventeen H2B histones could not be analyzed by our
method, as they are not assigned to other hymenopteran
H2B histone gene families (OrthoDB, release 6). Those
genes may be mis-identified by the annotation pipelines,
yet the NCBI-101 gene set independently annotates 18
of these 21 loci as H2B histone proteins, suggesting that
this annotation is supported by available evidence, and
may comprise a Nasonia-specific expanded histone
gene cluster(s). By contrast, the Nasonia H1 histone is
present as a single copy in the genome with no signifi-
cant difference in its divergence rate from those of
other Hymenoptera.
We found that families of histone modification en-

zymes have specifically expanded in the Nasonia
genome: 4 of 38 histone-related gene families (10 %)
meet our criteria for lineage-specific expansion (see
Methods section). By comparison, expansions are found
in only 0.013 % of gene families for the rest of the
genome. Our data therefore suggests that the Nasonia
genome is enriched for histone modification enzymes
due of lineage-specific gene expansions (Additional file 2:
Table S4; p-value = 0.024, Fisher’s Exact test). The
finding suggests that histone modification, rather than
DNA methylation, may play an important role in the
lineage-specific features of epigenetic modulation in
Nasonia, consistent with findings that DNA methylation
does not differ between the sexes in Nasonia, nor correlate
with epigenetic changes in gene expression [31].

Non-coding RNA
An early observation from the RNA-Seq and tiling array
data sets is an abundance of expression in non-protein
coding regions. These poorly annotated regions (in
Nasonia and in other genomes of well-studied model
organisms) require attention, as they are either UTRs of
annotated protein coding genes, or putative long non-
coding RNA (lncRNA). Our full gene set contains 3,997
putative lncRNA that were recovered from the Nasonia
transcript assemblies (listed in “OGS2 All models”,
Table 2). Among the OGS2 good coding models, 5,450

genes have annotated UTRs that sum to >50 % of their
transcript length. The remaining ~40 % of expressed
RNA remains to be annotated (Table 3, RNA evidence).
Because our genome annotation methods focused on
coding regions, resulting in an acceptable number of
expected orthologs compared to the proteomes of
other species, the remaining expression is likely non-
coding. This large fraction of expressed RNA that has
yet to be annotated is expected; these are found to
exceed protein-coding genes in mammals [46], and to
have significant similarities to characterized lncRNAs
and UTRs [47].
Long expression spans near conserved coding genes

are also observed in the Drosophila and Mus genomes,
including nervous system specific expression, modeled
both as long UTRs [48] and as lncRNA [49, 50]. We
provide six examples of such long expression spans near
Nasonia genes along with their presumed orthologs
(ELAV-2 RNA-binding protein, calmodulin CaMKI, ca-
sein kinase II beta, odd-skipped, dunce/cAMP-specific
3′,5′-cyclic phosphodiesterase, and homeobox gene
extradenticle) in Pogonomyrmex, Apis, Drosophila and
Mus (Additional file 10). These expression spans are an-
notated as UTRs, sense and antisense lncRNA, or often
without annotation. Difficulty at modeling these spans is
not unique for Nasonia; a benchmark comparison of
annotation methods (including those we used) for recon-
structing Human and Drosophila non-coding genes
found that all methods lacked accuracy [51].
Knowledge of these non-coding regions is nevertheless

valuable for biological study, even when imperfect. For ex-
ample, a recent study of Nasonia genes expressed in brain
and nervous tissue [52] identified 306 OGS2 genes as dif-
ferentially transcribed for learning in wasps – including
dunce, CaMKI and ELAV-2 – with their associated long
non-coding spans. Among the 3,997 putative lncRNA
listed in “OGS2 All models”, 15 are discovered to be dif-
ferentially expressed for learning [52] (Additional file 10)
suggesting a significant role for non-coding RNAs in
regulating neuronal development and function [53, 54].
Finally, 322 expressed non-coding regions located up-
stream of Nasonia coding genes are identified across
insect genomes [55]. Functional genomic studies will
help elucidate the importance of this significant portion
of non-coding expression.

Alternate transcript diversity including lola expansion
OGS2 includes alternate transcripts assembled from
available expressed sequence using genome-mapped as-
sembly and de-novo assembly methods. A total of 7712
alternate forms are identified for 4145 genes (17 % of
the total reported genes). One thousand, seven hundred
and twenty-five (1725) genes (42 %) have at least 3 iso-
forms, 219 genes (5 %) have at least 6 isoforms and 26
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genes have at least 10 isoforms. One gene (longitudinals
lacking or lola) has a notable expansion of over 180 al-
ternate forms, of which 89 are included in the OGS2
gene set. The remaining alternative transcripts are iden-
tified by read splice introns. Named for its observable
wing phenotype in Drosophila, lola is also expressed in
many tissues and developmental stages, and has a puta-
tive role in neuronal development [56]. Lola alternate
transcripts all share a common 5′ set of six exons, with
one hub exon that branches to alternate 3′ coding se-
quences of 500–900 bp, spanning 350 kb of the genome,
with a new alternate each 1400 bases (median). Apis
mellifera shares this lola alternate expansion, with 58
annotated alternates branching over 200 kb from the
single hub exon, as shown in Fig. 3. In both species,
additional alternates may be discovered with further ex-
pression evidence, as the regular spacing in Nasonia
suggests up to 250 may fit into this region of the gen-
ome. Examination of non-hymenopteran insects shows
no similarly large expansion for lola.
The Nasonia gene with the second largest number of

isoforms is the neuronal developmental transcription
factor fruitless, with 17 alternative isoforms. Fruitless
was already characterized as having an unique gene
structure in Nasonia compared to dipterans, and its dif-
ferential splicing is involved in both development and
sexual differentiation [57]. Two other fruitless paralogs
are also reported within OGS2, while no other insect
genome shows paralogs for this gene. Other genes with
a high number of reported isoforms include mostly
transcription factors and various kinases/phosphatases
(Additional file 11).

Evolution of alternative splicing
The augmented number or genes with reported isoforms
in OGS2 allowed an examination of factors that contrib-
ute to the evolution of this regulatory mechanism. From
a total of 4146 genes with reported isoforms, only 476
(11 % of all genes with isoforms, 2 % of OGS2) have
annotated paralogs (Fig. 4a). This proportion is signifi-
cantly less (p-value <2.2xE-16, Fisher’s Exact Test) than
the product of proportions of genes with alternative
transcripts and that of genes with duplicates (17 % ×
43 % = 7.3 %). In addition, genes without paralogs also
have a greater number of introns than those with dupli-
cate copies in the genome (Kruskal-Wallis rank sum
test, p-value <2.2E-16 for both strict and broad sense
paralogs). Possible interpretations of these patterns are
considered in the discussion section below.
Methylation has been proposed as a molecular mech-

anism for the regulation of alternative splicing in
humans [58]. In Hymenoptera, studies of both bees and
ants consistently locate methylation target sites at the
intron-exon junctions [44, 59, 60]. However, a study on
the Nasonia methylome [16] reports alternative tran-
scripts in non-methylated genes and no correlation be-
tween presence of alternate splicing and methylation
status. We re-tested for the overrepresentation of alter-
native splicing with OGS2 sets of known methylated and
known non-methylated genes (reported in [16]) (Fig. 4b).
Results indicate a significant overrepresentation of
isoforms among methylated genes (p-value = 2.2e-16,
Fisher’s exact test), with alternative transcripts reported
for 41 % of methylated genes, while only 14 % of non-
methylated genes have transcript isoforms.

Fig. 3 Alternate spliced, expressed introns for gene longitudinalis lacking (lola) in Apis (blue) and Nasonia (red). Graph shows intron spans from
a common hub exon, in bases on their genomes. The observed 181 introns in Nasonia cover 325 kilobases (kbp), and up to 200 kbp in the 58
observed introns in Apis. These are regularly spaced 1400 bases apart, related by divergent 3′ exons (one or two) of 500 to 900 bp, which produce
different coding sequences and protein isoforms. The tiny blue and red bars at top of figure are short introns that join pairs of 3′ end exons in lola
gene span. Introns are displayed in size order (y axis), but for a plotting mistake at Apis long end
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To exclude spurious results due to correlation with
unaccounted variables, we fitted a generalized linear
mixed model (GLMM) to estimate the probability of ob-
serving alternative transcripts in OGS2 genes according
to a variety of factors (see Methods section for details).
The final statistical model (Fig. 5) is composed of the
following co-factors: strict sense paralogy (presence of a
reciprocal best match within the genome), number of
broad-sense paralogs (OGS2 genes within the same
arthropod ortholog group), ratio of Nasonia-specific
protein evolution within Hymenoptera (see Methods
section “Identification of fast- and slow-diverging genes
in the Nasonia relative to ants and bees”), number of
introns, methylation status in adult female and furthest
matching ortholog. We also fitted a random error
structure to account for individual differences between
ortholog groups.
Expression level and intron support are also expected

to be main predictors of observed alternative isoforms,
since isoforms of genes with greater transcript abun-
dances will be easier to detect via RNA-Seq. We could
not include expression and intron support as factors in
our analyses due to their high correlation with methyla-
tion status (see Methods section, Additional file 12:
Figure S5). We therefore restricted our analyses to the
subset of genes that have both strong expression and
strong intron support (N = 5447, Fig. 5).
Results indicate that the number of predicted introns

and transcript length are positive predictors of alterna-
tive isoforms. Both findings are consistent with recent

studies on the Apis transcriptome [60]. The presence of
introns enables the evolution of alternative splicing,
since the latter requires differential inclusion of exons.
The role of transcript length is more difficult to inter-
pret. It is possible that genes with longer transcripts
simply reflect better annotation quality. Alternatively,
longer transcripts may allow for longer intronic se-
quences, which may facilitate the emergence of alterna-
tive splicing by providing a greater number of targets for
the generation of novel splice sites or by switching from
the intron signaling mechanism to the more error prone
exon signaling mechanism [61]. We explicitly included
coding sequence to transcript length ratios among fac-
tors of interest to study these effects. We found that the
proportion of coding transcript sequence (CDS/tran-
script length) is less well supported than transcript
length itself (47 % relative importance versus 100 %).
Furthermore, genes with higher proportions of non-
coding sequence have a lower probability of displaying
alternative transcripts. Even by assuming a role for in-
tronic to exonic sequence length proportions, we find
that shorter exons are prevalent among spliced genes,
contrary to both the novel splice site and exon definition
modes of new isoform generation. We should however
note that the prevalence of long introns flanking alterna-
tive exons appears to be primarily driven by isoforms
that comprise a minor proportion of all splice variants
of a gene [61]. It is therefore possible that the slight
skew towards genes with low proportions of intronic
sequences might be driven by issues in annotating

a b

Fig. 4 Number of genes with alternative isoforms in OGS2 (a) split by presence of paralogs and (b) split by methylation in adult females
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low-abundance isoforms rather than by biological
constraints.
Our initial genome-wide analyses detected a correl-

ation between methylation and alternative splicing.
However, we observe alternative transcripts for non-
methylated genes as well as methylated genes. This
finding indicates that methylation is not necessary for
alternative splicing in Nasonia. Furthermore, after focus-
ing on the subset of genes with strong expression and
intron support, methylation status in adult females is

only weakly correlated with presence of isoforms (rela-
tive importance 30 %).
We find low support for a negative correlation

between Nasonia-specific sequence divergence and
probability of observing alternative splicing. Methylated
genes are known to have a slower rate of protein se-
quence evolution in Nasonia [16], while the presence of
paralogs often increase protein evolutionary rates by re-
leasing pleiotropic constraints on individual gene cop-
ies. Yet, rate of sequence evolution and lack of isoforms
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Fig. 5 Effect of different factors on the probability of observing alternate isoforms of OGS2 gene models. Factors are ranked by relative importance (y
axis). Factors with complete support and levels of the same factor were adjusted for plotting. Effect sizes are shown as the fold change in probability
from the intercept (with 95 % confidence intervals). Numeric variables were log transformed prior to analysis
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remained correlated, even after controlling for the ef-
fect of methylation and paralogy (relative importance
52 %). This finding suggests that, despite the relatively
low level of support, the inverse correlation between
protein sequence evolution and alternative splicing may
be direct result, rather than being derived from indirect
correlations, and is consistent with studies of the Apis
genome [60].
Both measures of paralogy (by reciprocal best hits or

number of genes within the same arthropod ortholog
group) retained a moderate level of support (74 % and
57 % respectively) when compared to other factors. Pres-
ence and number of paralogs are correlated with a lower
probability of observing alternative transcripts. Since we
performed all our analyses on the subset of genes with
strong expression support, we can dismiss an effect due
to the relatively lower expression support available for
duplicated genes (see Fig. 1). The relatively large confi-
dence intervals of the estimated effect of this factor on
the probability of observing splicing of a given gene may
either indicate a weak effect or result from the under-
representation of paralogs in our subset (6 % of the
“good expression” gene set versus 43 % of OGS2).
Finally, we tested whether isoforms are observed more

or less frequently amongst genes which emerged at a
specific taxonomic level by using furthest phylostrati-
graphic match as a proxy for gene age [62]. While aver-
age probabilities decrease with gene age, this trend was
not validated as statistically significant (data not shown).
Furthermore, no single gene age category significantly
alters the probability of observing alternative splicing in
its assigned genes (relative importance: 0.07).
The inverse relationship between alternative splicing

and gene duplication in particular is consistent with
observations on the evolution of mammalian model spe-
cies’ genomes [63]. There are currently several compet-
ing models that explain the negative correlation between
gene family size and number of isoforms.
The “function sharing” model hypothesizes that dupli-

cation events reduce the selective pressure to maintain
alternative transcripts in both gene copies [64]. This
model is based on the assumption that both paralogs
and isoforms provide equal opportunities for functional
diversification. The reduced selective constraint would
lead to the reciprocal loss of isoforms and subfunctiona-
lization of the gene copies [65]. Such a scenario had
been proposed for the Dscam genes in Arthropoda [66].
The function-sharing model predicts that genes will
gradually accumulate isoforms that are lost shortly after
duplication events.
By contrast, Roux and Robinson-Rechavi [64] pro-

posed an “age-dependent” model, in which the inverse
correlation between duplication and gain of isoforms is
not direct but rather arises independently because of

structural properties. Short gene length could be advan-
tageous for whole gene duplication, while genes with an
already high number of exons will have a higher propen-
sity towards single exon duplication due to replication
and recombination errors [64]. The lower numbers of
isoforms for genes with duplicates would thus result
from the different rates of accumulation of isoforms and
duplicates rather than loss of redundant transcripts. This
hypothesis has been criticized in depth [67].
Finally, the underlying equivalence between the diver-

sification potential of duplication and alternative splicing
assumed by both the function-sharing and the age-
dependent models is refuted by [68]. This finding sug-
gests that a gene’s probability of having isoforms rather
than duplicates might be less dependent on its structural
properties and more dependent on the different adaptive
potential of the novel proteins generated by two diversi-
fication modes, or functional constraint. Our analyses
support longer transcripts and high numbers of exons as
predictors of the presence of isoforms. While this is in
agreement with the age-dependent model, we do not
find a significant correlation between age of a gene fam-
ily and the presence of isoforms. This could be either be
caused by an actual lack of correlation, inaccurate dating
[69] or by the fact that the divergence from the most re-
cent outgroup (~180 MYA) is sufficiently great that
every new family gains at least one detectable isoform.
Absence of duplicates has moderate support as a

predictor of splicing, even after controlling for the struc-
tural properties of genes. Together with the lack of
support for gene family age, this observation is congru-
ent with the predictions of the function-sharing model.
However, we must point out that a true test to falsify the
function-sharing model would require testing the signifi-
cance of the date from last duplication event, which we
could not measure with our dataset. Comparisons be-
tween the sibling species N. giraulti and N. longicornis
are especially suited to this task, as they provide a suffi-
ciently short timescale to assess transcriptome changes
lead by duplication when compared to more basal
Hymenoptera.
Since we lack estimates on the potential functional

overlap of duplicates and isoforms in the genes we ana-
lyzed, we could not explicitly test the independent
model. However, the fact that we observe a strong effect
of structural gene properties runs contrary to the expect-
ation of a process driven by their different potential to
generate adaptive variants.
In conclusion, while we find no evidence for age itself

being a determinant of the presence of isoforms, we do
find strong support for structural gene properties. This
might be explained by an hybrid model in which the
final outcome is determined both by the propensity of
a gene to produce either isoforms (or duplicates), and
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by their differential fixation because of their adaptive
potential (independent model) or overlap (function-
sharing model).
We must point that our study assesses the presence or

absence of isoforms, rather than their number, and only
considers the subset of highly expressed genes, which
might have different selective pressures than restricted
ones. Our choices are necessary to provide a fair com-
parison, since lowly expressed genes have intrinsically
lower probabilities of having observable isoforms and
the number of isoforms is likely to increase as more di-
verse RNA samples are sequenced. However, they also
skew our analysis towards a non-random subset of
genes, which might be subject to different selective pres-
sures. As such, tackling a truly comprehensive analysis
of splicing and duplication in the Nasonia genome will
require more sequencing efforts.

Community resources for Nasonia genomics
Several information resource projects support the use of
Nasonia for genomics investigations, reviewed by Lynch
[3]. Gene set improvements of OGS2 are available at the
Hymenoptera Genome Database (HGD) [70] and more
recently at WaspAtlas [71]. The HGD provides genome
map views and BLAST sequence searches for Nasonia,
including this OGS2 gene set, and 8 other Hymenoptera
species. WaspAtlas offers gene annotation and func-
tional information searches of Nasonia gene sets includ-
ing OGS2, integrating expression and DNA methylation
annotations. This OGS2 gene set along with associated
gene evidence and alternate gene sets are also available
with genome map views and BLAST sequence homology
searches through the EvidentialGene project of euGenes
genome database [30, 34]. NCBI provides genome map
views, sequence and gene annotation searches [38] for
their annotations of Nasonia. With a growing wealth of
genome information, the value of these resources will
improve where they can manage to integrate and sens-
ibly organize such data as RNA sequence expression
studies, DNA methylation data, proteomics, new
genomic data, and cross-integrate with the improving
genomics data of related species.

Conclusions
OGS2 provides a major quantitative and qualitative
update to the toolbox for Nasonia’s genomics re-
search. Better-defined UTRs enable the study of post-
transcriptional regulation via targeting of small RNAs.
Novel reported isoforms provide a more accurate rep-
resentation of gene expression. We also highlight in-
teresting areas for future molecular biology research
using this organism, such as histone modification.
Furthermore, we provide an estimate of the most
unique traits of the Nasonia genome when compared

with other Hymenoptera, which can assist the discovery of
genetic mechanisms underlying the typical features of
this lineage.
The advances in gene annotation for OGS2 are notable

today, however as gene evidence accumulates in the
future, new and improved gene sets will need to be
constructed until a verifiably complete and biologically
accurate gene set is produced. Transcriptomic data in
the form of high quality and inexpensive RNA-Seq is
now the leading form of gene evidence for most genome
projects, surpassing gene prediction and mapping of
reference gene proteins. Along with abundant high
quality RNA-Seq for the model Drosophila, Tribolium,
and other insects, the Apis mellifera gene set has re-
cently been improved by addition of several billion
paired reads, sufficient for the assembly of all but the
weakly expressed genes. This approach has been
employed at NCBI for updated genome-based models,
and at EvidentialGene with RNA-only assemblies. The
RNA assemblies may well surpass genome-modeled
genes for orthology completeness as well as species-
unique completeness [72].
As a proof of concept, all of the novel data that en-

abled the annotation improvements made by OGS2 are
derived from functional genomics methods (RNA-Seq,
tiling arrays and ESTs). Transcriptomic data can thus
improve genome annotation, even when the underlying
genome assembly is frozen. As shown by the publication
of results from the modENCODE Drosophila project
[73], new genes and transcripts are discovered, even for
a genome that has been intensively investigated for over
half a century. Our modeling estimated that 50 % of all
Nasonia loci may possess alternative transcripts, com-
parable to the 57 % observed from the Drosophila
transcriptome [26], whereas we recovered alternates
from RNA assemblies at only 17 % of all loci. Therefore,
even though it is unlikely that the addition of novel data
will drastically increase the gene count for the Nasonia
genome, we expect an increase in the number of re-
ported isoforms with the addition of stage, tissue and
condition specific transcriptomes. Perhaps more import-
antly, new data will increase the quality of gene models,
where RNA transcript assemblies will validate and im-
prove gene structures, an unresolved subset of which we
believe are fragments or gene joins, and will provide
further evidence for intron/exon patterning.
Our phylogenetic analyses were restricted in scope to

the portion of the genome that could be assigned to an
ortholog group, and its interpretation hindered by the
large number of genes of unknown function. In order
for the genomics of this organism to be better linked to
its biology, there is a pressing need for more functional
studies tailored to Nasonia’s unique features. Genome
wide association studies and quantitative trait loci are
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especially complimentary for this purpose, as they
provide a first connection between the well-defined
transcriptionally active regions and biologically rele-
vant traits [74, 75]. As a final note, OGS2 is currently
rich in models that have little support. These lowly
supported models might prove to be a valuable re-
source for future studies on the unique features of
the wasp lineage, as their current status as low-level
support loci could either be indicative of a restricted
expression pattern or of a recent evolution or emer-
gence in the hymenopteran phylogeny.

Methods
We constructed gene models by using software methods
that incorporate various sources of biological evidence
for genes, including transcriptional data from RNA-Seq
and tiling-path microarrays and sequence homology
with genes described in other species. We performed
model quality assessment to select the best gene
model per locus and to compare gene sets, using the
same gene evidence plus additional sources. After
quality assessment, we performed error and discrep-
ancy analyses followed by updated gene set selection
in a negative feedback fashion to minimize errors. All
selected gene models are supported by some kind of
evidence; ab-initio predictions without gene evidence
are not included in OGS2. A small set of problem
genes were manually curated and corrected by expert
examination of evidence.

Gene evidence from expressed transcripts
Total RNA samples for sequencing were collected from
whole embryos, pupae, whole adults, adult heads and
adult abdomens using the extraction and purification
protocol described in [15]. Single-end sequencing librar-
ies were created using the TruSeq chemistry by Illumina
following the manufacturer’s instructions. Sequencing
was performed on both the GAIIx and HiSeq 2000 Illu-
mina instruments with single-end read lengths of 40, 51
and 80 base pairs. The sequences were deposited at NCBI
as BioProject PRJNA219398. Expressed Sequence Tags
(EST) from four normalized cDNA libraries – which con-
tributed to the OGS1.2 annotation – were also used in gene
construction (accession numbers GE352825-GE467204
and ES613911-ES651267). The library construction and
sequencing procedures are described in the Supporting
Online Material for [4].
RNA from short and longer reads were assembled into

long mRNA transcripts using both genome-mapped as-
sembly (PASA, Cufflinks) [76, 77] and de-novo assembly
(Velvet/Oases) [78, 79] (Table 1). De-novo assembly
combined paired-end EST with short read RNA-Seq,
whereas PASA only assembled ESTs and Cufflinks only
assembled short RNA-Seq reads because of software

limitations. We used Cufflinks v1.0.3 and v0.8 with de-
fault options, PASA v2.2011 with standard options and
Velvet v1.1.05, oases v0.1.22 with options -ins_length_-
long = 400 -conserveLong yes -min_pair 2, and kmer
values 27 and 31. EST and RNA-Seq were mapped onto
the draft genome sequence with GSNAP [80] for assem-
bly by PASA and Cufflinks. The de-novo assembled tran-
scripts were mapped onto the draft genome sequence
with GMAP [36], and incorporated into further gene
construction as transcript evidence. Longest open read-
ing frame (ORF) proteins were computed from de-novo
transcripts, and used in gene orthology assessment and
genome assembly discrepancy analyses. Intron evidence
was collected from properly spliced reads and transcripts
mapped onto the genome assembly; the number of
spliced reads per intron location was used as a quality
score. We found a total of 66,595 intron locations sup-
ported by 3 or more reads, including 1100 introns longer
than 20 kbp (285 kbp maximum) supported by at least
10 reads.

Gene evidence from expression tiling array
We used whole genome tiling-path microarrays with
tile spacing of 20 bp to discover transcribed Nasonia
loci. We extracted total RNA from samples of 5 dif-
ferent life stages, 0–10 h embryos, 18–30 h embryos,
51–57 h larvae, 1-day yellow pupae (little to no red
eye pigment), and 1 day post-eclosion adults. We
used six replicates per sample, averaging 400 individ-
uals per replicate for embryos, 300 for larvae, 20 for
pupae and 20 for adults. Samples were extracted in
Trizol (Invitrogen, cat #15596-026) then processed
and expression data produced at the Indiana Univer-
sity Center for Genomics and Bioinformatics using
previously published methods [81].
Tiling array expression analyses result in exon-like

spans, called transcriptionally active regions (TARs),
from runs of adjacent expressed 50 bp tiles (Table 6).
The log-normalized intensity of replicated tile array
signals is primary expression evidence for TARs. Both
genome tiling and RNA-Seq expression track gene exon
structures well (Additional file 1: Figure S1) suggesting
their suitability for gene modelling. TARs were used as
exon-like evidence in gene predictions in two ways: as
input to AUGUSTUS predictor in the form of exon hints
(genome span scores) and as input to exonerate cDNA
mapping to gene structures, in combination with other
evidence (Table 3, Additional file 1: Figure S2).

Gene evidence from related species proteins
Gene homology evidence for the gene construction pipe-
line was collected from 220,000 proteins of 2 ants (Cam-
ponotus floridanus, n = 15,133, Harpegnathos saltator, n
= 15,029), 3 bees (Apis mellifera n = 10,145, Bombus
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terrestris n = 9492, B. impatiens n = 9869), Drosophila
melanogaster (r5.30, n = 14,289), pea aphid (Acyrthosi-
phon pisum r2, n = 38,440), Tribolium castaneum (v3,
2008, n = 16,985), Daphnia pulex (v1 2007, n = 30,506),
and human (UniProt 2011, n = 20,238). These proteins
were aligned using tBLASTn (NCBI) to the repeat and
transposon soft-masked genome, then refined with Ex-
onerate [82] to create protein gene models, with options
“exonerate –model protein2genome:bestfit –exhaustive
1 –subopt 0 –forcegtag 1 –softmasktarget 1”.

Gene construction on genome assembly
We constructed OGS2 gene models upon the Nvit_1.0
draft genome assembly, which is the same assembly used
for OGS1.2 [4] primarily to preserve tiling array loca-
tions. An updated 2.0 genome assembly is also available
from the NCBI (NCBI Nasonia vitripennis Annotation
Release 101), yet does not differ from Nvit_1.0 but for a
modest splitting of the largest scaffold into two units
and mapping of scaffolds onto the linkage map of
Nasonia [83]. Transposon and repeat locations remain
as found in the initial report, though we performed an
updated Repbase database [84] and RepeatMasker run
[85] including an evidence quality assessment. OGS1.2
gene models are retained as inputs for our updated
version. These lack UTRs for 70 % of genes – a desired
improvement. We used NCBI-11 models for Nasonia
and the published genome assemblies of the two sib-
ling species, N. longicornis and N. giraulti to assess
gene models.
The new Nasonia gene models are derived using the

evidence-directed AUGUSTUS predictor [86–88]. Sev-
eral gene prediction sets are produced to create a

superset of models that include the models selected to
be best, based on matching all gene evidence using Evi-
dentialGene methods [29, 34]. AUGUSTUS flexibly uses
both Hidden Markov Model (HMM) training models
and available gene evidence for each locus. Training the
predictor HMM involves steps described by the authors
[87, 88], with validated genes for this species.
We selected 2000 Nasonia reference genes that ap-

peared to be full length from the EST/RNA transcript
assemblies. We split these into subsets for training and
validation of the resulting predictor. We created and
used several training sets, plus one that is un-optimized.
Evidence sets and configuration weightings were con-
structed to include: (1) complete gene structure informa-
tion (exon, CDS, intron, gene spans); and (2) an extra
influence of one major component (proteins, EST exons,
full transcript assemblies). The first was necessary to re-
duce aberrant gene models generated by over-influence
of one structure component. For example, evidence of
exons from only ESTs or tiling TARs lead to missed in-
trons and missed gene ends. The second was required to
reduce conflicting signals, and returned better models
under the influence of an appropriate gene evidence
class. For instance, extra influence of homologous pro-
teins returned models that more closely matched those
proteins. Following each prediction run, the results were
assessed for overall quality and matched to evidence.
This assessment then suggested the options for new
configurations and evidence mixtures. AUGUSTUS is
also able to model alternate transcripts from evidence.
But those are seldom supported by transcript assemblies
and tend to include aberrations. Therefore, we did not
use this option and instead used only transcripts assem-
bled directly from EST/RNA reads in selecting alternate
splice-forms. We also used as gene information, but not
as evidence for re-constructing genes, the version
OGS1.2 gene set [4], and NCBI (NCBI-11, RefSeq re-
lease v2, September 2011 [38]) gene models for Nasonia.
We obtained a total of 333,121 alternate gene models

from different evidence sets and parameters, as input to
the EvidentialGene classifier (255,785 models from 16
separate AUGUSTUS runs as described above; 18,941
from OGS1.2; 30,379 from EST/RNA assemblies). Evi-
dentialGene uses gene evidence described above from
expression and protein sources to annotate each model
and exon, then calculates quality scores per model for
each type of gene evidence (see next paragraph below).
Locus overlaps of gene models are also calculated, using
the primary criteria of CDS-overlap on same DNA
strand (reverse-strand CDS-overlap is rare, but locus
UTR overlaps are relatively common). A weighted sum
of the various evidence component scores is calculated,
configurable to gene set requirements. Selecting the best
locus from among a large set of gene models is

Table 6 Genome tiling array expression gene evidence. TAR =
Transcriptionally Active Regions representing runs of adjacently
expressed 50 bp isothermal probes on a genome-wide tiling
path microarray [4]

Expression group TAR exons Unique TARs Exonerate gene
models

Adult female 1,139,061 29,626 46,402

Adult male 1,165,881 20,625 49,344

Embryo 10 h old female 700,773 21,704 33,286

Embryo 10 h old male 677,712 6788 31,408

Embryo 18 h old female 781,163 13,268 31,342

Embryo 18 h old male 813,130 15,662 33,612

Larva female 670,292 7173 29,442

Larva male 667,030 3814 28,284

Pupa female 1,246,557 16,563 51,858

Pupa male 1,322,223 15,769 54,119

Ovaries 631,449 7113 27,483

Testes 658,960 21,449 30,348
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accomplished according to two basic criteria: (1) gene
evidence must pass a minimum threshold score, and (2)
the combined score is maximal for all models overlap-
ping the same CDS-locations. Other criteria and tests are
included and used for classification, such as orthology
scores. One indicator of a joined model error (Additional
file 1: Figure S3) is a homology score for the joined model
that is no greater than for un-joined models, though its
coding span is larger. Determining a final gene set is an
iterative process that involves evaluation after selection,
modification of score weights, and reselection. After
the majority of optimal models are found, smaller sub-
sets of problem loci are sampled and examined, with
additional evaluations to resolve these. This is a
negative-feedback process designed to filter out errors
and suboptimal gene models, with successive iterations
changing fewer models until the optimal set is found. It
also involves expert curation to identify and remove
suboptimal models, and locate or promote missed high
value models (e.g., unique orthologs).
The quality scores per model are calculated using the

following types of evidence: (a) the level of RNA se-
quence coverage and tiling array signal over the gene
model coordinates on the genome assembly; (b) the
number of EST and RNA sequence reads spanning the
intron splice sites that matched to annotated exon ends;
(c) gene structure agreement, as end-to-end match of
exons in the model with the evidence in support of gene
structure, summarized in Table 3 for evidence structure
from EST/RNA assemblies and reference proteins; (d)
sequence homology to proteins from eleven species-
specific reference databases using BLASTp scores of all
significant matches to the reference set of genes includ-
ing the number of reference protein matches, bitscore
per protein match, and the similarity scores for align-
ments to same species paralog proteins. These quality
scores are summarized for several Nasonia gene sets
(Table 3) and partitioned according to the source of
evidence (EST, RNA sequences, tiled expression spans,
reference sequences (Nasonia RefSeq), and reference
species proteins. Each gene model for each locus is
therefore scored by weighted evidence. Finally, the max-
imal evidence scored, non-overlapping model set is
determined, with respect to inter-locus effects of gene
joins and other factors.
The EvidentialGene script “annotate_predictions.pl”

encapsulates this algorithm. The configurations for this
Nasonia annotation project are specified in “evigen-
e_wasp2.conf”, which identifies the sources of gene evi-
dence, the gene model sets, the evidence scoring and
weighting schemes, plus other factors. An independent
evaluation of gene sets for evidence-based recovery is
produced by the script “evaluate_predictions.pl”. The
summary output table from “evaluate_predictions.pl”,

which lists the types of evidence and the recovered gene
set, is the source of Table 3. This evidence-based recov-
ery process is calculated for each iterative gene selection,
followed by expert examination of sample loci, for ad-
justments that are made to the weighting scheme, to
optimize as many of the evidence components as pos-
sible. During this process, the expert-selected models are
retained. This evidence scoring of genes is roughly simi-
lar to EvidenceModeler [89] and GLEAN [90]. As with
EvidenceModeler, an evidence weighing statement is part
of the configuration, and an optimal weighting is derived
by iterative trials and evaluations.
Coding potential for the gene models was scored ac-

cording to (i) homology to reference proteins, (ii) size of
calculated open reading frames (ORF in base pairs), (iii)
relative size of ORF to total transcript size, (iv) introns
in coding span. These and other measures are com-
monly used (e.g., [47, 91]), but are often not definitive
(see Additional file 10). Our assignment of the gene
models to locus type – including protein-coding, non-
coding, and transposon – is based on coding potential
and other factors that are shared with the NCBI locus
typing [38]. For transposons, this includes sequence
similarity to known transposon sequences that are
previously reported [4], and protein homology to
other annotated transposon proteins.
Gene names in OGS2 have been assigned on the basis

of sequence alignment to UniProt proteins, to reference
insect genes, and to the consensus gene family names
from OrthoMCL orthology analyses, by using a BLASTp
e-value threshold < 1e-5 and three levels of percentage
alignment criteria: levels > 10 % (minimum score to
name), > 33 %, and > 66 %. The names are in accordance
with UniProt protein naming guidelines [92]. Weak and
modest alignments were given the added name qualifiers
(“-like” for < 33 %, and “putative” for < 66 %). Some
genes were named despite having < 10 % alignment (82);
most are transposons with additional evidence of trans-
poson sequence alignment, some are expert choices
(e.g., Nasvi2EG008578t1, odorant receptor), and some
are poorly associated names. The gene annotations
include preferred name, orthology family name, and
naming reference gene IDs, and alignment scores.

Ortholog group assignments and gene family expansions
Orthology of Nasonia protein coding genes was assigned
using two methods: OrthoMCL [93] and OrthoDB [32].
OrthoMCL was used during gene construction as an es-
sential measure of gene quality, for refining gene model
classifications. For OrthoMCL, related species pro-
teomes with Nasonia gene models were aligned using
all-by-all reciprocal best BLASTp [94, 95] of 11 species’
proteomes (wasp plus those listed above). Alternate
transcripts were removed after BLASTp matching, in
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order to use the most similar gene variants. Clustering
of these blast alignments into gene families was also
done using OrthoMCL. The resulting gene families are
narrow or broad, depending on the chosen alignment
options, especially the distance at which to break
groups. Resulting groups are rather like the leaves at
the tips of a phylogenetic tree. Further MCL clustering
of these groups showed relations between many of the
narrowly clustered groups. Significance criteria were
applied using recommended options: a similarity p-
value < 1e-05, protein percent identity > 40 %, and
MCL inflation of 1.5 (this affects the granularity of
clustering). Reciprocal best similarity pairs between
species, and reciprocal better similarity pairs within
species (i.e., recently arisen paralogs, or in-paralogs,
proteins that are more similar to each other within one
species than to any protein in the other species) were
added to a similarity matrix. The protein similarity
matrix was normalized by species and subjected to
Markov clustering (MCL; [96, 97]) to generate ortho-
log groups including recent in-paralogs. An additional
round of MCL clustering was applied to identify
between-group relations.
After producing the Nasonia OGS2 genes, its protein

sequences were incorporated into release-6 of the
OrthoDB database [32]. Ortholog groups are here de-
fined as groups of genes related by descent from a single
common ancestor at the base of the taxonomic level of
interest. All genes within a single ortholog group evolved
from a series of speciation and/or gene duplication
events from a unique ancestor. Their amino acid se-
quences can thus be aligned and compared with each
other. Ortholog groups provide efficient units of analysis
for genes over long timescales as they enable partition-
ing in evolutionarily relevant categories without the need
to resolve precise 1 to 1 relationships. From the total
24,388 OGS2 genes, 15,173 (62 %) could be assigned
to an ortholog group among the Arthropoda in
OrthoDB version 6.
We assessed which ortholog groups are characterized

by evolutionary expansions in the Nasonia lineage. We
selected 9601 ortholog groups that have paralogs in
Nasonia and over 80 % of the other sequenced Arthro-
poda. To further increase the stringency of the selec-
tion criteria, we removed all genes from this set that
have any duplicates in other hymenopteran species. Of
the total 9601 ortholog groups, 411 (0.05 %) have
duplicates specific to the Nasonia lineage among the
Hymenoptera. We used sequence similarity searches to
cross-validate the absence of ultra-conserved ortholog
groups of the BUSCO dataset (OrthoDB) from the
Nasonia genome. We retrieved protein sequences for
all genes within those ortholog groups from all se-
quenced arthropods.

Identification of fast- and slow-diverging genes in the
Nasonia relative to ants and bees
We retrieved amino-acid alignments for ortholog groups
among the Hymenoptera from OrthoDB version 6 and
selected those that contained at least one gene in the
Nasonia genome and at least one gene in one ant and
one bee genome (8696 OGs). We generated a pairwise
sequence divergence matrix, comparing all genes versus
all genes within each of those ortholog groups by apply-
ing a JTT protein evolution model as implemented in
the R package phangorn [98]. We then estimated the
proportion of between-genus sequence divergence due
to the Nasonia genes using the following ratio

AN þ BN
AN þ BN þ AB

where AN and BN are the median pairwise amino-acid
distances between the Nasonia gene and Ant or Bee
orthologs respectively, and AB is the median pairwise dis-
tance between the ant and bee orthologs in the genes’
ortholog group. We analyzed this ratio with a generalized
linear mixed model (GLMM) with logit link function,
using overall median sequence divergence of the ortholog
group, presence of Nasonia paralogs and transposon-
associated expression as predictors to account for the role
of those factors in protein evolution. We also used the
ortholog group ID as a random blocking factor to account
for individual differences in evolutionary rates between
ortholog groups. We then extracted the GLMM’s residuals
to evaluate the remaining unexplained levels of sequence
evolution. We selected genes that exceeded the 95th
percentile of the distribution of residuals as highly
diverging, and those below the 5th percentile as slowly
diverging. We did not include relative non-synonymous
to synonymous substitution rates in the GLMM be-
cause the analysis is based on protein sequence align-
ments scored by a weighted matrix of amino acid
substitutions.
To avoid false positives due to exceedingly fast or slow

protein sequence evolution in either the ant or bee
clade, we also computed separately the rates of diver-
gence between Nasonia and the ant or bee lineages
(AN/AN+BN+AB and BN/AN+BN+AB). We then gen-
erated two independent GLMMs for these ratios with
the same factors used for the compound ratio and re-
ported the genes that scored as significantly faster or
slower (above 80th percentile or below 20th percentile)
in both cases. This second set provides a high confidence
list of genes that are differentially diverging in the Nasonia
lineage but show limited differentiation between the ant
and bee lineages. We point out that this is a tool to identify
proteins that may be evolving more quickly at the amino
acid level in the Nasonia clade. Because the analysis is
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unrooted, the method does not identify proteins that are
specifically evolving more quickly since divergence of
Nasonia from its common ancestor with ants and bees,
but also includes changes from that common ancestor
to the split between ants and bees. More precise evolu-
tionary analyses will require phylogenetic reconstruc-
tion for all the genes, but the current set is useful for
identifying likely candidates for divergence among these
taxa. Given the very long branches involved in such
analyses, use of dN/dS ratios as an index of adaptive
evolution would be inappropriate due to total satur-
ation of synonymous substitutions.

Functional enrichment testing
We tested all gene sets for functional enrichment of
Gene Ontology (GO) terms obtained by Blast2GO [99],
using the two-tailed Fisher’s exact test with a False
Discovery Rate (FDR) of 5 % against the complete gene
complement of N. vitripennis. The Nasonia GO annota-
tion for OGS2 was provided by the Nasonia community
[70]. Of the 24,388 OGS2 genes with supporting evi-
dence, 24,373 are present in the community-provided
Blast2Go annotation files and 6446 of these (26,4 %)
have GO assignments.

Alternative splicing analysis
We used GLMMs to test for factors correlated with the
presence or absence of alternative transcripts in OGS2.
Our test factors include presence of strict sense paralogs
(defined as reciprocal best sequence similarity match
within the same genome versus reciprocal best match
within other genomes), number of broad sense paralogs
(genes within the same genome belonging to the same
arthropod OrthoDB ortholog group plus one, log and z
transformed), number of predicted introns (log and z
transformed), transcript length (log and z transformed,
using the longest transcript per gene), proportion of
coding sequence over total transcript length (CDS/Tran-
script length, log transformed and normalized), ratio of
Nasonia-specific protein evolution (see Methods section
“Identification of fast- and slow-diverging genes in the
Nasonia relative to ants and bees”, log and z trans-
formed), methylation status in adult females [16] and
phylostratigraphic age [15].
We selected only genes with a complete record for all

tested factors. Since the detection of isoforms is propor-
tional to the coverage of that gene, we further restricted
our analyses only to genes with both strong expression
support and strong intron support, which have compar-
able levels of transcriptional data available. Therefore,
our final dataset was comprised of 5447 genes. To esti-
mate over-dispersion, we fitted a GLM with quasi-
binomial error distribution including all analysis param-
eters. This model did not show over-dispersion, with a

c-hat of 1. We therefore fitted subsequent models to a
binomial distribution with logit link function. All subse-
quent models also included a random intercept error
structure for each ortholog group among arthropods,
to account for different selective pressure on different
gene families.
We estimated the support of individual factors by

fitting a full model incorporating all parameters, then
compared this model to others incorporating all fac-
tor combinations by applying the Akaike Information
Criterion, corrected for finite sample size (AICc). We
calculated the relative importance of factors as the
sum of weights of all models containing that factor
over the total weight of all models within the set.
Since the final model set contained several models
with similar AICc values (Additional file 13), we choose to
present the results as model-averaged estimates rather
than to choose a single best model.

Mapping OGS2 to Nvit_2.1 reference genome assembly
To map GFF files between assemblies, we first generated
a chain file as follows: we split the Nvit_1.0 assembly
into 5 kb fragments, and aligned each fragment to the
Nvit_2.1 reference using BLAT (options: tileSize = 11,
minScore = 100, minIdentity = 98, fastMap), using an
ooc file produced with the makeOoc option to BLAT.
We then combined all the BLAT output using liftUp to
convert the result files into the parent (in this case
Nvit_1.0) coordinate system. The resulting psl file was
processed with axtChain (options: linearGap =medium,
psl), chainMergeSort, chainSplit (options: lump = 20),
chainNet, and chainSubset to produce a chain file. We
then produced the reciprocal file using chainSwap. Both
chain files (Nvit_to NVIT, and Nvit_to NVIT) are pro-
vided as supplemental material (Additional file 5).

Additional software tools
Most statistical analyses were performed in R version
3.0.0 [100] using the following packages: plyr [101] and
reshape2 [102] for data handling, phangorn for sequence
analyses [98], lme4 [103] for GLMMs, MuMIn [104] for
multi-model comparisons and model-averaging, vcd
[105] and ggplot2 [106] for plotting. Functional enrich-
ment testing was performed using Blast2GO [99].

Additional files

Additional file 1: Figure S1. Expression values relative to gene
structures for RNA-Seq (Reads) and genome tiling path microarrays (Tile)
for species Nasonia (purple, this project), Drosophila (red, blue, [74]) and
Daphnia (green, [107]). Annotated gene near-exon spans are scored per
base for average expression scores from the data sets, and relative
expression plotted with respect to gene transcript start (first exon),
stop (last exon), and inner exon start, stop positions. Both methods
(genome tiling and RNA-Seq) have abrupt expression strength changes at
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exon boundaries, on average, indicating their value in modeling gene
structure positions. Expression scores are read-coverage for RNA-Seq,
and log-normalized intensity for tiling array, as described in the
Methods section. Figure S2. Gene modeling example with tile
expression data, including gene evidence (upper tracks with tiling,
introns, proteins), tiling TAR-exon to Exonerate models (middle), and
gene predictions from tile TAR hints (lower), on genome map. The
lower tracks have excessive false UTR spans attached to gene models,
primarily due to tiling expression that lacks gene start/stop and intron
splice joining signals. These false UTR spans are supported by expression
evidence, but as a combination of alternate exons, separate gene loci, and
non-coding expression. Intermediate tracks (Exonerate models) often match
gene structures from other methods, but have a high proportion of
unsupported exon extensions as for lower track. Figure S3. Gene join
error example. A mistaken gene model from honey bee (tan, lower,
LOC552483) is transferred to Nasonia in NCBI RefSeq models (dark orange,
middle), merging a ribosomal protein (right) and Ankyrin repeat protein
(left). EvidentialGene models (yellow, top) did not contain this mistake, due
to the combination of RNA-Seq assemblies (purple, bottom) that are un-
joined (but could be parts of one gene), the lack of intron joining evidence,
and the orthology assessment metrics that distinguish gene joins from true
complete genes. NCBI Refseq models for both Apis (new LOC102654426
and mRpL52 in NCBI Apis rel. 102) and Nasonia have been updated to
correct this join error. Figure S4. Log counts of methylated and
unmethylated genes in different classes of expression support. Grey
bars indicate genes with no known methylation status. (ZIP 938 kb)

Additional file 2: Table S1. Consensus in the location of the OGS2
gene set on the genome assemblies of sibling species Nasonia longicornis
and N. giraulti, including recent, high identity paralogs. Almost all OGS2
genes are located on 2 sibling species draft assemblies [4], using
GMAP [36] transcript mapping. Paralog locus consensus patterns are
tabulated for inparalogs (sharing orthology to other species) and
uniquepar (lacking strong homology to other species). Of the total
paralog families, each with several genes, most paralogs are on different
scaffolds for all species. The counts of tandem paralogs with different
separations are indicated. Table S2. A set of 62 orthology groups found in
Nasonia transcript assemblies that are poorly mapped onto the current
genome, but should be considered as part of a complete Nasonia gene set.
Table S3. A total of 75 orthology groups missing from Nasonia but found
in 9 other insect genomes. Table S4. Histone genes present in OGS2.0
annotated with presence or absence of lineage-specific expansions.
NA entries were not assigned to orthologous groups at the level of
Hymenoptera. (ZIP 33 kb)

Additional file 3: OrthoDB6 BUSCO (Benchmarking Universal Single Copy
Orthologs) genes missing from OGS2. (XLS 1367 kb)

Additional file 4: OrthoDB6 BUSCO (Benchmarking Universal Single Copy
Orthologs) genes present in multiple copies in OGS2. (XLS 51 kb)

Additional file 5: Chain files, GFF mapping and transcript status of OGS2
on Nvit_2.1 genome assembly. (XLS 17233 kb)

Additional file 6: Table of OGS2 gene transcripts equivalences to OGS1
and NCBI-101 gene sets, using the CDS-exon locations on the genome
assembly. “NCBI101geneID” and “OGS1geneID” include equivalence value
as percent equal to CDS.EXON. For example: Nasvi2EG000002t1
nasvn14g1803t1/99.70 is 99 % CDS equal, 70 % exon equal; NV10001-RA/
74.89 is 74 % CDS equal, 89 % exon equal. The “NCBI101geneID” is the
local ID “gene1803” from the NCBI GFF gene table, adding “nasvn14g”
prefix and alternate transcript suffix “t1,t2,..”, with associated column of
public “NCBI101transcriptID” (XM_ or NM_). “Genome21loc” is the gene
span location on Nvit_2.1 scaffold assembly, “Genome1loc” is the gene
span location on Nvit_1.0 scaffold assembly (most Nvit_2.1 and 1.0 are
equivalent). “NCBI101also” and “OGS1also” are additional gene transcripts
with partial equivalence to the OGS2 gene. Nonequivalence values: “na”
for “NCBI101geneID”, “novid” for “OGS1geneID”. “WaspAtlasNCBI101” lists
NCBI-101 equivalent genes provided by [40]. Disagreements are marked
by “*”. These appear to be UTR-exon or gene-span overlaps, rather than
the CDS-exon overlap used in this table equivalence. (XLSX 2889 kb)

Additional file 7: OGS2 genes whose ortholog groups are characterized
by lineage-specific expansions or contractions. (XLS 3711 kb)

Additional file 8: Protein evolutionary distances of OGS2.0 genes
compared to ant and bee lineages, residuals distances after model
fitting and fast/slow evolving categorization at the 5th and 20th
quantile threshold. (XLS 2790 kb)

Additional file 9: Protein alignment of the OG EOG6R4ZDK (hymenopteran
histone H3). Clipped to include only residues shared between all
genes. (TXT 13 kb)

Additional file 10: Supplement document on long non-coding RNA
expression and genes within the Nasonia genome and genomes of
other animals. (DOCX 6088 kb)

Additional file 11: Genes with more than 10 isoforms present in OGS2.
(XLS 48 kb)

Additional file 12: Figure S5. Correlation between methylation status
and expression support in OGS2.0. (PDF 4 kb)

Additional file 13: Model selection table for models comprising different
combinations of factors with a putative role in characterizing genes with
and without annotated isoforms. (XLS 59 kb)
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