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Microarray-based expression studies have demonstrated that 
breast cancer is both a clinically diverse and molecularly heteroge-
neous disease comprising subtypes with distinct gene expression 
patterns that are associated with outcome (1–8). The relevance of 
these subtypes for basic and translational research has led to their 
use in prognostic assessments (3,9), prediction of therapeutic effi-
cacy (10), and retrospective analysis of clinical trials (11). 
Independent of subtype analysis, several research groups have 
developed prognostic gene signatures by analyzing gene expres-
sion together with clinical outcome data [see (12) for a review]; 
Mammaprint (13,14), Oncotype Dx (15), and the Gene expression 
Grade Index (GGI) (16) are currently commercially available. 
Although the data and statistical methods used to develop these 
prognostic gene signatures differ from those used for breast cancer 
molecular subtyping, we and others reported a high rate of concor-
dance between the predicted risk classifications and subtypes 

(1,8,17), shedding new light on the common biological processes 
relevant for predicting outcome in breast cancer.

In their seminal work, Perou et al. (4) identified four breast 
tumor subtypes: the basal-like, HER2-enriched, the luminal (often 
differentiated into two or three subgroups), and the normal-like 
tumors. These molecular subtypes were identified by selecting a 
large set of “intrinsic” genes (those showing little variance within 
repeated samplings of the same tumor but with high variance 
across tumors) and then using hierarchical clustering to separate 
patients into transcriptionally distinct groups (4). However, 
because only samples in large retrospective studies could be classi-
fied by this method, the authors developed the Single Sample 
Predictor (SSP; Figure 1, A), which identifies the subtype of a 
single tumor using a nearest centroid classifier (2,3,6). This initial 
SSP [SSP2003; Figure 1, C; (6)] was further refined through 
iterations of the intrinsic gene list and the resulting two SSPs 
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	Background	 Single sample predictors (SSPs) and Subtype classification models (SCMs) are gene expression–based classi-
fiers used to identify the four primary molecular subtypes of breast cancer (basal-like, HER2-enriched, luminal 
A, and luminal B). SSPs use hierarchical clustering, followed by nearest centroid classification, based on large 
sets of tumor-intrinsic genes. SCMs use a mixture of Gaussian distributions based on sets of genes with expres-
sion specifically correlated with three key breast cancer genes (estrogen receptor [ER], HER2, and aurora kinase 
A [AURKA]). The aim of this study was to compare the robustness, classification concordance, and prognostic 
value of these classifiers with those of a simplified three-gene SCM in a large compendium of microarray 
datasets.

	 Methods	 Thirty-six publicly available breast cancer datasets (n = 5715) were subjected to molecular subtyping using five 
published classifiers (three SSPs and two SCMs) and SCMGENE, the new three-gene (ER, HER2, and AURKA) 
SCM. We used the prediction strength statistic to estimate robustness of the classification models, defined as 
the capacity of a classifier to assign the same tumors to the same subtypes independently of the dataset used 
to fit it. We used Cohen k and Cramer V coefficients to assess concordance between the subtype classifiers and 
association with clinical variables, respectively. We used Kaplan–Meier survival curves and cross-validated par-
tial likelihood to compare prognostic value of the resulting classifications. All statistical tests were two-sided.

	 Results	 SCMs were statistically significantly more robust than SSPs, with SCMGENE being the most robust because of 
its simplicity. SCMGENE was statistically significantly concordant with published SCMs (k = 0.65–0.70) and SSPs 
(k = 0.34–0.59), statistically significantly associated with ER (V = 0.64), HER2 (V = 0.52) status, and histological 
grade (V = 0.55), and yielded similar strong prognostic value.

	Conclusion	 Our results suggest that adequate classification of the major and clinically relevant molecular subtypes of breast 
cancer can be robustly achieved with quantitative measurements of three key genes.

	�	  J Natl Cancer Inst 2012;104:311–325
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[SSP2006 and PAM50; Figure 1, C; (2,3)]. These SSPs have been 
applied to gene expression data generated from different cohorts 
of breast cancer patients and microarray technologies (2,17).

However, all SSPs have severe limitations. Pusztai et al. (18) 
showed that small changes in the initial set of breast tumors can 
have a dramatic impact on the hierarchical clustering used in  
defining the initial subgroups for the SSPs, raising questions about 
the stability of the method (18,19). Kapp et al. (20) challenged the 
use of hundreds of intrinsic genes and showed that only genes  
related to estrogen receptor (ER) and HER2 phenotypes lead to a 
stable identification of three main subtypes: ER2/HER22 (basal-like 
tumors), HER2+ (HER2-enriched), and ER+/HER22 (combined 
luminal A and B tumors) (20). Weigelt et al. (21) reported that 
subtype classifications depend on the list of intrinsic genes because 
SSPs were only moderately concordant. Recently, Mackay et al. 
(22) highlighted the lack of interobserver agreement for manually 
identifying subtypes from dendrograms estimated by hierarchical 
clustering.

To address these issues, we developed an alternative classification 
approach, the Subtype Classification Model (SCM; Figure 1, B). In 

contrast to SSPs, SCMs are based on a mixture of three Gaussian 
distributions in a two-dimensional space defined by the ER and 
HER2 gene modules, with a proliferation (aurora kinase  
A [AURKA]) module providing discrimination between low and 
high proliferative tumors (1,8). These modules are composed of 
genes whose expression is specifically correlated with their proto-
type gene—ER, HER2, or AURKA (1,8). Two versions of gene 
lists representing these modules have been published [Figure 1, D; 
(1,8)]. SCMs have been applied in datasets using different microar-
ray platforms and normalization methods (1,8,9).

Although establishing breast cancer molecular subtypes has had 
a substantial impact on the way clinicians perceive the disease, we 
know surprisingly little about the reproducibility of the various 
classification algorithms (19) because of the intrinsic nature of 
subtype identification where the true classification remains 
unknown, rendering the validation of the corresponding classifiers 
difficult. Weigelt et al. (21) recently estimated the agreement of 
the three published SSPs in four public datasets and showed that 
these classifiers are only moderately concordant.

Here, we address the issue of reproducibility, comparing SSPs 
and SCMs to assess their robustness (defined as the capacity of a 
classifier to assign the same tumors to the same subtypes indepen-
dently of the dataset used to fit it), their classification concordance, 
and their prognostic value. To do this, we first developed 
SCMGENE, a simplified version of the SCM using only the three 
key genes (ER, HER2, and AURKA) known to be the main dis-
criminators of clinical and molecular breast cancer subtypes 
(1,8,20). We then used a large compendium of gene expression and 
clinical data from 5715 breast cancer patients to assess the relative 
performance of six subtype classifiers, the three published SSPs, 
two published SCMs, and the simplified version of SCM, namely 
SCMGENE.

Methods and Statistical Analysis
All analyses have been performed using R version 2.13.1 
(http://www.r-project.org/ ). To ensure full reproducibility of our 
results, software and data are available at http://compbio.dfci.
harvard.edu/pubs/sbtpaper/. Differences with P values less than 
.05 were considered statistically significant. All statistical tests were 
two-sided.

Gene Expression Data
Thirty-six gene expression datasets of expression profiles from 
5715 tumors were retrieved from public databases or authors’ web-
sites (Table 1); this includes 676 ER-positive (ER+ as defined by 
immunohistochemistry [IHC]) breast tumors from tamoxifen-
treated patients (Table 1). We used normalized log2(intensity) for 
single-channel platforms and log2(ratio) in dual-channel platforms. 
Hybridization probes were mapped to Entrez GeneID as described 
in Shi et al. (58) using RefSeq and Entrez whenever possible; other-
wise mapping was performed using IDconverter [http://idconverter.
bioinfo.cnio.es/; (59)]. When multiple probes mapped to the same 
GeneID, we used the one with the highest variance in the dataset 
under study. To facilitate comparison between datasets, we applied 
a robust linear scaling to each gene or module score where expres-
sion quantiles 2.5% and 97.5% were set to 21 and +1, respectively. 

CONTEXTS AND CAVEATS

Prior knowledge
Single sample predictors (SSPs) are molecular classification models 
that use large sets of genes expressed in different tumors to classify 
different subtypes of breast cancer. Subtype classification models 
(SCMs) are based on groups of genes specifically correlated with three 
key breast cancer genes, estrogen receptor (ER), HER2, and aurora 
kinase A (AURKA). Both types of models use large numbers of genes. 
However, the robustness and prognostic value of these classifiers have 
not been compared with simplified models containing fewer genes.

Study design
A simplified SCM (SCMGENE) containing only ER, HER2, and 
AURKA was compared with three SSPs and two SCMs using data 
from 36 gene expression datasets in public databases. The models 
were compared with respect to concordance among themselves as 
well as association with clinical variables and disease-free survival.

Contribution
Among the SCMs, SCMGENE with only three genes was statisti-
cally more robust than SSPs and as robust and yielded similar 
prognostic value compared with the published SCMs that use large 
numbers of genes.

Implications
Adding more genes to a classification model may not improve the 
ability to discriminate among breast cancer subtypes. In addition, 
the complexity of multiple-gene classification models may limit 
their usefulness and translation into clinic.

Limitations
The datasets used were retrospectively accrued; therefore, the se-
lection of patients may have resulted in unbalanced distribution of 
the different molecular subtypes. The gene expression datasets 
taken from public databases and websites were not renormalized. 
Software limitations precluded checking or correction for depar-
ture from proportional hazards assumptions.

From the Editors
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This procedure was particularly efficient in datasets with skewed 
populations of patients (such as those with different proportions of 
ER2/+ or HER22/+ tumors), because only a few extreme cases 
(5%) were needed to perform the robust scaling, without relying 
on outliers. This scaling improved the consistency between classi-
fiers in datasets using different microarray technologies and nor-
malization procedures (60,61).

We also collected the publicly available clinical and demo-
graphic information for our compendium of datasets (Table 2).

Subtype Classifiers
Classification gene lists were manually transcribed from original 
publications (Figure 1, C and D) and submitted to GeneSigDB 
(62). The SSP models were SSP2003 with 500 genes (6), SSP2006 
with 306 genes (2), and PAM50 with 50 genes (3). The SCM 
models were SCMOD1 with 726 genes (1), SCMOD2 with 663 
genes (8), and SCMGENE from this study. The SSP and SCM 
algorithms were implemented as described in the original publica-
tions and adapted for scaled data; the source code and documenta-
tion are available in the genefu R/Bioconductor package version 
1.3.4 [http://www.bioconductor.org/packages/release/bioc/html/
genefu.html; (63)]; the methodology underlying the SCMs and the 
corresponding R code are further detailed in Supplementary 
Methods, Parts 1 and 2, respectively (available online). Percent  
of genes used in the classifiers that are actually mapped in each 
dataset is reported in Supplementary Table 1 (available online). 
Throughout, we use the Perou et al. (4–6) subtype nomenclature 
(Figure 1, A): basal-like, HER2-enriched, and luminal A/B, 
which correspond, respectively, to the ER2/HER22, HER2+, 
and ER+/HER22 low/high proliferation tumors of Sotiriou et al. 
(1,8) (Figure 1, B).

In this study, we developed SCMGENE by selecting the genes 
ER, HER2, and AURKA, which have been used as prototypes in the 
ER, HER2 signaling, and proliferation gene modules published in 
Desmedt et al. (1) and Wirapati et al. (8). We used the Affymetrix 
probesets published in Desmedt et al. (1), that is, 205225_at, 
216836_s_at, and 208079_s_at, representing ER, HER2, and 
AURKA, respectively (see “scmgene” object in the genefu 
package).

Robustness of Subtype Classifiers.  To assess robustness, we 
used the “prediction strength” statistic (64) (Supplementary 

Methods Part 1, available online), as implemented in the genefu 
package. First, using each classifier, all samples were assigned 
“true” subtype labels for that classifier in each dataset sepa-
rately. The data were then split into training and test sets; the 
classification model fitted on the training set was applied to the 
test sets (“predicted” labels) and compared with the true 
classifications. The prediction strength quantifies the similarity 
between the true and predicted classifications in each dataset. 
Values range from 0 (low similarity) to 1 (high similarity), and 
a prediction strength of at least 0.8 indicates a robust 
classification (64). Statistical comparison of classifier robustness 
was performed using the two-sided Wilcoxon signed rank test 
(65); P values were two-sided and Holm corrected for multiple 
testing (66).

Because there is no clear consensus about the number of breast 
cancer molecular subtypes, we analyzed robustness of classifiers for 
assignment to either three or four subtype groups (20,21). 
Robustness of SSPs was computed for three to five subtypes by 
selecting the main clusters, which contain at least five tumors,  
as defined by the dendrogram built using hierarchical clustering 
(correlation distance and average linkage). Robustness of SCMs 
was computed for three subtypes by fitting a mixture of three 
Gaussian distributions (equal variance and shape, see Supplementary 
Methods Part 1, available online) and for four subtypes by further 
estimating a cutoff for proliferation to discriminate between low 
and high proliferative tumors. Note that, in contrast to SSPs, 
SCMs are limited to the identification of three and four subtypes 
by construction [(1,8); see Supplementary Methods Part 1, avail-
able online].

Prognostic Gene Signatures
To assess the concordance of subtype classifications with published 
prognostic gene signatures, we implemented the original algo-
rithms of the MammaPrint (MAMMAPRINT) (14), the Oncotype 
DX (ONCOTYPE) (15) gene signatures, and the Gene expression 
Grade Index (GGI) (16), in our compendium of microarray datas-
ets, similarly to Fan et al. (17). The corresponding source code and 
documentation are available in the genefu package. The resulting 
risk predictions were labeled low, intermediate, and high risk to 
reflect the prognosis of the patients. Percent of genes in the signa-
tures that are mapped in each dataset are reported in Supplementary 
Table 1 (available online).

Figure 1. Published classifiers for breast cancer molecular subtyping. 
Conceptual design of the two breast cancer molecular subtyping 
methods: A) the Single Sample Predictor (SSP) and B) the Subtype 
Classification Model (SCM). For SSP, the dimensionality of the data is 
first reduced by selecting intrinsic genes defined as those showing little 
variance in expression within repeated samplings of the same tumor 
but high variance across tumors. A hierarchical clustering of the 
tumors is performed to identify the main molecular subtypes and then 
a nearest centroid classifier is built by computing the average gene 
expression profiles for each subtype. A new tumor sample can be  
classified into one subtype based on its expression profile of intrin-
sic genes by computing the correlation with each of the centroids. 
For SCM, genes whose expression is specifically correlated with the 

estrogen receptor (ER), HER2, and aurora kinase A (AURKA) are first 
selected and summarized to quantify the activity of ER, HER2, and pro-
liferation phenotypes, respectively. A mixture of three Gaussian 
distributions is then fitted on the data to represent the three main  
molecular subtypes of breast tumors (ER2/HER22, HER2+, and ER+/
HER22), the proliferation module being used to discriminate between 
low and high proliferative ER+/HER22 tumors. A new tumor sample 
can therefore be classified into one subtype with respect to its max-
imum posterior probability to belong to each subtype. Panels (C) and 
(D) provide information about the published SSPs (SSP203, SSP2006, 
and PAM50 composed of 500, 306, and 50 genes, respectively) and 
SCMs (SCMOD1, SCMOD2, and SCMGENE, composed of 726, 663, and 
3 genes, respectively).

Figure 1 (continued).
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Table 1. Compendium of microarray datasets of unique breast cancer patients*

Dataset
Microarray 
technology Survival data Treatment

No. of  
patients

Number of  
probes Source Reference

EXPO Affymetrix HGU NA NA 353 54 675 GEO: GSE2109 (23)
VDX† Affymetrix HGU RFS, DMFS Untreated 344 22 283 GEO: GSE2034/GSE5327 (24,25)
NKI† Agilent RFS, DMFS,OS Untreated, chemo 337 24 481 Rosetta Inpharmatics (13,14)
UCSF† In-house cDNA DNFS, RFS, OS Untreated, chemo,  

  hormonal
162 10 368 Authors’ website (26,27)

STNO2† In-house cDNA RFS, OS Untreated, chemo,  
  hormonal

122 7787 SMD (6)

NCI† In-house cDNA RFS Untreated, chemo,  
  hormonal

99 6878 Authors’ website (7)

MSK Affymetrix HGU DMFS Heterogeneous 99 22 283 GEO: GSE2603 (28)
UPP† Affymetrix HGU RFS untreated, hormonal 251 (190)‡ 44 928 GEO: GSE3494 (29)
STK Affymetrix HGU RFS untreated, chemo,  

  hormonal
159 44 928 GEO: GSE1456 (30)

UNT† Affymetrix HGU RFS, DMFS untreated 137 (92)‡ 44 928 GEO: GSE2990 (16,31)
UNC4† Agilent RFS, OS Heterogeneous 337 17 779 UNC DB (32)
DUKE Affymetrix HGU95 OS Heterogeneous 171 12 625 GEO: GSE3143 (33)
CAL† Affymetrix HGU RFS, DMFS, OS Chemo, hormonal 118 22 283 AE: E-TABM-158 (34)
TRANSBIG† Affymetrix HGU RFS, DMFS, OS Untreated 198 22 283 GEO: GSE7390 (35)
DUKE2 Affymetrix X3P NA Chemo 160 61 359 GEO: GSE6961 (36)
MAINZ† Affymetrix HGU DMFS Untreated 200 22 283 GEO: GSE11121 (37)
LUND2 Swegene NA Hormonal 105 27 648 GEO: GSE5325 (38)
LUND Swegene NA Heterogeneous 143 26 824 GEO: GSE5325 (39)
FNCLCC In-house cDNA NA Chemo 150 9216 GEO: GSE7017 (40)
MDA4 Affymetrix HGU NA Chemo 129 (65)‡ 22 283 MDACC DB (10,42)
EMC2† Affymetrix HGU DMFS Chemo 204 54 675 GEO: GSE12276 (43)
MUG Operon NA Chemo 152 35 788 GEO: GSE10510 (44)
NCCS Affymetrix HGU NA NA 183 22 283 GEO: GSE5364 (45)
MCCC Illumina NA NA 75 48 701 GEO: GSE19177 (46)
KOO† Affymetrix HGU95 NA NA 88 48 701 Authors’ website (47)
EORTC10994 Affymetrix HGU NA Chemo 49 22 283 GEO: GSE1561 (41)
HLP Illumina NA Chemo 53 48 701 AE: E-TABM-543 (48)
DFHCC† Affymetrix HGU DMFS Heterogeneous 115 54 675 GEO: GSE19615 (49)
DFHCC2 Affymetrix HGU NA Chemo 84 (75)‡ 54 675 GEO: GSE18864 (51)
DFHCC3 Affymetrix HGU NA Chemo 40 (26)‡ 54 675 GEO: GSE3744 (52)
DFHCC4† Affymetrix HGU NA Untreated 129 54 675 GEO: GSE5460 (53)
MAQC2 Affymetrix HGU NA Chemo 230 22 283 GEO: GSE20194 (54)
JBI Affymetrix HGU NA NA 92 54 675 GEO: GSE20711 (55)
Datasets of tamoxifen-treated patients only
  TAM Affymetrix HGU DMFS, RFS Hormonal 345 (242)‡§ 44 928 GEO: GSE6532/GSE9195 (56)
  MDA5 Affymetrix HGU DMFS Hormonal 298 22 283 GEO: GSE17705 (57)
  VDX3 Affymetrix HGU DMFS Hormonal 136 22 283 GEO: GSE12093 (50)

*	 Microarray datasets of unique breast cancer patients (5715) used in this study were retrieved from authors’ websites, Gene Expression Omnibus (GEO;  
http://www.ncbi.nlm.nih.gov/geo/), ArrayExpress (AE; http://www.ebi.ac.uk/arrayexpress/), Stanford Microarray Database (SMD; http://smd.stanford.edu/), MD 
Anderson Cancer Center Microarray database (MDACC DB; http://bioinformatics.mdanderson.org/pubdata.html), University of North Carolina database (UNC DB; 
https://genome.unc.edu/), and Rosetta Inpharmatics (http://www.rosettabio.com/). Each dataset was assigned a short acronym and an instance number if several 
datasets were published by the same institution or consortium. CAL = dataset of breast cancer patients from the University of California, San Francisco, and the 
California Pacific Medical Center (United States); DFHCC = Dana-Farber Harvard Cancer Center (United States); DUKE = Duke University Hospital (United States); 
EMC = Erasmus Medical Center (the Netherlands); EORTC10994 = Trial number 10994 from the European Organization for Research and Treatment of Cancer 
Breast Cancer (Europe); EXPO = expression project for oncology, large dataset of microarray data published by the International Genomics Consortium (United 
States); FNCLCC = Fédération Nationale des Centres de Lutte contre le Cancer (France); HLP = University Hospital La Paz (Spain); JBI = Jules Bordet Institute 
(Belgium); KOO = Koo Foundation Sun Yat-Sen Cancer Centre (Taiwan); LUND = Lund University Hospital (Sweden); MAINZ = Mainz hospital (Germany); MAQC = 
Microarray quality control consortium (United States); MCCC = Peter MacCallum Cancer Centre (Australia); MDA = MD Anderson Cancer Center (United States); 
MSK = Memorial Sloan-Kettering (United States); MUG = Medical University of Graz (Austria); NCCS = National Cancer Centre of Singapore (Singapore); NCI = 
National Cancer Institute (United States); NKI = National Kanker Instituut (the Netherlands); STK = Stockholm, Karolinska University Hospital (Sweden); STNO = 
Stanford/Norway (United States and Norway); TRANSBIG = dataset collected by the TransBIG consortium (Europe); UCSF = University of California, San Francisco 
(United States); UNC = University of North Carolina (United States); UNT = cohort of untreated breast cancer patients from the Oxford Radcliffe (United Kingdom) 
and Karolinska (Sweden) hospitals; UPP = Uppsala Hospital (Sweden); VDX = Veridex (the Netherlands). These datasets were generated with diverse microarray 
technologies developed either by Agilent (http://www.genomics.agilent.com), Affymetrix (HGU GeneChips, which include chips HG-U133A, HG-U133B and 
HG-U133PLUS2, and X3P GeneChip; http://www.affymetrix.com), Swegene (http://www.genomics.agilent.com), Operon (http://www.operon.com) or developed 
in-house (cDNA platforms). For most datasets, survival data (distant metastasis–free survival [DMFS], relapse-free survival [RFS], and overall survival [OS]) and 
information regarding the adjuvant treatment (untreated, chemo, hormonal, and heterogeneous standing for no treatment, chemotherapy, hormonal therapy, and 
heterogeneous combination of therapies, respectively) were available; otherwise missing information is referred to as not available (NA). Additional clinical charac-
teristics are provided in Table 2. All untreated patients had surgery, and most of them had radiation therapy, although information is not available for all datasets.

†	 Dataset containing untreated patients with node-negative breast tumor, as used in our survival analysis.

‡	 Duplicated patients were removed from the UNT, UPP, MDA4, DFHCC2, DFHCC3, and TAM datasets for the estimation of concordance and prognostic value.

§	 Five tumors were removed because of negative or missing estrogen receptor status.
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Concordance
We used color bars to represent the concordance of subtype 
classifications and prognostic gene signatures; in this representation, 
subtypes and risk groups are represented by unique colors. Tumors 
were ordered according to the probabilities estimated by a subtype 
classifier, such as SCMGENE or PAM50. To quantitatively assess 
concordance of subtype classifications and prognostic gene signa-
tures, we used Cohen Kappa coefficient (k) (67), as implemented in 
the R package epibasix version 1.1 (http://cran.r-project.org/web/
packages/epibasix/); k ranges from 0 to 1, with 0 indicating no rela-
tion and 1 indicating a perfect concordance. Typically qualitative 
descriptions are associated with intervals [k ≤ 0.20, slight agreement; 
0.20 < k ≤ 0.40, fair agreement; 0.40 < k ≤ 0.60, moderate agreement, 
0.60 < k ≤ 0.80, substantial agreement; and 0.80 < k ≤ 0.99, almost 
perfect agreement, as described in Weigelt et al. (22)]. To assess the 
association between subtype classifications and clinical parameters, 
we used Cramer V statistic (68) as implemented in the R package vcd 
version 1.2-11 (http://cran.r-project.org/web/packages/vcd/). For 
comparison, we used the same intervals and descriptions used with k. 
Statistical significance of the concordance and association was calcu-
lated using the x2 test.

Survival Analysis
Subtypes were considered a categorical variable, with no assump-
tion made on order across subtypes. Risk predictions as computed 
by the prognostic gene signatures were considered ordered cate-
gorical variables [low, intermediate, and high-risk groups as 
defined in the original publications, which are (14) for 
MAMMAPRINT, (15) for ONCOTYPE, and (16) for GGI, 
respectively]. Disease-free survival curves (distant metastasis–free 
survival whenever available, relapse-free survival otherwise) were 
estimated using the Kaplan–Meier estimator and compared using 
the two-sided log-rank test as implemented in the R package  
survival version 2.36-9 (http://cran.r-project.org/web/packages/
survival/). To statistically compare the prognostic value of compet-
itive risk prediction models, such as subtype classifiers or published 
gene signatures, we used a two-sided Wilcoxon signed rank test 
comparing 10-fold cross-validated partial likelihood (CVPL) (69) 
as implemented in the R/Bioconductor survcomp package (70), 
version 1.3.6 [http://www.bioconductor.org/packages/release/bioc/
html/survcomp.html; (70)]; the lower the estimate, the better the 
prognostic value.

Results
In breast cancer classification, there have been two general meth-
odological approaches to developing subtype classifiers (Figure 1). 
SSPs use hierarchical clustering to identify the main breast cancer 
subtypes from gene expression data, and a nearest centroid classi-
fier is subsequently built to enable subtyping of a single tumor 
sample (Figure 1, A). Three versions of the SSPs and their corre-
sponding centroids have been published so far and implemented in 
our study, SSP2003 (6), SSP2006 (2), and PAM50 [(3); Figure 1, C]. 
SCMs represent an alternative approach based on a mixture of 
three Gaussians to represent the main breast cancer molecular 
subtypes, which are the basal-like, HER2-enriched, and luminal 
tumors (Figure 1, B); the median of the AURKA module score 
within the luminal tumors was used to discriminate between the 
low and high proliferative luminal A and B tumors (31). Two ver-
sions of the SCMs have been published recently, SCMOD1 (1) 
and SCMOD2 (8) (Figure 1, D). Given the statistical and clinical 
challenges in implementing multigene classifiers, we wanted to 
explore whether we could simplify SCM-based classification to the 
smallest possible number of genes. Therefore, we developed 
SCMGENE, an SCM-based classifier reduced to its simplest 
form, which uses only the expression of the three key and most 
representative genes of breast cancer biology, ER, HER2, and 
AURKA. SCM-based classifiers were trained in the largest gene 
expression dataset, EXPO [EXpression Project for Oncology; 
dataset consisting of 353 primary breast tumors collected by the 
International Genomic Consortium, http://www.intgen.org/expo/; 
see Table 1].

Robustness of Classifiers
Validating subtype classification is difficult because the true sub-
types are unknown. Tibshirani and Walter (64) developed a new 
statistic, called the prediction strength, to assess the robustness of 
a classifier, defined as the capacity of a classification model to 
assign the same tumors to the same subtypes independently of the 

Table 2. Demographic and clinical characteristics of breast cancer 
patients in compendium of microarray datasets*

Characteristics All patients, %†

Untreated  
node-negative  
patients, %‡

ER status  
  Negative 25 30
  Positive 58 65
  Missing 17 5
PGR status  
  Negative 19 3
  Positive 24 10
  Missing 57 88
HER2 status  
  Negative 17 5
  Positive 7 1
  Missing 76 94
Histological grade  
  Low 10 14
  Intermediate 25 32
  High 30 36
  Missing 36 18
Tumor size, cm  
  ≤2 30 63
  >2 30 29
  Missing 40 8
Nodal status  
  Negative 44 100
  Positive 30 0
  Missing 26 0
Age at diagnosis, y  
  ≤50 28 42
  >50 43 44
  Missing 29 14

*	 Patients described in Table 1; ER = estrogen receptor; PGR = progesterone 
receptor.

†	 Refers to the whole set of microarray data (n = 5715 patients).

‡	 Refers to the subset of patients having a node-negative tumor and who were 
not treated by systemic adjuvant therapy (n = 1260).
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dataset used to fit the model. The rationale is that if a classification 
model is strongly dependent on the training dataset, then it is 
likely to be unreliable (see “Methods and Statistical Analysis” and 
Supplementary Methods Part 3, available online). Prediction 
strength ranges from 0 to 1, and a value of at least 0.8 is character-
istic of a robust classifier. We compared the robustness of the 
classification algorithms underlying the three SSPs and the three 
SCMs (Figure 1, C and D, respectively) in our large compendium 
of breast cancer datasets (Table 1). To do this, we fitted each 
model on a training set (EXPO, Table 1) and estimated their pre-
diction strength on the remaining 32 independent (test) datasets.

Because there is no clear consensus as to the number of breast 
cancer subtypes (20,21), we analyzed robustness for all six classi-
fiers for identifying both three and four subtypes. For the SSPs, we 
also considered five subtypes. SCMs are limited to three or four by 
construction (see Supplementary Methods, Part 1, available 
online). SCMs yielded median prediction strength (≥0.8) for three 
and four subtypes (Figure 2, A and B, respectively, Supplementary 
Tables 2 and 3, available online). SSPs yielded lower prediction 
strength for three subtypes (median prediction strength, 0.45–
0.59), and their robustness dramatically decreased with increasing 
number of subtypes (Figure 2, Supplementary Tables 2–4, avail-
able online). SCMs were statistically significantly more robust than 
SSPs for the identification of three and four subtypes (two-sided 
Wilcoxon signed rank tests, Holm’s corrected P < .005; median 
differences, confidence intervals, and P values, Supplementary 
Table 5, available online), although we observed only a trend to 
significance for the higher robustness of SCMOD2 compared with 
PAM50 for three subtypes [median prediction strength of 0.82 vs 
0.59 for SCMOD2 and PAM50, respectively; two-sided Wilcoxon 
signed rank test, median difference = 20.13, 95% confidence 
interval = 20.03 to 0.26; Holm’s corrected P = .078]. SCMGENE 
yielded the best median prediction strength among SCMs, 
although its superiority over SCMOD2 and SCMOD1 was not 
statistically significant.

Concordance of Subtype Classifications
We used the published SSPs and SCMs (Figure 1, C and D) to 
assign molecular subtypes to each of the 5715 breast tumor sam-
ples in our compendium of datasets (Tables 1 and 2). As reported 
previously (71–73), luminal A/B tumors were the most frequently 
observed subtype (56%–63%), followed by the basal-like (19%–
27%) and HER2-enriched (13%–15%) subtypes. SSPs identified a 
small percentage of normal-like tumors (11%, 8%, and 5% for 
SSP2003, SSP2006, and PAM50, respectively). Note that the  
two oldest SSPs, SSP2003 and SSP2006, identified substantially 
different percentages of luminal A (43% and 41%, respectively) 
and luminal B (15%) tumors compared with PAM50 and the 
SCMs (26%–31% and 31%–36% of luminal A and B tumors, 
respectively).

We then assessed the concordance between classifiers, quanti-
tatively (using Cohen’s Kappa coefficient, k, and calculating 
agreement between classifiers, as measured by the proportion of 
identical classifications), qualitatively [slight, fair, moderate, sub-
stantial, and almost perfect concordance based on ranges of k 
(22,74), see “Methods and Statistical Analysis”; Table 3], and 
graphically using color bars (Figure 3). All models proved to be 
statistically significantly concordant (fair concordance, k > 0.34, 
Holm’s corrected P < .001 with 49%–86% agreement). SSPs were 
globally less concordant with each other than SCMs (fair to mod-
erate concordance for SSPs: k = 0.45–0.58 vs substantial to almost 
perfect concordance for SCMs: k = 0.65–0.81; agreement, SSPs: 
58%–68% vs SCMs: 75%–86%). However, the most recently 
developed SSP, that is PAM50, had moderate to substantial con-
cordance with the SCMs (k = 0.59–0.68, 70%–76% agreement). 
SCMGENE was statistically significantly concordant with pub-
lished SCMs (k = 0.65–0.70) and SSPs (k = 0.34–0.59), statistically 
significantly associated with ER (V = 0.64), HER2 (V = 0.52) status, 
and histological grade (V = 0.55).

For overall concordance (Figure 3), SCMGENE was used as 
the reference classifier (Supplementary Figure 1, available online, 
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Figure 2. Robustness of classification into three, four, and five breast cancer molecular subtypes with respect to the models. To assess the robust-
ness of the six subtype classification models, prediction strength is calculated in each dataset separately for the classification into three (A), four (B), 
and five (C) subtypes. PAM50 = single sample predictor (3); SCMGENE = three-gene subtype classification model; SCMOD1 = subtype classification 
model 1 (1); SCMOD2 = subtype classification model 2 (8); SSP2003 = single sample predictor (6); SSP2006 = single sample predictor (2).
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shows similar results for PAM50 as the reference). The basal-like 
subtype was the most consistently assigned subtype by all classifiers 
(basal-like vs the rest, median k = 0.78). The HER2-enriched and 
luminal A subtypes were moderately concordant between different 
classifiers (median k = 0.55). In contrast, the majority of the 
luminal B and normal-like tumors were classified differently depend-
ing on the classifier (median k = 0.38 and 0.41, respectively).

We then computed risk predictions using the published algo-
rithms of three prognostic gene signatures, MammaPrint (14) 
(MAMMAPRINT), Oncotype Dx (15) (ONCOTYPE), and Gene 
expression Grade Index (16) (GGI), and assessed the concordance 
between these risk classifications and the subtype classifications 
(Table 3, Figure 3, and Supplementary Figure 1, available online). 
Note that, similarly to Fan et al. (17), we did not use the commer-
cially available assay, but we relied instead on the published micro-
array data to compute the risk classifications. Consistent with Fan 
et al. (17), basal-like, HER2-enriched, and luminal B tumors were 
almost all classified as high risk by the prognostic gene signatures, 
whereas luminal A and normal-like tumors were mostly classified 
as low risk (moderate to substantial concordance; Table 3) except 
for MAMMAPRINT, which may yield only fair concordance 
because of a small proportion of low-risk patients (approximately 
half of luminal A tumors are still predicted to be high risk; see 
Figure 3 and Supplementary Figure 1, available online).

We assessed the association between the subtype classifications 
and clinical parameters (Table 3, Figure 3, Supplementary Figure 1, 
available online). As expected, the majority of basal-like and  
luminal tumors were ER2 and ER+, respectively (moderate to 
substantial concordance, Cramer’s V = 0.64–0.71). In contrast, 
the concordance with progesterone receptor was only moderate 

(V = 0.46–0.54). Most tumors defined as HER2 enriched are 
HER2 overexpressed by IHC or amplified by fluorescent in situ 
hybridization (fair to moderate concordance, V = 0.34–0.52), with 
the strongest concordance provided by the SCMs (V = 0.48–0.52). 
Tumors from the basal-like, HER2-enriched, and luminal B sub-
types were mostly histological grade 3 tumors (moderate concor-
dance, V = 0.51–0.58).

It is worth noting that no association was observed between the 
subtype classifications and the tumor size, nodal status, and age at 
diagnosis, suggesting that these features are independent of the 
molecular subtype (Table 3 and Figure 3, C).

Survival of Untreated Early Breast Cancer Patients With 
Respect to Subtypes
Using data from the 1260 untreated patients with node-negative 
tumors (Tables 1 and 2), we analyzed the prognostic value of the 
six subtype classifiers and the published gene signatures. The sur-
vival curves were statistically significantly different between sub-
types for all six classifiers (Figure 4, A; log-rank test, P < .001) and 
between the risk groups defined by prognostic gene signatures 
(Figure 4, B; log-rank test, P < .001). These results confirm the 
substantial prognostic value of molecular subtyping on early breast 
cancers without potentially confounding treatment effects. 
Although the survival curves from the SCMs, including 
SCMGENE, were virtually identical, SSPs exhibited some dis-
crepancies for luminal B and normal-like tumors. We observed 
that a small group of 148 patients with luminal B tumors have the 
worst survival according to SSP2006, a result inconsistent with the 
other five classifiers (Figure 4, A). The survival curves for patients 
with tumors classified as normal-like vary depending on which SSP 

SCMGENE

SCMOD2

SCMOD1

PAM50

SSP2006

SSP2003

ER

PGR

HER2

Histological grade

Tumor size (>2 cm)

Nodal status

Age at diagnosis (>50 y)
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Intermediate
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Missing
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Luminal B

Luminal A
Normal-like

Low risk

Intermediate risk
High risk

Missing

MAMMAPRINT

ONCOTYPE

GGI

A

B

C

Figure 3. Concordance of classifiers for breast cancer molecular sub-
typing. A) Colored bars illustrate the molecular subtypes as computed 
by each of the six classifiers applied to the compendium of 5715 
breast tumors. SCMGENE, the three-gene subtype classification 
model, was used as the reference, that is, the patients (tumors) 
were unambiguously ordered using the maximum posterior probabil-
ities estimated by SCMGENE. B) The corresponding risk predicted 
by the prognostic gene signatures. C) Clinical parameters: estrogen 
receptor (ER) and progesterone receptor (PGR) status defined by 

immunohistochemistry (IHC); HER2 status defined by IHC or fluores-
cent in situ hybridization (FISH); histological grade assessed sepa-
rately in each dataset; and age at diagnosis (> 50 y) and tumor size  
(> 2 cm) are binary variables. GGI = prognostic gene signature (16); 
MAMMAPRINT = prognostic gene signature (14); ONCOTYPE = prognostic 
gene signature (15); PAM50 = single sample predictor (3); SCMOD1 = 
subtype classification model 1 (1); SCMOD2 = subtype classification 
model 2 (8); SSP2003 = single sample predictor (6); SSP2006 = single 
sample predictor (2).
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is used; the prognosis of patients with normal-like and luminal  
A tumors was similar according to SSP2006 (probability of survival 
at 5 years for patients with normal-like vs luminal A tumors, P = 
.84 and .87, respectively); normal-like was better for SSP2003 (P = 
.90 and .80 for normal-like vs luminal A, respectively) but slightly 

worse for PAM50 (P = .80 and .89 for normal-like vs luminal A, 
respectively).

Given the good survival of the intermediate-risk group identi-
fied by ONCOTYPE (probability of survival at 5 years for 
patients predicted as intermediate and low risk: P = .93 and .90, 
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Figure 4. Survival curves of untreated patients with respect to the sub-
type and risk classifications. A) Kaplan–Meier disease-free survival 
curves censored at 10 years for the subtypes identified by the six clas-
sifiers. B) The risk groups identified by the three prognostic gene signa-
tures in the cohort of 1260 untreated patients with node-negative 
tumors (survival data were missing for 187 untreated patients). The 
statistically significant prognostic value of the subtype classifiers and 

published gene signatures was confirmed in this cohort (log-rank P < 
.001, two-sided). GGI = prognostic gene signature (16); MAMMAPRINT = 
prognostic gene signature (14); ONCOTYPE = prognostic gene signature 
(15); PAM50 = single sample predictor (3); SCMGENE = three-gene sub-
type classification model; SCMOD1 = subtype classification model 1 (1); 
SCMOD2 = subtype classification model 2 (8); SSP2003 = single sample 
predictor (6); SSP2006 = single sample predictor (2).
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respectively; Figure 4, B), we decided to merge it with the low-risk 
group as in Fan et al. (17). The luminal A subtype defined by the 
classifiers exhibited a survival similar to the low-risk group defined 
by the prognostic gene signatures (probability of disease-free 

survival at 5 years, SCMs: P = .90–.91; SSPs: P = .81–.90; and gene 
signatures: P = .89–.92; Figure 4). To confirm the similarity of the 
survival curves, we statistically compared the prognostic value of 
the subtype classifiers and gene signatures to test whether one 
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Figure 5. Survival curves of tamoxifen-treated patients with respect to 
the subtype and risk classifications. A) Kaplan–Meier disease-free sur-
vival curves censored at 10 years for the subtypes identified by the six 
classifiers. B) The risk groups identified by the three prognostic gene 
signatures in the cohort of 676 tamoxifen-treated patients with estrogen 
receptor–positive (ER+) tumors as defined by locally reviewed immuno-
histochemistry (survival data were missing for 11 patients). Despite 
their ER+ status, some tumors were classified as either basal-like  
or HER2-enriched subtypes by the six subtype classifiers, and the 

corresponding patients consistently exhibited poor survival. The statis-
tically significant prognostic value of the subtype classifiers and pub-
lished gene signatures were confirmed in this cohort (log-rank P < .001, 
two-sided). GGI = prognostic gene signature (16); MAMMAPRINT = 
prognostic gene signature (14); ONCOTYPE = prognostic gene signa-
ture (15); PAM50 = single sample predictor (3); SCMGENE = three-gene 
subtype classification model; SCMOD1 = subtype classification model 1 
(1); SCMOD2 = subtype classification model 2 (8); SSP2003 = single 
sample predictor (6); SSP2006 = single sample predictor (2).
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classification was better than another. We used a 10-fold CVPL 
(see “Methods and Statistical Analysis”) to assess the prognostic 
value of each classification (Supplementary Table 6, available 
online), and we observed that all subtype classifiers yielded statis-
tically similar prognostic value (CVPL = 1.651–1.667, two-sided 
Wilcoxon signed rank test, Holm’s corrected P ≥ .05; 
Supplementary Table 7, available online). The gene signatures 
yielded better prognostic value (CVPL = 1.648, 1.648, and 1.651 
for MAMMAPRINT, ONCOTYPE, and GGI, respectively), but 
they did not statistically significantly outperform the subtype clas-
sifiers (two-sided Wilcoxon signed rank test, Holm’s corrected  
P ≥ .05; Supplementary Table 7, available online), except for 
SSP2003, which appeared to yield statistically significantly worse 
prognostic value than GGI (two-sided Wilcoxon signed rank test, 
Holm’s corrected P = .035; Supplementary Table 7, available 
online). These results suggest that none of the subtype classifiers 
statistically significantly outperform the others and that we lack 
evidence to claim superiority of the published gene signatures for 
prognosis. We also showed in a series of 676 tamoxifen-treated 
patients with ER+ tumors as defined by locally reviewed IHC that 
tumors identified by SCMGENE and the other subtype classifiers 
as discordant (either basal-like or HER2-enriched subtype) had 
a poorer survival (probability of survival at 5 years for patients 
with either luminal A or B tumors compared with those with 
discordant ER status: P = .86–.88 and P = .63–.76, respectively) 
suggesting that these patients did not benefit from tamoxifen 
therapy (Figure 5).

Discussion
Despite the widespread recognition of the value of molecular sub-
typing, the complexity of the classification models, which use 
dozens to hundreds of genes, and uncertainty about their robust-
ness and clinical relevance have been impediments to their general 
clinical use (18–21). Furthermore, quality assessment of molecular 
subtyping is complex because the truth is unknown. Using a col-
lection of data from 5715 breast tumors, we analyzed five previ-
ously described classifiers (three SSPs and two SCMs) and 
compared these to SCMGENE, a simplified SCM-based classifier 
that uses only three genes that capture key biological processes in 
breast cancer namely ER signaling, HER2 signaling, and prolifer-
ation. We used the prediction strength statistic (64) to quantify 
robustness of subtype classifications, defined as the capacity of an 
algorithm to assign the same tumors to the same subtypes regard-
less of the gene expression data used to build the classifier. We 
found SCMs to be statistically significantly more robust than SSPs. 
Moreover, among the SCMs, SCMGENE, our simple three-gene 
model, was statistically as robust as the published SCMs, which use 
hundreds of genes.

Each classifier demonstrated fair to substantial concordance, 
underscoring the validity of the subtypes. Among the molecular 
subtypes, the basal-like subtype was consistently identified inde-
pendently of the classifier used. In contrast, the luminal A, luminal 
B, and normal-like tumors were more difficult to classify, consis-
tent with the recent study of Mackay et al. (21); the separation of 
the luminal group into A and B was not well supported by our 
analysis, probably because these subtypes are defined by expression 

of proliferation-related genes, which exhibit a continuum of  
expression levels (1,8,20,22). Like others (20,22), we did not find 
support for the normal-like subtype. It may be that this subtype is 
an artifact resulting from stromal contamination (22).

In the survival analysis of a large set of untreated node-negative 
breast cancer patients, we confirmed that all six classifiers had a 
statistically significant prognostic value (9,22). When assessing 
concordance with published prognostic gene signatures, we found 
that the vast majority of basal-like, HER2-enriched, and luminal B 
tumors were classified as high risk (8,17). Again, all the subtype 
classifiers and gene signatures yielded statistically similar prognos-
tic value. Notably, we also showed that for a cohort of patients 
with ER+ tumors defined initially by IHC who were treated with 
adjuvant tamoxifen monotherapy, those patients with tumors iden-
tified by SCMGENE and the other subtype classifiers as basal like 
and HER2 enriched had a poorer survival, suggesting that these 
patients may not benefit from tamoxifen therapy. However, the 
clinical relevance in terms of response to therapy—for example, 
endocrine or anti-HER2—of those patients classified differently 
using IHC and gene expression remains unknown.

All subtype classifiers were statistically significantly associated 
with clinical variables widely used in management of breast can-
cer patients; the ER+ (IHC) tumors were particularly well identi-
fied by SCMOD2 and PAM50, whereas the HER2 amplified/
overexpressed (FISH/IHC) tumors were highly concordant with 
the SCMGENE classification. However, we found no association 
with the subtype classifiers and tumor size, nodal status, and age at 
diagnosis. A large study involving central pathology measurement 
of traditional clinical parameters and gene expression profiling is 
needed to definitively draw conclusions about the complemen-
tarity or superiority of one technology over another; in addition, 
this would help determine the clinical relevance of the above con-
cordance issues, that is, which method of subtype classification or 
central pathology using IHC would yield better predictive value 
for prescription of anti-HER2 or endocrine therapies. Ongoing 
prospective trials such as the MINDACT may facilitate such com-
parisons (75). Our data also suggest that accurate and reproducible 
measurements of ER, HER2, and proliferation can be used for 
molecular subtyping in breast cancer. This holds true for currently 
used methods of centrally reviewed IHC for ER, HER2, and Ki67, 
particularly for large clinical studies. Although IHC has well-
known limitations in terms of intra-laboratory reproducibility and 
subjective and semiquantitative assessment of protein expression, 
IHC performed in a central laboratory undoubtedly provides signif-
icant additional prognostic value compared with local pathology. 
However, the good technical reproducibility and the quantitative 
nature of gene expression profiling (58) makes expression-based 
classification models promising candidates to complement the 
current IHC markers widely used in breast cancer. Our results also 
support the use of SCMGENE to provide molecular subtype 
classification for samples in large meta-analysis studies of gene 
expression profiling that involve data generated by different labo-
ratories using diverse microarray technologies.

This study has several potential limitations. First, because our 
collection of breast cancer microarray data is composed of datasets 
that were retrospectively accrued, the selection of these patients 
may result in unbalanced distribution of the different molecular 
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subtypes. Second, we used the normalized gene expression data as 
provided in public databases and authors’ websites; no attempts to 
renormalize the microarray data were made, although a robust 
scaling procedure ensured that the gene expressions were similarly 
distributed across datasets. Third, depending on the dataset, we 
did not annotate and map some probes used in the subtype classi-
fiers because of the diversity of microarray platforms used in our 
compendium of datasets (Supplementary Table 3, available online). 
Fourth, the current implementation of the CVPL does not allow 
checking and correction for departure from the proportional haz-
ards assumption. Finally, in contrast to SCMs, SSPs rely on hier-
archical clustering, which makes automated identification of the 
main subtypes present in a specific dataset challenging (21); this 
may have affected their robustness estimations but also highlights 
the difficulties of using this type of classification method.

In conclusion, our study demonstrated that for breast cancer 
molecular subtyping, the simplest classification model, 
SCMGENE, which is based on the expression levels of three key 
genes and a simple Gaussian probabilistic model, was surprisingly 
concordant with the more complex published classifiers and 
yielded similar prognostic value. It also proved to be one of the 
most robust classifiers because it uses only ER, HER2, and 
AURKA gene expression, whereas the other classifiers rely on 
many more genes. The simplicity and robustness of the SCMGENE 
model provide an opportunity for wide application using a variety 
of expression data types. Moreover, our results suggest that, at 
present, for molecular subtyping of breast cancer, three genes 
provide adequate discrimination for clinical implementation; the 
clinical and biological relevance of the value of adding more genes 
remains to be demonstrated.
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