Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1073/pnas.1120733109</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRespos:29070270</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRespos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>

Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance

Katia Meirelles, Leo Andrew Benedict, David Dombkowski, David Pepin, Frederic I. Preffer, Jose Teixeira, Pradeep Singh Tanwar, Robert H. Young, David T. MacLaughlin, Patricia K. Donahoe, and Xiaolong Wei

Contributed by Patricia K. Donahoe, December 20, 2011 (sent for review November 17, 2011)

Women with late-stage ovarian cancer usually develop chemotherapeutic-resistant recurrence. It has been theorized that a rare cancer stem cell, which is responsible for the growth and maintenance of the tumor, is also resistant to conventional chemotherapeutics. We have isolated from multiple ovarian cancer cell lines an ovarian cancer stem cell-enriched population marked by CD44, CD24, and Epcam (3+) and by negative selection for Ecadherin (Ecad−) that comprises less than 1% of cancer cells and has increased colony formation and shorter tumor-free intervals in vivo after limiting dilution. Surprisingly, these cells are not only resistant to chemotherapeutics such as doxorubicin, but also are stimulated by it, as evidenced by the significantly increased number of colonies in treated 3+Ecad− cells. Similarly, proliferation of the 3+Ecad− cells in monolayer increased with treatment, by either fl-mis or targeting LIN28 should be considered in the development of therapeutics.

Cancer stem cells for a number of different malignancies are capable of unlimited self-renewal and, when stimulated, differentiation and proliferation, which contribute to tumorigenicity, recurrence, metastasis, and drug resistance. The identification of flow cytometry-compatible markers for these stem/progenitor cells in human ovarian cancer makes feasible separation, analysis, and testing for insights into these events and for discovery of new therapeutic targets and the introduction of treatment protocols directed at stem cell targets.

Cells positive for three markers (3+)—CD44, CD24, and Epcam (5)—were selectively expressed by ovarian cancer cell lines, and normal Fallopian tube fimbria showed stem cell characteristics and increased resistance to chemotherapy agents, yet sensitivity to Mullerian inhibiting substance (MIS) (5), a.k.a. anti-Mullerian hormone, a fetal testicular protein (6) that causes Mullerian duct regression. MIS was tested because human epithelial ovarian cancers, which recapitulate the embryonic Mullerian ducts (7), express MIS receptor type II (MISRII) in a large majority of cases (8), and human recombinant MIS inhibits their growth in vitro and in vivo (9, 10).

Because the MISRII-expressing surface epithelium of the ovary is normally characterized by expression of epithelial and mesenchymal markers (11, 12), which become predominantly mesenchymal in transgenic animals as tumor initiation occurs (13), we refined the 3+ population in ovarian cancer cell lines by negative selection for Ecadherin (3+Ecad−), down-regulation of which occurs during epithelial-to-mesenchymal transformation in a variety of cancers (14, 15) and is also associated with poor outcome (16). This 3+Ecad− population of ovarian cancer proved to be more highly enriched than the 3+ population alone for stem/progenitor characteristics and was also resistant to chemotherapeutic agents but sensitive to MIS.

The present study found that LIN28, a microRNA (miRNA)-binding protein known to regulate expression of cell cycle-related genes and to contribute to cancer stem cell self-renewal and differentiation (17, 18), was the only pluripotency marker among those known to reprogram pluripotency in somatic cells that was increased in our cancer stem cell-enriched population (3+Ecad− separated cells). In addition, LIN28 was also increasingly expressed in transgenic mouse ovarian cancer models made more aggressive with progressive loss of Misr2 (13). Furthermore, receptor-mediated MIS functional activity correlated with both cell cycle arrest and specific up-regulation of the cyclin-dependent kinase (CDK) inhibitor p15.

These findings make it mandatory to test both the stem and the nonstem population in each patient for sensitivity to chemotherapeutic agents and to biology such as MIS when planning treatment strategies for ovarian cancer, and targeting of LIN28 may be another strategy to improve suppression of this elusive stem cell population.

Results

Triple-Positive (3+) Cells with Loss of Ecadherin (3+Ecad−) Are More Tumorigenic than Either 3+ Cells Alone or Triple-Negative Cells That Retain Expression of Ecadherin (3+Ecad+). We recently identified a CD44+, CD24+, Epcam+ (3+) population, selectable by flow cytometry, which is enriched for stem/progenitor cells (5). When combined with negative selection for Ecadherin (3+Ecad−), the resulting smaller population consistently formed more and larger colonies (Fig. L4, Sloan–Kettering ovarian cancer cell line 3 (SKOV-3, Lower panels; Fig. 1B, human ovarian carcinoma cell line 5 (OVCAR-5)) than did 3+ alone (Fig. L4, SKOV-3, Upper panels; Fig. 1S) or when triple-negative (3−) cells were combined with cisplatin or pluri potency factors.
Enrichment of human ovarian cancer stem cells enhances colony growth in vitro and shortens tumor-free interval in vivo. (A and B) CD44/CD24/Epcam triple-positive (3+) and 3+Ecad− cells were isolated from human ovarian cancer cell line SKOV-3 (A), or 3+Ecad− and 3−Ecad+ cells were separated from human ovarian cancer cell line OVCAR-5 (B) by FACs and plated at the indicated numbers in six-well plates. After incubation for 15 d, colonies were stained and measured. 3−Ecad− (A, Lower) formed more colonies than 3+ alone (A, Upper) (representative of n = 3; *p < 0.05; **p < 0.01, (S1)). 3−Ecad− OVCAR-5 cells also grew more colonies than 3−Ecad+ cells as quantitated (B) as a fraction of the area of each well (n = 3) (*p < 0.05, **p < 0.01). (C) 3+Ecad− and 3−Ecad+ cells isolated from primary ascites from ovarian cancer patients were plated at 50,000 cells in low-melting agarose in 12-well plates and incubated for 2−3 wk, and then colonies were counted. 3−Ecad− formed more colonies than 3−Ecad+ when colony counts were compared in three patients (*p < 0.05). (D) 3−Ecad− and 3−Ecad+ cells separated from OVCAR-5 were serially diluted (103, 102, 101, 100, 10−1, 10−2), resuspended in 1:1 PBS/Matrigel, and injected s.c. into 5-wk-old female NOD/SCID mice (nine mice for each group). Kaplan−Meier analysis of 1000 (P < 0.001) and 100 (P < 0.002) for 3+Ecad− compared with 3−Ecad+ cells shows a significant difference in time to tumor appearance (tumor-free interval). Tick bars indicate SD.

Enrichment of human ovarian cancer stem cells enhances colony growth in vitro and shortens tumor-free interval in vivo. (A and B) CD44/CD24/Epcam triple-positive (3+) and 3+Ecad− cells were isolated from human ovarian cancer cell line SKOV-3 (A), or 3+Ecad− and 3−Ecad+ cells were separated from human ovarian cancer cell line OVCAR-5 (B) by FACs and plated at the indicated numbers in six-well plates. After incubation for 15 d, colonies were stained and measured. 3−Ecad− (A, Lower) formed more colonies than 3+ alone (A, Upper) (representative of n = 3; *p < 0.05; **p < 0.01, (S1)). 3−Ecad− OVCAR-5 cells also grew more colonies than 3−Ecad+ cells as quantitated (B) as a fraction of the area of each well (n = 3) (*p < 0.05, **p < 0.01). (C) 3+Ecad− and 3−Ecad+ cells isolated from primary ascites from ovarian cancer patients were plated at 50,000 cells in low-melting agarose in 12-well plates and incubated for 2−3 wk, and then colonies were counted. 3−Ecad− formed more colonies than 3−Ecad+ when colony counts were compared in three patients (*p < 0.05). (D) 3−Ecad− and 3−Ecad+ cells separated from OVCAR-5 were serially diluted (103, 102, 101, 100, 10−1, 10−2), resuspended in 1:1 PBS/Matrigel, and injected s.c. into 5-wk-old female NOD/SCID mice (nine mice for each group). Kaplan−Meier analysis of 1000 (P < 0.001) and 100 (P < 0.002) for 3+Ecad− compared with 3−Ecad+ cells shows a significant difference in time to tumor appearance (tumor-free interval). Tick bars indicate SD.

MIS Inhibits Whereas Doxorubicin Stimulates Colony and Monolayer Growth of the Stem Cell-Enriched Population (3−Ecad−). Although we previously found by flow cytometry that the ratio of the 3+ cells to total cells increased after treatment with chemotherapeutic agents and decreased after receptor-mediated treatment with MIS (5), further separation of 3+ Ecad− and 3−Ecad+ OVCAR-5 cells showed changes in absolute numbers of colonies. 3−Ecad− OVCAR-5 cells grew more colonies than did 3−Ecad+ cells (Fig. 2A, control; Fig. S5), which supports our previous finding in normal ovarian surface epithelium (20). However, when separated cells were treated with MIS or doxorubicin for 14 d, MIS significantly inhibited colony growth of the 3+Ecad− cells (Fig. 2A, Upper panels; Fig. 2C); conversely, 3−Ecad− cells were stimulated by the chemotherapeutic agent doxorubicin (Fig. 2B, Upper panels; Fig. 2C). Treatment of unseparated OVCAR-5 cells in monolayer with doxorubicin, which resulted in a significant inhibition in total viable cell number (Fig. 2D, Left), also decreased the 3−Ecad+ population (Fig. 2D, Right), but paradoxically increased the absolute number of the 3−Ecad− stem cells (Fig. 2D, Center). Similar results were observed after dose-dependent treatment with cisplatin (Fig. S6).
MIS reduced colony formation and proliferation rate of human ovarian cancer stem cells by inducing G1 cell cycle arrest and increasing cell cycle inhibitors compared with doxorubicin. (A–C) 3+Ecad− and 3+Ecad+ cells isolated from OVCAR-5 by FACS were plated at 2,000 cells/well in six-well plates and treated with MIS (50 μg/mL) or doxorubicin (30 nM) or media (as a control) for 14 d. The area stained with Giemsa (A and B) was equated to colony formation (C) (20). The colony area formed by 3+Ecad− cells was greater than that formed by 3+Ecad+ cells (A and B, controls, and Fig. S5). MIS treatment inhibited colony formation (A, Upper, and C, * * * P < 0.01) of the 3+Ecad− cells compared with doxorubicin (B, Upper, and C) (n = 3 separate experiments). (D) OVCAR-5 cells were plated at 1.6, 1.2, or 0.8 × 10^4 cells in T75 flasks (n = 3 for each cell number) and treated with doxorubicin (60 nM) for 1, 2, and 3 d. Doxorubicin treatment inhibits proliferation of total viable cells (D, Left) and 3+Ecad+ population (D, Right), but stimulates that of the 3+Ecad− population (D, Center). (E and F) In OVCAR-5 cell cycle analysis, MIS increased the 3+Ecad− cells in G1 (E, Left), whereas doxorubicin decreased 3+Ecad− in G1 (E, Right) (n = 3; * * * P < 0.01). Neither MIS nor doxorubicin affected the G1 distribution of the 3−Ecad− population (F). (G) MOVCA-7 and MOVCA-8 cell lines were treated with 50 μg/mL of MIS, 60 nM of doxorubicin, or vehicle control for 4 h. MIS increased p15 expression in MOVCAR-7 and -8 (*** P < 0.01); conversely, doxorubicin decreased p15 expression in MOVCAR-7 and -8 (** P < 0.05).

Fig. 2. MIS reduced colony formation and proliferation rate of human ovarian cancer stem cells by inducing G1 cell cycle arrest and increasing cell cycle inhibitors compared with doxorubicin. (A–C) 3+Ecad− and 3−Ecad− cells isolated from OVCAR-5 by FACS were plated at 2,000 cells/well in six-well plates and treated with MIS (50 μg/mL) or doxorubicin (30 nM) or media (as a control) for 14 d. The area stained with Giemsa (A and B) was equated to colony formation (C) (20). The colony area formed by 3+Ecad− cells was greater than that formed by 3+Ecad+ cells (A and B, controls, and Fig. S5). MIS treatment inhibited colony formation (A, Upper, and C, * * * P < 0.01) of the 3+Ecad− cells compared with doxorubicin (B, Upper, and C) (n = 3 separate experiments). (D) OVCAR-5 cells were plated at 1.6, 1.2, or 0.8 × 10^4 cells in T75 flasks (n = 3 for each cell number) and treated with doxorubicin (60 nM) for 1, 2, and 3 d. Doxorubicin treatment inhibits proliferation of total viable cells (D, Left) and 3−Ecad+ population (D, Right), but stimulates that of the 3+Ecad− population (D, Center). (E and F) In OVCAR-5 cell cycle analysis, MIS increased the 3+Ecad− cells in G1 (E, Left), whereas doxorubicin decreased 3+Ecad− in G1 (E, Right) (n = 3; * * * P < 0.01). Neither MIS nor doxorubicin affected the G1 distribution of the 3−Ecad− population (F). (G) MOVCA-7 and MOVCA-8 cell lines were treated with 50 μg/mL of MIS, 60 nM of doxorubicin, or vehicle control for 4 h. MIS increased p15 expression in MOVCAR-7 and -8 (*** P < 0.01); conversely, doxorubicin decreased p15 expression in MOVCAR-7 and -8 (** P < 0.05).

Pluripotency Factor LIN28 Is Preferentially Expressed in the 3−Ecad− Stem Cell-Enriched Population. After measuring mRNAs by RT-PCR of factors known to induce pluripotency in mouse and human fibroblasts (23, 24, 25), such as OCT3/4, NANOG, SOX2, KLF4, cMYC, and LIN28 (Fig. 3A, Right), we found only LIN28 to be differentially expressed in the 3+Ecad− stem cell-enriched population in OVCAR-5 xenotransplanted tumors and cell lines. LIN28 protein was strongly expressed in all five human ovarian cancer cell lines tested by Western analysis (Fig. 4B), whereas expression levels were lower in lines derived from normal human ovarian surface epithelium (HOSE-4 and HOSE-6). Let-7 miRNAs, which are suppressed by the miRNA-binding protein LIN28 (17, 18), were reciprocally decreased in most cancer cell lines compared with normal human surface epithelial HOSE cell lines (Fig. S9), with OVCAR-3 as an exception. Quantitative PCR (qPCR) showed higher levels of LIN28 mRNA (Fig. 4D), and flow cytometry showed higher levels of LIN28 protein (Fig. 4C) in 3−Ecad− OVCAR-5 cells than in 3−Ecad+ or unseparated OVCAR-5 cells. Moreover, immunofluorescence showed that LIN28 colocalizes with the stem cell markers CD44 (Left), CD24 (Center), and Epacam (Right) (Fig. 4E) in human ovarian cancer OVCAR-5 cells.

Mov2 Inactivation Correlates with Increased Lin28 Expression in Transgenic Mouse Ovarian Tumors. We further examined expression of Lin28 in the ovarian tumors of mice in which Mov2 Cre directed constitutively active (CA) β-catenin was overexpressed (Mov2-Cre^{+/−}ctnnb1^{ex3+}) (26). Lin28 was also examined when these transgenic mice were further crossed with Mov2-Cre^{−/−} to inactivate the second allele of the Mov2 (Mov2-Cre^{−/−}ctnnb1^{ex3+}). Endogenous Lin28, normally expressed at low levels on the surface epithelium of normal ovary of the cancer cell line, and SKOV-3 cells; in mouse MOVCA-8 ovarian cancer cell lines (Fig. 3A, Left); and in separated 3−, 3−, 3+Ecad−, and 3−Ecad+ OVCAR-5 cells (Fig. 3A, Right). When MOVCA-8 or OVCAR-5 cells were treated with MIS, SMAD1/5/8 phosphorylation was significantly increased (Fig. 3B), suggesting that MIS function is MISRII mediated, which supports previous observations (22).
Misr2-Cre−/+ (Fig. 4F), was more differentially expressed in the malignant epithelium and in small indolent tumors of the Misr2-Cre−/+;ctnnb1ex3/+ mice (Fig. 4G) and more highly expressed in the ovarian tumors of the Misr2-Cre−/+;ctnnb1ex3/+ mice (Fig. 4H), suggesting that Misr2 expression is negatively correlated with Lin28 expression. However, no direct effect of exogenously administered MIS could be observed on either separated or unseparated populations of OVCAR-5 cells or on primary ascites, suggesting that the effect of MIS on Lin28 may be indirect (data not shown).

Misr2-Cre−/+ (Fig. 4F), was more differentially expressed in the malignant epithelium and in small indolent tumors of the Misr2-Cre−/+;ctnnb1ex3/+ mice (Fig. 4G) and more highly expressed in the ovarian tumors of the Misr2-Cre−/+;ctnnb1ex3/+ mice (Fig. 4H), suggesting that Misr2 expression is negatively correlated with Lin28 expression. However, no direct effect of exogenously administered MIS could be observed on either separated or unseparated populations of OVCAR-5 cells or on primary ascites, suggesting that the effect of MIS on Lin28 may be indirect (data not shown).

Discussion
We propose that, after surgical debulking and paclitaxel and platinum therapies (27, 28), additional attack of the stem cell population should improve the outcomes for this disease. Although the markers reported here enrich for a progenitor population in ovarian cancers, others such as CD133 (29) and ALDH1 (30) can produce similar enrichments. Whatever the selection panel, the practical goal is to use the markers to direct differential therapy for each patient. When ovarian cancer cell lines separated by the surface markers CD44+, CD24+, and EpCam+, (3+), further enriched by negative selection for Ecadherin (3+Ecad−), were treated with MIS, there was a significant reduction in absolute colony number and cell number; when treated with doxorubicin, these numbers paradoxically increased, indicating that there is a naive cell population with progenitor characteristics that both escapes detection and is stimulated by currently used clinical chemotherapeutics (31).

The pluripotency factor LIN28, which down-regulates the cell cycle regulator miRNA Let-7 (17, 32, 33) to cause G1 arrest and to activate cell cycle inhibitors (p15, p16) (18), is overexpressed in human ovarian cancer cell lines compared with nonmalignant HOSE-4 and HOSE-6, indicating that LIN28 correlates with malignancy. The 3+Ecad− ovarian cancer cells showed increased protein and mRNA expression of LIN28, both in vitro and in vivo, and reciprocally decreased Let-7 (32, 33). Furthermore, LIN28 coexpressed with CD44, CD24, and EpCam in OVCAR-5 cells (Fig. 4E). A series of transgenic mice with progressively undifferentiated ovarian carcinomas (13) expressed increasing levels of Lin28, which is normally restricted to the ovarian surface epithelium where Misr2 is coexpressed. Misr2 inactivation correlated with up-regulation of Lin28 led us to speculate that LIN28 may contribute mechanistically, possibly via CDK inhibitors, to the differential regulation of the heterogeneous stem population of ovarian cancer cells.

Mis is a member of the TGF superfamily, which regulates cell growth, differentiation, and apoptosis by binding to MISRII,
which cross-phosphorylates the tissue-specific type I receptors (12) activin-like kinase 2 (ALK2) (22, 34) or ALK3 (35), which further signal by phosphorylating SMAD1/5/8 to activate downstream pathways notable for differentiation and growth inhibition (22, 36). Activation of phospho-SMAD1/5/8 by MIS, like bone morphogenetic proteins, is correlated with G1 arrest, inhibition of CDKs (37), and activation of cell cycle inhibitors (38, 39) in breast cancer cells, which we previously observed under the influence of MIS in OVCAR-3 (40) and in breast cancer cell lines (41). When treated with MIS or doxorubicin, we found that p15 in both transgenic cell lines showed significant and opposite responses to MIS (Fig. 2G and Fig. S8) and doxorubicin (Fig. 2G), whereas the kinases tested were unaffected (data not shown).

Self-renewing normal somatic stem cells are housed in a niche, where they are slowly cycling, as illustrated by label retention (20, 42); committed progenitors, when released from the confines of a niche, undergo rapid cycling for effective expansion (43). MIS treatment resulted in G1 accumulation in the 3+Ecad− cells compared with the 3−Ecad+ population; by contrast, doxorubicin decreased the percentage of the 3−Ecad− cells in G1, indicating that the MIS may be exerting molecular effects similar to those extant in a normal niche. What we learn by comparing the same population under doxorubicin stimulation and MIS inhibition in this experimental in vitro artificial niche may allow critical molecular comparisons otherwise difficult to ascertain.

Although it has long been suspected that cancer stem cells are resistant to chemotherapeutic agents (44, 45), the present study shows that these agents actively stimulate growth of chemotherapeutic-resistant ovarian cancer cells and indicates that these cells require specific targeting during design of all phases of therapeutic protocols. Multidrug resistance may therefore be considered constitutive rather than therapy induced. Diagnostic and treatment paradigms will need to be individualized to include pretesting of both stem cell-enriched and stem cell-depleted populations for sensitivity of each to chemotherapeutic agents and to biologics such as MIS. Such combinations, however, together can be expected to suppress more completely the entire tumor cell population (10). Study of the separated drug-resistant population with characteristics of pluripotency will shed light on molecular mechanisms responsible for recurrence and metastases, which may in turn lead to novel drugs to target specifically this small, elusive, and insidious population. Proof of a consistent response of this population to MIS will further support its pharmaceutical development as a therapeutic in the clinic. If the poor response to chemotherapeutic agents and the favorable response to MIS and its small molecule mimetic SP600125 (5) can be repeated in the stem population isolated from a significant number of patients’ primary ascites, then we can recommend that treatment of ovarian cancers should be changed to include sensitivity testing of all of the heterogeneous populations when the diagnosis is made.

Materials and Methods

Cell Lines, Chemotherapeutic Agents, and MIS. The cell lines used were maintained at the Pediatric Surgical Research Laboratories (Massachusetts General Hospital and Harvard Medical School) as previously described (4, 9, 10): HOSE-4 and HOSE-6 (a gift from Samuel Mok, Baylor College of Medicine, Houston, TX) (46), OVCAR-5 (a kind gift from Thomas Hamilton, University of Pennsylvania, Philadelphia, PA) (47), and mouse ovarian cancer MOVCA7R and -8 (48). Human ovarian cancer cell lines OVCAR-3 (9, 49), SKOV-3 (50), and IGROV-1 (51) were obtained from American Type Cell Culture. Cells were treated with doxorubicin (NovoPlus), cisplatin (NovoPlus), or MIS. MIS was purified as previously described (52), and its bioactivity was assessed in embryonic Mullerian duct regression assays (53).

Harvesting of Primary Human Ovarian Cancer Ascites. Primary ascites removed therapeutically from patients with ovarian cancer at the Massachusetts General Hospital [Massachusetts General Hospital Institutional Review Board (IRB 2007P001918)] were filtered and centrifuged at 2,200 × g for 25 min. Cells were then resuspended in ammonium–chloride–potassium 1× buffer (Invitrogen) for 5 min to lyse red blood cells. The cells were then centrifuged at 1,500 × g for 5 min, lysed again if necessary, resuspended with DMEM/F-12 medium, and stored overnight at 4 °C in DMEM/F-12 for further study.

Flow cytometry and fluorescence-activated cell sorting (FACS) were performed using a seven-laser SORP LSRII or SORP 5-laser FACSVerse (BD Biosciences) as described (4, 5, 54). Human ovarian cancer cell lines or ascites cells were stained with anti-human CD24-Pe, anti-mouse/human CD44-APC (allophycocyanin)/Cy7, anti-human Epcam-APC, and anti-human Ecadherin-FITC (panisotype) (Table S1) for 20 min at 4 °C. After selection for viability using 7-AAD (amino-actinomycin D) (Sigma), cells were separated for subsequent analyses. For LIN28, the cells were washed with PBS and stained with anti-mouse/human Lin28 (Primorigen Biosciences; 1:500 dilution) for 15 min at room temperature, washed, resuspended in PBS, and analyzed.

Cell Proliferation Assays. OVCAR-5 cells were seeded in 10-75 flasks at different densities (1.6 × 10^6, 1.2 × 10^6, 0.8 × 10^6 cells) with DMEM in 10% FCS, incubated for 24 h, and then treated with either PBS (control) or 60 nM doxorubicin for 24, 48, and 72 h. Cells seeded at 0.8 × 10^6 were also treated with cisplatin (0.2, 0.5, 1 μM) for 72 h. Harvested total viable cells were counted by trypan blue staining in a hemocytometer and stained with anti-human CD24-PE, anti-mouse/human CD44-APC/Cy7, anti-human Epcam-APC, and anti-human Ecadherin-FITC. Flow cytometry was performed to analyze for the absolute number of 3+Ecad− and 3−Ecad+ cells, which were calculated from the total viable cell numbers by analyzing the percentage of each population adjusted for seeding density (1x, 1.5x, and 2x, respectively).

Cell Cycle Analysis. OVCAR-5 was grown to 50–60% confluency in DMEM with 10% FCS, untreated or treated with 100 μM/mL (714 nM) MIS or 60 nM doxorubicin for 48 h, harvested, and incubated with 10 μM Hoechst 33342 at 37 °C for 30 min or 40 μM/L propidium iodide (Sigma) at 25 °C for 30 min. Cells were stained with anti-human CD24-PE, anti-mouse/human CD44-APC/Cy7, anti-human Epcam-APC, and anti-human Ecadherin-FITC. Flow cytometry was performed to analyze from the total viable cell numbers by analyzing the percentage of each population adjusted for seeding density (1x, 1.5x, and 2x, respectively).

Colonies Formation Assays. Colony formation assays were performed as previously described (5). SKOV-3 or OVCAR-5 cells separated by FACS were recovered, plated on six-well plates containing 2 mL complete DMEM with 10% FCS, incubated for 14 or 24 h at 37 °C, and stained with Giemsa, and the stained area was measured as a fraction of the area of each well (Image J Rasband, National Institutes of Health; http://rsb.info.nih.gov/) (20). Cells separated from primary ascites (9) were plated in agarose on 12-well (22-mm) plates (BD Biosciences) at 50,000 cells/well in 0.4% low-melting-temperature agarose (FMC BioProducts; catalog 50113) over a 0.8% layer and incubated for 2–3 wk at 37 °C. Colonies in agarose >3 ocular micrometer units were counted over a transparent gridded film with grids using a Nikon TS100 inverted microscope (100x magnification).

Western Analysis. Western analysis was performed with anti-LIN28, anti-MISRII, anti-phospho-SMAD1/5/8, anti-SMAD1, or anti-β-actin. See SI Materials and Methods for details.

RT-PCR. RT-PCR was performed on neat, 3+Ecad−, and 3−Ecad+ OVCAR-5 cells using a Platinum PCR SuperMix kit (Invitrogen). cDNAs were amplified using at least two primers to LIN28B, NANOG, SOX2, OCT4, cMYC, and KLF4. For quantitative PCR, LEO miRNAs were extracted and analyzed from HOSE-4, HOSE-6, OVCAR-5, OVCAR-3, OVCAR-8, IGROV-1, and SKOV-3 cell lines; LIN28, p15, p16, p18, p19, p21, p27, CDK2, CDK4, and CDK6 mRNAs from OVCAR-5, MOVCA7R, and MOVCA8 were measured by quantitative PCR with GAPDH as an internal standard. See SI Materials and Methods for lists of primer sequences and details. Relative expression was calculated by 2−ΔΔCT and 2−ΔCT.

Immunohistochemistry and Immunofluorescence. Tissues or cultured cells were fixed in 4% paraformaldehyde and analyzed after primary (overnight at 4 °C) and secondary (1 h at room temperature) antibody incubation (Table S1) of anti-Lin28B, anti-CD44, anti-CD24, and anti-Epcam, Alexa-Fluor secondary antibodies and biotinylated donkey anti-mouse or anti-rabbit antibody Fab. Images were captured with a Nikon T50200 microscope (200x magnification) equipped with a Spot digital camera (Diagnostic Instruments).

Time to Appearance of Xenotransplanted Tumors. 3+Ecad− and 3−Ecad+ cells separated from OVCAR-5 were injected into the flanks of 5-wk-old NOD/SCID mice.
SCID (IRB 2009N000033/1) after serial dilution (5). After weekly monitoring, time to appearance of tumor was recorded, mice were euthanized by CO2 inhalation, tumors were dissected, weighed, and volume (L x W x H) was measured. Fixed sections were stained with hematoxylin and eosin for identification and comparison of tumor morphology (19).

Statistical Analysis. Univariate two-tailed t tests compared two sets of data having parametric characteristics in colony formation assays, cell proliferation assays, cycle analysis, and for Lin28 detection by flow cytometry. qPCR experiments were performed in triplicate. Kaplan–Meier and log-rank (Mantel–Cox) and Gehan–Breslow–Wilcoxon analyses were used to compare differences in time to tumor appearance between $3+$Edc+ and $3+$Edc+ cells. For qPcR analysis of CDK inhibitors, nonparametric ANOVA was performed by Tukey’s test. All data are expressed as means ±SD or ±SE and were analyzed using GraphPad Prism (Mac OS X, V.5.0a).

ACKNOWLEDGMENTS. We thank Ms. Caroline Coletti for editorial support; Dr. George Daley for Lin-1 primers; Dr. Samuel C. Mok for HOSE-4 and -6; Dr. Denise C. Connolly for MOVCAR-7 and -8 cell lines; Scott Monsma at Primercon for conjugated LIN28 monoclonal antibody; and Dr. Peter R. Mueller (Department of Radiology, Massachusetts General Hospital and Harvard Medical School) for providing de-identified discarded specimens, from ovarian cancer patients (MGH IRB 2007P001918 6/6 and Dana–Farber Cancer Institute IRB 02051). These studies were supported by National Research Service Award T32 CA071345-13 (to K.M.); a Kianwai Award from Tufts Medical Center (to L.A.B.); a Massachusetts General Hospital Executive Committee on Research Awards and the Surdna-Flumen Foundation (M.H.W.); National Institute of Health and Development Grant R01 HD052701 (to J.T.); National Center for Research Resources Grants 1S10 RR023440 01A1 and 1S10 RR020936 01 (to National Institutes of Health) and Prostate Cancer Program R01 CA173793 (to P.K.D. and D.T.M.); the Harvard Stem Cell Institute; the Department of Defense Ovarian Cancer Research Program; the Julie Fund (P.K.D.); and gifts from Commons Development, the McBride Family Foundation, and the Austen Foundation.