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Drosophila melanogaster cell lines are important resources for cell biologists. Here, we catalog the expression of exons, genes,
and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchro-
matic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of
neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are
detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary
over several orders of magnitude. Major signaling pathways are well represented: most differentiation pathways are ‘‘off’’
and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and
these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any
single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most re-
markable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within
developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines
show identical transcription factor expression. We conclude that each line has retained features of an individual founder
cell superimposed on a common ‘‘cell line‘‘ gene expression pattern.

[Supplemental material is available for this article. The data from this study have been submitted to the NCBI Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession nos. GSE15596, GSE16269–GSE16290, GSE16321–
GSE16322, GSE16325, and GSE18040. All of the microarray data, RNA-seq data, and expression scores for genes and
exons are available from the Data Coordination Center of modENCODE (http://modencode.org), and much of the data
are also available from the Drosophila Genomic Resources Center (https://dgrc.cgb.indiana.edu/) and FlyBase (http://
flybase.org/).]

Since the first embryonic Drosophila melanogaster cell lines were

established in the late 1960s, hundreds of new lines have been

initiated from embryos and from isolated tissues (imaginal discs,

central nervous system [CNS], tumorous blood cells, and ovary),

and they have played increasingly prominent roles in the work of

developmental geneticists and cell biologists. In Echalier’s 1997

review of the biology of the cell lines (Echalier 1997), only a few

lines were readily available; still, it was clear that those lines re-

tained many normal features that made them useful in the study

of hormone responses, immune responses, heat shock, and diverse

other processes. Since that review, many workers have devised

ways to use the cell line assays to study developmental signaling

and intercellular adhesion and, especially, as test systems for RNAi-

based screens (Bakal and Perrimon 2010; Mohr et al. 2010). Public

databases record more than 50 genome-wide screens based on

Drosophila cell lines.
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Prior to 2005, only a few lines were readily available; cur-

rently, over 100 lines are publicly available and are finding even

more widespread application. Thus, the time is ripe for a more

complete characterization. Here, we report the transcriptional

profiles of 25 Drosophila melanogaster cell lines, principally by

whole-genome tiling microarray analysis of total RNA, carried out

as part of the modENCODE project (Celniker et al. 2009; The

modENCODE Consortium 2010). The 25 cell lines used in this

study are representative of the diversity of the publicly available

lines; for a list of the lines and their tissues of origin, see Table 1,

and for more extensive descriptions of their properties, see Sup-

plemental Text.

The data produced in this study add to our knowledge of the

cell lines and of the Drosophila transcriptome in several ways. We

summarize the expression of previously annotated genes in each

of the 25 lines with emphasis on what those patterns reveal about

the origins of the lines and the stability of spatial expression pat-

terns. We also offer an initial analysis of previously unannotated

transcripts in the cell lines, an analysis that constitutes a major

goal of the modENCODE project and that will be expanded in

other publications (Graveley et al. 2011).

Results

Overview of the expression data

Samples of total RNA were prepared from healthy, exponentially

growing cells. Transcript levels were measured by hybridization

of total RNA probes to whole-genome tiling microarrays for all 25

lines in triplicate and by poly(A)+ paired-end RNA sequencing

(RNA-seq) for four of the lines in duplicate. In the analyses reported

here, we employed the transcript annotations in FlyBase v5.12

(Tweedie et al. 2009) as a standard of comparison. Using the hy-

bridization signals, we calculated expression scores for both an-

notated exons and unannotated regions (see Methods). We also

calculated gene scores, defined as the maximum score of any exon

included in the relevant FlyBase gene model; thus, a gene will reg-

ister as expressed when any of its known transcripts is expressed.

Expression scores are reproduced in Supplemental Tables S2

(exons), S3 (genes), and S6 (novel transcript contigs). Microarray

hybridization efficiencies vary among probes; while it is reasonable

to compare a given exon across cell lines, it is dangerous to compare

signals (except semiquantitatively) between exons. As described

in the Methods, we selected a threshold score of 300 to distin-

guish the expressed from unexpressed genes. These scores are

intended to provide a rough estimate of expression levels, and we

have made no attempt to correct for errors caused by overlapping

transcripts.

RNA-seq data were obtained for four of the cell lines. For these

lines, arrays and RNA-seq provide correlated but distinct pictures

of the data. Comparisons of the two techniques are described in

detail in the Methods and in the Supplemental Figures and are

consistent with the levels of correlation observed by others

(Agarwal et al. 2010). As illustrated by the examples in Table 2, the

tiling array data are consistent with biological expectations and

are internally consistent.

Gene scores for the cell lines were exponentially distributed,

varying from undetectable (<300, see Methods) to 53,808, with

the vast majority of genes expressed at the lower end of this

spectrum (Supplemental Fig. S3). The distribution is consistent

with earlier hybridization analyses (Levy and McCarthy 1975;

Arthur et al. 1979; Izquierdo and Bishop 1979; Zimmerman et al.

1980, 1982) that showed that the titers of individual RNA species

in Drosophila vary over four orders of magnitude, with the vast

majority of species present at low levels (about one to three copies

per cell). For the entire set of exon scores, the average value was

420 (median, 108; standard deviation, 1134). We note, as a mea-

sure of sensitivity, that in Kc167 cells saturation hybridizations

showed the presence of about 200–300 Eip71CD transcripts per cell

(Bieber 1986), and on Northern blots and by protein synthesis

Table 1. Cell lines used in this study

Cell line Short name Reference Tissue source Comments

1182-4H 1182-4H Debec 1978 Embryo
CME-L1 L1 Currie et al. 1988 L3 prothoracic leg disc
CME-W1-Cl.8+ Cl.8 Currie et al. 1988 L3 wing disc
CME-W2 W2 Currie et al. 1988 L3 wing disc
GM2 GM2 Mosna and Dolfini 1972 Embryo
Kc167 Kc Echalier and Ohanessian 1969 Embryo Isolate of Kc (Cherbas et al. 1988)
mbn2 mbn2 Gateff et al. 1980 Tumorous blood cells
ML-DmBG1-c1 BG1-c1 Ui et al. 1994 L3 CNS Cloned from ML-DmBG1 (R Ueda, pers. comm.)
ML-DmBG2-c2 BG2-c2 Ui-Tei et al. 1994 L3 CNS
ML-DmBG3-c2 BG3-c2 Ui et al. 1994 L3 CNS Cloned from ML-DmBG3 (R Ueda, pers. comm.)
ML-DmD11 D11 Ui et al. 1987 L3 eye-antennal disc
ML-DmD16-c3 D16-c3 Ui et al. 1987 L3 wing disc Cloned from ML-DmD16 (R Ueda, pers. comm.)
ML-DmD17-c3 D17-c3 Ui et al. 1987 L3 haltere disc Cloned from ML-DmD17 (R Ueda, pers. comm.)
ML-DmD20-c2 D20-c2 Ui et al. 1987 L3 antennal disc Cloned from ML-Dm-D20 (R Ueda, pers. comm.)
ML-DmD20-c5 D20-c5 Ui et al. 1987 L3 antennal disc Cloned from ML-Dm-D20 (R Ueda, pers. comm.)
ML-DmD21 D21 Ui et al. 1987 L3 wing disc
ML-DmD32 D32 Ui et al. 1987 L3 wing disc
ML-DmD4-c1 D4-c1 Ui et al. 1987 L3 mixed imaginal discs Cloned from ML-DmD4 (R Ueda, pers. comm.)
ML-DmD8 D8 Ui et al. 1987 L3 wing disc
ML-DmD9 D9 Ui et al. 1987 L3 wing disc
S1 S1 Schneider 1972 Embryo
S2-DRSC S2-DRSC Schneider 1972 Embryo Isolate of S2 used in the DRSC
S2R+ S2R+ Schneider 1972 Embryo Isolate of S2 (Yanagawa et al. 1998)
S3 S3 Schneider 1972 Embryo
Sg4 Sg4 Schneider 1972 Embryo Clone of S2 (D Arndt-Jovin, pers. comm.)
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actin 5C gives a signal five to 10 times stronger than Eip71CD.

In the microarray data, the Eip71CD gene score in Kc167 cells is

6742, while that for Act5C is 23,287.

The expression profiles of the cell lines are distinct; although

most of the annotated transcriptome is expressed at a detectable

level in at least one of the 25 lines, most genes are expressed in only

a subset of the cell lines, and their expression levels vary widely

among the lines. Of 14,807 genes that were probed, 64% are

expressed at a detectable level in at least one cell line, but only

21% of genes are detected in all 25 lines. On average, each line

expresses 5885 genes at a detectable level (range 5398–6221). In

comparison, a similar analysis of tiling array data from 30 de-

velopmental stages detected 76% of genes in at least one de-

velopmental stage (Graveley et al. 2011; data available at http://

modencode.org). One-thousand-one-hundred ninety-eight genes

were detected in at least one cell line but not in any developmental

stage, while 2142 genes were detected in at least one de-

velopmental stage but not in any cell line. Thirty-one percent of

the probed genes were expressed at a higher level in at least one cell

line than in any single developmental stage; this is to be expected,

given the relative homogeneity of cultured cells compared to intact

animals and conforms to previous observations comparing iso-

lated tissues and whole animals (Chintapalli et al. 2007).

We used principal components analysis (PCA) to look for

broad patterns of expression. Figure 1A shows the first three com-

ponents of a PCA that includes the array-based gene scores for

all 25 cell lines and 30 developmental stages. The figure shows

a coherent trajectory of changing gene expression patterns dur-

ing development with a clear progression through the embryonic,

larval, and pupal stages, and it shows the expected clustering of

female adults (bearing oocytes) with early embryos. The remark-

able feature of this picture is the tight clustering of all the cell

lines near early embryos.

Figure 1B shows PCA of the cell lines alone. Lines obtained

from a similar tissue type (identified in the figure by spots of the

same color) tend to be loosely clustered, but there is a substantial

Table 2. Examples of genes whose expected expression pattern is seen in the cell lines

Class of gene
Expected pattern

of expression
Observed pattern

of expression

Expressed ubiquitously: actins 5C and 42A (Tobin et al. 1990);
ubiquitins; tubulins aTub84B, bTub56D (Natzle and McCarthy 1984);
most ribosomal genes; basal translation components

Uniformly high Uniformly high

Expressed only in tissues not represented in the cell lines: ovary-specific
chorion proteins; fat body-specific larval serum protein; salivary gland
secretion proteins;testis-specific tubulin bTub85D (Bialojan et al. 1984);
neurosecretion proteins EH and ETH; gonad-specific gdl (Schulz et al.
1989); eye-specific svp, ninaE, and w; gut-specific Jonah proteins

Not detectable Not detectable

Patterned expression in tissues represented in the cell lines: cuticle proteins Detectable in some
cell lines

Cpr47Ef, Cpr49Ab, Cpr49Ac, Cpr49Ad,
Cpr50Cb, Cpr51A, Cpr64Ab, Cpr65Eb,
Cpr67Fb, Cpr73D, Cpr78Ca, Cpr78Cc
expressed in individual lines; remaining
57 cuticle genes not detected

Figure 1. Clustering of cell lines by principal component analysis. (A) Clustering of cell lines with whole-animal developmental stages, showing
components 1, 2, and 3. The whole-animal data were obtained using the same procedures as the cell line data (Graveley et al. 2011). (Red) Cell lines.
(Dotted line) A trajectory for the developmental data. (Blue) Embryonic stages (Ex, where x is the time, in hours, at the end of a 2-h period measured from
egg-laying); (green) larval stages (Lx where x is the instar number; 3A, 3B, 3C, and 3D represent sequential periods in the third larval instar); (pink) pupal
stages (Px, where x is the time, in hours, after white prepupa); (brown) adult males (Mx, where x is the time, in days, after adult eclosion); (yellow) adult
females (Fx, where x is the time, in days, after adult eclosion). (B) Clustering of 25 cell lines; components 1 and 2 are shown. Cell lines are color-coded to
indicate the tissues from which they were derived; a key is shown below the graph.
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intermingling of lines derived from dif-

ferent tissue types. D20-c2 and D20-c5,

sibling clones from a single original an-

tennal disc line, are tightly clustered, but

S2R+ and S2-DRSC, two isolates of the

original Schneider’s line 2, are not. Over-

all, the lines are remarkably independent

of each other, and multiple lines made in

the same way from the same tissue type

generally have quite distinct characters.

Similar results were obtained with hierar-

chical clustering (data not shown); we

chose to present the PCA to emphasize

that the cell lines are not related in any

hierarchical way.

At first glance, the results shown in

Figure 1, A and B, seem contradictory; in

fact they reveal different aspects of the

cell line gene expression patterns. Each

PCA calculation made use of a set of genes

that varies among the samples included (see Methods); thus,

different gene sets were used for the two panels. Panel A reveals

that the cell lines express a ‘‘core’’ of common genes (i.e., the set of

3109 genes expressed in all the lines) and that the lines cannot be

distinguished on the basis of those genes that most prominently

distinguish the various developmental stages of whole organisms.

The latter group presumably includes markers for fat body, muscle,

gut, epidermis, and other major differentiated tissues. Panel B ex-

cludes, by design, those genes common to all the lines so that they

are compared inter se, revealing the unique characters of the in-

dividual lines. In short, the PCA patterns reflect the fact that each

line expresses 3109 core genes and (on average) 2776 other genes

that are, to varying extents, cell line specific. Moreover, cell lines

derived from the same tissues are not tightly clustered but are in-

dividual. Examination of the 3109 core genes reveals a highly sig-

nificant (P < 10�20) overrepresentation of Gene Ontology (GO)

terms associated with a wide variety of basic cellular functions, such

as ribosomes, lipid particles, transport, endocytosis, post-trans-

lational protein modification, nucleic acid metabolism, and cyto-

skeleton. This observation suggests that the core genes expressed in

all cell lines are those required to make cellular components com-

mon to all cell types.

Diversity of gene expression in individual lines

We reported above that all 25 cell lines express a common set of

3109 genes. Each line expresses, in addition, an average of 2776

‘‘facultative’’ genes (range, 2289–3112) that are not universal but

may be shared with one or more other lines. These facultative gene

sets are highly idiosyncratic; as noted previously, most (64%) an-

notated genes probed are expressed in at least one line. Despite

the large collection of cell lines examined here, each incremental

line led to the detection of additional expressed genes (see Fig. 5).

Some genes are expressed in all 25 lines at a level that far

exceeds their expression in whole animals at any developmental

stage. Table 3 lists the most extreme examples. Because these genes

are expressed in all the lines, they are unlikely to represent the

enrichment of a particular expression pattern in a homogeneous

population. More likely, their expression reflects adaptation to

growth in culture.

In contrast, Table 4 lists 41 genes whose substantial expres-

sion is confined to a single cell line. For the genes recorded here,

expression in the indicated line is substantial (score $ 1000) and is

at least 10-fold higher than in any other line. Table 4 includes 23

examples of relatively uncharacterized genes known only by their

‘‘CG’’ designations. For 36 of the 41 of the genes in the table and

22 of 23 of the CG genes, this specialized, line-specific expression

also exceeds the gene’s expression in whole animals at any de-

velopmental stage. That these genes are specific to single lines is

consistent with the idea that the line in question represents in pure

population a cell type that is relatively rare in whole animals

(Chintapalli et al. 2007). That CG genes are overrepresented in this

class is consistent with the notion that many poorly characterized

genes are expressed in only a few cells of the animal.

Signaling pathways

We analyzed the expression in the various cell lines of 10 signaling

pathways: Insulin, PVR, EGFR, JAK/STAT, Wnt, TGF-beta/BMP,

Hedgehog (Hh), TNF-alpha, Hippo, and Notch. In each case, we

examined the expression levels of the known ligands as well as

Table 3. Genes with enhanced expression in cell lines

Gene name Symbol
A = maximum score,

30 developmental stages
B = median score

25 cell lines B/A

Karl Karl 522 6995 13.4
Arc2 Arc2 160 672 4.2
sprouty sty 1201 4083 3.4
— CG14696 399 1157 2.9
— CG15784 1971 5716 2.9
BM-40-SPARC BM-40-SPARC 2791 8094 2.9
— CG13751 248 670 2.9
propyl-4-hydroxylase-alpha EFB PH4aEFB 1815 4538 2.5
kekkon-1 kek1 700 1680 2.4
pointed pnt 1619 3400 2.1
Laminin B1 LanB1 4220 8862 2.1

The genes listed here are expressed in all 25 cell lines at a higher level than whole animals at any
developmental stage. Expression scores from 25 cell lines were compared to similarly calculated ex-
pression scores for whole animals at 30 stages of development. Data for the developmental stages are
available (http://modencode.org) and will be described elsewhere (Graveley et al. 2011).

Table 4. Genes expressed predominantly in one cell line

Cell line Genes

GM2 CG12780, CG13321, CG14606
Kc167 ome, pxt
S2R+ CG15376, CG32778, Mf
S3 fln
BG2c2 CG18109, CG30287, TotA, Wnt4
BG3c2 C15, CG34381
D11 CG30274
D20-c2 CG30050, lbe, Sfp24C1
D16-c3 Act79B, CG9555, CG31191
D4-c1 CG4950, MtnB, MtnD, Mur18B
D17-c3 Acp53C14b, CG3104, CG10081,

CG14358, CG31496, CG34398,
mab-21

D8 CG41073
D9 CG11145
D21 CG9919, CG34109
D32 CG31268, Gr23a, nwk
Cl8+ Antp

The genes listed are expressed at a substantial level (score $ 1000) in the
named cell line and no higher than 10% of that level in any other line.

Cherbas et al.
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the cytoplasmic transducers and the main transcription factors

that are regulated by the pathways (Supplemental Table S5). In

general, ligands and receptors (but not cytoplasmic and transcrip-

tion factor/DNA components) show differential expression among

the cell lines. The expression patterns of ligands and receptors,

shown in Figure 2, suggest that in most of the cell lines, the insulin

signaling is low, EGFR is off, PVR is on, JAK/STAT is low, Hh is off,

Wg is off, Hippo is off, TGF-beta/BMP is off or low, Notch is off, and

TNF-alpha is on.

Insulin-like receptor RNA is present at substantial levels in

all 25 lines, but RNAs for its ligands are below detection limits.

This observation is consistent with the fact that the cell lines are

sensitive to exogenous insulin; all of the imaginal disc and CNS

lines require exogenous insulin for growth, and the growth of

embryonic lines is inhibited by exogenous insulin.

Similarly, though most cell lines express at least one Hh re-

ceptor, none show detectable expression of the ligand; hence we

predict that most of the lines that express Ci might respond to

exogenous Hh, but this important developmental pathway is not

constitutively active in any line. PVR, which encodes a PDGF/

VEGFR receptor tyrosine kinase that plays an essential role in cell

survival, is highly expressed in all 25 lines, and transcripts for its

ligands, especially PVF2, are found in most if not all of the lines.

The JAK/STAT pathway is most likely active in only a few cell lines

(the CNS line BG2-c2, the wing disc line Cl.8, and the embryonic

line GM2), where both the receptor dome and the ligand upd3 are

clearly expressed. Similarly, the EGFR pathway appears to be ac-

tive in some cell lines; in this case, all the cell lines express one or

more ligands, but only a few express the receptor. The Notch

pathways, which in many developmental contexts are associated

with cell differentiation, appear to be inactive in all cell lines.

Notch signaling is most likely turned off as suggested by the lack

of expression of E(spl), a transcriptional target whose presence can

be considered diagnostic of the pathway’s activation; in this case,

most cells express the receptor gene Notch, but apparently the

low level of expression of the ligand genes Delta or Serrate in a few

cell lines is not sufficient to activate Notch signaling.

The cases of the TGF-beta/BMP and Wnt pathways are not as

clear. While dpp RNA is undetectable, gbb, which encodes another

TGF-beta/BMP ligand, is expressed at high level. If Gbb in the ab-

sence of Dpp can form productive homodimers, it potentially

could activate the Smad pathway since the receptors are present.

Expression of Dad, a transcriptional target of Smad, does not allow

us to definitely conclude whether the pathway is activated as Dad

is expressed at variable levels in the cell lines.

The tiling arrays detected little if any expression of genes

encoding Wg and the other Wnt ligands in most lines; the single

exception is Wnt4 in the CNS line BG2-c2. However, RNA-seq data

for BG3-c2 and Cl.8 indicate significant expression of Wnt2, Wnt4,

and Wnt5 in BG3-c2 and of Wnt5 in Cl.8. We infer that these

transcripts are detected with poor efficiency in the tiling arrays;

therefore, the expression of Wnt ligands is unknown for most of

the lines. Of all of the ligand and receptor genes included in this

analysis, the Wnt ligands are the only ones in which the micro-

array results were substantially different from the RNA-seq results;

although we do not know the reason for this discrepancy, the nkd

expression pattern described below suggests that the RNA-seq re-

sult is the more accurate one for the Wnt genes, Genes encoding

the two well-defined Wnt pathway receptors ( fzi and fz2) are

expressed in only some of the cell lines, but other predicted re-

ceptors are also expressed in some of the lines. The expression of

naked cuticle, a transcriptional target of Wg signaling that acts in

a negative feedback loop, is low in most cell lines, consistent with

little or no Wnt signaling in these lines. However, nkd is strongly

expressed in three lines (the wing disc lines Cl.8 and D9 and the

CNS line BG3-c2); thus, it is possible that nkd expression can be

taken as a good indicator of Wnt signaling where information

about the expression of Wnt ligands is inadequate.

The Hippo pathway, implicated in

contact inhibition in tissues, is most likely

off, as transcripts for the ligand and re-

ceptor, Dachsous and Fat, respectively, are

not expressed. Finally, TNF-alpha signaling,

regulated by binding of the Eiger ligand

to the Wengen receptor, is most likely on as

RNAs encoding both components are ex-

pressed at high level, as are RNAs for JNK

pathway components that are regulated by

Eiger.

Transcription factors

We examined the expression of transcrip-

tion factors in the cell lines, restricting our

analysis to 711 site-specific transcription

factors with characterized DNA-binding

domains (A Hammonds and S Celniker,

unpubl.). Of these, 228 are not expressed

in the cell lines. For the remaining 483

factors, there is a wide diversity in levels

of expression and variation among lines

(Fig. 3). Figure 3B illustrates the expres-

sion levels for the 28 transcription factors

that vary most among the cell lines; in

it, no two lines share the same signature

(though the sibling clones DmD20-c2 and

Figure 2. Expression of key signaling pathways in the 25 cell lines. Summary data are shown for 10
pathways, indicating the expression of known ligands and receptors for each pathway in each cell line;
for a more complete description, see text. Cell lines are color-coded according to the tissue origin,
which is shown above.
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DmD20-c5 are very similar). Figure 3C shows expression levels

for the 28 least variable transcription factors: for these, expression

is generally higher, and the lines may be seen to have much in

common.

Spatial mapping and cell type markers

As illustrated in Figure 1B, there is substantial diversity in the

properties of even those lines derived from a single tissue type.

For the imaginal disc–derived lines, there is considerable variation

in genes known to be expressed in spatially defined patterns in

the discs themselves. We therefore asked whether the genes ex-

pressed in each disc-derived line are consistent with the known

spatial maps. It is remarkable that for 10 of the 13 imaginal disc–

derived lines we were able to map each line to a specific region of

the disc; for the other three lines insufficient marker data were

available. We have observed neither spatial inconsistencies nor

examples of incorrect coexpression of genes whose spatial posi-

tions have been studied. The logic is illustrated in Figure 4 using

part of the evidence for two cell lines. Superimposed on repre-

sentations of the fate map of the Drosophila wing disc, these car-

toons illustrate the known expression domains for particular genes

expressed in the lines. The middle panel describes the line D21,

which expresses Optix, fng, and Ser. Known expression domains for

these genes are indicated; the intersection of those domains sug-

gests that D21 originates from—or mimics—cells in the small re-

gion indicated in red. Similarly the bottom panel describes the

line D32. It strongly expresses the taste receptor Gr23a, as well

as Dl and fng. By the logic described above, we locate the origin

of D32 cells somewhere along the red line, just dorsal to the

Figure 3. Expression of transcription factors in 25 cell lines. The heat map indicates log10(expression score) for the genes indicated and for all 25 cell
lines. The color key is shown below. (A) All 483 transcription factor genes detected in the cell lines. (B) The 28 transcription factor genes whose expression is
most variable among the cell lines. (C ) The 28 transcription factor genes exhibiting the least variation among the lines.
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dorsal/ventral (D/V) boundary within the anterior compartment.

The complete evidence for these and the other imaginal disc–

derived lines is given in Table 5.

Some of the embryonic lines express genes suggestive of he-

mocyte or hematopoietic origin. In what follows, we will sum-

marize data from three embryonic lines, Kc, S2-DRSC, and S2R+,

and the tumorous blood cell line mbn2; we chose to concentrate

on these four lines because they are widely used, and the tiling

array data are supported by RNA-seq data for the first two. In

Drosophila, three classes of hemocytes arise from a common pre-

cursor by divergent pathways: crystal cells plasmatocytes (and

closely related macrophages) and lamellocytes. Kc cells (including

the line Kc167), which have been previously reported to have

hemocyte properties (Andres and Cherbas 1992), express the

plasmatocyte marker Pxn as well as ush, whose expression inhibits

crystal cell differentiation (Fossett et al. 2001) and more general

hemocyte markers, including Hml (Charroux and Royet 2009) and

He (Lebestky et al. 2000; Jung et al. 2005; Jacques et al. 2009). None

of these genes are entirely specific for hemocytes, as illustrated by

their expression in other cell lines and by tissue expression data

from FlyAtlas (Chintapalli et al. 2007), but taken together, they

suggest a plasmatocyte identity for Kc167 cells. S2-DRSC and S2R+,

two isolates of Schneider’s line 2, both express hemocyte markers

but are quite distinct. Like Kc167, S2R+ and the tumorous blood

cell line mbn2 express Pxn, Hml, and He. In contrast, S2-DRSC

expresses a high level of proPO-A1 (formerly Bc) and a detect-

able level of lz, both associated with crystal cells and not with

plasmatocytes ( Jung et al. 2005; Jacques et al. 2009); it also ex-

presses a very high level of the plasmatocyte marker Pxn along

with ush, an inhibitor of crystal cell differentiation. Thus, S2-

DRSC combines properties of plasmatocytes and crystal cells;

our data do not permit us to determine whether individual cells

express both plasmatocyte markers and crystal cell markers,

but we think it likely that this line contains a mixture of cell

types. It is also worth noting that all of these lines have been

grown extensively and that different isolates of both Kc and S2

are known to display quite variable levels of some critical he-

mocyte markers (see Supplemental Text). Thus, at least under the

conditions in which these lines have been grown, the cell type

identity of these hemocyte-like embryonic lines seems to be

somewhat plastic.

The three CNS lines that we examined are quite distinct in

their transcriptional properties. Unfortunately, there are not suf-

ficient data available concerning gene expression in the cells of

the L3 central nervous system (from which they were derived) to

support any attempt at spatial mapping.

Unannotated transcripts

Using a large number of cell lines has proven to be a good way

of detecting the expression of known transcripts. Figure 5 shows

that, for known exons, our analysis appears to be approaching

saturation with 25 lines.

A principal goal of the modENCODE project is to go beyond

the annotations and identify previously unannotated transcripts

in Drosophila. A more definitive effort is being published sepa-

rately (Graveley et al. 2011); this study draws on developmental

data and supplements tiling array data with copious RNA-seq data.

Nonetheless, the tiling array analysis of 25 cell lines can fruitfully

be examined for clues to the existence of novel transcribed re-

gions. Examination of the raw tiling array signal graphs shows

considerable signal originating from regions outside the known

annotations; for example, in Kc cells 81% of the total euchromatic

signal coincides with annotated transcripts, while the remaining

19% originates from probes that lie outside those regions. In

what follows, we offer an initial description of transcripts in these

unannotated regions. Since our purpose here is simply to alert

readers to the prevalence of unannotated signals, we have de-

liberately chosen a conservative approach that underestimates

novelty.

Transcribed fragments (transfrags) were defined from tiling

array signal data for all 25 cell lines and from 30 developmental

stages. Using FlyBase (v. 5.12) as a standard, we classified each

transfrag as a match to an annotation (i.e., encompassed by it),

Figure 4. Examples of spatial assignments of two wing disc lines, il-
lustrating the logic used to make these assignments. The examples shown
in these cartoons are a few of the genes used to assign spatial identity to
cell lines; a more complete list can be found in Table 3. The top panel
shows a fate map of a Drosophila wing disc (based on a figure from (Held
2002). The middle panel illustrates the sites of expression of three genes
expressed in line D21: Optix expression is confined to a small area of the
prospective wing blade, straddling the dorsal/ventral (D/V) boundary near
the proximal portion of the anterior wing blade (outlined in yellow). fng is
a marker for the dorsal compartment in the wing blade and part of the
hinge and notal regions (dark blue). Ser is expressed widely in the dorsal
compartment, but in the wing blade region, it is confined to the region
just on the dorsal side of the D/V boundary (green). Line D21 therefore has
expression properties suggesting an origin in the small region colored red.
The bottom panel illustrates the sites of expression of three genes
expressed in line D32. Gr23a is expressed strongly in this line; taste re-
ceptors in the adult (presumably including Gr23a) are confined to the
anterior margin of the wing blade, derived from the region of the D/V
boundary within the anterior compartment (thick purple line). Dl is
expressed in a line of cells on each side of the D/V boundary (dashed blue
lines). fng, as described above, is a marker for the dorsal compartment in
the wing blade region (dark blue). The region whose expression resembles
D32 therefore is somewhere along the red line, just dorsal to the D/V
boundary within the anterior compartment.
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a partial overlap, or novel (i.e., disjoint). The novel euchromatic

transfrags derived from all 55 RNA sources were assembled into

85,413 contigs. For each novel contig, we assigned an expression

score for each RNA source (Supplemental Table S6).

We filtered these contigs as shown in Table 6. The large ma-

jority of novel contigs have low scores, less than the threshold

of 300 that we have used as a cut-off for detectable expression.

Pending further study, we eliminated low scoring contigs to reduce

the candidate set to 1600. On similarly conservative grounds, we

removed contigs supported only by expression in a single cell

line since rearrangement and transposon-induced artifacts are

known to occur in the lines (Potter et al. 1979; Junakovic et al.

1988; Maisonhaute et al. 2007), and we removed contigs rendered

ambiguous by multi-hit mappings in RNA-seq analyses, because

of their potential for cross-hybridization. The remaining 1405

contigs (described in Supplemental Table S7) can be considered a

conservative estimate of well-supported novel contigs.

Among these novel transcribed regions, we anticipated that

many might represent unknown exons of known genes. To find

that subset, we calculated the Pearson correlation coefficient, over

all 55 RNA sources (25 cell lines and 30 developmental stages),

between each novel contig and each feature (known exon or novel

contig) within a 200-kb region centered on the novel contig. A

threshold correlation coefficient of 0.75 gave a 1% false discovery

rate, estimated from a parallel correlation analysis of annotated

exons alone. Seven-hundred-thirteen contigs (51%) showed cor-

relations with at least one annotated exon; none showed correla-

tions with exons from more than one annotated gene. Strand-

specific RNA-seq data from Kc cells showed 453 of these contigs

to be transcribed on the same strand as the correlated annotated

gene; 29, on the opposite strand. The remaining contigs gave ei-

ther no strand data or ambiguous data. This remarkable asymmetry

suggests that the vast majority of correlations arise because of mo-

lecular contiguity rather than coregulation. We conclude that at

least 684 of the novel contigs are good candidates for novel exons

of known genes.

Of these 684 putative ‘‘extensions,’’ 122 are located 59 of,

238 39 of, and 324 internal to the correlated gene. The frequency

of novel internal exons may be exaggerated, since some of the in-

ternal contigs probably result from incompletely processed tran-

scripts rather than alternative exons. The mean distance between

novel contigs and their correlated genes was 16,208 bp for 59 contigs

and 6496 bp for 39 contigs.

We sought support for these inferences from four sources: (1)

We searched a more recent annotation of the genome (FlyBase

v.5.23) for annotated transcripts that included sequences from

Table 5. Expression of spatially defined markers in imaginal disc–derived cell lines

Cell line Region of disc Basis of assignment

Cl.8 Along A/P boundary of wing blade,
possibly at D/V boundary

High expression of ptc (Glise et al. 2002), Antp (proximal promoter)
(Jorgensen and Garber 1987), ImpL3 (Harmon et al. 2007),
fz3 (Gerlitz et al. 2002), and rho (Sturtevant et al. 1997); low expression
of Cyp310a1 (Butler et al. 2003) and CG17278 (Butler et al. 2003)

D8 Adepithelial cells of wing disc High expression of kon (Butler et al. 2003), twi (Bate et al. 1991), hth (Pai
et al. 1998), tkv (Harmon et al. 2007), pnr (Ramain et al. 1993),
Fas1 (Harmon et al. 2007), ImpL3 (Harmon et al. 2007), CG10126
(Butler et al. 2003), Dl (Doherty et al. 1996), and htl (Harmon et al. 2007)

D9 Dorsal wing blade High expression of Cyp310a1 (Butler et al. 2003), bi (Grimm and Pflugfelder
1996), and fng (Irvine and Wieschaus 1994)

D16-c3 Notum region, not adepithelial cells High expression of fng (Irvine and Wieschaus 1994) and Act57B (Butler et al.
2003), low expression of wing-blade markers bi (Grimm and Pflugfelder
1996) and Cyp310a1 (Butler et al. 2003)

D21 Proximal anterior dorsal region
of wing pouch

High expression of Optix (L Cherbas and Y Zou, unpubl. GEO accession
no. GSE11179; C Salzer, pers. comm.), Ser (Kim et al. 1995),
Notum (Giráldez et al. 2002), Lac (Harmon et al. 2007), Fas1 (Harmon et al.
2007), fng (Irvine and Wieschaus 1994), CG8965 (Harmon et al. 2007),
Pepck (Harmon et al. 2007)

D32 Precursor of chemosensory bristle
along anterior edge of wing blade

High expression of Gr23a (Dunipace et al. 2001; Scott et al. 2001), Dl (Doherty
et al. 1996), fng (Irvine and Wieschaus 1994), bib (Harmon et al. 2007),
CG9008 (Harmon et al. 2007), and Lac (Harmon et al. 2007)

D11 Antennal segment A2 High expression of sano (Harmon et al. 2007); low expression of CG4766
(Harmon et al. 2007), Nrt (Harmon et al. 2007), htl (Harmon et al. 2007),
Rapgap1 (Harmon et al. 2007), Timp (Harmon et al. 2007), CG14516
(Harmon et al. 2007), btd (Harmon et al. 2007), Aplip1 (Harmon et al. 2007),
hth (Rieckhof et al. 1997; Pai et al. 1998), CG9335 (Harmon et al. 2007),
and SP1029 (Harmon et al. 2007)

D4-c1 Antennal segment A3 High expression of Obp99b (Galindo and Smith 2001; L Cherbas and Y Zou,
unpubl., GEO accession no. GSE11179), ImpL3 (Harmon et al. 2007),
and pnr (Ramain et al. 1993)

L1 Tibia or femur region of leg disc Strong expression of SP1029 (Harmon et al. 2007), htl (Harmon et al. 2007),
bab1 (Godt et al. 1993; Cabrera et al. 2002), bab2 (Godt et al. 1993), and
ImpL3 (Harmon et al. 2007); low expression of fng (de Celis et al. 1998),
bib (de Celis et al. 1998), Dl (de Celis et al. 1998; Rauskolb and Irvine 1999),
Ser (de Celis et al. 1998), Antp (Jorgensen and Garber 1987), hth (Pai et al.
1998), and tsh (Gerlitz et al. 2002)

D17-c3 Hinge region of haltere disc Relatively strong expression of tsh (Soanes et al. 2001)
W2, D20-c2, D20-c5 Too little data to make an assignment

For this analysis, the modENCODE data have been supplemented with data from an earlier unpublished study in which some of the same lines were
compared inter se on two-channel oligo transcriptome arrays (L Cherbas and Y Zou, unpubl.; GEO accession no. GSE11179): These data provide useful
information for some weakly expressed genes.
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both the contig and the correlated gene. (2) We searched sequences

from full-length cDNAs in the BDGP (http://www.fruitfly.org),

(Stapleton et al. 2002) for overlaps with both contigs and their

correlated genes. (3) We searched paired-end sequence data from

four cell lines for which these data were available, seeking mate-

pairs in which one sequence is contained in the contig and its

mate is contained in an exon of the correlated gene, or sets of

overlapping mate-pairs span the space between the contig and

the correlated gene. (4) We looked for annotated transcripts in

MB8 (MJ van Baren, L Langton, CL Comstock, BC Koebbe, and

MR Bren, unpubl.; http://www.modencode.org/), a working an-

notation of the Drosophila genome that incorporates cDNA se-

quence data from the BDGP and novel splice junctions deduced

from the modENCODE RNA-seq data.

Remarkably, 426 (62%) of the 684 contig–gene associations

are supported by at least one of these sources, and only 43 (6%) of

the contigs were associated instead with a gene other than the

one identified by correlation analysis. Supplemental Table S7 de-

tails the support for each prediction, and Figure 6 shows a few

examples. Figure 6A illustrates the evidence for a 39 extension of

the known gene chinmo; Figure 6B documents a novel 39 exon for

Fs(2)Ket; and Figure 6C shows a new gene model for Prestin, fully

supported by cDNA evidence, which provides previously unde-

fined untranslated regions (UTRs), including extensions of the

previously annotated 59 and 39 exons and the addition of a novel

59 exon. As shown in Supplemental Table S7, an additional 70

novel contig sequences were found in full-length cDNA sequences

from the BDGP. Of these, 11 appear to be functional transcripts

from previously unannotated genes, 14 appear to be short, non-

functional transcripts, and the remainder are novel transcripts

from known genes for which the correlation was below our threshold

of 0.75. We emphasize that these models are offered only as sugges-

tions of previously unknown transcripts from annotated genes; a

much larger list of new transcripts, with support of RNA sequencing

data, will be presented in another paper (Graveley et al. 2011).

Discussion
The data described here provide the first general assessment of the

transcriptomes of a diverse collection of publicly available Dro-

sophila cell lines. They furnish a catalog of the expression of most

known (annotated) genes and support a preliminary look at the

scope and implications of unannotated transcription. At a practi-

cal level, the catalog should prove invaluable to those contem-

plating experiments using cell lines. Whether the experiment be

designed to examine a normal biological process or to examine

the effects of introducing exogenous genes or RNAi, the selection

of an appropriate line will be aided by foreknowledge of these

transcriptomes.

Our preliminary analysis of novel transcription suggests that,

even when the threshold of significance is set quite high, regions

of previously unannotated transcription are frequent. We have

identified 1405 strong candidates (Supplemental Table S7). Cor-

relation has been used previously to identify connections between

novel signals and known annotations (Manak et al. 2006), and we

have confirmed its power, by connecting 684 candidates to known

genes, often as new 59 or 39 UTRs. Again we emphasize the practi-

cal implication that those studying particular genes and their

regulation may wish to consult Supplemental Table S6 and the

original signal graph files available at http://modencode.org to

discern whether transcription in the region of interest is compli-

cated by unannotated signals and to select cell lines in which those

signals are present (or absent).

Of greatest interest here are the insights that transcriptome

analysis provides into the biology of the Drosophila cell lines. Both

simple tabulation and PCA (Fig. 1) lead us to divide each line’s

expression into a core component (3109 genes expressed in all the

lines) and line-specific component (on average, 2776 genes). It is

important to recognize that, because our analysis does not distin-

guish alternative transcripts, the actual numbers of core and line-

specific transcript species (as opposed to genes) may be different.

Both core and line-specific gene expression will undoubtedly

repay further, more detailed study. We know that many key met-

abolic pathways are represented, but we do not yet know whether

the core is a close replica of core expression in all Drosophila cells

or whether, alternatively, it is greatly modified by the adaptation

to growth in cell culture. Most cell lines appear to be competent

to respond to insulin, hedgehog, and BMP signals (Fig. 2). In the

case of insulin, this is a gratifying confirmation of prior biological

observations: All the cell lines are known to be either positively or

negatively sensitive to insulin. The expression of other signaling

pathways appears to vary more among lines. Despite variations

among lines, this survey suggests a common and expected trend

in all the cell lines, namely, that most differentiation pathways are

off and that survival and growth pathways are on.

Some genes are expressed at especially high levels in all the

cell lines (Table 3), and it seems likely that their heightened ex-

pression does represent adaptation. The extremely high expression

Figure 5. Detection of known exons as a function of the cell lines
studied. The number of annotated exons with detectable expression
(score $ 200) in at least one cell line was computed as a function of the
number of cell lines included in the calculation. The calculation was re-
peated 1000 times using randomly permuted orders for the addition of
cell lines.

Table 6. Analysis of novel transfrag contigs

Filtration step Contigs retained

None: initial catalog of novel transfrag contigs 85,413
Removed if all scores < 300 (25 lines) or all RPKM

scores < 1 (four lines)
1600

Removed if based entirely on evidence of one cell line 1483
Removed if overlapped by multi-hits 1405
Removed if no correlation with annotated gene 713
Removed if inconsistent with Kc strand data 684

A starting catalog of 85,413 novel contigs was filtered as described here
and in the text.
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Figure 6. (Legend on next page)
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of Karl strikes us as especially interesting. Karl, like its cognate

NLAZ, is thought to be a secreted lipocalin that modulates insulin

signaling (Hull-Thompson et al. 2009), and it is attractive to hy-

pothesize that secreted Karl protein plays an important role in

‘‘conditioning’’ cell culture media and modulating insulin signal-

ing. Among the other examples in Table 3, the joint overexpression

of sprouty and pointed is of interest because these two genes are

known to interact in the formation of cell processes.

The converse picture—the individuality of the cell lines—is

more striking. It is evident in the PCA representation (Fig. 1B), in

the examples of genes that are expressed predominantly in a sin-

gle line (Table 4), and in the line-specific expression of the cuticle

protein genes. Indeed, the little-studied genes (‘‘CG genes’’) in-

cluded in Table 4 are generally more strongly expressed in a single

cell line than in whole animals at any developmental stage. As we

have suggested above, this observation supports the notion that

each cell line provides a strongly enriched source of a single cell type,

often a type that is represented by few cells in the intact animal.

The S2 cell line has had a long history in Drosophila labora-

tories, starting from its casual use as a source of carrier RNAs.

During the course of that history, a variety of isolates have been

labeled ‘‘S2.’’ Here we have studied three S2 isolates: S2-DRSC

(currently used at the Drosophila RNAi Screening Center), S2R+,

and Sg4. As shown in Figure 1B, the three lines do not form a co-

herent cluster; users of S2-derived lines should be careful to specify

the history of their cells. We also find, as did a previous publication

based on transcriptome arrays (Neal et al. 2003), that the expres-

sion patterns of S2 cells and Kc167 cells are quite distinct.

It is possible that some of the differences among lines are

caused by instances of segmental aneuploidy in these cultured

cells. This merits further study, but we think it unlikely to be a

major determinant, because of prior results (Zhang et al. 2010)

showing compensation in expression level per gene copy adjust-

ing for aneuploidy, and also because of the biological coherence of

the patterns we observe especially in imaginal disc–derived lines.

Indeed, the most striking evidence for the individuality of the

lines is provided by the spatial mappings illustrated in Figure 4 and

cataloged in Table 5. While none of the cell lines can be described

as ‘‘normal’’—they have, after all, undergone transformation to

immortal growth and are adapted to growth in culture—it is re-

markable that each imaginal disc–derived line shows a marked

resemblance to a small, specific territory within the disc from

which it is derived and that these spatial assignments are differ-

ent for each disc line. Similarly, the lines that appear to be derived

from hematopoietic cells express gene sets that are generally con-

sistent with that origin.

While it is possible that these remarkable expression patterns

reveal some secondary process of transdetermination that leads

individual lines to mimic normal patterns, it seems far more likely

that the patterns we observe reflect the origins of the cells. We infer

that individual lines arose from particular founder cells within the

diverse populations in the starting cultures and that the lines

now provide us with representations, undoubtedly attenuated by

adaptation to cell culture, of those founder cells. If this is so these

observations suggest remarkable stability of even fine-grained

spatial determination. While genomic analyses of mammalian

tumor-derived cell lines (e.g. Wang et al. 2006) have confirmed

that the cells often retain global similarities to their tissues of ori-

gin, those studies have not pursued the cell-by-cell distinctions

made possible here by comparison to a large developmental liter-

ature on imaginal discs.

Finally we wish to point out that each cell line expresses

a different sample of transcription factors: No pair of lines is

identical in the data shown in Figure 3, and no two lines are

identical when the data are reanalyzed to emphasize only highly

significant differences in expression. Thus, although 25 cell lines

may be an ample set for discovering transcripts (Fig. 5), we see no

evidence that this set of 25 lines is approaching saturation for

developmental ‘‘states.’’ For the systems biologist, each Drosophila

cell line appears to provide a distinct developmental laboratory.

Methods

Cell culture
The 25 cell lines used in this study are listed in Table 1; all were
obtained from the collection of the Drosophila Genomics Resource
Center (https://dgrc.cgb.indiana.edu/). The collection includes lines
made from embryos and the following tissues from mature larvae:
central nervous system, wing disc, antennal disc, leg disc, haltere
disc, and tumorous blood cells. Cells were maintained between
;2 3 106 and 1 3 107 cells/mL and were harvested at about 5 3 106

cells/mL; for the media in which they were grown, see Supple-
mental Table S1. In all cases, the full history of the cell lines is
unknown, but in general, the imaginal disc and central nervous
system lines have been subject to much shorter periods of growth
in culture since their establishment than have the embryonic lines.

RNA isolation

RNA was made from five to 10 plates of cells at ;5 3 106/mL
(10 mL/plate) collected by centrifugation (;1000g, 5 min) and
washed in 5 mL Drosophila phosphate-buffered saline (2.7 mM
KCl, 4.3 mM Na2HPO4, 1.8 mM KH2PO4, 137 mM NaCl at pH 7.2).
After centrifugation, the pellet was resuspended in 0.75 mL TRIzol
reagent (Invitrogen), and RNA was extracted according to the
manufacturer’s directions and dissolved in DNase/RNase-free wa-
ter (Invitrogen), and the concentration determined by absorbance,
using a Nanodrop ND-1000 spectrophotometer. The RNA was then

Figure 6. Examples of new UTRs revealed by novel contigs. (A) Novel contig whose expression is correlated with that of chinmo. The region illustrated
includes the 39 portion of the annotated chinmo gene and all of its downstream neighbor, cpb. Signal graphs for the transcripts are shown for eight cell
lines. (Red bar) The position of the novel contig; a region of continuously overlapping paired-end sequences (blue line) connects the novel contig to
chinmo. (B) Novel contig that appears to encode a novel 39 exon for Fs(2)Ket. The display is similar to panel A, showing the convergently transcribed genes
Fs(2)Ket and CG9310. Much of the region between the two genes is covered by a transposable element and is therefore masked from both tiling array and
RNA-seq analysis. However, paired-end RNA-seq showed multiple clones in all four of the lines that were analyzed in which one end lies in the 39 region of
the annotated Fs(2)Ket transcript and the other end lies in the novel contig 7 kb away; the dashed blue line indicates the region that is bridged by these
clones. The novel contig also contains overlapping paired-end clones that extend into the annotated CG9310 transcript. These data indicate that the
contig probably corresponds to novel overlapping 39 regions from the two genes. (C ) A contig that corresponds to a novel 59 exon for Prestin, a gene for
which only the coding region was previously annotated. (From top to bottom) The novel contig (red bar); a novel splice junction identified from RNA-seq
data from S2-DRSC RNA; the FlyBase v5.12 annotation for Prestin, which includes only the coding region (purple); a Prestin transcript from the unpublished
annotation MB8 (MJ van Baren, L Langton, CL Comstock, BC Koebbe, and MR Brent, unpubl.; http://www.modencode.org/), which used the RNA-seq
splicing data as input for the annotation (blue and white); sequence of a full-length cDNA clone MIP14411 (GenBank accession no. BT120083) retrieved
by targeting with the FB 5.12 gene model; and pattern of transcripts from RNA-seq analysis of S2-DRSC cells.
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purified on an RNeasy spin column (Qiagen), according to the
manufacturer’s instructions, including DNase treatment and the
optional second wash on the column. The RNA was eluted using
DNase/RNase-free water, and the concentration was determined
as described above. The quality of each RNA sample was confirmed
by Northern blots, using the Ambion NorthernMax-Gly, BrightStar
Psoralen-Biotin, and BrightStar BioDetect kits, according to the
manufacturer’s instructions. Each Northern lane contained about
5 mg of total RNA, and the probe was made from the sequence of
transcript RpL11-RA. All RNA samples were stored at �80°C and,
when necessary, were shipped on dry ice, using an overnight de-
livery service.

RNA expression measured on tiling arrays

RNA samples were prepared from three biological replicates rep-
resenting each cell line. Each was independently hybridized on
38-bp Affymetrix arrays (Affymetrix GeneChip Drosophila Tiling
2.0R Array), using standard procedures (Manak et al. 2006). Raw
signals from the replicates were combined and smoothed using a
three-probe sliding window (bandwidth = 50), with the intensity
of each probe calculated as its background-corrected pseudomedian.
The resulting ‘‘signal graph’’ files giving signal intensity as a func-
tion of genomic position are available at http://modencode.org.
From the signal graphs, the transfrags were identified using a
threshold of three consecutive probes above background (maxgap
= 90, minrun = 90). We compared transfrag coordinates with an-
notations from FlyBase (v5.12) and the unpublished annotation
MB6 (MJ van Baren, L Langton, CL Comstock, BC Koebbe, and
MR Brent, unpubl.) and classified each transfrag as being either
a match to an annotation, a partial overlap with an annotation,
or a novel transfrag.

To calculate expression scores, we used signal graph files cal-
culated as above but with bandwidth = 0. Expression scores for
both annotated exons and novel transfrags are simply the medians
of probe intensities for all probes found within that feature. Neg-
ative signal scores were set to zero. Total raw signal varied among
cell lines; consequently, we normalized the exon scores for each cell
line, setting the median to 100. A gene’s expression score (‘‘gene
score’’) is simply the maximum score for all exons included in that
gene. Note that both alternative splicing and overlapping genes
complicate the interpretation of these scores.

We took exon expression scores less than a threshold (300)
to be insignificant. The threshold was chosen by qualitative ex-
amination of the signal graph traces and by analyzing the corre-
lations between tiling array scores and RNA-seq scores (for the four
cell lines for which both kinds of data were available) and the
correlations between exons of annotated genes. Both kinds of
correlation improve with increasing threshold, but thresholds in
excess of 300 exclude thousands of exons that, on the evidence
of the signal graphs, exhibit unambiguous peaks. Supplemental
Figure S1 shows the correlation between tiling array scores and
RNA-seq reads per kilobase per million (RPKM) values for 17,623
exons expressed above threshold in Kc167 cells. Supplemental
Table S4 illustrates the same point by showing the average (and
range) of both tiling array and RNA-seq scores for 85 ribosomal
protein genes. For these scores, the Pearson correlation coefficient
is 0.713.

Exon scores are not adjusted for length of probed segment
(exon); nor are we able to make any adjustment for hybridization
efficiency. Therefore, they cannot and should not be interpreted as
numbers of molecules. It is informative to compare the score for
a given exon across samples; it is only suggestive to compare scores
between exons. Supplemental Figure S2 shows that the agreement
between the techniques is improved when one considers only

the ratios between scores in two cell lines (for a given exon); the
excess of deviations above the regression line suggests that RNA-
seq scores have a greater range of linearity.

RNA expression measured by sequencing

Libraries were generated using the mRNA-seq preparation kit as
recommended by the manufacturer (Illumina). Briefly, 10 mg of
total RNA was enriched for poly(A)+ RNA by two successive rounds
of oligo(dT) selection. The poly(A)+ RNA was then fragmented,
and first-strand cDNA synthesis was performed using random
hexamer priming. Following second-strand cDNA synthesis, the
ends were cleaned up, a nontemplated 39 A was added, and
adapters were ligated to the ends. The libraries were enriched by
16 rounds of PCR and gel purified. The libraries were used for
paired-end sequencing on an Illumina GAIIx, and 37 nucleotides
were sequenced from each end. Following sequencing, the fastq
files were aligned using Bowtie to a combined index consisting
of the D. melanogaster genome sequence and a database of anno-
tated and predicted splice junctions (Brooks et al. 2010). Reads that
aligned uniquely with up to two mismatches were kept for fur-
ther analysis. Aligned data were used to calculate quantitative
RPKM scores as described (Mortazavi et al. 2008).

For stranded RNA-seq, 10 mg of DNase-treated poly(A)+ RNA
from Kc167 cells was subjected to limited hydrolysis followed
by end-repair using shrimp alkaline phosphatase, then T4 poly-
nucleotide kinase. The RNA was then treated with tobacco acid
pyrophosphatase to make the capped ends clonable. The frag-
mented RNAs were then cloned as processed as described pre-
viously (Affymetrix/Cold Spring Harbor Laboratory ENCODE
Transcriptome Project 2009).

Clustering expression data

Cell lines were clustered using PCA, on the basis of expression
scores from 886 genes. The list of genes was chosen by filtering
out genes without a measurable level of expression in at least one
cell line and genes that displayed little variation in expression
among cell lines. The parameters for choosing the gene set were
as follows: minimum expression of 500 in at least one cell line,
[maximum�minimum] score > 2000, and [maximum/minimum]
score > 10. The expression scores for this gene set were analyzed
using PCA. Expression scores were log-transformed, centered
(column-mean subtracted), and scaled (column divided by root
mean square), and singular value decomposition was used to cal-
culate loadings and scores. For visualization, we used the score
loadings of the variables (cell lines) from the first three compo-
nents, which together explain 70% of variance. An identical pro-
cedure was used for PCA of expression scores from the combined
set of 25 cell lines and 30 developmental stages.
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