The relative importance and interactions of CMR-derived parameters of ventricular mechanics in the prediction of death and transplant late after the Fontan operation

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:29407548

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
The relative importance and interactions of CMR-derived parameters of ventricular mechanics in the prediction of death and transplant late after the Fontan operation

Rahul H Rathod1,2*, Lynn A Sleeper1,2, Sunil J Ghelani1,2, Ellen M Keenan1, David M Harrild1,2, Andrew J Powell1,2, Tal Geva1,2

From 19th Annual SCMR Scientific Sessions
Los Angeles, CA, USA. 27-30 January 2016

Background
We have previously shown that a larger indexed end-diastolic volume (EDVi) of a functional single ventricle as determined by cardiac magnetic resonance (CMR) is an independent predictor of death and heart transplant late after the Fontan operation. Other reports have suggested that decreased ventricular strain and ejection fraction (EF) are associated with poor outcomes. The objective of this study was to identify the relative importance and interactions of CMR-based parameters for risk of death and transplant after the Fontan operation.

Methods
Clinical CMR studies from 1/2002 to 1/2015 were retrospectively reviewed. Ventricular size and function measurements were calculated using commercially available software (Medis Medical Imaging Systems, Leiden the Netherlands). Global circumferential strain (GCS) and longitudinal strain (GLS) were measured for the single or dominant ventricle at the mid-ventricular level using commercial software (TomTec Imaging Systems, Unterschleissheim, Germany). The primary endpoint was defined as time to death or listing for heart transplantation. Classification and regression tree (CART) survival analysis was performed to identify the subgroups at highest risk for the endpoint without prespecification of possible interactions. Candidate predictors were indexed EDV, indexed end-systolic volume, EF, indexed ventricular mass, GCS, and GLS. Where applicable, CMR parameters were indexed to BSA1.3.

Results
The study sample consisted of 145 patients (64% male). Median age at CMR was 16 years [IQR 11-23 years] and age at Fontan was 3.4 years [IQR 2.4-6.2 years]. Over a median follow-up of 4.6 years after CMR, 24 patients (17%) reached the study endpoint (20 deaths, 4 transplant listings). The results of the CART analysis are shown in Figure 1. EDVi was the strongest predictor of transplant-free survival. In the more severely dilated subgroup (EDVi ≥135 mL/BSA1.3), worse GCS rather than EF had additional discriminating power for the endpoint. In patients with less dilation (EDVi <135 mL/BSA1.3), EF <50% was the most important predictor but added little additional discrimination (9% vs. 15% with endpoint). Figure 2 depicts a Kaplan-Meier plot with groups informed by the CART.

Conclusions
CMR-derived functional single ventricle EDVi is the strongest independent predictor of transplant-free survival in patients late after the Fontan operation. In patients with moderate or worse ventricular dilatation, GCS rather than EF has additional discriminating power for the endpoint. These data highlight the interactions between ventricular dilation and strain and the importance of CMR imaging in this population.
The relative importance and interactions of CMR-derived parameters of ventricular mechanics in the prediction of death and transplant late after the Fontan operation.

Figure 1 Classification and regression tree for death and transplant Tx in Fontan patients

Figure 2 Freedom from death and transplant by risk factor subgroups.

Authors’ details
1Cardiology, Boston Children’s Hospital, Boston, MA, USA. 2Pediatrics, Harvard Medical School, Boston, MA, USA.

Published: 27 January 2016