Reproducibility of slice-interleaved myocardial T2 mapping sequences

Citation

Published Version

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:29407580

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Reproducibility of slice-interleaved myocardial \(T_2 \) mapping sequences

Steven Bellm\(^1\)*, Tamer Basha\(^1\), Long Ngo\(^1\), Sophie Berg\(^1\), Kraig V Kissinger\(^1\), Beth Goddu\(^1\), Warren J Manning\(^1,2\), Reza Nezafat\(^1\)

From 19th Annual SCMR Scientific Sessions
Los Angeles, CA, USA. 27-30 January 2016

Background

Myocardial \(T_2 \) mapping sequence allows quantitative assessment of myocardial edema and inflammation. Commonly, a series of \(T_2 \) weighted images with steady-state free-precession (SSFP) are acquired after \(T_2 \) magnetization preparation (\(T_2 \)Prep) with different echo times. Conventionally, a single slice per breath-hold is acquired to image one single slice. Because inflammation/edema is often regional, multiple breath-holds are needed to cover the entire ventricle. The slice-interleaved \(T_2 \) mapping sequence was recently proposed to image multiple slices in a single scan by using a slice-selective \(T_2 \)Prep. While accuracy of this sequence to quantify \(T_2 \) was previously studied, the measurement reproducibility is not known. Therefore, we sought to investigate the reproducibility of myocardial \(T_2 \) mapping using the slice-interleaved \(T_2 \) mapping sequence.

Methods

Eleven healthy subjects (age: 33 ± 16 years, 6 males) were imaged on 2 different days with the same scan protocol using a 1.5T MRI scanner (Philips Achieva). On each day, slice-interleaved \(T_2 \) sequence was repeated twice. Subsequently, subjects were removed from the scanner and repositioned, followed by another 2 repetitions of the same scan. The following imaging parameters were used: In-plane resolution = 2.1 × 2.1 mm\(^2\), slice thickness = 8 mm, slice gap = 4 mm, Field of View = 320 × 320 mm\(^2\), TR/TE/\(\alpha \) = 2.8 msec. / 1.38 msec. /55°, SENSE-rate = 2.3, and acquisition window = 191 ms, bandwidth = 1879.7 Hz/pixel. Motion correction was performed between different images. \(T_2 \) maps were calculated using a 3-parameter fit model. The epicardial and endocardial contours in the left ventricle were manually drawn in 5 short axis-slices to calculate global and slice-based myocardial \(T_2 \) values. Coefficient of variation (CV) analysis for each slice was generated to assess the variability. Bland-Altman plots were used to test for significant differences between repetitions, sessions and days.

\(^1\)Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA

Full list of author information is available at the end of the article.

© 2016 Bellm et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Results
Figure 1 shows mean T2 values for different imaging sessions, averaged over all subjects and low CVs between subjects (7.2 ± 4.3%). There were low CVs between days (6.3 ± 4.0%) and between sessions (5.0 ± 4.3%). Fig. 2 shows Bland-Altman plots for T2 values between first scan of day 1 and day 2 (A), between first scan of session 1 and session 2 (B), and between scan 1 and 2 within each first session (C).

Conclusions
Slice-Interleaved T2 mapping sequence yields reproducible T2 measurements with highest CV of 7.2 ± 4.3% for between day scans.

Authors’ details
1Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. 2Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.

Published: 27 January 2016