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Genome-wide association study identifies 14 novel
risk alleles associated with basal cell carcinoma
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Yuan Lin2, Hong-Ji Dai2,4, Abrar A. Qureshi5,6,7, Wen-Qing Li5,6, Peter Kraft8,9, David A. Hinds10, Jean Y. Tang1,**,

Jiali Han2,4,8,** & Kavita Y. Sarin1,**

Basal cell carcinoma (BCC) is the most common cancer worldwide with an annual incidence

of 2.8 million cases in the United States alone. Previous studies have demonstrated an

association between 21 distinct genetic loci and BCC risk. Here, we report the results of a two-

stage genome-wide association study of BCC, totalling 17,187 cases and 287,054 controls.

We confirm 17 previously reported loci and identify 14 new susceptibility loci reaching

genome-wide significance (Po5� 10�8, logistic regression). These newly associated SNPs

lie within predicted keratinocyte regulatory elements and in expression quantitative trait loci;

furthermore, we identify candidate genes and non-coding RNAs involved in telomere

maintenance, immune regulation and tumour progression, providing deeper insight into the

pathogenesis of BCC.

DOI: 10.1038/ncomms12510 OPEN

1 Department of Dermatology, Stanford University School of Medicine, Stanford, California 94305, USA. 2 Department of Epidemiology, Richard M. Fairbanks
School of Public Health, Melvin & Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA. 3 Department of Medicine (Quantitative
Sciences Unit), Stanford University School of Medicine, Stanford, California 94305, USA. 4 Department of Epidemiology and Biostatistics, Tianjin Medical
University Cancer Hospital and Institute, National Clinical Research Center for Cancer, Tianjin & Key Laboratory of Cancer Prevention and Therapy, Tianjin,
China. 5 Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903, USA. 6 Department of Epidemiology,
School of Public Health, Brown University, Providence, Rhode Island 02903, USA. 7 Channing Division of Network Medicine, Department of Medicine,
Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. 8 Department of Epidemiology, Harvard T.H. Chan School of
Public Health, Boston, Massachusetts 02115, USA. 9 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115,
USA. 10 23andMe Inc., Mountain View, California 94040, USA. * These authors contributed equally to this work. ** These authors jointly supervised this work.
Correspondence and requests for materials should be addressed to K.Y.S. (email: ksarin@stanford.edu) or to J.H. (email:jialhan@iu.edu).

NATURE COMMUNICATIONS | 7:12510 | DOI: 10.1038/ncomms12510 | www.nature.com/naturecommunications 1

mailto:ksarin@stanford.edu
mailto:jialhan@iu.edu
http://www.nature.com/naturecommunications


W
ith 2.8 million new cases diagnosed annually in the
United States1, basal cell carcinoma (BCC) is the
most common cancer worldwide and contributes

substantially to morbidity. BCC risk has been associated with
ultraviolet (UV) exposure, fair skin, arsenic exposure, ionizing
radiation, chronic immunosuppression, male gender and age1.
Since 2008, six population-based genome-wide association studies
(GWAS) of BCC have been reported identifying 16 regions
of susceptibility2–7. Candidate gene studies have identified five
additional pigmentation loci associated with BCC, including
IRF4, SLC45A2, RALY, TYR and OCA27. Here, we report the
largest-to-date two-stage genome-wide association meta-analysis
for BCC totalling 17,187 cases and 287,054 controls. The results
of this study confirm 12 of 16 loci from prior GWAS, along with
5 of 5 loci from previous candidate gene studies, and identify
14 novel susceptibility loci for BCC.

Results
Stage 1 consisted of 12,945 self-reported BCC cases and 274,252
controls of European ancestry from 23andMe research partici-
pants (Supplementary Table 1). Validation of self-reported
surveys with adjudicated medical records revealed a sensitivity
and specificity of 93% and 99%, respectively (Supplementary
Table 2), indicating a misclassification rate of less than 10%.
Simulation analysis demonstrated that this misclassification rate
only modestly reduced the power to detect associations in this
study (Supplementary Fig. 1). Stage 2 consisted of an independent
GWAS cohort of 4,242 BCC cases and 12,802 controls of
European ancestry from the Nurses’ Health Study and Health
Professionals Follow-Up Study (Supplementary Table 1). Subse-
quently, meta-analysis of stages 1 and 2 was performed, encom-
passing 17,187 cases and 287,054 controls (Supplementary
Table 1). Further information on methodology and imputation
quality control is presented in the Online Methods, Supple-
mentary Tables 3-5, and Supplementary Figs 2–7.

Stage 1 analysis. Twenty-eight index single nucleotide poly-
morphisms (SNPs) were associated with BCC at the genome-wide
significance level (Po5.0� 10� 8, logistic regression) in stage 1
and are depicted in the Manhattan plot (Fig. 1). Subset analysis
revealed relatively consistent effect sizes across age and gender for
these 28 SNPs (Supplementary Tables 6–7, Supplementary Fig. 8).

Interestingly, slightly larger effect sizes tended to occur in
younger cases, suggesting that other risk factors may play an
increasing role with age. As 10% of the BCC cases in our stage 1
cohort subsequently developed melanoma, we also investigated
whether the co-occurrence of melanoma contributed to the
observed associations with BCC risk. We therefore computed
association tests for the stage 1 index SNPs in BCC cases with and
without melanoma. All 28 SNPs displayed consistent effect sizes
across the two groups (Table 1, Supplementary Fig. 9), indicating
that they are independently associated with BCC susceptibility.

Stage 2 and combined meta-analysis. Twenty of the 28 index
SNPs were replicated in the stage 2 analysis (Po0.05, logistic
regression). While some loci did not reach statistical significance
in stage 2, their 95% confidence intervals (for odds ratios)
overlapped with the corresponding stage 1 confidence intervals.
Meta-analysis of stages 1 and 2 identified a total of 31 loci
reaching genome-wide significance (Po5� 10� 8, logistic
regression) for association with BCC. Among these 31 loci, 17 are
previously reported (Supplementary Tables 8–12). The remaining
14 are novel BCC susceptibility loci (Table 2, Supplementary
Table 13). Forest plots and regional association plots for these
14 SNPs are provided in Supplementary Figs 10–12. Of these 14
novel risk variants, 10 reached genome-wide significance in
stage 1 and 4 reached genome-wide significance in the combined
meta-analysis. As many pigmentation loci have been associated
with BCC susceptibility, we adjusted for pigmentation phenotype
in our stage 2 cohort and did not observe a significant difference
between adjusted and unadjusted results for the 14 novel risk
variants (Supplementary Table 14).

Heritability of BCC and gene expression analysis. To measure
the proportion of BCC heritability that can be attributed to these
SNPs, we calculated the familial relative risk for BCC as outlined
by the Cancer Oncological Gene-Environment Study. Overall,
10.98% of familial relative risk for BCC is explained by the 31
genome-wide significant loci; of this percentage, the 14 novel
susceptibility loci account for 2.62%. To further explore the role
of these 14 loci in BCC pathogenesis, we evaluated expression
levels of nearby genes in BCC tissue using two data sets from the
Gene Expression Omnibus (GEO) (GSE53462 and GSE7553).
Three loci demonstrated significant differential gene expression
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Figure 1 | Manhattan plot of stage 1 GWAS analysis of BCC from 23andMe data set. Total stage 1 GWAS analysis included 12,945 cases and 274,252

controls. Loci with smallest Po10�6 (28 total, logistic regression) are labelled with the name of the nearest gene. Positions with Po5� 10� 8 (genome-

wide significance) are shown in red. In stage 1, ten novel BCC susceptibility loci reached genome-wide significance after adjusting for genomic control, all of

which are labelled in the figure with asterisks: from left to right, 3p13 (FOXP1), 3q28 (LPP), 6p21.32 (HLA-DQA2), 6p21.33 (HLA-B), 7p12.3 (TNS3), 7q22.1

(CUX1), 8q21.13 (ZBTB10), 9p22.2 (near BNC2), 19p13.3 (PLIN3), 21q22.3 (LINC00111). Four additional novel susceptibility loci—6p21.3 (NEU1), 10q24.3

(OBFC1), 6q27 (MIR3939), 6p22.3 (CASC15)—were genome-wide significant in the overall meta-analysis (Table 2) and thus are not labelled in the figure.
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in BCC relative to normal skin: 3p13 FOXP1, 7p12.3 TNS3 and
6p22.3 CASC15 (Fig. 2, Po0.05, linear models for microarray
analysis).

Gene-environment interaction analysis. Ultraviolet exposure
and pigmentation phenotypes have been associated with BCC

risk and may interact with genetic variants to confer BCC suscep-
tibility. To further explore the influence of such factors on
our study, we tested for interactions between all 31 significant
loci and UV exposure, hair colour, number of sunburns and
tanning ability (Supplementary Table 15). This analysis revealed
only one significant interaction, between rs191177147 (LPP)
and hair colour. Additional testing in three separate hair colour

Table 1 | Interaction of 28 genome-wide significant BCC associations in stage 1 with melanoma.

SNP Gene Neffect NSE NP Yeffect YSE YP Int P

rs12203592 IRF4 0.397 0.017 5.4� 10� 117 0.454 0.060 4.5� 10� 14 0.040
rs1805007 MC1R 0.321 0.023 8.8� 10�41 0.272 0.077 4.7� 10�4 0.286
rs214785 TGM3 �0.197 0.017 1.7� 10� 29 �0.044 0.065 5.0� 10� 1 0.213
rs35407 SLC45A2 0.483 0.053 1.1� 10� 22 0.537 0.239 2.0� 10� 2 0.751
rs6059655 RALY �0.219 0.024 5.7� 10� 19 �0.141 0.082 8.5� 10� 2 0.088
rs57142672 RCC2 0.128 0.014 1.2� 10� 18 0.214 0.052 4.4� 10� 5 0.612
rs73635312 GATA3 0.189 0.021 3.5� 10� 20 0.109 0.074 1.4� 10� 1 0.047
rs1126809 TYR �0.126 0.015 2.3� 10� 16 �0.070 0.053 1.8� 10� 1 0.521
rs421284 CLPTM1L 0.138 0.014 1.1� 10� 22 0.046 0.050 3.5� 10� 1 0.783
rs2080303 ALS2CR12/CASP8 0.122 0.016 1.1� 10� 14 0.068 0.057 2.3� 10� 1 0.425
rs61824911 RHOU 0.139 0.016 9.3� 10� 18 �0.023 0.061 7.1� 10� 1 0.300
rs2116709 FOXP1/EIF4E3 �0.116 0.015 1.3� 10� 14 �0.061 0.054 2.6� 10� 1 0.136
rs12916300 OCA2/HERC2 0.142 0.019 9.7� 10� 15 �0.024 0.067 7.2� 10� 1 0.761
rs141115006 RGS22 �0.143 0.020 3.1� 10� 13 �0.077 0.071 2.8� 10� 1 0.819
rs10810657 BNC2 �0.108 0.014 7.2� 10� 14 �0.078 0.052 1.4� 10� 1 0.986
rs10093547 ZFHX4 0.219 0.031 5.1� 10� 13 0.147 0.106 1.6� 10� 1 0.755
rs191177147 LPP 0.114 0.016 6.3� 10� 13 0.009 0.057 8.8� 10� 1 0.517
rs9275642 HLA-DQB1/DQA2 �0.123 0.019 2.4� 10� 11 �0.080 0.065 2.2� 10� 1 0.346
rs7874604 CDKN2B 0.098 0.015 1.6� 10� 10 0.095 0.055 8.5� 10� 2 0.591
rs11170164 KRT5 0.163 0.025 1.2� 10� 10 0.134 0.094 1.6� 10� 1 0.303
rs73183643 CUX1 0.109 0.017 1.1� 10� 10 0.067 0.060 2.6� 10� 1 0.391
rs11993814 ZBTB10 �0.097 0.016 2.1� 10� 9 �0.146 0.058 1.2� 10� 2 0.413
rs2776353 LINC00111 �0.092 0.015 1.5� 10� 9 �0.063 0.055 2.5� 10� 1 0.623
rs1765871 ATP11A �0.068 0.014 1.1� 10�6 �0.145 0.052 4.8� 10� 3 0.981
rs10425559 TICAM1/PLIN3 0.086 0.014 2.7� 10�9 0.004 0.052 9.3� 10� 1 0.458
rs1050529 HLA-B �0.106 0.019 2.5� 10�8 �0.096 0.069 1.7� 10� 1 0.486
rs7776701 TNS3 �0.081 0.014 6.9� 10� 9 0.041 0.050 4.1� 10� 1 0.711
rs78097823 TTC28 0.164 0.034 2.4� 10� 6 0.354 0.120 3.5� 10� 3 0.466

Results generated from logistic regression models fit separately in melanoma controls (N) and cases (Y). Includes P-value (Int P) from a likelihood ratio test for adding an interaction with melanoma
status to the GWAS model. Of the 274,252 BCC controls, 3138 were melanoma cases and 268,282 were melanoma controls. Of the 12,945 BCC cases, 1,350 were melanoma cases and 11,465 were
melanoma controls.

Table 2 | Fourteen novel loci reaching genome-wide significance in two-stage GWAS of BCC.

SNP Region Gene Maj/min MAF (avg imp r2) P OR P OR P OR

rs2116709 3p13 FOXP1 A/T 0.40 (0.91) 7.9� 10� 15 0.89 6.1� 10�4 0.91 2.3� 10� 17 0.90
rs10810657 9p22.2 BNC2 A/T 0.41 (0.98) 5.1� 10� 14 0.90 5.7� 10� 5 0.90 1.5� 10� 17 0.90
rs191177147 3q28 LPP G/T 0.39 (0.80) 3.2� 10� 12 1.11 1.0� 10� 3 1.10 1.2� 10� 14 1.11
rs9275642 6p21.32 HLA-DQA2 C/T 0.21 (0.89) 1.2� 10� 11 0.89 2.7� 10� 2* 0.81 2.4� 10� 12 0.89
rs73183643 7q22.1 CUX1 G/A 0.24 (0.96) 8.5� 10� 11 0.90 2.3� 10�4 0.89 1.5� 10� 13 0.90
rs11993814 8q21.13 ZBTB10 C/T 0.26 (1.0) 2.8� 10� 10 0.91 4.5� 10� 2 0.94 8.8� 10� 11 0.92
rs2776353 21q22.3 LINC00111 A/T 0.33 (0.96) 5.0� 10� 10 0.91 7.7� 10�4 0.91 1.6� 10� 12 0.91
rs10425559 19p13.3 PLIN3 G/A 0.40 (0.97) 3.8� 10� 9 0.92 8.4� 10� 1 0.99 2.8� 10� 8 0.93
rs1050529 6p21.33 HLA-B C/T 0.25 (0.71) 4.6� 10�9 0.90 2.7� 10� 1w 0.89 2.6� 10� 9 0.90
rs7776701 7p12.3 TNS3 C/T 0.48 (0.98) 5.3� 10� 9 0.93 5.1� 10� 1 0.98 4.2� 10�8 0.94
rs9267650 6p21.3 NEU1 A/T 0.05 (0.98) 2.4� 10�8 1.18 2.0� 10� 1 1.09 1.1� 10� 8 1.17
rs7907606 10q24.3 OBFC1 T/G 0.17 (0.96) 7.4� 10�8 1.10 2.4� 10� 2 1.08 4.7� 10�9 1.10
rs4710154 6q27 MIR3939 A/T 0.32 (0.93) 8.1� 10�8 1.08 4.3� 10� 2 1.06 1.1� 10� 8 1.08
rs2294214 6p22.3 CASC15 A/C 0.32 (0.95) 2.6� 10� 5 1.06 5.9� 10� 5 1.13 3.1� 10�8 1.07

SNPs that met genome-wide significance (Po5� 10� 8, via logistic regression) in overall meta-analysis are listed; these SNPs have not been associated with BCC in previous GWAS reports. Additionally,
we report genetic locus, nearest genes, major allele, minor allele, minor allele frequency (MAF) as calculated from stage 1 data, average imputation r2 (a measure of imputation quality) for stage 1, and
odds ratio (OR) with P-value for each stage, calculated with respect to the minor allele. In stage 1, we analysed 12,945 BCC cases and 274,252 controls. Stage 2 included 4242 BCC cases and 12,802
controls from NHS. We then combined data from stage 1 and stage 2 (which resulted in 17,187 BCC cases and 287,054 controls) and performed fixed-effect meta-analysis. Statistics for effect
heterogeneity (Phet and I2) are included in Supplementary Table 13. All subjects were from the US and of European ancestry.
*Genotyping results in stage 2.
wGenotyping results in stage 2. rs9266772 is used as proxy SNP for rs1050529 (r2¼0.569, D0 ¼0.771).
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groups demonstrated that rs191177147 significantly interacted
with the light brown and dark brown/black hair groups (Table 3,
P¼ 2.9� 10� 6, logistic regression).

Discussion
The 14 novel susceptibility loci cluster into five functional
categories: telomere biology, immune regulation, tumour pro-
gression, non-coding RNA and pigmentation.

Variants within the TERT locus have previously been associ-
ated with BCC susceptibility, thus implicating telomere regulation
in BCC development8. Here, we identify a novel BCC suscepti-
bility locus, OBFC1, that is also involved in telomere
maintenance. rs7907606 at 10q24.3 (P¼ 4.7� 10� 9, odds ratio
(OR)¼ 1.10, logistic regression) lies 3 kb upstream of the OBFC1
gene, a member of the heterotrimer CST complex8. This complex
restricts telomere extension by binding telomeric DNA and
disrupting the ability of other proteins to recruit telomerase9.
Variants in the OBFC1 locus have been associated with mean
leukocyte telomere length8,10. rs7907606 is in linkage disequili-
brium (LD) with four of these variants (Supplementary Table 16),
including rs4387287 (r2¼ 0.98, D0 ¼ � 1.00), which lies within
the promoter of OBFC1 and is an eQTL for this gene in
sun-exposed skin (P¼ 8.3� 10� 6, GTEx V6 analysis)11. Though
widely studied, the connection between telomere length and
cancer is context dependent, as both long and short telomeres are
linked to malignancy12. This discrepancy is readily apparent in
the context of skin cancer, where longer telomeres are associated
with melanoma and shorter telomeres are associated with BCC12.
Our results further implicate telomere homeostasis in BCC
pathogenesis.

We also identified six novel susceptibility loci associated with
immune regulation. Two SNPs, rs1050529 and rs9275642, are in
human leukocyte antigen (HLA) regions. rs1050529 at 6p21.33
(P¼ 2.6� 10� 9, OR¼ 0.90, logistic regression) lies within an
exon of HLA-B, and leads to a non-conservative amino acid
substitution (A65T). rs1050529 has predicted enhancer and
promoter activity in keratinocytes and is an eQTL in six tissues.
Variants in HLA-B have been associated with a range of
autoimmune conditions, including vitiligo and psoriasis13,14.
HLA-B encodes the heavy chain component of major
histocompatibility complex (MHC) class I molecules, which
present endogenously synthesized peptides to cytotoxic T cells.
Downregulation of MHC class I molecules is a feature of many
types of cancers, which is thought to enable tumour cells to evade
recognition and destruction by T cells15. An analysis of 91 human
melanoma cell lines revealed decreased expression of class I
molecules in 67% of the cell lines, with HLA-B being the most
common16. The second HLA SNP reaching genome-wide
significance was rs9275642 at 6p21.32 (P¼ 2.4� 10� 12,
OR¼ 0.89, logistic regression), which is located 24 kb upstream
of HLA-DQA2. This SNP is in tight LD with rs9275640 (r2¼ 0.89,
D0 ¼ 0.99), which is an eQTL for this gene in sun-exposed skin
(P¼ 3.6� 10� 6, GTEx V6 analysis)11. HLA-DQA2 variants are
also associated with autoimmune diseases, including type 1
diabetes, rheumatoid arthritis and alopecia areata14. These
findings represent the first genome-wide significant association
between MHC genes and BCC risk.

The third immune-related SNP, rs191177147 at 3q28 (P¼
9.8� 10� 17, OR¼ 1.11, logistic regression), resides within an
intron of LPP and is in LD with rs1464510 (r2¼ 0.54) and
rs9860547 (r2¼ 0.68, Supplementary Table 17); the former is
associated with autoimmune diseases such as celiac disease,
rheumatoid arthritis, juvenile idiopathic arthritis and vitiligo17–19,
while the latter is associated with allergy20. LPP encodes an
intracellular protein that shuttles between the cell membrane and
the nucleus, where it interacts with transcription factors to
modulate gene expression21. LPP overexpression has been
reported in squamous cell lung carcinomas and primary
sarcomas21. We also found an association between rs191177147
and hair colour, suggesting that this SNP may also contribute to
BCC risk by altering pigmentation phenotypes.

Another SNP with potential significance in immune regulation
is rs10425559 at 19p13.3 (P¼ 2.9� 10� 9, OR¼ 0.93, logistic
regression), which is intergenic and flanked by TICAM1 and
PLIN3. It is linked to rs7255265 (r2¼ 0.68, D0 ¼ 0.9, Supplemen-
tary Table 18), which is located in an exon of TICAM1 and
has predicted enhancer activity in keratinocytes. TICAM1 is an
intracellular toll-like receptor(TLR) adaptor molecule involved in
innate immunity; moreover, it acts as a pro-apoptotic tumour
suppressor by mediating the interaction between TLR-3
and caspase-8 in some malignancies, including melanoma22.
PLIN3 encodes a cytosolic protein that binds to the GTPase
RAB9, a member of the RAS oncogene family23. Overexpression
of PLIN3 has been linked to cervical carcinoma24.
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Figure 2 | Gene expression analysis for novel BCC susceptibility loci.

Processed microarray expression data were obtained from Gene Expression
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Table 3 | Stage 2 subset analysis of novel BCC risk variant rs191177147 (3q28, LPP) in different hair colour subgroups.

Hair colour b s.e. P N Int P-value

Whole set 0.097 0.03 1.0� 10� 3 17044 0.0002
Red and blonde �0.008 0.062 9.0� 10� 1 2449
Light brown 0.123 0.047 8.4� 10� 3 5793
Dark brown and black 0.198 0.042 2.9� 10� 6 7611

‘b’ refers to effect size, ‘s.e.’ to standard error, ‘P’ to P-value (generated via logistic regression), ‘N’ to sample size, and ‘Int’ to interaction.
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The fifth immune-related SNP, rs9267650 at 6p21.3 (P¼ 1.1�
10� 8, OR¼ 1.17, logistic regression), lies 0.5 kb downstream of
NEU1, which encodes a lysosomal enzyme implicated in
many diverse processes, including activation of TLRs25,
wound healing26,27 and suppression of ovarian carcinoma28.
Finally, rs11993814 at 8q21.13 (P¼ 1.1� 10� 12, OR¼ 0.91,
logistic regression), located 9 kb upstream of ZBTB10, is an
eQTL in two tissues and is in LD with rs6998967 (r2¼ 0.6,
D0 ¼ 1.0), associated with late-onset myasthenia gravis29. ZBTB10
encodes a zinc finger transcription factor involved in regula-
ting the expression of Interleukin-10 through suppression of
Sp129–31. Abnormal interaction between ZBTB10 and Sp1 is seen
in several different cancer cell lines, with ZBTB10 consis-
tently exhibiting tumour-suppressing activity32. All together,
these findings implicate a number of immune regulatory loci in
BCC susceptibility.

Four of our novel susceptibility loci are associated with tumour
progression. rs2116709 at 3p13 (P¼ 5.7� 10� 16, OR¼ 0.91,
logistic regression) resides within an intron of FOXP1, a
transcription factor that, in addition to regulating organ
development, acts as a tumour suppressor in some cancers
(for example, prostate33) and as an oncoprotein in others
(for example, oesophagus34). It is overexpressed in oesophageal
cancer and many types of lymphomas, including cutaneous
B-cell lymphomas34,35. Similarly, we found that FOXP1 is
significantly overexpressed in BCC as compared with normal
skin controls. Our findings suggest a role for FOXP1 in BCC
development.

rs73183643 at 7q22.1 (P¼ 1.3� 10� 13, OR¼ 0.91, logistic
regression) is located 40 kb upstream of CUX1, which encodes a
homeodomain-containing transcription factor involved in cell
proliferation and differentiation. Both in vitro and in vivo studies
have shown that CUX1 promotes tumorigenesis in a range of
neoplasms, including melanoma and pancreatic cancer, by
increasing cell motility and inhibiting apoptosis36,37.

Another tumorigenesis-related SNP, rs7776701 at 7p12.3
(P¼ 2.0� 10� 8, OR¼ 0.94, logistic regression), lies within an
intron of TNS3 and has enhancer activity in 14 tissues, including
keratinocytes. This SNP is in LD with rs56232506 (r2¼ 0.76,
D0 ¼ 0.99), also intronic to TNS3 and associated with prostate
cancer38. Tensin-3, the cytosolic protein product of TNS3,
connects transmembrane proteins to cytoskeletal elements and
influences cell migration39. Studies of human metastatic
melanoma, non-small cell lung cancer and breast cancer cell
lines demonstrate that reduced expression of TNS3 corresponds
to dramatic inhibition of cell proliferation and migration,
suggesting that TNS3 is an oncogene39. This idea is consistent
with our expression analysis, in which TNS3 was significantly
upregulated in BCC.

The fourth SNP in this category, rs4710154 at 6q27 (P¼ 1.1�
10� 8, OR¼ 1.08, logistic regression), lies 17 kb downstream of
MIR3939, which codes for microRNA 3939. Despite its proximity
to MIR3939, rs4710154 is an eQTL for RNASET2 in 11 tissues,
including sun-exposed skin (P¼ 4.7� 10� 19, GTEx V6 analysis)
and non-sun-exposed skin (P¼ 1.1� 10� 7, GTEx V6 analysis)11.
This SNP is linked to rs9355610 (r2¼ 0.89, D0 ¼ 0.99,
Supplementary Table 19), associated with Grave’s disease and
Hashimoto’s thyroiditis40; rs9355610 is also an eQTL for
RNASET2 in sun-exposed (P¼ 1.0� 10� 1, GTEx V6 analysis)
and non-sun-exposed skin (P¼ 1.6� 10� 8, GTEx V6 analysis)11.
RNASET2 encodes ribonuclease T2, an evolutionarily conserved,
ubiquitous RNase that inhibits cell proliferation (via stimulation
of immune cells) and mediates cellular stress responses41.
Accordingly, this enzyme has tumour suppressor activity in
many cancer lines, including melanoma42, and has demonstrated
pro-apoptotic activity in keratinocytes43.

Interestingly, two of the 14 novel susceptibility variants reside
near or within long non-coding RNA genes. rs2776353 at 21q22.3
(P¼ 2.0� 10� 14, OR¼ 0.91, logistic regression) is located
10 kb upstream of LINC00111, while rs2294214 (P¼ 3.1� 10� 8,
OR¼ 1.07, logistic regression) lies within an intron of CASC15
(also known as LINC00340); both SNPs have predicted enhancer
and promoter activity in keratinocytes. A recent study compared
the expression of long non-coding RNAs in BCC samples to
that of normal skin controls and found that CASC15 was
overexpressed in BCC44. Overexpression of CASC15 has also
been implicated in melanoma progression and metastasis45. Our
analysis of independent BCC expression data confirmed
significant upregulation of CASC15 in BCC, further implicating
this gene in BCC development.

In addition to confirming the previously reported association
of five pigmentation loci with BCC, we identified a novel
susceptibility locus—rs10810657 at 9p22.2 (P¼ 1.5� 10� 17,
OR¼ 0.90, logistic regression)—that may also influence pigmen-
tation. rs10810657, located 14 kb upstream of BNC2, reached
genome-wide significance in the meta-analysis and is an eQTL for
BNC2 in blood (Table 2). This SNP is in LD with rs12350739
(r2¼ 0.87, D0 ¼ 0.99, Supplementary Table 20), associated with
human skin pigmentation via regulation of BNC2 transcription in
melanocytes, and rs62543565 (r2¼ 0.7, D0 ¼ 0.87), associated
with the age-related development of facial pigmented spots46,47.
rs10810657 is also linked to rs2153271 (r2¼ 0.9, D0 ¼ 0.99),
which is intronic to BNC2 and associated with freckling48. BNC2
codes for basonuclin 2, a protein thought to function both as an
mRNA-processing enzyme and a transcription factor46. It is
expressed in melanocytes and, to a lesser extent, keratinocytes,
with higher expression levels corresponding to darker skin
pigmentation46.

In summary, this two-stage meta-analysis represents the largest
GWAS for BCC and identified 14 novel susceptibility loci with
roles in telomere maintenance, immune regulation and tumour
progression. Further investigation of these loci will improve our
understanding of BCC pathogenesis and improve our ability to
prevent these common tumours.

Methods
Stage 1 study design and population. 23andMe Inc. (Mountain View, CA), a
genetics company, provided free access to anonymized genetic and phenotypic
information for stage 1 of this GWAS. All information came from 23andMe
research participants who provided informed consent to participate in research, in
accord with 23andMe’s human subjects protocol (reviewed and approved by
Ethical and Independent Review Services, an AAHRPP accredited IRB). 23andMe
gathers genetic information by genotyping sample material provided by its research
participants; phenotypic information is collected via research participant responses
to online surveys. Inclusion and exclusion criteria are discussed below. Sample sizes
for cases and controls were not predetermined as the intention was to maximize the
number of subjects in both groups; hence, all subjects passing inclusion and
exclusion criteria were included, which resulted in 12,945 BCC cases and
274,252 controls.

Stage 1 genome-wide association analysis. Association analysis for stage 1 was
performed using logistic regression, assuming an additive model for allelic effects.
The analysis was adjusted for age, sex and population stratification (using the first
five principal components), generating the following model:

BCC diagnosis � ageþ sexþ pc:0þ pc:1þ pc:2þ pc:3þ pc:4þ genotype

ð1Þ

The association test P-value was computed using a likelihood ratio test. Results
for the X chromosome were computed similarly, with male genotypes coded as if
they were homozygous diploid for the observed allele. Additionally, test statistics
were adjusted for genomic control to correct for residual population stratification
persisting after principal component analysis; the genomic control inflation factor
was 1.085 (computed from the median P-value for results that passed quality
control).

Genome-wide association analysis generated a set of index SNPs. The index
SNPs show information for the most-associated SNP in each associated region. We
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define regions of interest by identifying SNPs with Po10� 5, then grouping these
into intervals separated by gaps of at least 250 kb, and choosing the SNP with
smallest P within each interval.

Stage 1 genotyping and quality control. Samples were genotyped on one of four
genotyping platforms. The V1 and V2 platforms were variants of the Illumina
HumanHap550þ BeadChip, including about 25,000 custom SNPs selected by
23andMe, with a total of about 560,000 SNPs. The V3 platform was based on the
Illumina OmniExpressþ BeadChip, with custom content to improve the overlap
with our V2 array, with a total of about 950,000 SNPs. The V4 platform in current
use is a fully custom array, including a lower redundancy subset of V2 and V3
SNPs with additional coverage of lower-frequency coding variation, and about
570,000 SNPs. Samples that failed to reach 98.5% call rate were re-analysed.
Individuals whose analyses failed repeatedly were re-contacted by 23andMe to
provide additional samples, as is done for all 23andMe research participants.

Individuals were only included if they had 497% European ancestry, as
determined through an analysis of local ancestry49. Briefly, this analysis first
partitions phased genomic data into short windows of about 100 SNPs. Within
each window, a support vector machine is used to classify individual haplotypes
into one of 31 reference populations. The support vector machine classifications are
then fed into a hidden Markov model (HMM) that accounts for switch errors and
incorrect assignments, and gives probabilities for each reference population in each
window. Finally, simulated admixed individuals are used to recalibrate the HMM
probabilities so that the reported assignments are consistent with the simulated
admixture proportions. The reference population data are derived from public data
sets (the Human Genome Diversity Project, HapMap and 1000 Genomes), as well
as 23andMe research participants who have reported having four grandparents
from the same country.

A maximal set of unrelated individuals was chosen for each analysis using a
segmental identity-by-descent (IBD) estimation algorithm50. Individuals were
defined as related if they shared more than 700 cM IBD, including regions where the
two individuals share either one or both genomic segments identical-by-descent.
This level of relatedness (roughly 20% of the genome) corresponds approximately to
the minimal expected sharing between first cousins in an outbred population.

Participant genotype data were imputed against the March 2012 ‘v3’ release of
1000 Genomes reference haplotypes51. Data for each genotyping platform were
phased and imputed separately. First, Beagle52 (version 3.3.1) was used to phase
batches of 8000–9000 individuals across chromosomal segments of no more than
10,000 genotyped SNPs, with overlaps of 200 SNPs. SNPs with Hardy-Weinberg
equilibrium Po10� 20, call rateo95%, or with large allele frequency discrepancies
compared to European 1000 Genomes reference data were excluded. Frequency
discrepancies were identified by computing a 2� 2 table of allele counts for
European 1000 Genomes samples and 2000 randomly sampled 23andMe research
participants with European ancestry, and identifying SNPs with a chi-squared
Po10� 15. Each phased segment was imputed against all-ethnicity 1000 Genomes
haplotypes (excluding monomorphic and singleton sites) using Minimac253, using
5 rounds and 200 states for parameter estimation.

For the non-pseudoautosomal region of the X chromosome, males and females
were phased together in segments, treating the males as already phased; the
pseudoautosomal regions were phased separately. Males and females were then
imputed together using minimac, as with the autosomes, treating males as
homozygous pseudo-diploids for the non-pseudoautosomal region.

For quality control of genotyped GWAS results, SNPs that were only genotyped
on the ‘V1’ platform were flagged due to small sample size, and SNPs on chrM or
chrY because many of these are not currently called reliably. Using trio data, SNPs
that failed a test for parent-offspring transmission were also flagged; specifically,
the child’s allele count was regressed against the mean parental allele count, and
SNPs with fitted bo0.6 and Po10� 20 for a test of bo1 were flagged. SNPs with
a Hardy-Weinberg Po10� 20 in Europeans, or a call rate of o90%, were also
flagged. Genotyped SNPs were also tested for genotype date effects, and SNPs with
Po10� 50 by analysis of variance of SNP genotypes against a factor dividing
genotyping date into 20 roughly equal-sized buckets were flagged.

For imputed GWAS results, SNPs with avg.rsqo0.5 or min.rsqo0.3 in any
imputation batch were flagged, as well as SNPs that had strong evidence of an
imputation batch effect. The batch effect test was an F test from an analysis of
variance of the SNP dosages against a factor representing imputation batch; results
with Po10� 50 were flagged. Prior to GWAS, the largest subset of the data passing
these criteria was identified for each SNP, based on their original genotyping
platform—either v2þ v3þ v4, v3þ v4, v3, or v4 only—and association test results
were computed for whatever was the largest passing set. As a result, there were no
imputed results for SNPs that failed these filters.

When choosing between imputed and genotyped GWAS results, if either the
imputed test passed quality control, or a genotyped test was unavailable, the
imputed result was reported; otherwise, the genotyped result was reported. For tests
using imputed data, imputed dosages were used rather than best-guess genotypes.

Across all results, logistic regression results that did not converge due to
complete separation, identified by abs (effect)410 or stderr410 on the log odds
scale, were flagged. Linear regression results for SNPs with MAFo0.1% were also
flagged, since tests of low frequency variants can be sensitive to violations of the
regression assumption of normally distributed residuals20,54,55.

Stage 1 associations using nearest genotyped SNP. To assess the effect of
imputation, we analysed the association between the nearest genotyped SNP at
each locus and BCC, and then compared this association to that from the original
imputed SNP. The genotyped results are consistent with the imputed results albeit
slightly less significant.

Stage 1 subset analyses. Subset analysis by age and gender was performed for the
genome-wide significant index SNPs in stage 1. For age-based analysis, the stage 1
cohort was divided into four age intervals with similar effective sample sizes based
on case and control sample counts. Association test results were then computed
within each of these age intervals for the 28 SNPs. The interaction between
genotype effect and age interval was also calculated. For all these association tests,
we used the same covariates used in stage 1: age, sex and five principal components.
Thus, association tests within a specific age interval were still adjusted for age as a
continuous covariate. For gender analysis, we compared effect sizes estimated in
men versus effect sizes estimated in women for the 28 SNPs. We also performed
logistic regression separately in the male and female subsets, and calculated
P-values from a likelihood ratio test for adding a gender by genotype interaction to
the full logistic regression models. For melanoma subset analysis, association tests
for BCC were computed separately in melanoma controls and melanoma cases.

Stage 1 phenotype categorization. 23andMe identified BCC cases by using
research participants’ self-reported answers to online questionnaires. Subjects who
answered ‘Yes’ and/or selected BCC from a dropdown menu in response to at least
one of the following questions were defined as cases: ‘Have you ever been diag-
nosed by a doctor with basal cell carcinoma?’, ‘What type of skin cancer did you
have? Please check all that apply.’, ‘What type of skin cancer or cancers have you
been diagnosed with? Please check all that apply.’ ‘Have you ever been diagnosed
with basal cell carcinoma?’ ‘Have you ever been diagnosed or treated for any of the
following conditions?’ Controls were defined as subjects who answered ‘No’ and
did not select BCC from any relevant dropdown menus. In addition, subjects who
answered ‘No’ to at least one of the following questions (and ‘Yes’ to none) were
defined as controls: ‘Have you ever been diagnosed with cancer, including skin
cancer or cancerous moles?’, ‘Has a doctor ever told you that you have a type of
cancer?’, ‘Have you ever been diagnosed or treated with any of the following
conditions?’ Among the samples with imputed genotypes, 23andMe has 12,945
BCC cases and 274,252 controls.

Sensitivity and specificity of stage 1 self-reported data. To assess the validity of
self-reported phenotypic data in stage 1, 23andMe surveys (pertaining to skin
cancer history and pigmentation) were randomly administered to patients seen in
Stanford outpatient clinics. The survey answers were then compared to medical
records to assess for accuracy with respect to BCC diagnosis to determine the
sensitivity and specificity of the survey responses. P-values were determined using
chi-square analysis. This sub-study was approved by the Stanford University
Institutional Review Board with a waiver of documentation of informed consent.

Stage 2 study design and population. The Nurses’ Health Study was established
in 1976, when 121 700 female registered nurses between the ages of 30 and 55 years
residing in 11 larger US states completed and returned an initial self-administered
questionnaire on their medical histories and baseline health-related exposures.
Biennial questionnaires with collection of exposure information on risk factors
have been collected prospectively. Every 2 years, along with exposures, outcome
data with appropriate follow-up of reported disease events are collected. Overall,
follow-up has been high; after more than 20 years, B90% of participants continue
to complete questionnaires. From May 1989 through September 1990, we collected
blood samples from 32,826 participants in the NHS. Information on BCC devel-
opment was first collected in the 1984 questionnaire.

The Health Professionals Follow-up Study (HPFS) was established in 1986
when 51,529 men from all 50 US states in health professions (dentists, pharmacists,
optometrists, osteopath physicians, podiatrists and veterinarians) aged 40–75 years
answered a detailed mailed questionnaire. The average follow-up rate for this
cohort over 10 years is 490%. On each biennial questionnaire, we obtained
disease- and health-related information. Between 1993 and 1994, 18,159 study
participants provided blood samples by overnight courier. Information on BCC
development was first collected in the 1986 questionnaire.

The protocol for this study was approved by the Institutional Review Board at
Brigham and Women’s Hospital and the Harvard School of Public Health. All of
the participants provided informed consent. As in stage 1, all subjects passing
inclusion and exclusion criteria were included, resulting in 4,242 BCC cases and
12,802 controls; sample sizes were not predetermined.

Stage 2 genotyping and quality control. There were 18 GWAS data sets from the
NHS and HPFS as nested case-control studies with cleaned genotype data available.
We combined these data sets into three complied data sets based on their genotype
platform type: Affymetrix, Illumina HumanHap series or Illumina Omni Express.
The Affymetrix data set was comprised of data on the Affy 6.0 platform (NHS-type
2 diabetes, NHS-coronary heart disease, HPFS-type 2 diabetes, HPFS-coronary
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heart disease). The Illumia HumanHap data set was comprised of several plat-
forms: Illumina 550K (NHS-breast cancer, NHS-Pancreas cancer, HPFS-pancreas
cancer), Illumina 610Q (NHS-kidney stone, HPFS-kidney stone, HPFS-prostate
cancer) and Illumina 660 (NHS-glaucoma, HPFS-glaucoma). The Illumina Omni
Express data set contained only studies genotyped on the Omni Express platform
(NHS-endometrial cancer, NHS-colon cancer, NHS-mammographic density,
NHS-gout, HPFS-colon, HPFS-gout).

We combined the individual data sets that were genotyped on the same
platform, removing any SNPs that were not in all studies and with a missing call
rate45%, and flipping strands where appropriate to create a final compiled data
set. This resulted in 668,283 SNPs in the Affymetrix data set, 459,999 SNPs in the
Illumina HumanHap data set and 565,810 SNPs in the Illumina Omni Express data
set. Analyses were restricted to subjects with self-reported European ancestry.
Genetic principal components were calculated using sets of independent SNPs
(12,000–33,000 SNPs depending on platform). Subjects who did not cluster with
other self-identified Europeans based on the top five principal components were
also excluded.

We then ran a pairwise IBD analysis for each combined data set to detect
duplicate and related individuals based on resulting Z scores. If 0pZ0p0.1
and 0pZ1p0.1 and 0.9 pZ2p1.1 then a pair was flagged as being identical
twins or duplicates. Pairs were considered full siblings if 0.17pZ0p0.33 and
0.4pZ1p0.6 and 0.17pZ2p0.33. Half siblings or avunculars were defined
as having 0.4pZ1p0.6 and 0pZ2p0.1. Some of the duplicates flagged in this
step were expected, having been genotyped in multiple data sets and hence having
the same cohort IDs. In this case, one of each pair was randomly chosen for
removal from the data set. Instances where pairs were flagged as unexpected
duplicates with the different cohort IDs, but pairwise genotype concordance
rate40.999, resulted in removal of both individuals from the pair. Related
individuals (full sibs, half sibs/avunculars) were not removed from the final data
sets. In the Affymetrix data set, 167 individuals were removed because they were
duplicates or were flagged for removal from secondary genotype data cleaning,
leaving a total of 8065 individuals. Of the 6894 individuals originally in the
Illumina data set, 107 were removed because they were duplicates or flagged for
removal in the genotyping step, leaving 6787 IDs. In addition, eight pairs of
individuals were flagged as related. In the Omni express data set, there were 5956
individuals at the start, with 39 IDs to remove leaving 5917 IDs and 5 pairs of
related IDs.

After removing duplicate IDs and flagging related pairs of IDs, we used
eigenstrat to run PCA analysis on each compiled data set, removing one member
from each flagged pair of related individuals. For Affymetrix and Illumina
HumanHap, we used approximately 12,000 SNPs that were filtered to ensure low
pairwise LD56. For the OmniExpress data set we used approximately 33,000 SNPs
that were similarly filtered. We plotted the top eigenvectors using R and examined
the plots for outliers.

Finally as a quality control check, we ran logistic regression analyses using each
individual study’s controls as ‘cases’ and the rest of the studies controls as
‘controls’. For example, in the Illumina Omni Express data set, we ran regressions
of NHS-gout controls considered as ‘cases’ versus the HPFS-gout, NHS-
endometrial cancer, NHS-colon cancer, NHS-mammographic density and
HPFS-colon cancer. We then ran regressions with each of the other study controls
as ‘cases’ versus all of the rest of the controls. We looked for P values of genome-
wide significance (Po10� 8) and examined QQ plots to determine if any
SNPs were flagged as significant where no SNPs should have been significant.
In the Affymetrix data set 100 SNPs were flagged and removed. In the Illumina
HumanHap data set, eight SNPs had Po10� 8 in any of the QC regressions
and were removed. No SNPs in the Illumina Omni Express data set had
P-valueso10� 8 hence no additional SNPs needed to be removed. After the data
sets were combined and appropriate SNP and ID filters applied, the complied data
sets were imputed.

Using combined GWAS genotypes on each genotyping platform and the
1000 Genomes Project ALL Phase I Integrated Release Version 3 Haplotypes
excluding monomorphic and singleton sites (2010-11 data freeze, 2012-03-14
haplotypes) as reference panel, we imputed the genotypes of markers in the
1000 Genomes Project for 8065 samples in Affymetrix data set, 6787 samples
in Illumina HumanHap data set and 5917 samples in Illumina Omni Express
data set.

SNP genotypes were imputed in three steps. First, genotypes on each
chromosome were split into chunks to facilitate windowed imputation in parallel
using ChunkChromosome (v.2011-08-05) (http://genome.sph.umich.edu/wiki/
ChunkChromosome). Then each chunk of chromosome was phased using MACH
(v.1.0.18.c) (http://www.sph.umich.edu/csg/abecasis/MaCH/index.html). In the
final step, Minimac (v.2012-08-15) (http://genome.sph.umich.edu/wiki/Minimac)
was used to impute the phased genotypes to approximately 31 million markers in
the 1000 Genomes Project51.

Sensitivity analysis in stage 2. Sensitivity analysis for five SNPs—IRF4
rs12203592, KRT5 rs11170164, PLIN3 rs10425559, NEU1 rs9267650 and EXOC2
rs12210050—using high imputation quality subsets was performed. Concordance
for two SNPs (rs12916300 and rs35407) was compared between stage 2 imputed
data and directly genotyped data among the overlapping samples of 251 controls

and 280 cases. Direct genotyping was also performed for rs9275642 and rs1050529
in a subset of BCC cases and controls within NHS. The total sample size is 1204
with 661 cases and 543 controls.

Stage 2 phenotype categorization. Participants in both NHS and HPFS cohorts
reported new BCC diagnosis biennially. Eligible cases in the NHS and HPFS
consisted of participants with self-reported BCC any time after baseline up to the
2012 follow-up cycle for both cohorts. Samples free of BCC were controls in this
study. In the three compiled data sets, samples without information on BCC
diagnosis were excluded. Furthermore, all BCC cases with melanoma were also
excluded. Among the samples with imputed genotypes, we have 1777 BCC cases
and 5411 controls in Affymetrix data set, 1268 BCC cases and 3685 controls in
Illumina HumanHap data set and 1197 BCC cases and 3706 controls in Illumina
Omni Express data set totalling 4242 BCC cases and 12,802 controls.

Validity of stage 2 self-reported data. The identification of BCC cases in stage 2
was based on self-report without pathological confirmation. Because the partici-
pants in the cohorts were nurses and other health professionals, the validity of their
reports was expected to be high and has been proven in validation studies: 490%
confirmed by histopathology records57–59. In addition, previous studies of BCC in
the NHS using self-reported cases identified both constitutional and sun-exposure
risk factors as expected, such as lighter pigmentation, less childhood and adolescent
tanning tendency, higher tendency to sunburn, and tanning salon attendance58,60.
Moreover, in our previous study of BCC using the same cohorts as this study (NHS
and HPFS), we confirmed the MC1R gene (a well-established pigmentation gene)
as the most promising locus of BCC risk4. In addition, we identified many other
pigmentation SNPs (for example, rs12203592 at IRF4, rs1408799 at TYRP1 and
rs12913832 at HERC2) in our data set with significant associations with BCC4.
These genetic and non-genetic data together suggest that the bias due to self-report
of BCC is likely to be minimal in our study.

Stage 2 genome-wide association analysis. We used ProbABEL software to test
the GWAS association between minor allele counts and BCC risk using imputed
dosage data. We performed logistic regression analysis under an additive model
with adjustment for age, sex, BCC history and the first five principal components,
generating the following model:

BCC diagnosis � ageþ sexþ pc:1þ pc:2þ pc:3þ pc:4þ pc:5þ genotype

ð2Þ
These principal components were calculated for all individuals on the basis of
approximately 10,000 unlinked markers using the EIGENSTRAT software61.
Associations in each component GWAS set (Affymetrix, Illumina HumanHap
series and Illumina Omni Express) were combined in an inverse-variance-weighted
meta-analysis using the METAL software.

Phenotype and environmental factors. The amount of UV exposure based on
residence location in 1986 was coded as a continuous variable. Information on
pigmentation traits was collected from prospective questionnaires in both the NHS
and HPFS using similar wording. We regressed ordinal coding for natural hair
colour (1—red, 2—blonde, 3—light brown, 4—dark brown or black), tanning
ability during adolescence (1—tans without burning (none/some redness only),
2—burns then tans, 3—burns/peels (painful burn with blisters)) and number
of blistering sunburns (1¼ never, 2¼ 1-2 times, 3¼ 3–5 times, 4¼ 6 times and
above).

Statistical models for pigmentation and UV exposure. To clarify the
influence of pigmentation traits on our associations, we additionally adjusted
for these traits (hair colour, tanning ability during adolescence and number
of blistering sunburns) in individual studies with ProbABEL. Associations in
each component GWAS set (Affymetrix, Illumina HumanHap series and Illumina
Omni Express) were combined in the same meta-analysis using the METAL
software.

The primary gene-risk factor interaction analytic model included each SNP and
risk factor (UV exposure or pigmentation traits) and an SNP� risk factor
interaction term, as well as age, sex and the first five principal components as
covariates:

BCC diagnosis � ageþ sexþ risk factorþ pc:1þ pc:2þ pc:3þ pc:4þ
pc:5þ genotypeþ genotype�risk factor

ð3Þ

The logistic regression analyses within each platform were conducted with
ProbABEL. Associations in each component GWAS set (Affymetrix, Illumina
HumanHap series and Illumina Omni Express) were combined in an inverse-
variance-weighted meta-analysis using the METAL software.

Meta-analysis. For each SNP, meta-analysis was conducted to combine stage 1
and stage 2 results. Heterogeneity of per-SNP effect sizes in studies contributing to
stage 1, stage 2 and the overall meta-analysis was assessed and fixed effects meta-
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analysis was conducted. The same method as in stage 1 was used to generate a set
of index SNPs within each associated region. Top SNPs with Po5� 10� 8 were
finally reported. All R2 and D’ between individual SNPs were calculated based on
the 1000 Genomes Pilot 1 data set, CEU Population (http://www.broadin-
stitute.org/mpg/snap/ldsearchpw.php)62.

Proportion of familial relative risk. We have used the formula for calculating the
proportion of FRR as outlined by the Cancer Oncological Gene-environment
Study (http://www.nature.com/icogs/primer/common-variation-and-heritability-
estimates-for-breast-ovarian-and-prostate-cancers/#70) as described previously63.
The odds ratios derived from our meta-analysis of stages 1 and 2 are assumed to be
relative risks. We estimated the proportion of the FRR explained by each SNP
(FRRsnp) as:

FRRsnp ¼ pr2 þ q
� �

= prþ qð Þ2 ð4Þ

Here, the risk allele and alternative allele frequencies are p and q, respectively,
and r is the odds ratio for the risk allele. Allele frequencies derived from the
1000 Genomes Project European population data. Assuming that the loci
combine multiplicatively and are not in LD, the combined effect of all loci is
given by:

lT ¼
Y

k

lk ð5Þ

Here, the product is across all loci. The proportion of the familial relative risk
attributable to the SNPs, on a log scale, is then given by:

log lTð Þ=log lPð Þ ð6Þ

In this equation, lP is the familial relative risk observed in epidemiological studies.
lP is 2.6-fold for BCC60,64.

Regulatory function of novel variants. For each novel BCC susceptibility variant,
we searched for evidence of regulatory function using recently updated HaploReg
version 4 (http://www.broadinstitute.org/mammals/haploreg/haploreg.php)65,66.
We queried each rsID and extracted data from ENCODE Project Consortium
2011–2012 on closest annotated gene, ChIP-Seq transcription factor binding,
DNaseI hypersensitivity sites, and enhancer and promoter chromatin segmentation
states67–69. We also extracted data from Roadmap Epigenomics Consortium 2015
on enhancer and promoter chromatin segmentation states, specifically using the
following states: 15-state HMM, 25-state HMM, H3K4me1, H3K4me3, H3K27ac
and H3K9ac70. We particularly focused on enhancer and promoter annotations
that referenced normal human epidermal keratinocytes (NHEK) and primary
foreskin keratinocytes. Finally, we used HaploReg v4 to extract eQTL data for each
variant, as version 4 is updated with cis eQTL data from the GTEx pilot analysis
and other studies11. We made special note of variants that were eQTLs in skin
tissue.

Gene expression analysis. Processed gene-expression data for BCC and
normal skin (GSE53462 and GSE7553) were obtained from the GEO
(http://www.ncbi.nlm.nih.gov/geo/)71–73. Fifteen BCC samples and five
controls were included for GSE7553; for GSE53462, nine ‘classic-type’ BCC
samples were included, along with five controls. Each gene of interest was
selected by its proximity to one of the 14 novel risk variants; however, if a
variant was an eQTL in skin tissue for a more distant gene, then this gene was
chosen instead. For each data set, Geo2R, which employs a linear-based model
for microarray analysis, was utilized to compare gene expression between BCC
and normal skin controls74. Significant results were defined as instances of
differential gene expression (in BCC tissue relative to control) reaching
Po0.05 in both data sets.

Regional association and forest plots. Regional plots of –log10 (P values)
were generated using Locus Zoom75. Where pairwise LD measures are given,
using LD data from the March 2012 release of 1000 Genomes data. To preserve
detail, results with Po10� 100 are set to 10� 100. In the plots, an ‘o’ symbol
indicates a genotyped SNP and a ‘þ ’ indicates an imputed SNP. Colour indicates
strength of LD with the index SNP. Forest plots were generated using the R forest
plot package (https://cran.r-project.org/web/packages/forestplot/forestplot.pdf)76.

Power calculations. Power was computed according to Freidlin et al.77. To
account for misclassification, expected genotype frequencies in study cases were
replaced with a mixture of genotype frequencies in true cases and in true controls.
Power was plotted as a function of odds ratio for detecting a variant with minor
allele frequency 0.1, based on the GWAS sample size and with hypothetical
misclassification rates of 0, 10 and 20% (where the specified fraction of study cases
are misclassified controls).

Data availability. GWAS data from 23andMe and Nurses ‘Health/Health
Professionals’ Study have not been deposited in public repositories, as consent for

this was not obtained in the study protocols. The pre-computed rankings and
P-values for SNPs included in the stage 1 GWAS are available upon request by
contacting D.A.H. at dhinds@23andMe.com. Pre-computed rankings and P-values
for the top 10,000 SNPs included in the stage 2 GWAS are freely available by
contacting www.channing.harvard.edu/nhs. Processed gene-expression data for
BCC and normal skin are freely available from GEO (http://www.ncbi.nlm.nih.gov/
geo/) using the accession numbers GSE53462 (ref. 72) and GSE7553
(ref. 73). Any additional data (beyond those included in the main text and
Supplementary Information) that support the findings of this study are available
from the corresponding author upon request.
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disease. Nat. Genet. 42, 698–702 (2010).

14. Zhu, K.-J. et al. Psoriasis regression analysis of MHC loci identifies shared
genetic variants with vitiligo. PloS One 6, e23089 (2011).

15. Mendez, R. et al. HLA and melanoma: multiple alterations in HLA class I and II
expression in human melanoma cell lines from ESTDAB cell bank. Cancer
Immunol. Immunother. CII 58, 1507–1515 (2009).

16. Méndez, R. et al. Characterization of HLA class I altered phenotypes in a panel
of human melanoma cell lines. Cancer Immunol. Immunother. CII 57, 719–729
(2008).

17. Coenen, M. J. H. et al. Common and different genetic background for
rheumatoid arthritis and coeliac disease. Hum. Mol. Genet. 18, 4195–4203
(2009).

18. Hinks, A. et al. Investigation of type 1 diabetes and coeliac disease susceptibility
loci for association with juvenile idiopathic arthritis. Ann. Rheum. Dis. 69,
2169–2172 (2010).

19. Jin, Y. et al. Variant of TYR and autoimmunity susceptibility loci in generalized
vitiligo. N. Engl. J. Med. 362, 1686–1697 (2010).

20. Hinds, D. A. et al. A genome-wide association meta-analysis of self-reported
allergy identifies shared and allergy-specific susceptibility loci. Nat. Genet. 45,
907–911 (2013).

21. Grunewald, T. G., Pasedag, S. M. & Butt, E. Cell adhesion and transcriptional
activity—defining the role of the novel protooncogene LPP. Transl. Oncol. 2,
107–116 (2009).

22. Weber, A. et al. Proapoptotic signalling through Toll-like receptor-3
involves TRIF-dependent activation of caspase-8 and is under the control
of inhibitor of apoptosis proteins in melanoma cells. Cell Death Differ. 17,
942–951 (2010).

23. Burguete, A. S., Sivars, U. & Pfeffer, S. Purification and analysis of TIP47
function in Rab9-dependent mannose 6-phosphate receptor trafficking.
Methods Enzymol. 403, 357–366 (2005).

24. Than, G. N. et al. Overexpression of placental tissue protein 17b/TIP47
in cervical dysplasias and cervical carcinoma. Anticancer Res. 21, 639–642
(2001).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12510

8 NATURE COMMUNICATIONS | 7:12510 | DOI: 10.1038/ncomms12510 | www.nature.com/naturecommunications

http://www.broadinstitute.org/mpg/snap/ldsearchpw.php
http://www.broadinstitute.org/mpg/snap/ldsearchpw.php
http://www.nature.com/icogs/primer/common-variation-and-heritability-estimates-for-breast-ovarian-and-prostate-cancers/#70
http://www.nature.com/icogs/primer/common-variation-and-heritability-estimates-for-breast-ovarian-and-prostate-cancers/#70
http://www.broadinstitute.org/mammals/haploreg/haploreg.php
http://www.ncbi.nlm.nih.gov/geo/
https://cran.r-project.org/web/packages/forestplot/forestplot.pdf
http://www.dhinds@23andMe.com
www.channing.harvard.edu/nhs
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.nature.com/naturecommunications


25. Abdulkhalek, S. et al. Neu1 sialidase and matrix metalloproteinase-9 cross-talk
is essential for Toll-like receptor activation and cellular signaling. J. Biol. Chem.
286, 36532–36549 (2011).

26. Antonicelli, F., Bellon, G., Lorimier, S. & Hornebeck, W. Role of the elastin
receptor complex (S-Gal/Cath-A/Neu-1) in skin repair and regeneration.
Wound Repair Regen. Off. Publ. Wound Heal. Soc. Eur. Tissue Repair Soc. 17,
631–638 (2009).

27. Kwak, J. E., Son, M.-Y., Son, Y. S., Son, M. J. & Cho, Y. S. Biochemical and
molecular characterization of novel mutations in GLB1 and NEU1 in patient
cells with lysosomal storage disorders. Biochem. Biophys. Res. Commun. 457,
554–560 (2015).

28. Ren, L.-R. et al. Effects of sialidase NEU1 siRNA on proliferation, apoptosis,
and invasion in human ovarian cancer. Mol. Cell. Biochem. 411, 213–219
(2016).

29. Seldin, M. F. et al. Genome-wide association study of late-onset myasthenia
gravis: confirmation of TNFRSF11A, and identification of ZBTB10 and three
distinct HLA associations. Mol. Med. Camb. Mass. 21, 769–781 (2015).

30. Tone, M., Powell, M. J., Tone, Y., Thompson, S. A. & Waldmann, H. IL-10 gene
expression is controlled by the transcription factors Sp1 and Sp3. J. Immunol.
Baltim. Md 1950 165, 286–291 (2000).

31. Tillotson, L. G. RIN ZF, a novel zinc finger gene, encodes proteins that bind to
the CACC element of the gastrin promoter. J. Biol. Chem. 274, 8123–8128
(1999).

32. Lai, Y. et al. The microRNA-27a: ZBTB10-specificity protein pathway is
involved in follicle stimulating hormone-induced VEGF, Cox2 and survivin
expression in ovarian epithelial cancer cells. Int. J. Oncol. 42, 776–784 (2013).

33. Takayama, K.-I. et al. Integrative analysis of FOXP1 function reveals a tumor-
suppressive effect in prostate cancer. Mol. Endocrinol. Baltim. Md 28, 2012–
2024 (2014).

34. Levine, D. M. et al. A genome-wide association study identifies new
susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat.
Genet. 45, 1487–1493 (2013).

35. Koon, H. B., Ippolito, G. C., Banham, A. H. & Tucker, P. W. FOXP1: a potential
therapeutic target in cancer. Expert Opin. Ther. Targets 11, 955–965 (2007).

36. Ripka, S. et al. Glutamate receptor GRIA3—target of CUX1 and mediator
of tumor progression in pancreatic cancer. Neoplasia N. Y. N 12, 659–667
(2010).

37. Fan, X. et al. The transcription factor CUTL1 is associated with proliferation
and prognosis in malignant melanoma. Melanoma Res. 24, 198–206 (2014).

38. Al Olama, A. A. et al. A meta-analysis of 87,040 individuals identifies 23 new
susceptibility loci for prostate cancer. Nat. Genet. 46, 1103–1109 (2014).

39. Qian, X. et al. The Tensin-3 protein, including its SH2 domain, is
phosphorylated by Src and contributes to tumorigenesis and metastasis. Cancer
Cell 16, 246–258 (2009).

40. Chen, X. et al. RNASET2 tag SNP but not CCR6 polymorphisms is associated
with autoimmune thyroid diseases in the Chinese Han population. BMC Med.
Genet. 16, 11 (2015).

41. Lualdi, M. et al. Pleiotropic modes of action in tumor cells of RNASET2, an
evolutionary highly conserved extracellular RNase. Oncotarget 6, 7851–7865
(2015).

42. Monti, L. et al. RNASET2 as a tumor antagonizing gene in a melanoma cancer
model. Oncol. Res. 17, 69–74 (2008).

43. Wang, Q. et al. Stress-induced RNASET2 overexpression mediates melanocyte
apoptosis via the TRAF2 pathway in vitro. Cell Death Dis. 5, e1022 (2014).

44. Sand, M. et al. Long-noncoding RNAs in basal cell carcinoma. Tumour Biol. J.
Int. Soc. Oncodevelopmental Biol. Med. 37, 1–14 (2016).

45. Lessard, L. et al. The CASC15 long intergenic noncoding RNA locus is involved
in melanoma progression and phenotype switching. J. Invest. Dermatol. 135,
2464–2474 (2015).

46. Visser, M., Palstra, R.-J. & Kayser, M. Human skin color is influenced by an
intergenic DNA polymorphism regulating transcription of the nearby BNC2
pigmentation gene. Hum. Mol. Genet. 23, 5750–5762 (2014).

47. Jacobs, L. C. et al. A genome-wide association study identifies the skin color
genes IRF4, MC1R, ASIP, and BNC2 influencing facial pigmented spots.
J. Invest. Dermatol. 135, 1735–1742 (2015).

48. Eriksson, N. et al. Web-based, participant-driven studies yield novel genetic
associations for common traits. PLoS Genet. 6, e1000993 (2010).

49. Durand, E. Y., Do, C. B., Mountain, J. L. & Macpherson, J. M. Ancestry
Composition: A Novel, Efficient Pipeline for Ancestry Deconvolution (2014).

50. Henn, B. M. et al. Cryptic distant relatives are common in both isolated and
cosmopolitan genetic samples. PloS One 7, e34267 (2012).

51. 1000 Genomes Project Consortium et al. A map of human genome variation
from population-scale sequencing. Nature 467, 1061–1073 (2010).

52. Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and
missing-data inference for whole-genome association studies by use of localized
haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

53. Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype
imputation. Bioinforma. Oxf. Engl. 31, 782–784 (2015).

54. Jorgenson, E. et al. A genome-wide association study identifies four
novel susceptibility loci underlying inguinal hernia. Nat. Commun. 6, 10130
(2015).

55. Hu, Y. et al. GWAS of 89,283 individuals identifies genetic variants
associated with self-reporting of being a morning person. Nat. Commun. 7,
10448 (2016).

56. Yu, K. et al. Population substructure and control selection in genome-wide
association studies. PLoS One 3, e2551 (2008).

57. Colditz, G. A. et al. Validation of questionnaire information on risk factors and
disease outcomes in a prospective cohort study of women. Am. J. Epidemiol.
123, 894–900 (1986).

58. Hunter, D. J. et al. Risk factors for basal cell carcinoma in a prospective cohort
of women. Ann. Epidemiol. 1, 13–23 (1990).

59. van Dam, R. M. et al. Risk factors for basal cell carcinoma of the skin in men:
results from the health professionals follow-up study. Am. J. Epidemiol. 150,
459–468 (1999).

60. Han, J., Colditz, G. A. & Hunter, D. J. Risk factors for skin cancers: a nested
case-control study within the Nurses’ Health Study. Int. J. Epidemiol. 35,
1514–1521 (2006).

61. Price, A. L. et al. Principal components analysis corrects for stratification in
genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

62. Johnson, A. D. et al. SNAP: a web-based tool for identification and anno-
tation of proxy SNPs using HapMap. Bioinforma. Oxf. Engl. 24, 2938–2939
(2008).

63. Law, M. H. et al. Genome-wide meta-analysis identifies five new
susceptibility loci for cutaneous malignant melanoma. Nat. Genet. 47, 987–995
(2015).

64. Berlin, N. L. et al. Family history of skin cancer is associated with early-onset
basal cell carcinoma independent of MC1R genotype. Cancer Epidemiol. 39,
1078–1083 (2015).

65. Wang, J. et al. Sequence features and chromatin structure around the genomic
regions bound by 119 human transcription factors. Genome Res. 22, 1798–1812
(2012).

66. Ward, L. D. & Kellis, M. HaploReg: a resource for exploring chromatin states,
conservation, and regulatory motif alterations within sets of genetically linked
variants. Nucleic Acids Res. 40, D930–D934 (2012).

67. Ernst, J. et al. Mapping and analysis of chromatin state dynamics in nine
human cell types. Nature 473, 43–49 (2011).

68. ENCODE Project Consortium. A user’s guide to the encyclopedia of DNA
elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

69. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in
the human genome. Nature 489, 57–74 (2012).

70. Chadwick, L. H. The NIH Roadmap Epigenomics Program data resource.
Epigenomics 4, 317–324 (2012).

71. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus: NCBI
gene expression and hybridization array data repository. Nucleic Acids Res. 30,
207–210 (2002).

72. Jee, B. A. et al. Molecular classification of basal cell carcinoma of skin by gene
expression profiling. Mol. Carcinog. 54, 1605–1612 (2015).

73. Riker, A. I. et al. The gene expression profiles of primary and metastatic
melanoma yields a transition point of tumor progression and metastasis. BMC
Med. Genomics 1, 13 (2008).

74. Davis, S. & Meltzer, P. S. GEOquery: a bridge between the Gene Expression
Omnibus (GEO) and BioConductor. Bioinforma. Oxf. Engl. 23, 1846–1847
(2007).

75. Pruim, R. J. et al. LocusZoom: regional visualization of genome-wide
association scan results. Bioinforma. Oxf. Engl. 26, 2336–2337 (2010).

76. Gordon, M. Package ‘forestplot’. Advanced Forest Plot Using ‘grid’ Graphics
(2016).

77. Freidlin, B., Zheng, G., Li, Z. & Gastwirth, J. L. Trend tests for case-control
studies of genetic markers: power, sample size and robustness. Hum. Hered. 53,
146–152 (2002).

Acknowledgements
We would like to thank the research participants and employees of 23andMe for making
this work possible. Additionally, we would like to thank Constance Chen for her tech-
nical support and the participants and staff of the Nurses’ Health Study, the Health
Professionals Follow-Up Study for their valuable contributions as well as the following
state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN,
IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN,
TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation
of these data. This work was supported by the National Human Genome Research
Institute of the National Institutes of Health (grant number R44HG006981), and in
part by NIH R01 CA49449, P01 CA87969, UM1 CA186107, UM1 CA167552, Stanford
Medical Scholars Research Program (H.C.), Stanford TRAM (Translational Research and
Applied Medicine program), and the Dermatology Foundation Career Development
Award (K.S.).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12510 ARTICLE

NATURE COMMUNICATIONS | 7:12510 | DOI: 10.1038/ncomms12510 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


Author contributions
J.H., K.S. and J.T. designed and oversaw the study. W.W., H.C., J.H., D.H. and K.S. were
responsible for quality control, manuscript writing and data-analyses. J.H., D.H., P.K.,
W.L. and A.Q. contributed to data acquisition. K.R., J.T., K.S. and H.C. carried out survey
validation collection and analysis. Bioinformatics analyses were carried out by W.W.,
H.C., D.H., Y.L., H.D., J.H. and K.S. Especially major contributions to writing and editing
were made by W.W., H.C., J.H., K.S., D.H. and J.T. All authors contributed to and
critically reviewed the manuscript.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: David Hinds is an employee at 23andMe. The remaining
authors declare no competing financial interests.

Reprints and permission information is available at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Chahal, H. S. et al. Genome-wide association study identifies
14 novel risk alleles associated with basal cell carcinoma. Nat. Commun. 7:12510
doi: 10.1038/ncomms12510 (2016).

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2016

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12510

10 NATURE COMMUNICATIONS | 7:12510 | DOI: 10.1038/ncomms12510 | www.nature.com/naturecommunications

http://www.dhinds@23andMe.com
http://www.dhinds@23andMe.com
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Stage 1 analysis
	Stage 2 and combined meta-analysis
	Heritability of BCC and gene expression analysis

	Figure™1Manhattan plot of stage 1 GWAS analysis of BCC from 23andMe data set.Total stage 1 GWAS analysis included 12,945 cases and 274,252 controls. Loci with smallest Plt10-6 (28 total, logistic regression) are labelled with the name of the nearest gene
	Gene-environment interaction analysis

	Table 1 
	Table 2 
	Discussion
	Figure™2Gene expression analysis for novel BCC susceptibility loci.Processed microarray expression data were obtained from Gene Expression Omnibus (GSE53462, blue, and GSE7553, orange). Transcript levels in BCC samples were compared to levels in normal sk
	Table 3 
	Methods
	Stage 1 study design and population
	Stage 1 genome-wide association analysis
	Stage 1 genotyping and quality control
	Stage 1 associations using nearest genotyped SNP
	Stage 1 subset analyses
	Stage 1 phenotype categorization
	Sensitivity and specificity of stage 1 self-reported data
	Stage 2 study design and population
	Stage 2 genotyping and quality control
	Sensitivity analysis in stage 2
	Stage 2 phenotype categorization
	Validity of stage 2 self-reported data
	Stage 2 genome-wide association analysis
	Phenotype and environmental factors
	Statistical models for pigmentation and UV exposure
	Meta-analysis
	Proportion of familial relative risk
	Regulatory function of novel variants
	Gene expression analysis
	Regional association and forest plots
	Power calculations
	Data availability

	KauvarA. N. B.Consensus for nonmelanoma skin cancer treatment: basal cell carcinoma, including a cost analysis of treatment methodsDermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. Al.415505712015StaceyS. N.Common variants on 1p36 and 1q42 are associate
	We would like to thank the research participants and employees of 23andMe for making this work possible. Additionally, we would like to thank Constance Chen for her technical support and the participants and staff of the NursesCloseCurlyQuote Health Study
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




