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Statistical inference for time course
RNA-Seq data using a negative binomial
mixed-effect model
Xiaoxiao Sun1, David Dalpiaz2, Di Wu3, Jun S. Liu3, Wenxuan Zhong1 and Ping Ma1*

Abstract

Background: Accurate identification of differentially expressed (DE) genes in time course RNA-Seq data is crucial for
understanding the dynamics of transcriptional regulatory network. However, most of the available methods treat
gene expressions at different time points as replicates and test the significance of the mean expression difference
between treatments or conditions irrespective of time. They thus fail to identify many DE genes with different profiles
across time. In this article, we propose a negative binomial mixed-effect model (NBMM) to identify DE genes in time
course RNA-Seq data. In the NBMM, mean gene expression is characterized by a fixed effect, and time dependency is
described by random effects. The NBMM is very flexible and can be fitted to both unreplicated and replicated time
course RNA-Seq data via a penalized likelihood method. By comparing gene expression profiles over time, we further
classify the DE genes into two subtypes to enhance the understanding of expression dynamics. A significance test for
detecting DE genes is derived using a Kullback-Leibler distance ratio. Additionally, a significance test for gene sets is
developed using a gene set score.

Results: Simulation analysis shows that the NBMM outperforms currently available methods for detecting DE genes
and gene sets. Moreover, our real data analysis of fruit fly developmental time course RNA-Seq data demonstrates the
NBMM identifies biologically relevant genes which are well justified by gene ontology analysis.

Conclusions: The proposed method is powerful and efficient to detect biologically relevant DE genes and gene sets
in time course RNA-Seq data.

Keywords: Differentially expressed gene, Gene set enrichment, Analysis of variance, Smoothing spline, Penalized
likelihood

Background
RNA-sequencing (RNA-Seq) technology has become a
preferred choice for studying transcriptomes [1, 2].
Compared to microarray, RNA-Seq provides a single
nucleotide level measurement of mRNA expression lev-
els. It offers the chance to detect novel transcripts by
obtaining tens of millions of short reads. When mapped
to the genome or reference transcripts, RNA-Seq data
are summarized by a number of read counts. The huge
number of read counts enables researchers to quantify
transcriptomes in ultra-high resolution [3, 4].
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To study the dynamics of genome-wide mRNA expres-
sion levels during a biological process, e.g., development,
researchers often conduct time course RNA-Seq experi-
ments. As in static RNA-Seq experiments (RNA-Seq taken
irrespective of time), identifying differentially expressed
(DE) genes across different treatments or conditions is still
a key task in time course RNA-Seq experiments. Infer-
ring DE genes in time course RNA-Seq experiments has
a number of interesting challenges. First, the DE genes in
time course data are those with different gene expression
profiles along the time across treatments or conditions.
However, most of the available methods treat expres-
sions of a gene at different time points as replicates and
test the significance of the mean expression difference
between treatments or conditions irrespective of time,
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e.g., edgeR [5] and DESeq [6]. They thus fail to iden-
tify many DE genes with different profiles across time.
Second, some methods have been developed recently to
identify the DE genes with different expression profiles
over time. A recent work by Oh et al. [7] models time
dependency using a hidden Markov model. Such a model
requires the Markov property. In particular, the Markov
property states that the conditional dependency of prior
information from all time can be simplified to the condi-
tional dependency of prior information of k time points
(kth order Markov chain). It is still unclear whether such
Markov property holds for general time course RNA-Seq
data. Finally, both edgeR and DESeq use the total read
counts of each gene and model the variation of the read
counts across the replicates at gene level. When RNA-Seq
experiments do not have replicates or the number of repli-
cates is small, the statistical significance tests in edgeR and
DESeq have small degrees of freedom and may result in a
high false discovery rate (FDR).
To surmount these challenges, we develop a novel sta-

tistical method to identify DE genes in this article. The
input of our method is the read counts at the exon level
for each gene at each time point. The read counts of genes
at the exon level across different time points are mod-
eled by a negative binomial mixed-effect model (NBMM).
In this model, the mean gene expression profiles over
time across treatments are modeled by a nonparamet-
ric bivariate function of time and treatments, while the
time dependency is characterized by a parametric ran-
dom effect. The nonparametric bivariate function has
great flexibility in modeling different expression profiles

over possibly non-equally spaced time points across treat-
ments and conditions. The parametric random effects are
used to define a variety of time dependency correlation
structures. The model is fitted by a penalized likelihood
method. In order to identify DE genes unique to time
course experiments, we define two types of DE genes in
time course RNA-Seq experiments: nonparallel differen-
tially expressed (NPDE) genes with nonparallel expression
profiles over time across treatments, see Fig. 1, and par-
allel differentially expressed (PDE) genes with parallel
expression profiles over time across treatments, see Fig. 2.
PDE genes are those consistently up-regulated or down-
regulated over time across treatments, whereas NPDE
genes are those that have significant expression profile
changes over time across treatments. Compared with PDE
genes, in many scientific investigations, NPDE genes are
of primary interest. Focused study of the NPDE genes may
provide more information on how the cell responds differ-
ently to different stimulus or treatments. Moreover, time
course RNA-Seq experiments are commonly used in case-
control studies and in clinical trials. In such experiments,
mRNA samples are taken from a small number of sub-
jects over time in the treatment group and from another
small number of subjects in the control group. Because
each group only consists of a small number of subjects,
one subject with high baseline gene expression can cause
a high average gene expression for the whole group. Thus,
there are many PDE genes between treatments, but they
are biologically irrelevant [8]. To distinguish the two types
of DE genes, we decompose the nonparametric bivariate
function in our model into the main effects of time and

Fig. 1 NPDE gene. Gene ss (FlyBase ID: FBgn0003513) was identified as non-parallel differentially expressed with p value=0.00. Different exons are
represented by curves with varying colors. This gene participates in antennal development, antennal morphogenesis, and imaginal disc-derived leg
segmentation. Read counts on the y-axis are the average counts (The total read counts on each exon divided by the length of exon). The left panel
and right panel represent the early and late embryonic developmental stages respectively
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Fig. 2 PDE gene. Gene Idgf2 (FlyBase ID: FBgn0020415) was identified as parallel differentially expressed with p value=0.00. Different exons are
represented by curves with varying colors. This gene participates in imaginal disc development. Read counts on the y-axis are the average counts
(The total read counts on each exon divided by the length of exon). The left panel and right panel represent the early and late embryonic
developmental stages respectively

treatment separately, as well as their interaction through a
functional ANOVA decomposition. The identification of
DE genes is equivalent to testing significance of treatment-
time interactions in the functional ANOVA decompo-
sition. We fit this model to the exon level read counts
data using penalized maximum likelihood. The tuning
parameter is selected by cross-validation [9].

Methods
Nonparametric model and penalized likelihoodmethod
We first provide a short review of nonparametric model
and penalized likelihood method. Consider the nonpara-
metric model for data points (ti, yi),

yi = η(ti) + εi, i = 1, · · · ,T , (1)

where η is the mean function and random noise εi are
independently Gaussian distributed. When η is assumed
to be of form η(ti) = tiβ , which is linear in β , one has a
standard linearmodel. The disadvantage of linearmodel is
illustrated by a toy example, where we generated 100 data
points, faded circles in Fig. 3, from a nonlinear function.
The linear model fit, the dashed straight line in Fig. 3, does
not provide a good fit. Since linear model is too restric-
tive to model nonlinear function, we allow η to vary in
a high-dimensional functional space, leading to diverse
nonparametric estimators.
An approach to the estimation of η is via the minimiza-

tion of negative log likelihood,
T∑
i=1

[
yi − η(ti)

]2 . (2)

Without any constraint, the minimizer η̂ in (2) simply
interpolates the data and has no predicting power, see
the faded line in Fig. 3. To avoid this problem, one uses
penalized likelihood to get a smoothing estimator of η via
minimization of

T∑
i=1

[
yi − η(ti)

]2 + λ

∫ [
η

′′
(t)

]2
dt, (3)

where η
′′ is the second derivative and characterizes the

smoothness of η, λ is a smoothing parameter, which con-
trols the trade-off between the lack of fit of the nonpara-
metric model and the roughness of η. To select the proper
λ, researchers often use generalized cross validation [10].
An adequate fit by a proper selected λ is illustrated by the
solid curve in Fig. 3.

Negative binomial mixed-effect model
In time course RNA-Seq experiments, the short read
counts cannot be adequately modeled by independent
Gaussian distribution. We extend the aforementioned
modeling strategy to develop a negative binomial mixed-
effect model (NBMM) for modeling time course RNA-Seq
data.

Themodel specification
Suppose the time course RNA-Seq experiments are con-
ducted across G conditions/treatments. For each gene,
the mapped read counts on exon k at time ti in condi-
tion/treatment g, denoted by Yigk , are assumed to follow a
negative binomial distribution (NegBin),

Yigk ∼ NegBin(ν, p(ti, g, k)), (4)
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Fig. 3 Curve fitting examples. The curve fitted using penalized likelihood is in the solid line and the linear fit is in dashed line, with the interpolation
fit superimposed in faded line and the data in circles

where the negative binomial distribution has the probabil-
ity distribution,

P(Yigk = y) = �(ν + y)
y!�(ν)

p(ti, g, k)ν(1 − p(ti, g, k))y, (5)

where ν is a nuisance parameter, which is the number of
reads that cannot be mapped to the reference genome,
and 1 − p(ti, g, k) is the probability that a read is mapped
to exon k in condition g at time ti, g = 1, · · · ,G, i =
1, · · · , ng , k = 1, · · · ,K . In this setting, ng is the number
of time points in the gth condition, and K is the num-
ber of exons. In most cases, we only have two treatments:
case and control or mutant and wild type (G = 2). To
model the time trend and capture the time dependence,
we use a nonparametricmixed-effect model with logit link
([11], p.199)

log{p(ti, g, k)/(1−p(ti, g, k))} = log(βti,g)+η(ti, g)+zkbk ,
(6)

where βti,g is the effective library size, used in edgeR [12],
of the tith time point, mean expression η is assumed to
be a smooth function of time t for each treatment g, zk
is the length of the kth exon, bk represents the exon spe-
cific random effect to model the intra-exon variation with
bk ∼ N(0, σ 2), and the random effect variance σ 2 is to
be estimated from the data. The log(βti,g) term provides
a convenient device to normalize the reads to a common
scale.

In model (6), the bivariate function η is decomposed as

η(t, g) = η∅ + η1(t) + η2(g) + η1,2(t, g), (7)

where η∅ is the baseline expression irrespective of time
and treatment, η1(t) is the time effect at time t, η2(g) is the
treatment effect of the gth condition, and η1,2(t, g) is the
interaction between time and treatment effects. The time
and treatment effects are defined as the deviation from
the baseline expression, and, therefore,

∫ T
0 η1(t)dt = 0

and
∑G

g=1 η2(g) = 0. Analogously, the time-treatment
interaction is defined as

∫ T
0 η1,2(t, g)dt = 0 for all g,

and
∑G

g=1 η1,2(t, g) = 0 for all t. This decomposition
is referred to as the functional ANOVA decomposition
[11, 13]. If the time-treatment interaction term η1,2(t, g) is
significant, we have η(t, g1) − η(t, g2) = η2(g1) − η2(g2) +
η1,2(t, g1) − η1,2(t, g2) for every t. In the right hand side,
the first two terms are constants and the remaining terms
vary with t. When the time-treatment interaction η1,2(t, g)
is not significant in (7), the model reduces to

η(t, g) = η∅ + η1(t) + η2(g), (8)

which produces the parallel population mean time course
profiles for different treatment conditions, i.e., η(t, g1) −
η(t, g2) = η2(g1) − η2(g2) for each t, where the right hand
side of the equation is a constant which does not vary
with t. To distinguish the expression profiles, we define
the genes with significant time-treatment interaction term
in (7), i.e., η1,2(t, g) �= 0, as non-parallel differentially
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expressed (NPDE) genes. If genes have a significant main
effect in treatment g but no time-treatment interaction in
(7), i.e., η2(g) �= 0 and η1,2(t, g) = 0, we define those as
parallel differentially expressed (PDE) genes [8].

Estimation
By (5), one has a minus log likelihood

K∑
k=1

G∑
g=1

ng∑
i=1

{
(ν + Yigk) log

(
1 + elog{p(ti,g,k)/(1−p(ti,g,k))}

)

−ν log
{
p(ti, g, k)/(1−p(ti, g, k))

}}
.

(9)

Substituting (6) into (9), we get the minus log likeli-
hood of Y conditioning on random effects b, where Y =
(Y111, · · · ,YnG ,G,K )T , and b = (b1, · · · , bK )T . Therefore,
the (Henderson) likelihood [14] of (Y,b) is

log(fy|b(Y|b)fb(b))

∝
K∑

k=1

G∑
g=1

ng∑
i=1

{
(ν+Yigk) log

(
1+elog(βti )+η(ti ,g)+zkbk

)

− ν
[
log(βti )+η(ti, g)+zkbk

]}+
K∑

k=1
b2k/σ

2.

(10)

In (10), the fy|b denotes the conditional distribution (neg-
ative binomial) of Y given b, and fb denotes the distri-
bution (normal) of b. In the end, we derive a penalized
(Henderson) likelihood ([9], p.486) as

K∑
k=1

G∑
g=1

ng∑
i=1

{
(ν+Yigk)log

(
1+elog(βti )+η(ti ,g)+zkbk

)

− ν
[
log(βti )+η(ti,g)+zkbk

]}+
K∑

k=1
b2k/σ

2+NλJ(η),
(11)

where N = ∑K
k=1

∑G
g=1 ng , the quadratic functional J(η)

quantifies the smoothness of η, and the smoothing param-
eter λ controls the trade-off between the goodness-of-fit
and the smoothness of η. The minimization of (11) is per-
formed in a reproducing kernel Hilbert space H ⊆ {η :
J(η) < ∞}, in which J(η) is a square semi-norm [13]. For
model (6) with functional ANOVA (7), we employ the fol-
lowing quadratic penalty, which produces a cubic spline
estimate,

J(η)=θ−1
1

∫ T

0

(
d2η1/dt2

)2dt+θ−1
1,2

∫ T

0

G∑
g=1

(
d2η1,2/dt2

)2dt,
(12)

where θ1 and θ1,2 are extra smoothing parameters that
adjust the relative penalties on the roughness of different

components. See detailed examples in Sect. 2.4 of [11]. For
model (6) with functional ANOVA (8), we use penalty

J(η) =
∫ T

0

(
d2η1/dt2

)2 dt. (13)

To perform the penalized likelihood estimation of (11),
we implement two nested iterative loops [9]. Fixing the
smoothing parameter, the inner loop minimizes (11), and
the outer loop estimates the smoothing parameters and
variance of random effects via the minimization of cer-
tain cross-validation score, see [9] for details. For fixed
smoothing parameter λ, (11) can be minimized through
Newton iteration. Write

ligk(ζigk) = (ν + Yigk) log(1 + eζigk ) − νζigk , (14)

where ζigk = log(βti) + η(ti, g) + zkbk . The quadratic
approximation of ligk(ζigk) at ζ̃igk is

ligk(ζigk)≈ ligk (̃ζigk)+μ̃igk(ζigk−ζ̃igk) + ω̃igk(ζigk − ζ̃igk)
2/2

= ω̃igk(Ỹigk − ζigk)
2/2 + Eigk ,

(15)

where Ỹigk = ζ̃igk − μ̃igk/ω̃igk and Eigk is independent of
ζigk ; μ̃igk = (ν + Yigk )̃p(ti, g, k) − ν and ω̃igk = ν(1 −
p̃(ti, g, k)). The Newton iteration can thus be performed
via iterated weighted least squares,

K∑
k=1

G∑
g=1

ng∑
i=1

ω̃igk(Ỹigk − log(βti) + η(ti, g) + zkbk)2

+
K∑

k=1
b2k/σ

2 + NλJ(η).

(16)

Since ν is unknown, we estimate it from data. We apply
the log operation to (5), and drop the terms that do not
involve ν to get the individual objective function. Then
the joint objective function is the sum of minus individual
objective functions,

1
N

K∑
k=1

G∑
g=1

ng∑
i=1

{
log(�(ν))−log�(ν + Yigk)−ν log(p(ti, g, k))

}
,

(17)

where � is the gamma function. Given (Yigk , p(ti, g, k)),
one estimates ν via the minimization of (17). We iterate
between the estimations of η and ν in (11) and (17) [11].

Significance testing for individual gene
Once the model (6) is fitted to the exon level read counts
data, we identify NPDE and PDE genes by testing the
significance of the interaction and main effects in (7).
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To identify NPDE genes, we test the significance of the
time-treatment interaction in (7), which is,

H0 : η1,2(t, g) = 0; H1 : η1,2(t, g) �= 0. (18)

To derive the needed test statistic, we first define the
Kullback-Leibler distance [11]

KL(η, η̂)

= 1
N

K∑
k=1

G∑
g=1

ng∑
i=1

{
ν

p(ti, g, k)
log

1 − p(ti, g, k)
1 − p̂(ti, g, k)

+ν(η(ti, g) − η̂(ti, g))
}
.

(19)

Then, we use the following Kullback-Leibler distance ratio
(KLR) [15] as our test statistic

KLR = KL(η̂F , η̂R)
KL(η̂F , ηC)

, (20)

where η̂F stands for a full model estimate given that H1
is true in the ANOVA decomposition (7), and η̂R repre-
sents a reduced model estimate under the hypothesis that
H0 is true in (7). Analogously, we define ηC as a constant
function. For genes that are not considered as NPDE by
the preceding test, we further investigate whether they are
PDE or not. In model (6) with functional ANOVA (8), we
are interested in testing

H0 : η2(g) = 0; H1 : η2(g) �= 0. (21)

In testing for PDE genes, the full model estimate η̂F does
not include a time-treatment interaction, and η̂R only has
an overall mean and time effect in (8).
The p values for identifying NPDE and PDE genes are

calculated through a permutation procedure. First, we
compute a Kullback-Leibler distance ratio KLR for a gene.
Second, the time labels for the gene are shuffled, and we
recompute the statistic for the shuffled gene. We repeat
the second step B times to obtain KLR∗

1, · · ·KLR∗
B. In the

end, the p value for the gene is given by,

#
{
KLR∗

i > KLR, i = 1, · · · ,B
}
/B, (22)

where #{·} represents the cardinality of the set, i.e., the
number of permuted KLR∗s which is larger than the KLR.

Gene set significance testing
In many studies, researchers are not only interested in
identifying individual DE genes, but also in finding DE
gene sets. A gene set may be defined by known biologi-
cal information, for instance, a group of genes within the
same biological pathway. Since genes within the same gene
set are closely related, we increase statistical power of sig-
nificance tests by borrowing information across genes. In
addition, we obtain more robust results from gene sets
than from individual genes. Subramanian et al. [16] pro-
posed an approach named Gene Set Enrichment Analysis
(GSEA), which tested the significance of pre-defined gene

sets through a Kolmogorov-Smirnov like test. Efron and
Tibshirani [17] proposed gene set analysis (GSA), which
was shown tomake a significant improvement over GSEA.
Following the ideas fromGSEA andGSA, we test for sig-

nificant NPDE gene sets via the following steps. Initially,
pre-defined gene sets S1, S2, . . . , SP are collected. Then, we
compute the Kullback-Leibler distance ratio KLR based
on (20) for all genes. For each gene set, Sk , we calcu-
late a gene set score, Rk , defined as the average of the
Kullback-Leibler distance ratios in (20),

Rk =
∑
i∈Sk

KLRi/#{Sk}, (23)

where #{Sk} is the number of genes in gene set Sk . The
gene set score Rk defines an enrichment test statistic, with
a larger value of Rk suggesting a greater enrichment of
NPDE genes. The PDE gene sets can be tested in the same
way.
To test the significance of the gene set, a threshold is

needed. The following permutation procedure is used to
determine the threshold, and gene sets with values of Rk
above the threshold are declared significant. In particu-
lar, we shuffle the time label for each gene and recompute
the statistic for each permuted gene. We utilize formula
(23) to calculate the permuted gene set scores R∗

1, · · · ,R∗
B,

where B is permutation times. In the end, we calculate the
p value of the kth gene set, given by,

#
{
R∗
i > Rk , i = 1, · · · ,B

}
/B. (24)

Results
Simulation study
We evaluated the performance of the proposed method
by carrying out extensive analysis on simulated datasets.
Datasets were generated from both the NBMMmodel and
an RNA-Seq simulator. All p values were adjusted by Ben-
jamini and Hochberg (BH) method for multiple testing
corrections [18].

Single gene simulation
We simulated exon level read counts according to Eqs. (4),
(5) and (6). The effective library sizes of all time points
were estimated by edgeR. We have three settings in this
section. For each setting, bk ∼ N(0, 1), k = 1, 2, 3,
accounts for variation of different exons, z1 = 0.1, z2 =
0.25 and z3 = 0.4 and ν is set to be 1000 for all those set-
tings. Each exon was simulated with both single replicate
and three replicates.

First setting: linear pattern. In the first setting, we gen-
erated exon level read counts of DE genes, see the top
panel in the Fig. 4, using the following function,

η(ti, g) = C((0.9 − 2ti)I[g=2] + ti), (25)
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Fig. 4 Simulated read counts. Simulated read counts generated from a negative binomial distribution. Samples of DE genes in the first, second and
third setting are shown in the top, middle and bottom panel respectively. Different exons are represented by curves with varying colors

where ti = i/10, i = 1, 2 · · · , 8, g = 1, 2, and C = 2 is
a scale factor, I[g=2] is an indicator function which equals
one when g = 2 and zero otherwise.

Second setting: exponential pattern In the second set-
ting, we simulated exon level read counts of DE genes, see
the middle panel in the Fig. 4, using the following smooth
function,

η(ti, g) = exp
{
104F11

1 F6
2 + 102F3

1F
9
2 + Cg

}
, (26)

where F1 = (0.9− 2ti)I[g=2] + ti, F2 = 0.1I[g=2] + I[g=1] +
(1 − 2I[g=1])ti, and C1 = C2 = 1. The constants Cg , g =
1, 2, define fixed reference expression levels for different
conditions.

Third setting: cyclic pattern In the third setting, exon
level read counts of DE genes, see the bottom panel

in Fig. 4, were generated using the following smooth
function,

η(ti, g) = sin(2.5π((0.9 − 2ti)I[g=2] + ti) + 2. (27)

There were two scenarios in each setting. In the first sce-
nario, we simulated time course exon level read counts of
50 genes. Half of the genes were DE genes generated by
the above mean functions, and the remaining genes were
generated as non-differentially expressed (NDE) genes by
using the same mean function for different conditions.
In the second scenario, 25 DE genes had the same pro-
files as those in the first scenario and 225 NDE genes
were modeled as flat profiles. We compared the NBMM
with threemethods, maSigPro [19], DyNB [20] and edgeR.
The former two methods are designed for time course
data. Analysis followed the steps described in the R pack-
age documentation and unless stated otherwise default
parameters were used.
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Table 1 The FDR and FNR of all methods for detecting DE genes in simulation studies. If the method failed to report any significant
genes, the FDR was NA and FNR was 0.50 for scenario 1 and 0.09 for scenario 2

Setting 1 Setting 2 Setting 3

FDR FNR FDR FNR FDR FNR

NBMM

Scenario 1
1 Rep 0.00 0.00 0.00 0.17 0.00 0.14

3 Rep 0.00 0.00 0.00 0.00 0.00 0.14

Scenario 2
1 Rep 0.07 0.00 0.00 0.02 0.21 0.02

3 Rep 0.16 0.00 0.15 0.01 0.09 0.02

maSigPro

Scenario 1
1 Rep 0.11 0.00 0.00 0.00 NA 0.50

3 Rep 0.00 0.07 0.00 0.04 NA 0.50

Scenario 2
1 Rep 0.00 0.00 0.00 0.00 NA 0.09

3 Rep 0.00 0.01 0.00 0.01 NA 0.09

DyNB

Scenario 1
1 Rep NA 0.50 0.00 0.36 NA 0.50

3 Rep 0.54 0.54 0.32 0.32 0.43 0.20

Scenario 2
1 Rep NA

3 Rep NA

edgeR

Scenario 1
Rep 1 NA

3 Rep 0.50 NA 0.50 NA 0.50 NA

Scenario 2
1 Rep NA

3 Rep 0.88 0.00 0.00 0.00 0.86 0.00

The best result in each scenario is shown in boldface

Table 1 summarizes the performance of each method.
The FDR was calculated as the number of false positives
divided by the number of identified DE genes, and the
False Non-Discovery Rate (FNR) as the number of false
negatives divided by the number of genes which were not
identified as DE genes. DyNB was only applied to the sim-
ulated data set of the first scenario in each setting due to
its extensive computational cost, see Table 2. In the third
setting, the DyNB failed to report the results for the data
set with one replicate. In addition, edgeR was not recom-
mended for single replicate data sets and, therefore, not
used in each single replicate dataset [19].
The performance of edgeR, DyNB and maSigPro in

terms of FDR and FNR was not as good as that of NBMM
in the first scenario. This is expected since edgeR is not

Table 2 The running CPU time (seconds) for all methods in
simulation studies

Setting 1 Setting 2 Setting 3

NBMM
1 Rep 7.133 6.182 7.261

3 Rep 6.240 6.271 7.000

maSigPro
1 Rep 0.215 0.025 0.200

3 Rep 0.235 0.091 0.236

DyNB
1 Rep 31944.470 NA 42513.210

3 Rep 36228.200 36335.970 40412.250

edgeR
1 Rep 0.004 0.001 0.001

3 Rep 0.001 0.001 0.001

designed for time course data and the accuracy of detect-
ing DE genes is affected by the estimated effective library
size. When the NDE genes do not show flat profiles, the
prediction performance of edgeR and maSigPro relying
on TMM normalization [12] will be impaired. maSigPro
had a better performance compared with NBMMmethod
in the second scenario in linear and exponential settings.
However, our method performed much better than other
methods in more complicated patterns, such as a cyclic
pattern. For this pattern, other methods either failed to
detect any DE genes or identified almost all the genes
as DE genes. In particular, in the first setting, the pro-
posed NBMM method identified all DE genes. In the
third setting, our approach identified about 88 % of DE
genes with FDR 0.00 in the first scenario, whereas the
maSigPro failed to detect any DE genes. In summary,
as the pattern of the mean function moves away from
linear to nonlinear, the advantage of the NBMM over
other methods is getting more significant in detecting DE
genes.
The NBMM took 7 s (CPU time) to process 50 genes

with three replicates. Running CPU time for other set-
tings are shown in Table 2. In summary, edgeR is not
designed for time course RNA-Seq data, and, therefore,
their performance is not as good as that of the NBMMand
maSigPro in most settings. The maSigPro is applicable to
time course RNA-Seq data and has a good performance in
the roughly linear pattern. Its performance in the highly
nonlinear pattern is not as good as the NBMM.
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Simulation using RNA-Seq simulator
An RNA-Seq simulator, polyester [21], was applied to sim-
ulate RNA-Seq experiments. The simulator takes a set of
annotated transcripts as input and produces files contain-
ing simulated RNA-Seq reads after simulating the steps of
an RNA-Seq experiment. The reference genome used in
the simulation was fromDrosophila melanogaster. Tophat
[22], samtools [23] and DEXSeq [24] were utilized to esti-
mate the read counts data from the simulated fasta files.
Analysis followed the steps described in the documenta-
tions and unless stated otherwise, default parameters were
used.
We simulated the data of 7763 transcripts. By directly

specifying the number of reads in each transcript, we sim-
ulated two expression patterns, linear expression pattern
in (28) and nonlinear expression pattern in (29). In each
pattern, 125 DE genes were created.

vti,g = r((5 − ti)I[g=2] + ti), (28)

where r is the reference expression level defined in (30)
and ti = 1 + 3(i − 1)/7.

vti,g = r(sin(2.5π((0.9 − 2ti)I[g=2] + ti) + 2). (29)

The reference expression level is

r = 20ι/υ, (30)

where ι is the length of transcript and υ = 100 is the
length of short reads. The expression values for NDE
genes in all time points are defined in (30).
Removing genes with zero expression values over all

time points, we came down with a data set including 4526
genes, among which 219 genes were DE genes.
We applied NBMM, maSigPro and edgeR to the dataset

and results were summarized in Table 3. NBMM and
maSigPro detected all DE genes with linear change pat-
tern, however, NBMM identified 40 DE genes with non-
linear pattern whereas maSigPro found no genes with this
pattern. As we can see in Table 3, the FDR and FNR of
NBMM are lower than those of maSigPro. edgeR identi-
fied almost all the genes as DE genes and resulted in a
higher FDR in Table 3.

Gene sets simulation
In this study, we simulated 30 gene sets, each with ten
genes. All 100 genes in the first ten gene sets were NPDE
genes generated by the first setting in (25). The rest of

Table 3 The FDR and FNR of all methods for detecting DE genes
in simulation using polyester

FDR FNR

NBMM 0.621 0.018

maSigPro 0.737 0.028

edgeR 0.925 0.00

The best result in each scenario is shown in boldface

the gene sets were NDE genes with the same mean func-
tion for two conditions. We chose ν = 1000,C = 2 and
calculated the gene set scores and p values for the simu-
lated data. The R package GSA developed in [17] was used
to detect DE genes enriched gene sets. In GSA package,
we set method=“mean”, minsize=10, resp.type=“two class
unpaired” and other parameters as default. The p values
for all 30 gene sets calculated by NBMM and GSA are
plotted in Fig. 5. The NBMM method detected all NPDE
genes enriched gene sets, whereas the GSA method did
not identify any significant gene sets.

Real data analysis
Study of the development of Drosophila melanogaster
(fruit fly) is important since this biological process shares
many common features among different organisms. Grav-
eley et al. [25] reported a time course RNA-Seq exper-
iment of Drosophila melanogaster embryogenesis. The
dataset included 12 embryonic samples collected at 2-
hour intervals for 24 h. Each sample was collected at dif-
ferent stages of development. Sequencing was performed
using the Illumina Genome Analyzer II platform. Reads
of length 75 were uniquely aligned to the Drosophila
melanogaster r5 genome using Bowtie [26].
Since in the first six time points, fruit flies were in

the cleavage and gastrulation processes, whereas in the
remaining six time points, they were in the process of dif-
ferentiation [27], we divided the 12 time points into two
developmental stages: early and late embryonic develop-
mental stages. After data screening [5], the dataset used in
our analysis consists of 1900 genes with different numbers
of exons. Among these 1900 genes, 161 genes are related
to embryo development (GO: 0009790) [28]. We aim to
identify DE genes between the two developmental stages
and find the significant pathways.

Single gene testing
The NBMMmodel was fitted gene-by-gene and the KLRs
were calculated. The permutation procedure was used to
obtain the p value for each individual gene. After multi-
ple testing corrections, our method identified 192 NPDE
genes and 751 PDE genes at a significance level of 0.05.
We conducted functional annotation clustering for these
genes using DAVID [29]. For NPDE genes, eight anno-
tation clusters with enrichment scores above 2.0 were
found. Seven of them are related to embryo development.
For PDE genes, ten annotation clusters with enrichment
scores above 2.0 were found. These clusters are associ-
ated with the regulation of RNA splicing, mitosis, and
development related pathways.
Moreover, edgeR was applied to this dataset and 518

DE genes were found. There were 292 genes in com-
mon between the edgeR and proposed approach, see
Fig. 6. Therefore, 651 DE genes were specifically found



Sun et al. BMC Bioinformatics  (2016) 17:324 Page 10 of 13

Fig. 5 A comparison between result of NBMM and that of GSA. The p values of the proposed method are shown as pink cycles. The p values from
GSA are shown as blue circles. The x-axis represents the gene set index, and the first 10 gene sets are the NPDE gene enriched gene sets

by NBMM and 226 DE genes were identified exclu-
sively by edgeR. Among 161 genes in embryo devel-
opment (GO: 0009790), 86 genes were identified by
NBMM method, whereas edgeR detected 39 genes. For
genes exclusively selected by edgeR, only two clus-
ters with enrichment scores above 2.0 were found. These
clusters are associated with certain catabolic processes.
However, there were 11 clusters with enrichment scores
above 2.0 for DE genes exclusively identified by the

NBMMmethod. The biological processes associated with
the clusters are the regulation of mRNA processing, mito-
sis, nuclear division, determination of anterior/posterior
axis, embryo, and neuroblast differentiation, etc.
In addition, we compared the NBMM with maSig-

Pro, which detected 1012 DE genes. There were 588
genes in common between these two models, see Fig. 7.
The NBMM specifically found 355 DE genes and 424
DE genes were identified exclusively by maSigPro. The

Fig. 6 A comparison between the result of NBMM and that of edgeR. The Venn diagram between the sets of DE genes identified by NBMM and edgeR
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Fig. 7 A comparison of the result of NBMM and that of maSigPro. The Venn diagram between the sets of DE genes identified by NBMM andmaSigPro

annotation clustering was applied to these specifically
identified DE genes. For genes exclusively selected by
maSigPro, five clusters with enrichment scores above 2.0
were found. These clusters are associated with neuron
projection morphogenesis , regulation of nuclear mRNA
splicing and stem cell maintenance, etc. There were three
clusters with enrichment scores above 2.0 for DE genes
exclusively identified by the NBMM. The biological pro-
cesses associated with the clusters are the mitosis, embry-
onic hindgut morphogenesis, gut development, etc. For
the detailed functional annotation clustering, see the
Additional files 1-6.

Gene sets testing
The pathway gene sets of the fruit fly were compiled using
the Bioconductor package “org.Dm.eg.db”. The Entrez
Gene identifier (version in Nov 2012) in each gene ontol-
ogy term of org.Dm.egGO2ALLEGS was converted to
official gene symbols using the org.Dm.egSYMBOL. We
selected the gene sets with 15 to 30 genes and at least five
of the 1900 genes were in the gene sets. We performed
100 permutations and chose pathways at the significance
level of 0.05. Among 340 tested gene sets, 22 NPDE gene
sets were selected by the NBMM, and 18 significant gene
sets were selected by the GSA. Among 22 NPDE gene
sets, eight gene sets are involved in the cell differentiation
and cell development, see Table 4. The 18 significant gene
sets detected by the GSA are the induction of apoptosis,
chromosome localization, establishment of chromosome
localization, cytoskeletal anchoring at plasma membrane,

sarcomere organization, etc. These 18 gene sets are not
associated with embryonic pathways. For the detailed
information, see the Additional file 7. This shows that
gene sets detected by the NBMM are more biologically
relevant to development.

Discussion
Time course RNA-Seq data provide valuable insights into
biological development and identifying biologically rele-
vant DE genes is a key issue.We classify DE genes into two
types: NPDE and PDE genes. Compared with PDE genes,
NPDE genes are more likely to be biologically relevant.
Therefore, focused study of the NPDE genes may provide
more information on the underlying biological mecha-
nisms. In this article, we proposed a statistical method,
NBMM, for identifying DE genes in time course RNA-Seq

Table 4 The significant pathways identified by the NBMM gene
set analysis of the fruit fly data

Pathway name p value

Segment polarity determination 0.00

Salivary gland boundary specification 0.00

Glial cell differentiation 0.00

Glial cell development 0.00

Axon choice point recognition 0.00

Epithelial cell differentiation 0.00

Regulation of tube length, open tracheal system 0.00

Establishment of blood-brain barrier 0.00
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experiments. Compared to other available methods, such
as edgeR, the NBMM models time dependency and exon
variation using a mixed-effect model. Moreover, the pro-
posed NBMM method outperforms other approaches
designed for time course RNA-Seq data in terms of DE
genes detection accuracy, such as maSigPro and DyNB.
The advantage of the NBMMover other competing meth-
ods is significant when they are applied to single replicate
time course RNA-Seq data. Furthermore, gene sets signif-
icance test is shown to effectively detect DE gene sets.
The NBMM method is applied to gene expression data

on a gene-by-gene basis. Thus, parallel computing can be
employed for testing the significance of multiple genes
simultaneously. We implemented a parallel computing
option in our timeSeq package to speed up the computing
process.

Conclusions
In this paper, we developed a negative binomial mixed-
effect model (NBMM) to detect the differentially
expressed (DE) genes in time course RNA-Seq data. We
showed that our approach outperforms other currently
available methods in both synthetic and real data. The
timeSeq, an open source software package, is freely avail-
able from CRAN.
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