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Abstract
GenomeWide Association Studies (GWAS) and expression quantitative trait locus (eQTL)

analyses have identified genetic associations with a wide range of human phenotypes.

However, many of these variants have weak effects and understanding their combined

effect remains a challenge. One hypothesis is that multiple SNPs interact in complex net-

works to influence functional processes that ultimately lead to complex phenotypes, includ-

ing disease states. Here we present CONDOR, a method that represents both cis- and
trans-acting SNPs and the genes with which they are associated as a bipartite graph and

then uses the modular structure of that graph to place SNPs into a functional context. In

applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found

the global network “hub” SNPs were devoid of disease associations through GWAS. How-

ever, the network was organized into 52 communities of SNPs and genes, many of which

were enriched for genes in specific functional classes. We identified local hubs within each

community (“core SNPs”) and these were enriched for GWAS SNPs for COPD and many

other diseases. These results speak to our intuition: rather than single SNPs influencing sin-

gle genes, we see groups of SNPs associated with the expression of families of functionally

related genes and that disease SNPs are associated with the perturbation of those func-

tions. These methods are not limited in their application to COPD and can be used in the

analysis of a wide variety of disease processes and other phenotypic traits.

Author Summary

Large-scale studies have identified thousands of genetic variants associated with different
phenotypes without explaining their function. Expression quantitative trait locus analysis
associates the compendium of genetic variants with expression levels of individual genes,
providing the opportunity to link those variants to functions. But the complexity of those
associations has caused most analyses to focus solely on genetic variants immediately adja-
cent to the genes they may influence. We describe a method that embraces the complexity,
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representing all variant-gene associations as a bipartite graph. The graph contains highly
modular, functional communities in which disease-associated variants emerge as those
likely to perturb the structure of the network and the function of the genes in these
communities.

Introduction
GenomeWide Association Studies (GWAS) have created new opportunities to understand the
genetic factors that influence complex traits. Excepting highly-penetrant Mendelian disorders,
the majority of genetic associations seem to be driven by many factors, each of which has a rela-
tively small effect. In a recent study [1], 697 SNPs were associated with height in humans at
genome-wide significance, yet these SNPs were able to explain only*20% of height variability;
*9,500 SNPs were needed to raise that to*29%. In addition,*95% of GWAS variants map
to non-coding regions [2], complicating biological interpretation of their functional impact.

To bridge the functional gap between genetic variant and complex trait, expression Quanti-
tative Trait Locus (eQTL) analysis associates SNP genotype with gene expression levels. The
first empirical, genome-wide linkage study with gene expression in yeast was published in
2002, linking expression levels of 570 genes to genetic loci [3]. In humans, loci have been asso-
ciated with the expression of thousands of genes [2, 4], and eQTLs are enriched for phenotype
associations and vice versa [5–7].

Most eQTL analyses have focused on cis-SNPs—those near the Transcriptional Start Site
(TSS) of the gene in the association test. Recent computational developments [8] and work
demonstrating the impact and replicability of trans-eQTLs [9, 10] have increased interest in
identifying and understanding the role played by trans-acting SNPs.

However, new methods are needed to elucidate the potential functional impact of the thou-
sands of GWAS SNPs and tens to hundreds of thousands of eQTL SNPs that can be detected in
a single study. Here we present CONDOR, COmplex Network Description Of Regulators, (Fig
1) a method that incorporates both cis- and trans- associations to identify groups of SNPs that
are linked to groups of genes and systematically interrogate their biological functions. The
method has been implemented as an R package and is publicly available at https://github.com/
jplatig/condor. We then validate this approach using genotyping and gene expression data
from 163 lung tissue samples in a study of Chronic Obstructive Pulmonary Disease (COPD) by
the Lung Genomics Research Consortium (LGRC).

Results

eQTL Networks
We used the MatrixEQTL package in R to calculate cis- and trans-eQTLs, considering only
autosomal SNPs, using age, sex, and pack-years as covariates (see Methods). The cis- and
trans- associations were run separately, with an FDR threshold of 10%. This analysis identified
40,183 cis-eQTLs and 32,813 trans-eQTLs. Quantile-quantile plots for both cis- and trans- are
shown in Fig 2. In total, 72,996 statistically significant associations were detected between
57,062 SNPs and 7,051 genes.

We represented these associations as a bipartite network consisting of two classes of nodes
—SNPs and genes—with edges from SNPs to the genes with which they are significantly associ-
ated based on the eQTL FDR cut-off. The network had a Giant Connected Component (GCC)
with 41,813 links, 28,593 SNPs, and 3,091 genes. As a network diagnostic, we estimated
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whether or not we could reject the hypothesis that the SNP and gene degree distributions were
power-law distributed. To test this, we fit each degree distribution to a power law, and deter-
mined the goodness of fit using the method described in [11] (see Methods). If the edges from
all connected components are considered, the p-value for the SNP degree is very low, Ppl � 0,
suggesting that we can rule out a power law distribution. However, if very small connected
components (fewer than 5 SNPs and 5 genes) are excluded, the SNP degree may follow a
power-law (Ppl < 0.8) as shown in Fig 3a. The gene degree distribution (Fig 3b) may be power-

Fig 1. Overview of the CONDOR algorithm. All possible SNP-gene pairs from an appropriate data set are considered in an eQTL analysis. Both
cis- and trans-acting eQTLs (FDR < 0.1) are used to construct a bipartite network linking SNPs and genes. The resulting network structure is then
analyzed, first globally to understand its overall structure and to identify network “hubs.” Then the community structure of the bipartite network is
determined, each community is subject to functional enrichment analysis, and a core score is calculated to identify those SNPs most likely to disrupt
individual communities.

doi:10.1371/journal.pcbi.1005033.g001

Fig 2. Quantile-quantile plot for 13,333,199 cis- and 17,228,062,483 trans-eQTL p-values.

doi:10.1371/journal.pcbi.1005033.g002
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law distributed when considering all connected components or only those with more that 5
SNPs and 5 genes (Ppl < 0.4 in both cases) and there are multiple network hubs, shown in the
tail of the distribution in Fig 3b. For our further analysis we considered all connected compo-
nents with more than 5 SNPs and 5 genes.

It is often cited in complex networks literature that the hubs, those nodes in the network
that are most highly connected, represent critical elements whose removal can disrupt the
entire network [12, 13]. As a result, one widely-held belief about biological networks is that
disease-related elements should be over-represented among the network hubs [14]. To test the
hypothesis that disease-associated SNPs are concentrated in the hubs, we projected GWAS-
identified SNPs associated with a wide range of diseases and phenotypes onto the SNP degree
distribution (Fig 4). We used the gwascat package [15] in R to download GWAS SNPs anno-
tated in the NHGRI GWAS catalog; 274 of those SNPs mapped to the eQTL network (S1
Table). To our surprise, the network hubs—the right tail of Fig 4—were devoid of disease-
associated SNPs which were instead scattered through the upper left half of the degree distri-
bution. The difference in degree distributions did not appear to be driven by linkage disequi-
librium or distance to nearest gene (see Methods and S1, S2, S3 and S4 Figs). While the SNPs
associated with a single gene are easier to interpret, the concentration of disease-associated
SNPs in the middle of the distribution prompted us to look at other features of the network
and its structure.

Community Structure Analysis
Given the low phenotypic variance explained by any single GWAS SNP, we expected groups of
SNPs to cluster with groups of functionally-related genes in our eQTL network. Unlike previ-
ous work [16–18] which imposes “known” pathway annotations and other data to posit the
function of GWAS SNPs or identifies modules with only a handful of SNPs [19], we used the

Fig 3. SNPs and genes display broad-tailed degree distributions. The degree distribution, with the
frequency of node degree plotted on a log-log scale, is shown for SNPs (a) and genes (b) in all connected
components with more than 5 SNPs and 5 genes in the bipartite eQTL network.

doi:10.1371/journal.pcbi.1005033.g003
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structure of the eQTL network to identify densely connected groups of SNPs and genes and
then tested those groups for biological enrichment.

Our goal is the identification of those densely connected communities in the bipartite net-
work. Methods for finding bicliques (subgraphs with all-to-all connections within the larger
bipartite network) have been described for bipartite networks with a small number (*102) of
nodes in each connected component [20]. However, these methods do not scale to networks
with connected components containing thousands of nodes [20, 21]. Further, we do not expect
biologically meaningful eQTL clusters to contain only all-to-all connections.

To cluster our eQTL network, we adapted a well-established strategy [22], community
structure detection, which has been shown to scale well to large networks [23]. Many real-
world networks have a complex structure consisting of “communities” of nodes [24]. These
communities are often defined as a group of network nodes that are more likely to be con-
nected to other nodes within their community than they are to those outside of the community.
A widely used measure of community structure is the modularity, which can be interpreted as
an enrichment for links within communities minus an expected enrichment given the network
degree distribution [22].

To partition the nodes from the eQTL network into communities—which contain both
SNPs and genes—we maximized the bipartite modularity [25]. As recursive cluster identifica-
tion and optimization can be computationally slow, we calculated an initial community struc-
ture assignment on the weighted, gene-space projection, using a fast uni-partite modularity
maximization algorithm [23] available in the R igraph package [26], then iteratively converged
(ΔQ< 10−4) on a community structure corresponding to a maximum bipartite modularity.

The bipartite modularity is defined in Eq (1), wherem is the number of links in the network,eAij is the upper right block of the network adjacency matrix (a binary matrix where a 1 repre-

sents a connection between a SNP and a gene and 0 otherwise), ki is the degree of SNP i, dj is
the degree of gene j, and Ci, Cj the community indices of SNP i and gene j, respectively (see

Fig 4. Degree distributions for NHGRI-GWAS (red) and all (black) SNPs.NHGRI-GWAS SNPs tend not
to be global network “hubs,” which are located in the far-right tail of the distribution. The highest degree
NHGRI-GWAS SNP was connected to 10 genes.

doi:10.1371/journal.pcbi.1005033.g004
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[25] for further details).

Q ¼ 1

m

X
i;j

eAij �
kidj
m

� �
dðCi;CjÞ ð1Þ

This analysis identified 52 communities across 10 connected components in the LGRC data,
with 34 of those communities mapping to the GCC (Qgcc = 0.79; Fig 5). The density of these
communities can be seen in Fig 5. In Fig 5b, there is visible enrichment for links within each
community (colored links) compared to links between different communities (black links).
These communities represent groups of SNPs and genes that are highly connected to each
other and span multiple chromosomes (see Fig 6), suggesting that groups of genes may be
jointly moderated by groups of SNPs that together represent specific biological processes.

To investigate this hypothesis, we tested each community for GO term enrichment using
Fisher’s Exact Test (available in the R package GOstats [27]) and found 11 of the 52 communi-
ties contained genes enriched for specific Gene Ontology terms (see S2 Table) (P< 5e − 4;
overlap>4), encompassing a broad collection of cellular functions that are not generally asso-
ciated with COPD. Indeed, this is what one might expect as the genetic background of an indi-
vidual should have an effect not only on disease-specific processes, but more globally on the
physiology of his or her individual cells. A number of communities do, however, show enrich-
ment for biological processes that are known to be involved in COPD, including genes previ-
ously associated with the disease.

For example, Community 29 (see Fig 5 and S2 Table) was enriched for chromatin and
nucleosome assembly/organization and includes members of the HIST1H gene superfamily.
Community 33 (see Fig 5 and S2 Table) included GO term enrichment for functions related to
the HLA gene family, including T cell function and immune response; autoimmunity has been
suggested as a potential contributor to COPD pathogenesis [28]. This community also contains
PSORS1C1, which has been previously implicated in COPD [29].

Another of the genes in Community 33, AGER, has been implicated in COPD [30] and
encodes sRAGE, a biomarker for emphysema. Its expression is negatively associated via eQTL
analysis (β = −0.3) with rs6924102. This SNP has been observed to be an eQTL in a large blood
eQTL dataset for a number of neighboring genes [9], but it has not previously been described
as an eQTL for AGER. This SNP lies in a region containing a DNase peak in cell lines analyzed
by ENCODE [31] (indicating it sits in a region of open chromatin) and there is evidence of
POLR2A binding from ChIP-Seq data in the GM12878 cell line as reported by ENCODE
(http://regulomedb.org/snp/chr6/32811382). This suggests that rs6924102 may inhibit the
expression of AGER through disruption of RNA Polymerase II binding and subsequent mRNA
synthesis. This SNP is located*700KB from the well-studied non-synonymous AGER SNP,
rs2070600.

Core Score Analysis
Examining Fig 5a, it is evident that within each community there are local hubs that are highly
connected to the genes within that community. While a wide array of network node metrics
exist (for example, [32, 33] and references in [33]), most of these metrics are global measures
that do not consider a node’s role in its local cluster/community and so may miss SNPs that are
central to their communities and therefore likely to alter gene expression of functionally associ-
ated genes. Such within-community hubs have been observed in protein-protein interaction
networks [34] and metabolic networks [35].

We defined a core score that estimates importance of a SNP in the structure of its commu-
nity. For SNP i in community h, its core score, Qih, Eq (2), is the fraction of the modularity of

Bipartite Community Structure of eQTLs
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Fig 5. eQTLs show strong community structure. (a) Plot of the communities within the bipartite eQTL network. The
nodes (genes and SNPs) in each community form a ring, with the link density within each ring visibly darker than links
between communities. (b) Links within communities (colored points) are shown along the diagonal, with links that go
between communities in black. Community IDs are plotted along the x-axis.

doi:10.1371/journal.pcbi.1005033.g005

Fig 6. Communities comprise SNPs and genes frommultiple chromosomes.Number of different chromosomes in each community based on (a) SNP
and (b) gene locations.

doi:10.1371/journal.pcbi.1005033.g006

Bipartite Community Structure of eQTLs

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005033 September 12, 2016 7 / 17



community h, Qh, Eq (3), contributed by SNP i. This allows for comparison of SNPs from dif-
ferent communities, as each community does not have the same modularity, Qh.

Qih ¼
1
m

X
j
Aeij � kidj

m

� �
dðCi; hÞdðCj; hÞ

Qh

ð2Þ

Qh ¼
1

m

X
i;j

Aeij � kidj
m

� �
dðCi; hÞdðCj; hÞ ð3Þ

If one views disease as the disruption of a process leading to cellular or organismal dysfunc-
tion, one natural hypothesis is that SNPs with the greatest potential to disrupt cellular processes
might be enriched for disease association. To test this we used both the Wilcoxon rank-sum
and Kolmogorov-Smirnov (KS) tests to assay whether the 274 NHGRI GWAS-annotated SNPs
in the network were more likely to have high Qih scores. For both tests, the distribution of Qih

scores for GWAS-associated SNPs were compared to the distribution of non-GWAS SNP
scores.

To obtain an empirical p-value for these tests, we permuted the GWAS/non-GWAS labels
and recalculated the KS andWilcoxon tests 105 times. Histograms of the test statistics are
shown in Figs 7 and 8. The red dot in the histogram represents the test score with the true label-
ing. Both tests had highly significant permutation p-values, with P< 10−5 for the KS andWil-
coxon tests, indicating that GWAS SNPs were over-represented among SNPs with high core
scores. Furthermore, the median core score for the GWAS SNPs was 1.74 times higher than
the median core score for the non-GWAS SNPs. To test this result for dependence on Linkage

Fig 7. NHGRI-GWAS SNPs have higher core scores than non-GWASSNPs based on Kolmogorov-
Smirnov test statistics.Histogram of Kolmogorov-Smirnov test statistics comparing the distribution ofQih

scores for sets of randomly relabeled NHGRI-GWAS/non-GWAS SNPs. The KS test statistic for the true
labeling is in red. The permutation p-value associated with the KS test is P < 10−5 given 105 permutations.

doi:10.1371/journal.pcbi.1005033.g007
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Disequilibrium (LD) and gene distance, we reran the KS and Wilcoxon permutation tests with
a subset of SNPs matching the LD structure and distance to nearest gene of the 274 GWAS
SNPs (see Methods for details). Neither the LD structure (P< 0.001 for KS and Wilcoxon
tests, S5 and S6 Figs) nor distance from the nearest gene (P< 0.001 for KS andWilcoxon tests,
S7 and S8 Figs) of the GWAS SNPs was signficantly associated with the core score. Thus, while
global hubs are devoid of GWAS associations with disease, local hubs within communities are
significantly enriched for disease associations.

As a way of further assessing the link between GWAS significance and functional perturba-
tion in COPD, we calculated a GWAS-FDR for all SNPs clustered in our network that had a
reported p-value from a recent GWAS and meta-analysis of COPD [36] (see Methods). There
were 30 SNPs with an FDR< 0.05, and 28 of the 30 had evidence of functional impact accord-
ing to RegulomeDB [37], with 15 SNPs identified as likely to affect transcription factor binding
and linked to expression (See Fig 9 and S3 Table). These 30 SNPs mapped to 3 different com-
munities (see S3 Table) including Community 33, which contains other COPD-associated
SNPs and genes, and is enriched for GO terms describing T cell function and immune
response. One of the SNPs in this community likely to affect binding (S3 Table) is rs9268528,
which is linked by our network to HLA-DRA,HLA-DRB4, andHLA-DRB5; the cis-eQTL
associations between rs9268528 and bothHLA-DRA and HLA-DRB5 have been previously
observed in lymphoblastoid cells [38]. All three HLA genes lie in Community 33 and contrib-
ute to the community’s enrichment for T cell receptor signaling pathway (GO:0050852) [39].

To determine the network influence of these 30 SNPs, we compared their core score, Qih, to
the core scores of SNPs with a GWAS-FDR� 0.05 (See Fig 10). The median Qih value for the
30 GWAS-FDR significant SNPs was 20.3 times higher than the median for SNPs with an FDR
� 0.05. Using the KS andWilcoxon tests described in the Methods, these core scores were not
significantly associated with LD structure (P< 0.001, S9 and S10 Figs) or distance to nearest
GSS (P< 0.001, S11 and S12 Figs).

Fig 8. NHGRI-GWAS SNPs have higher core scores than non-GWASSNPs based onWilcoxon test
statistics.Histogram of Wilcoxon test statistics comparing the distribution ofQih scores for sets of randomly
relabeled NHGRI-GWAS/non-GWAS SNPs. TheWilcoxon test statistic for the true labeling is in red. The
permutation p-value associated with theWilcoxon test is P < 10−5 given 105 permutations.

doi:10.1371/journal.pcbi.1005033.g008
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Conclusions
Genome-wide association studies have searched for genomic variants that influence complex
traits, including the development and progression of disease. However, the number of highly-
penetrant Mendelian variants that have been found is surprisingly small, with most disease-

Fig 9. The majority of COPDNetwork GWAS SNPs are annotated for functional impact.Of the 30 SNPs that are eQTLs in the LGRC network and
also associated with COPD (FDR < 0.05), 15 are likely to affect transcription factor (TF) binding and linked to the expression of a target gene (a score of
1b, d, or f), 2 have evidence of TF binding or a DNase peak (a score of 5), and 11 are located in a motif hit (a score of 6) according to RegulomeDB [37].

doi:10.1371/journal.pcbi.1005033.g009

Fig 10. The median core score for COPD Network GWAS SNPs is higher than for non-significant
SNPs. The median core score for the 30 FDR-significant COPDGWAS SNPs (FDR < 0.05, left) is 20.3 times
higher than the median core score for the non-significant SNPs (FDR� 0.05, right).

doi:10.1371/journal.pcbi.1005033.g010
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associated SNPs having a weak phenotypic effect. GWAS studies have also identified many
SNPs that do not alter protein coding and have found significant loci that are shared in com-
mon across multiple diseases. This body of evidence suggests that in most instances it is not a
single genetic variant that leads to disease, but many variants of smaller effect that together can
disrupt cellular processes that lead to disease phenotypes. The challenge has been to find these
variants of small effect and to place them into a coherent biological context.

We chose to address this problem by analyzing the link between genetic variants and the most
immediate phenotypic measure, gene expression. In doing so, we chose not to focus solely on cis-
acting SNPs, but also to consider trans-acting variants. Our motivation was, in part, to try to
understand SNPs found through GWAS studies to be associated with phenotypes, but that could
not be immediately placed into a functional context. After performing a genome-wide cis- and
trans-eQTL analysis, we identified a large number of many-to-many associations: single SNPs
associated with many genes as well as single genes that were significantly associated with many
SNPs. To represent those associations, we constructed a bipartite network, one that contains two
types of nodes—SNPs and genes—with edges connecting SNPs to the genes with which they
were significantly associated. Our analysis of that network led to a number of observations that
independently speak to our intuition about disease and the genetic factors that control it.

First is the observation that the highly connected SNPs, the global hubs in the network, are
devoid of variants that have been identified as being disease-associated in the hundreds of stud-
ies collected in the NHGRI GWAS catalog. While initially surprising, further consideration
suggests that this may be the result of negative selection. Since a true hub SNP influences genes
across the genome that are involved in many biological processes, highly disruptive variants
that are hubs are likely to significantly affect cellular function. In fact, this is the expected
impact of a hub—its disruption should lead to the catastrophic collapse of the network. And
so, disruptive SNPs that would be network hubs are likely to be lethal or highly debilitating and
therefore strongly selected against and quickly swept from the genome.

Second, we found that SNPs and their target genes form highly connected communities that
are enriched for specific biological functions. This too speaks to our inituition and to the evi-
dence about polygenic traits that has accumulated over time. They are not the result of a single
SNP that regulates a single gene, but a family of SNPs that together help mediate a group of
functionally-related genes.

Third, the enrichment for GWAS disease associations among the high core score SNPs has
a very simple and intuitive interpretation. The SNPs that are most significantly connected
within a particular functionally-related group are those most likely to disrupt that process and
therefore be discovered in GWAS analysis. After all, diseases do not develop because the cell’s
entire functionality collapses, but because specific processes within the cell are disrupted.

What our analysis provides is a new way of exploring cis- and trans-eQTL analysis and
GWAS. What one must do is to consider not only the local effects of genetic variants, but also
the complex network of genetic interactions that help regulate phenotypes, including gene
expression.

Future Directions
This method also suggests a new way of filtering genes for inclusion in GWAS analysis. Since
many disease-associated SNPs appear to be either cis-acting or those which are central to func-
tionally-defined communities, one could focus on those SNPs most likely perturb specific bio-
logical processes rather than considering the entirety of SNPs in the genome.

One might note that this analysis was carried out using data on genetic variation and gene
expression from the LGRC representing COPD and control lung tissue and question both the

Bipartite Community Structure of eQTLs

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005033 September 12, 2016 11 / 17



generalizability of the results and the use of GWAS-associated disease SNPs from many dis-
eases in the analysis. While these are potentially legitimate concerns, many of the community-
based processes we find are not specific to COPD or to the lung but instead are active in nearly
all human cell types.

Although one might expect some processes to change in different disease states, the impact of
common variants and the structure of the network is likely to be highly similar. Consequently,
although there may be some SNPs whose impact is disease- and tissue-specific, many are likely
to be independent of disease state. This suggests that it may be useful to develop eQTL networks
across disease states and tissue types and to explore changes in the overall network and commu-
nity structure across and between phenotypes due to rare variants and tissue-specific expression.

Validating individual associations in the eQTL network is a difficult challenge. Most eQTL
studies limit their validation efforts to downstream effects of high-confidence cis-acting eQTLs.
The bipartite network presented here captures not only these strong cis-eQTLs but also the
weak effects of many more cis- and trans-acting SNPs. So the likelihood that any individual
association can be easily validated may not be that great, as it is likely to be of small phenotypic
effect and important in only a subset of individuals. However, this is not the point. What is
important for the phenotype is not any single SNP-gene association, but the “mesoscale” orga-
nization of genes and SNPs represented by the communities in the network. We believe this
intermediate structure better reflects the aggregation of weak genetic effects that contribute to
late-onset complex diseases. What we hope to have demonstrated in this manuscript is that the
higher order structure, which was not an input to the network model, provides insight into a
number of aspects of the genetics and manifestation of polygenic traits.

Methods
We began by downloading gene expression data from the LGRC web portal (https://www.lung-
genomics.org/download/) representing data from COPD-case and control samples generated by
the Lung Genomics Research Consortium (LGRC). This included GCRMA-normalized gene
expression data obtained using Agilent-014850Whole Human Genome 4x44K and Agilent-
028004 SurePrint G3 Human GE 8x60KMicroarrays. We then obtained matching genotyping
data (dbGAP accession phs000624.v1.p1) collected using the Illumina Infinium HD Assays
with Human Omni 1 Quad and Human Omni 2.5 Quad arrays. All subjects were reported to be
of Caucasian descent and were selected based on a variety of parameters including clinical mea-
sures associated with diagnosis. Samples that did not meet standards for lack of relatedness as
measured using Identity by Descent (IBD) and inbreeding coefficient, F, were excluded. Those
samples with discordance between reported and genetic sex were not included. Samples missing
more than 10% percent of genotyped SNPs were also removed. SNPs with minor allele fre-
quency (MAF)< 0.05 or HardyWeinberg Equilibrium P-value< 0.001 were removed. After all
quality controls, 163 samples remained. All SNPs were mapped to human genome 19, and the
Ensembl IDs provided by the LGRC web portal were mapped to the GRCh37 build of human
genome 19 using the biomaRt library [40] in R. The cis-window was defined as +/- 1 MB of
the Ensembl-defined GSS. The COPD GWAS data from a meta-analysis of COPDGene non-
Hispanic whites and African-Americans, ECLIPSE, GenKOLS, and NETT/NAS studies was
obtained from the authors of [36]. The bipartite clustering via modularity maximization took 95
seconds on a 64-bit Linux server with 189 GB of RAM running R 3.1.3.

Power-Law Fitting
For each empirical degree distribution, we fit the two parameters for a power-law: the minimum
degree at which the power-law behavior starts, dmin, and the exponent, α. A Kolmogorov-Smirnov
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test was then used to estimate the goodness of fit between 5,000 randomly generated power-law
distributed synthetic data sets given dmin and α and their corresponding power-law fit. The p-
value, Ppl, used to reject the power-law hypothesis is then the fraction of times a synthetic data set
has a KS statistic larger than that of the true test. For both the SNP and gene degree distributions,
Ppl was calculated using the 5,000 goodness of fit values (code for the parameter estimation, good-
ness of fit and probability estimation was obtained from the website associated with [11]).

Permutation Testing for LD and Gene Distance
To test the effect of LD and distance from Gene Start Site (GSS) on the degree distribution and
core score (Qih) distribution of a set of GWAS SNPs, we created equivalently sized sets of SNPs
that matched on a given characteristic of interest (LD or GSS) and compared that subset to all
other SNPs. We repeated this process for each GWAS SNP set 1000 times. For the LD testing,
we calculated LD blocks using the PLINK [41] “blocks” flag, estimating blocks using all SNPs
that passed quality control. To achieve adequate sample sizes in the resampling, we binned LD
blocks in 5kb windows, grouped all blocks>100kb into one bin and grouped all SNPs not in a
block into one bin. For each resampling, the random set matched the GWAS set for both the
LD bin and the number of SNPs in LD together within a block.

As a proxy for the gene density of a region, we used each SNP’s distance from the nearest
GSS. Distances were grouped into 1kb bins, with all distances>400kb grouped into one bin.
The resampled sets were then matched on the GWAS SNP sets such that the number of SNPs
in each bin was the same.

Supporting Information
S1 Fig. NHGRI-GWAS degree does not depend on LD structure using a KS test.Histogram
of KS test statistics comparing the distribution of degrees for sets of SNPs matched on LD
structure of the NHGRI-GWAS SNPs and all other SNPs. The test statistic for the true labeling
is in red. The permutation p-value is P< 10−3 given 103 permutations.
(EPS)

S2 Fig. NHGRI-GWAS degree does not depend on LD structure using a Wilcoxon test.His-
togram of Wilcoxon test statistics comparing the distribution of degrees for sets of SNPs
matched on LD structure of the NHGRI-GWAS SNPs and all other SNPs. The test statistic for
the true labeling is in red. The permutation p-value is P< 10−3 given 103 permutations.
(EPS)

S3 Fig. NHGRI-GWAS degree does not depend on distance to nearest gene using KS test.
Histogram of KS test statistics comparing the distribution of degrees for sets of SNPs matched
on distance to nearest gene start site (GSS) of the NHGRI-GWAS SNPs and all other SNPs.
The test statistic for the true labeling is in red. The permutation p-value is P< 10−3 given 103

permutations.
(EPS)

S4 Fig. NHGRI-GWAS degree does not depend on distance to nearest gene using a Wil-
coxon test.Histogram of Wilcoxon test statistics comparing the distribution of degrees for sets
of SNPs matched on distance to nearest gene start site (GSS) of the NHGRI-GWAS SNPs and
all other SNPs. The test statistic for the true labeling is in red. The permutation p-value is
P< 10−3 given 103 permutations.
(EPS)
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S5 Fig. NHGRI-GWAS Qih scores do not depend on LD structure using a KS test.Histo-
gram of KS test statistics comparing the distribution of Qih scores for sets of SNPs matched on
LD structure of the NHGRI-GWAS SNPs and all other SNPs. The test statistic for the true
labeling is in red. The permutation p-value is P< 10−3 given 103 permutations.
(EPS)

S6 Fig. NHGRI-GWAS Qih scores do not depend on LD structure using a Wilcoxon test.
Histogram of Wilcoxon test statistics comparing the distribution of Qih scores for sets of SNPs
matched on LD structure of the NHGRI-GWAS SNPs and all other SNPs. The test statistic for
the true labeling is in red. The permutation p-value is P< 10−3 given 103 permutations.
(EPS)

S7 Fig. NHGRI-GWASQih scores do not depend on distance to nearest gene using a KS test.
Histogram of KS test statistics comparing the distribution ofQih scores for sets of SNPs matched
on distance to nearest GSS of the NHGRI-GWAS SNPs and all other SNPs. The test statistic for
the true labeling is in red. The permutation p-value is P< 10−3 given 103 permutations.
(EPS)

S8 Fig. NHGRI-GWAS Qih scores do not depend on distance to nearest gene using a Wil-
coxon test.Histogram of Wilcoxon test statistics comparing the distribution of Qih scores for
sets of SNPs matched on distance to nearest GSS of the NHGRI-GWAS SNPs and all other
SNPs. The test statistic for the true labeling is in red. The permutation p-value is P< 10−3

given 103 permutations.
(EPS)

S9 Fig. COPD GWAS Qih scores do not depend on LD structure using a KS test.Histogram
of KS test statistics comparing the distribution of Qih scores for sets of SNPs matched on LD
structure of the COPD GWAS SNPs and all other SNPs. The test statistic for the true labeling
is in red. The permutation p-value is P< 10−3 given 103 permutations.
(EPS)

S10 Fig. COPD GWAS Qih scores do not depend on LD structure using a Wilcoxon test.
Histogram of Wilcoxon test statistics comparing the distribution of Qih scores for sets of SNPs
matched on LD structure of the COPD GWAS SNPs and all other SNPs. The test statistic for
the true labeling is in red. The permutation p-value is P< 10−3 given 103 permutations.
(EPS)

S11 Fig. COPD GWAS Qih scores do not depend on distance to nearest gene using a KS
test.Histogram of KS test statistics comparing the distribution of Qih scores for sets of SNPs
matched on distance to nearest GSS of the 30 COPD GWAS SNPs and all other SNPs. The test
statistic for the true labeling is in red. The permutation p-value is P< 10−3 given 103 permuta-
tions.
(EPS)

S12 Fig. COPD GWAS Qih scores do not depend on distance to nearest gene using a Wil-
coxon test.Histogram of Wilcoxon test statistics comparing the distribution of Qih scores for
sets of SNPs matched on distance to nearest GSS of the 30 COPD GWAS SNPs and all other
SNPs. The test statistic for the true labeling is in red. The permutation p-value is P< 10−3

given 103 permutations.
(EPS)

S1 Table. All network edges for NHGRI-GWAS SNPs.
(XLSX)
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S2 Table. Gene Ontology enrichment results for network communities.
(XLSX)

S3 Table. All network edges and RegulomeDB scores for COPD-associated SNPs (FDR<

0.05).
(PDF)
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