

Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila

Citation

Mossman, Jim A., Jennifer G. Tross, Nan Li, Zhijin Wu, and David M. Rand. 2016. "Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila." Genetics 204 (2): 613-630. doi:10.1534/genetics.116.192328. http://dx.doi.org/10.1534/genetics.116.192328.

Published Version

doi:10.1534/genetics.116.192328

Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:29408157

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available. Please share how this access benefits you. <u>Submit a story</u>.

Accessibility

Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila

Jim A. Mossman,*¹ Jennifer G. Tross,*^{1,†,§} Nan Li,** Zhijin Wu,** and David M. Rand*¹

*Department of Ecology and Evolutionary Biology, and **Department of Biostatistics, Brown University, Providence, Rhode Island 02912, [†]Department of Medical Oncology, and [‡]Department of Biostatistics and Computational Biology, Dana–Farber Cancer Institute, Boston, Massachusetts 02215, [§]Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, Massachusetts 02115

ORCID ID: 0000-0001-6817-3459 (D.M.R.)

ABSTRACT The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in *Drosophila melanogaster*. We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two *D. melanogaster* nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, *trans* effect of mitochondrial effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses.

KEYWORDS mtDNA; epistasis; Drosophila; transcriptome; mitonuclear; retrograde signaling

THE ancient symbiosis that led to current day mitochondria and their eukaryotic host was a major milestone for intergenomic communication (Sagan 1967; Martin and Muller 1998). During the following ~2 billion years, the resulting eukaryotic cell consolidated the genetic information from two ancestral genomes to a reduced set of genes in the mitochondrial organelle [mitochondrial DNA (mtDNA)] and many nuclear-encoded genes that are required for mitochondrial function. At ~16.5 kb in size, the mtDNA encodes 13

Copyright © 2016 by the Genetics Society of America

doi: 10.1534/genetics.116.192328

oxidative phosphorylation (OXPHOS) proteins, 22 transfer RNAs (tRNAs), and 2 ribosomal RNAs (Taanman 1999). The remaining ~1200 proteins associated with mitochondria are encoded by the nucleus (Wallace 1999). Mitochondria therefore require coordinated expression of genes from both mitochondrial and nuclear genomes for efficient function (Rand 2001; Smeitink *et al.* 2001). Crucially, the effects of mtDNA variation, nuclear DNA (nDNA) variation, and their interactions on gene expression are poorly understood, yet they are expected to play a large role in an organism's response to environmental or cellular stress.

Mitochondria perform many functions in the cell other than ATP production, including maintaining homeostasis, regulating redox signaling, and apoptosis (Friedman and Nunnari 2014). Recent studies have shown that when mitochondrial function is perturbed, retrograde signaling to the nucleus occurs via the unfolded protein response (UPR) (Houtkooper *et al.* 2013; Quiros *et al.* 2016), however the role of underlying mitonuclear

Manuscript received June 5, 2016; accepted for publication August 17, 2016; published Early Online August 24, 2016.

Available freely online through the author-supported open access option. Supplemental material is available online at www.genetics.org/lookup/suppl/doi:10. 1534/genetics.116.192328/-/DC1.

¹Corresponding authors: Department of Ecology and Evolutionary Biology, Box G, Brown University, Providence, RI 02912. E-mail: Jim_Mossman@brown.edu; and david_rand@brown.edu

genetic variation in retrograde signaling has not been studied in the context of gene expression. Aberrations in mitochondrial function are known to cause a wide spectrum of disorders in humans (DiMauro and Schon 2003; Lin and Beal 2006), and mitochondrial diseases with an mtDNA component can be difficult to characterize due to the complexity of dual genomic organization and large numbers of intergenomic interactions. The relatively high mutation rate, lack of protective histones, maternal inheritance, reduced effective population size, and no recombination all contribute to a higher frequency of deleterious mutations in mtDNA (Gemmell et al. 2004). These "natural" genetic variants segregate together in complete linkage disequilibrium in the form of mtDNA haplotypes. Importantly, both de novo (spontaneous) mutations and haplotype variation have been associated with disease phenotypes across a number of species (Roubertoux et al. 2003; Dimauro and Davidzon 2005).

While specific mtDNA mutations-associated with haplotype variation—increase the risks of some diseases, e.g., neurodegenerative diseases and aging (Stewart and Chinnery 2015), they do not operate in isolation from the substantial nuclear-encoded contribution to mitochondrial phenotypes (Wallace 1999; Wong 2012). Deleterious mitochondrial mutations often demonstrate incomplete penetrance (Giordano et al. 2014), suggesting nuclear variants may dampen or amplify their effects. An unknown proportion of phenotypes demonstrating missing heritability are likely to involve the interactions (epistases) between mtDNA and nDNA (Mossman et al. 2016). Indeed, mitonuclear interactions have been largely overlooked as sources of phenotypic variation (Pesole et al. 2012), even though recent studies have shown mitonuclear interactions to be pervasive and context dependent in a suite of life history traits (Hoekstra et al. 2013; Mossman et al. 2016).

mtDNA variation is hypothesized to affect males more severely than females due to an imbalance in the strength of purifying selection between the sexes (Frank and Hurst 1996). Because mtDNAs are maternally inherited, males are at a genetical dead end for mtDNA evolution. Mutations that have negligible or zero effects in females, yet severe effects in males, can rise to high frequencies in populations by genetic drift (Frank and Hurst 1996). Under this hypothesis, it is predicted that mtDNA variation should promote larger phenotypic effects in males than females. Initial support for this hypothesis was suggested by mitochondrial disease cases that appeared more severe in males than females (Wallace 1992; Bernes et al. 1993; Casademont et al. 1994). More recent studies provide support for the Frank and Hurst hypothesis in Drosophila aging (Camus et al. 2012) and fertility (Yee et al. 2013; but see Friberg and Dowling 2008), yet there is a robust absence of support in development time and viability (egg-to-adult survival) (Mossman et al. 2016). In humans, there is also equivocal evidence for the role of mtDNA haplotypes in fertility-related traits in males (Ruiz-Pesini et al. 2000; Pereira et al. 2007; Mossman et al. 2012). There is some evidence in Drosophila that sex-specific mtDNA effects on gene expression exist (Innocenti et al. 2011), and

that variation in male-limited gene expression is dominated by mtDNA variation. However, it is not known whether differential gene expression associated with mtDNA variation is a robust phenotype across nuclear genetic backgrounds.

Here, we use a *Drosophila* mitonuclear introgression model (Montooth *et al.* 2010; Meiklejohn *et al.* 2013; Villa-Cuesta *et al.* 2014; Holmbeck *et al.* 2015) to test the hypotheses that mtDNA variation, nDNA variation, and mtDNA \times nDNA interactions impact gene expression in males and females. A main motivation of this experiment was to examine whether different mitonuclear genotypes have distinct gene expression profiles. Here, we focused on a 2 \times 2 genotype table (*sensu* Roubertoux *et al.* 2003) to elucidate whether mtDNA variation *per se*, nuclear variation *per se*, and mitochondrial \times nuclear variation influences gene expression in a sex-specific manner.

We have previously shown that across several Drosophila Genetic Reference Panel nuclear backgrounds, the sil and OreR mtDNA haplotypes diverge in phenotypic values (development time, egg-to-adult viability) (Mossman et al. 2016). We have also shown there are nucleotide substitutions between siI and OreR mtDNAs that have putative deleterious effect on protein function (Mossman et al. 2016), motivating an examination of gene expression variation that is associated with mtDNA and nuclear variation. We hypothesized that mtDNA variation preferentially modifies the expression of mitochondria-associated OXPHOS genes from both mitochondrial and nuclear genomes. Furthermore, we wanted to characterize the cellular processes and functional categories of genes that are modified by mtDNA, nuclear, and mitonuclear variation. We further hypothesized that mitochondrial protein translational machinery (Jacobs and Turnbull 2005) would be largely influenced due to its critical role in protein synthesis and the key participation of mitochondrial ribosomes. Finally, we investigated whether genes differentially expressed by mtDNA variation were enriched in male-limited genes (e.g., those involved in testes and sperm-related proteins) to test the generality of the Frank and Hurst hypothesis in alternative nuclear backgrounds.

Materials and Methods

Mitonuclear panel

Experiments were performed on four genotypes whose nuclear genomes were introgressed with mtDNAs from two sources: (i) *OregonR* strain of *Drosophila melanogaster* and (ii) *sil* strain of *D. simulans*. The nuclear backgrounds were *Oregon R* (*OreR*) and *Austria W132* (*AutW132*), which are both *D. melanogaster* nuclear types. The four genotypes were (mito; nuclear): (i) *OreR*; *OreR*, (ii) *OreR*; *AutW132*, (iii) *sil*; *OreR*, and (iv) *sil*; *AutW132*. Specifically, the introgressions were performed by balancer chromosome replacement, followed by backcrossing to the original stock to homogenize the nuclear background and remove nuclear variation that may have been retained in the chromosome replacement process. The full double balancer replacement scheme is

described in Montooth *et al.* (2010). Alignments between mtDNA coding regions reveal substantial sequence divergence between *OreR* (NC_001709) and *sil* (AF00835) mtDNA haplotypes: a pairwise amino acid divergence (103 amino acids) and a pairwise synonymous divergence (418 SNPs) (Montooth *et al.* 2010).

All strains used in this study were cleared of *Wolbachia* using tetracycline, and *Wolbachia* negative status was confirmed by PCR (Montooth *et al.* 2010).

RNA sequencing sample preparation

Prior to RNA extraction, flies were reared on standard laboratory food at 25° on a 12 hr light:12 hr dark cycle, and density-controlled for one generation (five males and five females per vial). After density control, eclosed flies were allowed to mate for 3 days on standard food and were then separated by sex at a density of 50 males or 50 females per vial. After 2 days of recovery from CO₂ anesthesia, batches of flies were transferred into a 1.5-ml microcentrifuge tube and immediately flash frozen in liquid nitrogen.

RNA was extracted from 30, 5-day-old whole healthy flies in each genotype by sex treatment. We used whole flies to test whether sex-limited gene expression was associated with mtDNA and nDNA genetic effects, as found by Innocenti et al. (2011). In addition, a number of other studies of genetic variation for gene expression in Drosophila have used whole flies, allowing for more direct comparison with our results (Gibson et al. 2004; Ayroles et al. 2009; Huang 2012; Mackay et al. 2012; Huang et al. 2014). In males, there were three replicates per genotype and in females there were three replicates in all genotypes apart from the sil; AutW132, which had two replicates. We followed a modified RNA sequencing (RNA-seq) sample preparation protocol from the Gilad Laboratory (Chicago University; http://giladlab.uchicago.edu/ data/RNASeq v2%202.doc). Messenger RNA (mRNA) was first extracted, followed by RNA fragmentation, complementary DNA (cDNA) first strand synthesis, second strand synthesis, end repair, poly adenylation, adapter ligation, and PCR enrichment. Throughout, RNA and DNA were quantified using the Qubit Kits (RNA Broad Range, dsDNA Broad Range, and dsDNA High Sensitivity) with a Qubit 1.0 Fluorometer. All Qubit reagents were obtained from Molecular Probes (Eugene, OR). Following PCR enrichment, we size selected PCR products with size range of 334-500 bp using a Caliper LabChip XT (DNA 750 chip) (Caliper Life Sciences, Hopkington, MA).

Gene expression assays

Gene expression was assayed in both sexes in all four genotypes using Illumina RNA-seq (HiSeq; Illumina, San Diego) with a 50-bp, single-end protocol. Samples were processed at Brown University's Genomics Core Facility using an Illumina HiSeq2000 platform.

RNA-seq data preprocessing

RNA-seq read quality was first assessed using the FastQC v0.11.5 program (http://www.bioinformatics.babraham.ac.

uk/projects/fastqc/). We then filtered the reads using a FASTQ quality filter (fastq_quality_filter) with -q 20 and -p 80 flags, as implemented in the FASTX-Toolkit (http://hannonlab.cshl.edu/fastx toolkit/commandline. html#fastq_quality_filter_usage). These values correspond to removing reads with 80% bases having a quality score of <20. Adapters were clipped from the reads using the fastx clipper tool in the FASTX-Toolkit (http://hannonlab. cshl.edu/fastx toolkit/commandline.html#fastx clipper usage) and FastQC was repeated. We used TopHat v2.0.12 (https://ccb.jhu.edu/software/tophat/index.shtml) (Trapnell et al. 2012) with Bowtie2 v2.2.3 (http://bowtie-bio.sourceforge.net/index.shtml) to map the reads to the dm3 reference genome using the dm3flybase.gtf annotation file obtained from the University of California Santa Cruz Genome Browser (https://genome.ucsc.edu/). BAM files generated by TopHat were converted to SAM files using SAMtools (http:// samtools.sourceforge.net/) (Li et al. 2009), and reads mapping to specific genome features (genes) were counted using htseq-count (http://www-huber.embl.de/users/anders/HTSeq/ doc/count.html) (Anders et al. 2015). The read-count data table obtained via HTSeq was used for downstream analyses. All preprocessing was conducted using computational resources and services at the Center for Computation and Visualization, Brown University.

RNA-seq data analysis

Differential expression (DE) analyses were conducted using two methods: DESeq (Anders and Huber 2010) following the vignette workflow (http://bioconductor.org/packages/release/bioc/vignettes/DESeq/inst/doc/DESeq.pdf), and edgeR (Robinson *et al.* 2010). We also used a clustering algorithm to categorize genes based on their between-genotype expression profiles (see below). The measurement accuracy of RNA-seq was validated using a subset of genes and quantitative PCR (qPCR) as described in detail in Supplemental Material, File S1 (see also Table S1; Figure S13).

Gene filtering

In total we analyzed data generated from 23 RNA-seq libraries (11 female, 12 male). Throughout the data analyses, we used both complete data sets (including all genes), and filtered data (excluding the lowest 40th percentile of the data *sensu* the recommendations in the DESeq vignette). The purpose of the independent filtering was to remove genes from the total data set that have little or no chance of showing significant evidence of DE, while simultaneously increasing the detection power with a similar false discovery rate (FDR) (Bourgon *et al.* 2010). We specify in each *Results* section which data set (unfiltered or filtered) and which analysis program was used.

Gene clustering

We used four genotypes in total for this study and our primary aim was to detect genes that show expression profiles consistent with mtDNA effects, nDNA effects, and mtDNA \times nucDNA (epistatic) effects. We rationalized that different

genetic effects would produce different norms of reaction shapes (profiles) across genotypes. We aimed to cluster genes based on their expression across different genotypes. For example, for all genotypes (independent variable), we asked which genes segregated with a similar pattern, and which of those patterns correspond with nuclear effects, mtDNA effects, and their mtDNA \times nDNA interactions (see Figure S1 for theoretical gene expression outlines).

Model-based clustering of gene expression profiles was performed using MBClusterSeq (Si *et al.* 2014), with k =20 clusters in both sexes. Negative binomial (NB) models were used to perform the hierarchical clustering and hybrid tree builds as implemented in the MBClusterSeq package. Clusters are described using interaction plots of individual genes in each cluster and the mean genotype values per cluster were calculated. The log-fold change is relative to the normalized gene expression across all treatments (genotypes) with each row of the log-fold change matrix having a zero sum. The clustering algorithm allocates genes to a group based on their gene expression profile (in this case, the shape of the gene expression–genotype relationship).

Gene ontology enrichment

Gene ontology (GO) enrichment analyses were performed on clustered genes using the Bioprofiling.de program (http://bioprofiling.de/) (Antonov 2011) and the GO Consortium database (http://geneontology.org/) with the default submission and "*Drosophila melanogaster*" organism selected. The outputs of the "ProfCom_GO" analyses (Antonov *et al.* 2008) were filtered for GO categories that evidenced a Bonferroni-corrected *P*-value of <0.05 and these GO categories were used in the heat map construction. In the sex-specific gene expression analysis, we used GOrilla GO enrichment (Eden *et al.* 2009) to investigate the GO processes that were enriched in the male- and female-biased gene sets.

Analyses of OXPHOS gene subset

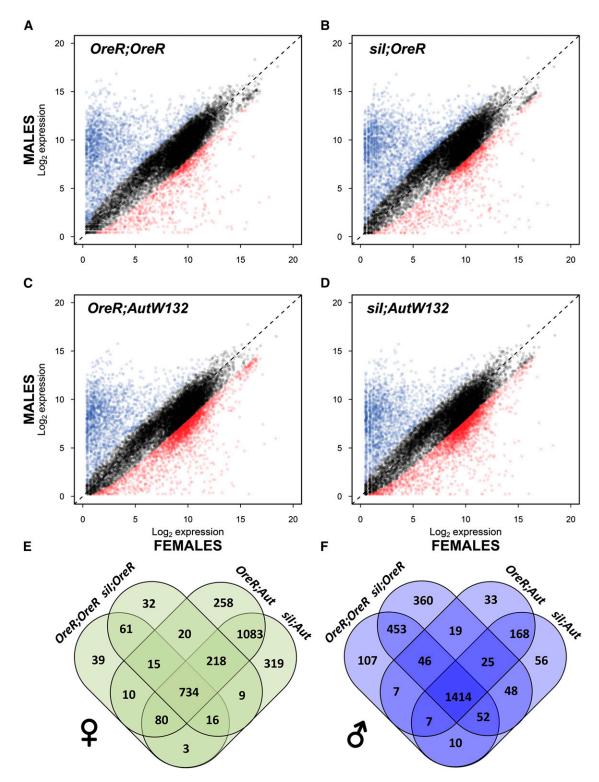
In addition to the analyses of the global gene set, genes encoding OXPHOS-related proteins (complexes I, II, III, IV, and ATP synthase) were selected for closer examination because these are putative targets of mitochondrial variation. Both mtDNA and nuclear genes targeted to the mitochondrion were downloaded from the MitoDrome database (Sardiello et al. 2003; D'Elia et al. 2006). Arc diagrams were used to display the relationship between various genes in the OXPHOS pathway in D. melanogaster (Tripoli et al. 2005) and the effect of alternative mtDNA haplotype in each nuclear background and in each sex. DE was judged by DESeq in each nuclear background and sex separately. For clarity, only genes with a *P*-value of <0.1 are shown and a gene was only required to be included in one sex or nuclear background to be present in the arc diagram. A total of 78 nuclear genes and 13 mtDNA genes were included in the initial screen, of which 53 genes were included in the visualization (11 mtDNA genes and 42 nuclear genes; P < 0.1 in at least one genetic background).

Data availability

Drosophila strains used in this study are available upon request. FASTQ files from the 23 RNA-seq libraries are available at the Sequence Read Archive (SRA) under project accession SRP082430.

Results

Between-sex gene expression correlations


We first investigated whether there were signatures of sexspecific gene expression as a basis for understanding how mtDNAs may or may not modify gene expression in a sexspecific manner. Figure 1, A–D, shows biplots of the four mitonuclear genotypes using pseudocounts of the unfiltered data set. The pseudocount transformation is \log_2 (read count +1), and was calculated using the base mean in DESeq. There are clear gene subsets in the data distributions that show sexbiased expression, particularly for male-biased genes (Figure 1). The numbers of genes that are common across genotypic intersections are described for each sex (females, Figure 1E; males, Figure 1F). The female- and male-biased genes (red and blue data in Figure 1, A-D, respectively) were intersected separately and those elements that were common to all four genotypes were subjected to GO-enrichment analysis. GO-enrichment analyses (Eden et al. 2009) show male-biased genes are enriched for sperm-related processes (Figure 1F and Table 1). Genes with female-biased expression (shown as red in Figure 1) are associated with, among other processes, eggrelated GO categories. Table 1 describes the male-specific enrichment of GO categories.

Genotype signatures of gene expression

There are large differences between the sexes in genotype signatures of gene expression. Figure 2 shows multidimensional scaling (MDS) plots (Ritchie *et al.* 2015) of each genotype in female and male data sets. The data are plotted in two dimensions and the distances between samples (libraries) approximately reflect the leading \log_2 -fold change between the samples for the genes that distinguish those samples (Ritchie *et al.* 2015). Data were filtered as the top 10,000, top 1000, top 100, and top 10 genes. The top genes are those with the largest SD in expression between samples. In females, the progressive filtering increases the genotype genotype distance, whereas in males, the progressive filtering increased the distance between mitochondrial genotypes only in the *Aut132* nuclear background (Figure 2).

mtDNA substitution effects

We next tested whether mtDNA substitution conferred DE of genes in each nuclear background and in both sexes, separately. We did this using DESeq (Anders and Huber 2010) on individual nuclear backgrounds for each sex (two tests per sex). The read-count data were modeled using NB distributions. The fold change and associated *P*-value were calculated for each gene and *P*-values were adjusted to account

Figure 1 Sex-biased gene expression across four mitonuclear genotypes. Gene expression profiles of individual genes are shown for each genotype analyzed in this study: (A) *OreR;OreR*, (B) *sil;OreR*, (C) *OreR;AutW132*, and (D) *sil;AutW132*. Biplots show female gene expression on the abscissa with corresponding male gene expression values on the ordinal scale. Data highlighted in red and blue show female- and male-biased genes, respectively. Sex bias was determined as a log₂-fold >2 difference between females and males. Data in black show no sex bias in expression. (E and F) Venn diagrams describe the number of genes that are intersected between genotypes for sex-biased expression (red and blue genes in A–D). (E) Female and (F) male intersections are shown. Generally, there were more intersected genes that demonstrated male-biased expression than female-biased expression. Genes at the four-genotype intersection were subject to GO analysis. Male-specific GO processes are described in Table 1.

Table 1 Male-biased gene expression

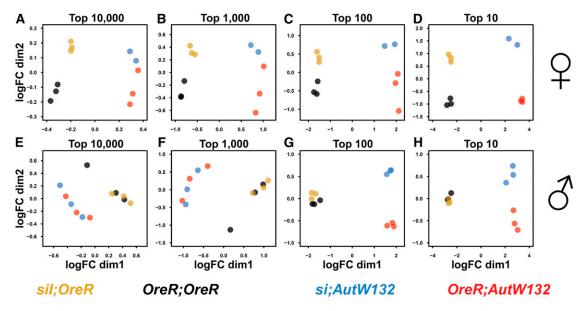
GO term	Description	No. genes	Enrichment	Adjusted P-value
GO:0032504	Multicellular organism reproduction	75	3.58	1.82e-20
GO:000003	Reproduction	75	3.43	1.75e-19
GO:0046692	Sperm competition	17	6.34	5.37e-08
GO:0044706	Multi-multicellular organism process	17	6.12	9.30e-08
GO:0048232	Male gamete generation	33	2.89	1.45e-05
GO:0007283	Spermatogenesis	32	2.83	3.60e-05
GO:0003341	Cilium movement	12	6.04	4.64e-05
GO:0048515	Spermatid differentiation	10	5.6	1.47e-03

Significantly enriched GO categories are shown for the genes that are intersected between all four mitonuclear genotypes. P-values were adjusted using the Benjamini and Hochberg (1995) method.

for multiple testing using the Benjamini–Hochberg method (Benjamini and Hochberg 1995), providing FDRs. In all cases the *Oregon R* mtDNA was the reference mtDNA background and effects of the *sil* haplotype are reported in the analyses. For nDNA results, the *OregonR* nDNA was the reference and the reported fold changes are for *AutW132/OregonR*.

In both females and males, mtDNA substitution conferred DE of genes from both mtDNA and nuclear genomes (Figure 3). In general, the response to mtDNA substitution was greater in females than males. Both sexes and nuclear backgrounds responded with distinct patterns. Among the most consistently modified genes were those encoded by mtDNA, with *sil* haplo-types mainly conferring downregulation in gene expression relative to the *OregonR* baseline. The majority of mtDNA OXPHOS protein-coding genes were downregulated (comparison = *sil/OreR*) in both males and females and in both nuclear backgrounds, with exceptions for mtDNA *ND2*, which was consistently upregulated across sexes and nuclear backgrounds.

Volcano plots in Figure 3 describe the effects of mtDNA substitution. Shown are the results of DESeq analyses for the unfiltered data set. The results for the filtered data set (top 60% quantile) are shown in Figure S2. In the unfiltered- and filtered-gene analyses, estimation of size factors to normalize the counts to a common scale was performed on the unfiltered and filtered data, respectively.


We then intersected the genes that were significantly differentially expressed by mtDNA substitution in each nuclear background (\times 2) and in both sexes (\times 2). In this analysis, we did not require a specific direction of effect, e.g., up- or downregulated, just that the genes were present at a P-value threshold. A summary of the number of genes that are present, at various P-value thresholds, are shown in Figure S3. Those genes that are consistently differentially expressed (at P <0.05) by mtDNA substitution across nuclear backgrounds and sexes are described in Table 2. Specifically, we report a conservative analysis in which all four nuclear background imessex treatments are intersected (A \cap B \cap C \cap D)—where \cap signifies intersection-and a more parsimonious analysis, in which a gene was only required to be included in a threeway intersection, e.g., including $A \cap B \cap C$, $A \cap B \cap D$, $A \cap C \cap D$, and $B \cap C \cap D$ (Table 2). In the strict four-genotype intersection, only five genes were significantly differentially expressed by mtDNA variation in (A) female OregonR background, (B) female *AutW132* background, (C) male *OregonR* background, and (D) male *AutW132* backgrounds. These were three mtDNA genes (*ND2*, *ATP6ase*, and *ND4L*), an unannotated computed gene (*CG11966*), and *Jonah 25Bi* (*Ser4*; a serine protease). High within-group variance that results from pooling across other experimental factors (*e.g.*, nuclear backgrounds) is likely to reduce the sensitivity to detect first-order effects of mtDNA, so the five core genes influenced by mtDNA variation is likely a conservative estimate of the true number.

Mitochondrial OXPHOS genes and mtDNA variation

mtDNA variation conferred different effects on global gene expression between the sexes and nuclear backgrounds (Figure 3). We next focused on the nuclear and mtDNA genes of the OXPHOS pathway, since these are jointly encoded by mtDNA and nuclear genes and hypothesized to be more sensitive to mtDNA and nuclear covariation. We filtered our global DE data sets for the OXPHOS genes and graphed those genes that were differentially expressed (Figure 4). We divided the genes into their respective OXPHOS complexes.

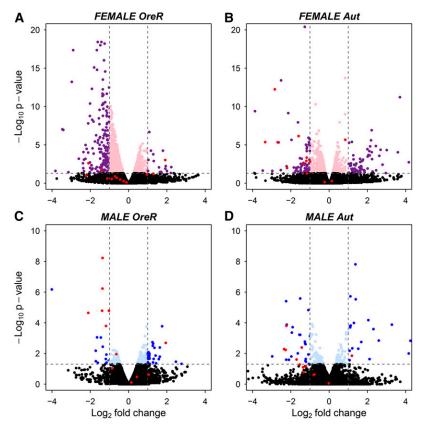
In males, there was a high degree of symmetry in the effects of mtDNA variation across the nuclear backgrounds (Figure 4). The differentially expressed genes (with P < 0.05) were exclusively targeted to mtDNA-encoded proteins within the various complexes (red gene identifiers in Figure 4) across both *OregonR* and *AutW132* nuclear backgrounds. In the *AutW132* nuclear background, fewer mtDNA OXPHOS genes achieved significance, particularly those in complex IV. In addition, several genes were consistently differentially expressed across nuclear backgrounds, including *CG34092* (*ND1*), *CG34063* (*ND2*), *CG34076* (*ND3*), *CG34086* (*ND4L*), *CG34090* (*CytB*), and *CG34073* (*ATPase6*).

In females the patterns were different and a much larger suite of OXPHOS-associated genes were differentially expressed from both mtDNA and nuclear-encoded genes. This effect was mainly isolated to the *AutW132* nuclear background, which demonstrated a high degree of DE driven by alternative mtDNAs. In *AutW132*, genes that were differentially expressed in males were more significantly differentially expressed in females. The opposite effect is evident in the *OregonR* nuclear background, in which only a small number of OXPHOS-associated genes were differentially expressed in females.

Figure 2 Genotype signatures of transcript variation. MDS plots show progressive filtering of genes based on their expression differences. The distance between points in a plot approximately reflects the relatedness between libraries based on their transcript measures. (A–D) Female and (E–H) male profiles are shown. The top 10,000 (A, E), top 1000 (B, F), top 100 (C, G), and top 10 (D, H) most deviant genes are shown. Separate genotypes are color coded: *sil;OreR*, yellow; *OreR;OreR*, black; *sil;AutW132*, blue; *OreR;AutW132*, red. Mitonuclear genotypes were clearly distinguishable across all filtering levels in females. Only the most differentially expressed genes were able to distinguish mtDNA haplotypes in males.

Global gene expression and mtDNA substitution

The different patterns we observed between males and females in the OXPHOS gene subset suggest the relationships between gene expression and mtDNA substitution differs between the sexes. To investigate whether this effect is evident at a global gene-expression level, we plotted the log₂-fold change in gene expression between siI and OregonR mtDNAs for each nuclear background within each sex (Figure 5). We found there were dramatic differences between the sexes in the patterns of log₂-fold change; the majority of genes were significantly positively correlated in females (global gene correlation r = +0.14, t = 16.42, d.f. = 12,623, P < 2.2e - 16), but negatively correlated in males (r = -0.12, t = -13.99, d.f. = 13,165, P < 2.2e-16). Notably, the mtDNA genes (highlighted in Figure 5) were consistently positively correlated between nuclear backgrounds in both sexes (females: r = +0.97, t = 12.56, d.f. = 11, P = 7.279e - 08; males: r =+0.86, t = 5.51, d.f. = 11, P = 0.0002). Figure 5 shows the results for the unfiltered data set. The plots of the filtered data are shown in Figure S4. In both sexes, the genes from OXPHOS complex IV and ATP synthase are generally clustered together and this may reflect their stoichiometric dependence and strict regulation. Complex I genes, by contrast, demonstrate wide variation in log₂-fold change as a result of mtDNA substitution. The CG34063 (ND2) gene is the only gene that is consistently upregulated in both nuclear backgrounds and in both sexes as a result of mtDNA substitution. For the mtDNA OXPHOS genes, the ND2 gene was consistently ranked as the highest upregulated log₂-fold change and ND3 was consistently the lowest ranked (highest negative \log_2 -fold change).


Clustering genes by between-genotype expression profiles

Using a clustering approach, we identified subsets of genes from the global distribution that demonstrated distinct expression patterns across the four genotypes. Theoretical profiles corresponding with mtDNA, nDNA, and mtDNA × nDNA interactions are described in Figure S1. In total, we produced k = 20 clusters for each sex and the filtered data set was used, since a large number of genes in the unfiltered data have zero read counts. Hybrid tree topologies and clusters are shown for females and males in Figure S5 and Figure S6, respectively. We identified a number of clusters that were consistent with first-order nuclear effects in both females and males (Figure 6 and Figure S7, respectively). Clear mtDNA effects were only apparent in the female data set and males showed very little evidence of mtDNA effects (see above).

Males showed an overwhelming enrichment of mitonuclear interactions across gene clusters (Figure S7). The effects of mtDNA substitution are largely in opposite directions in the alternative nuclear backgrounds, an effect that confirms the patterns of global gene expression we observed in Figure 5 using an independent analysis tool. In contrast, the female data set showed only a few examples of clusters consistent with mitonuclear interactions (black squares in Figure 6).

Cluster GO-enrichment analysis

To better understand which GO processes are associated with mitonuclear interactions, we performed a GO-enrichment analysis on each cluster in each sex. In females, 16/20 clusters contained GO terms that were significant (P < 0.05) after

Bonferroni correction (Antonov *et al.* 2008), whereas only 13/20 clusters contained enriched terms in males. The full lists and significance of the GO terms are shown in Figure S8 (females) and Figure S9 (males).

Clusters with clear mitonuclear effects in females were clusters 17 and 18 (Figure 6). The most significantly enriched GO terms in these clusters were generally related to mitochondrial-ribosomal and protein translational processes (see clusters 17 and 18 in Figure S8).

edgeR statistical analyses

The clustering approach provided qualitative support for an excess of mitonuclear interactions in males, and a larger proportion of mtDNA effects in females. To formally test the effects of mtDNA, nuclear, and mitonuclear variation, we conducted a DE analysis using *edgeR* (Robinson *et al.* 2010) in each sex separately. We conducted separate tests in males and females because the RNA-seq libraries have inherent differences in dispersion (biological coefficients of variation) between sexes. Stratifying the analyses by sex ensured that we made comparisons of genetic effects using appropriate dispersion estimates without conflating the DE estimates.

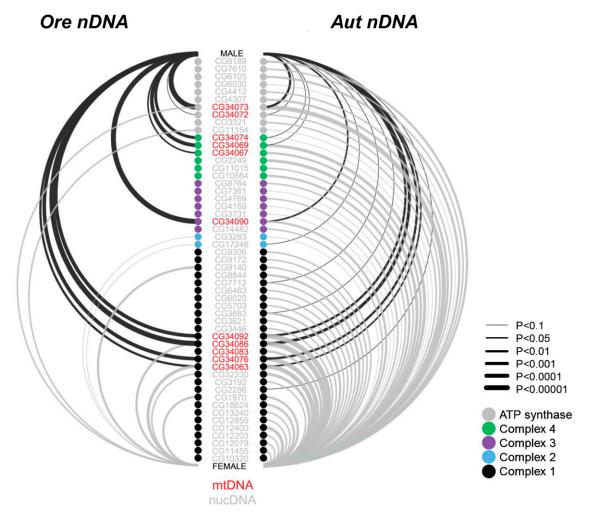
Figure 7, A and B, describes the distributions of significantly differentially expressed genes (P < 0.05) in a sexbiased expression context. The plotted data are the mean expression values across all RNA-seq libraries in each sex. Significantly, DE genes corresponding to the three forms of genetic variation (mtDNA, nuclear, and mitonuclear) are

Figure 3 Effects of mtDNA substitution on gene expression across nuclear backgrounds and sexes. Volcano plots describe the log₂-fold change in expression of genes and their corresponding -log₁₀ P-value, as determined by DESeq. Female genotypes are shown on the top panel: (A) Oregon R nDNA, and (B) AutW132 nDNA. Males are shown on the bottom panel: (C) Oregon R nDNA, and (D) AutW132 nDNA. Data in red are the mtDNA genes. There are nuclear background effects on mtDNA substitution and females generally showed more effects of mtDNA haplotype on nuclear gene expression. Horizontal dashed lines show *P*-value cut offs at equivalent P = 0.05. Vertical dashed lines show $\pm 2 \times$ fold up- or downregulation of a gene due to alternative mtDNAs with values shown for sil mtDNA, relative to the OregonR mtDNA. Outliers are not shown and females have a different magnitude of variation on the ordinal scale than males. Note the consistent red datum in the top right section of each plot (ND2 gene).

highlighted as black, purple, and green data, respectively. In females (Figure 7A), there was a large overlap between DE genes from all three sources of genetic manipulation but these significant genes were not enriched in female- or malebiased genes. Likewise in males, the majority of genes significantly differentially expressed by nuclear type were found in both non-sex-biased regions of the distribution, along with male-limited regions that correspond with testes and spermrelated biological processes (Figure 1, Table 1). While we found a few genes in the male-limited region of the distribution that were DE by mtDNA variation, DE genes associated with mtDNA haplotype variation were not enriched in this region (Figure 7B).

Across sexes, there were magnitudinal differences in the numbers of genes differentially expressed by mtDNA, nuclear, and mtDNA \times nuclear variation (Figure 7C); females showed larger responses to mtDNA and mitonuclear interactions, whereas males demonstrated marginally greater numbers of nuclear DE genes. For mtDNA variation (sil/OregonR), females demonstrated upregulation of 70 genes, and 39 genes were upregulated in males. There were 621 downregulated genes in females and 26 in males. By far the largest source of DE was for nuclear genetic variation (AutW132/ OregonR) in both females (1737 up, 1952 down) and males (1836 up, 2246 down). Far fewer genes were associated with mitonuclear interactions (contrast sil; AutW132 vs. OregonR; OregonR) and these included 1462 in females and 556 in males. Interestingly, males showed larger numbers of DE genes in the mitonuclear category than in the first-order

Table 2 Genes intersected in both m	nales and females and in both nuc	clear backgrounds in response	to mtDNA substitution

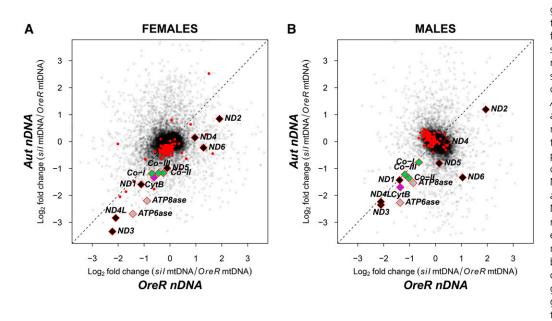

Gene name	Flybase ID	Location	Symbol	CG number
A∩B∩C∩D intersection				
CG11966	FBgn0037645	3R: 8,950,2468,963,037 (-)	CG11966	CG11966
Mitochondrial NADH-ubiquinone	FBgn0013680	mitochondrion_genome:2401,265 (+)	mt:ND2	CG34063
oxidoreductase chain 2	J			
Mitochondrial ATPase subunit 6	FBgn0013672	mitochondrion_genome:4,0624,736 (+)	mt:ATPase6	CG34073
Mitochondrial NADH-ubiquinone oxidoreductase chain 4L	FBgn0013683	mitochondrion_genome:9,5459,835 (–)	mt:ND4L	CG34086
Jonah 25Bi	FBgn0020906	2L: 4,954,2794,955,144 (-)	Jon25Bi	CG8867
$A \cap B \cap C$ intersection	9			
Cyp28d1	FBgn0031689	2L: 5,210,4605,212,445 (+)	Cyp28d1	CG10833
	FBqn0035300	3L: 1,971,6381,974,285 (+)	CG1139	CG1139
_	FBgn0038068	3R: 12,636,54012,637,976 (+)	CG11600	CG11600
	FBgn0033774	2R: 12,762,11312,763,825 (+)	CG12374	CG12374
— Chemosensory protein B 38c	FBgn0032888	2L: 20,820,08920,820,867 (-)	CheB38c	CG14405
Integrin $\beta \nu$ subunit	FBgn0010395	2L: 21,053,03321,058,044 (+)	Itgbn	CG1762
	5		5	CG1762 CG18681
εTrypsin	FBgn0010425	2R: 11,345,23711,346,066 (-)	εTry	
Bent	FBgn0005666	4: 724,400776,474 (+)	Bt	CG32019
—	FBgn0032494	2L: 13,239,98913,241,773 (+)	CG5945	CG5945
	FBgn0046999	2R: 16,873,01516,873,755 (+)	CG6429	CG6429
Esterase 6	FBgn0000592	3L: 12,188,81812,190,705 (+)	Est-6	CG6917
Hemolectin	FBgn0029167	3L: 13,846,05413,860,001 (+)	Hml	CG7002
Henna	FBgn0001208	3L: 7,760,4537,763,166 (+)	Hn	CG7399
Immune-regulated catalase	FBgn0038465	3R: 17,002,87517,007,208 (+)	Irc	CG8913
A∩B∩D intersection				
Phosphoenolpyruvate carboxykinase	FBgn0003067	2R: 18,536,76718,539,416 (+)	Pepck	CG17725
Ugt36Bc	FBgn0040260	2L: 16,799,02516,801,584 (+)	Ugt36Bc	CG17932
Cyp6d5	FBgn0038194	3R: 14,029,22814,031,483 (+)	Cyp6d5	CG3050
	FBgn0052023	3L: 8,803,6028,804,182 (-)	CG32023	CG32023
Ankyrin 2	FBgn0261788	3L: 7,655,3897,718,395 (-)	Ank2	CG42734 ^a
5	FBgn0053346	3R: 28,669,23328,670,452 (+)	CG33346	CG33346
lectin-37Db	FBgn0053533	2L: 19,419,07519,419,767 (+)	lectin-37Db	CG33533
	FBgn0053965	3L: 1,232,8821,234,015 (+)	CG33965	CG33965
	FBgn0085256	2R: 11,248,12611,248,610 (+)	CG34227	CG34227
	FBgn0038820	3R: 20,676,22420,677,351 (-)	CG4000	CG4000
	FBgn0039474	3R: 27,020,23827,021,378 (-)	CG6283	CG6283
			CG6908	CG6283
	FBgn0037936	3R: 11,688,38111,690,051 (-)		
	FBgn0039670	3R: 29,587,23729,588,104 (-)	CG7567	CG7567
	FBgn0039687	3R: 29,724,15929,724,950 (-)	CG7593	CG7593
B∩C∩D intersection	50 0040555			6644715
PGRP-SC2	FBgn0043575	2R: 8,716,9508,717,695 (+)	PGRP-SC2	CG14745
PGRP-SC1a	FBgn0043576	2R: 8,709,7338,710,320 (+)	PGRP-SC1a	CG14746
Mitochondrial NADH-ubiquinone oxidoreductase chain 3	FBgn0013681	mitochondrion_genome: 5,6085,961 (+)	mt:ND3	CG34076
Mitochondrial cytochrome b	FBgn0013678	mitochondrion_genome: 10,49911,635 (+)	mt:Cyt-b	CG34090
Mitochondrial NADH-ubiquinone oxidoreductase chain 1	FBgn0013679	mitochondrion_genome: 11,72112,659 (–)	mt:ND1	CG34092

The genes required an unadjusted *P*-value ≤ 0.05 to be included in the analysis. The four-genotype intersection along with three three-way intersections are shown: (A) female *OregonR* background, (B) female *AutW132* background, (C) male *OregonR* background, and (D) male *AutW132* backgrounds. There were no genes present in the A \cap C \cap D intersection. Genes in boldface font are mtDNA protein coding genes.

^a CG42734 overlaps with two additional computed genes (CGs): CG44195 and CG32373.

mtDNA category, consistent with the patterns we observed in the clustering analysis (see above).

To determine if genes behaved consistently across the sexes in response to genetic manipulation, we intersected those genes that were significantly differentially expressed (P < 0.05) by mtDNA, nuclear, and mitonuclear variation from females and males. The between-sex intersections are shown in Figure 8. There were 26 genes that were consistently differentially expressed by mtDNA variation, 1426 genes differentially expressed by nDNA variation, and 124 that were consistently differentially expressed by mitonuclear variation (Figure 8; gene identifications of the intersected genes can be found in Figure S10, Figure S11, and Figure S12). mtDNA genes are enriched in the intersected genes for mtDNA and nuclear variation, and *ATPase6*, *ND5*, and *ND6* demonstrate a consistent mitonuclear effect across the sexes. We found a large overlap between the consistently differentially expressed genes identified by DESeq (Table 2) and those identified by edgeR (Figure S10) as a consequence of mtDNA variation.


Figure 4 OXPHOS-related genes are differentially expressed by mtDNA substitution. Arcdiagrams (Sanchez 2014) show the identities of OXPHOS genes whose expression levels are affected by mtDNA variation. Line thicknesses correspond with the significance level. Gene identifiers in red are those encoded by mtDNA. Male effects (black lines) and female effects (gray lines) are shown. Different OXPHOS complexes are differentiated by circle color: complex I, black; complex II, blue; complex III, purple; complex IV, green; ATP synthase (complex V), gray. The effects in the *OregonR* nuclear background are shown in the left plot; *AutW132*, on the right. The data shown are from the filtered data set. nucDNA, nDNA.

Validating RNA-seq using qPCR

We used six nuclear genes that showed DE by nuclear variation and one internal control gene (*rp49*) to test whether the fold changes we measured using RNA-seq were correlated with qPCR. The methods and results can be found in File S1. The log₂-fold change between *AutW132* and *Oregon R* in each mtDNA background was calculated for each gene in both sexes using the comparative threshold cycle (C_T) method ($2^{-\Delta\Delta CT}$) (Schmittgen and Livak 2008). We found a significant positive correlation between the log₂-fold changes measured with RNA-seq and qPCR (r = +0.69, t = 4.52, d.f. = 22, P = 0.00016; Figure S13).

Discussion

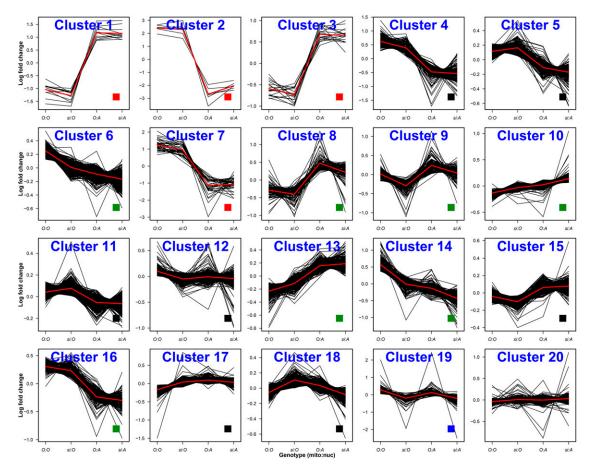
We tested for the effects of mtDNA, nuclear, and mitonuclear variation on gene expression variation and found both genotype- and sex-specific responses to all three forms of genetic variation. Females showed overall stronger effects of genetic variation than males, and males showed little evidence of sexlimited expression of DE genes associated with mtDNA variation. mtDNA variation was most significantly associated with variation in mitochondrial OXPHOS gene expression and particularly those genes that are encoded by the mtDNA. In this panel of genotypes we found an overall opposing direction of mtDNA variation on global gene expression between the sexes, yet a conserved effect of mtDNA-encoded genes. Our findings are important to the Drosophila community, in which our reference strain, OregonR, has been widely adopted as a commonly used wild-type laboratory stock. Ongoing work in our laboratory aims to understand whether these effects are universal across multiple nuclear backgrounds, and not restricted to this particular nuclear OregonR-AutW132 pair. We discuss our results in the context of OXPHOS protein organization, mtDNA-nDNA covariation, and the evolutionary significance of sex and genotype interactions.

Figure 5 Mitonuclear effects on gene expression differ between the sexes. Biplots of mtDNA effects on gene expression are shown for (A) females and (B) males. The effects of mtDNA substitution are reported as log₂-fold changes in the OregonR and AutW132 background on the abscissa and ordinal, respectively. mtDNA genes are labeled with their gene identifiers and show positive correlations between nuclear backgrounds in both sexes. Nuclear OXPHOS genes (n = 73)are shown as red points. ND2 and ND3 genes were consistently ranked as the highest and lowest mtDNA genes, respectively. mtDNA genes are color coded by complex: complex I, black; complex III, purple; complex IV, green; ATP synthase, gray. Global gene correlations are reported in the main text.

Mitochondrial gene expression and fitness

Gene expression variation in mtDNA and nuclear-encoded mitochondrial genes has been associated with a large number of human diseases, including cancer (Penta et al. 2001), neurodegenerative diseases (Schapira 1998; Swerdlow and Khan 2009), aging (Tońska et al. 2009), and type 2 diabetes mellitus (Mootha et al. 2003); however the exact mechanisms of action are poorly understood (Borowski et al. 2010). Early studies suggested the expression of OXPHOS genes in early development conditions the rate of electron transport enzyme activity throughout life in Caenorhabditis elegans (Dillin et al. 2002). More recently, knockdown of mitochondrial ribosomal proteins causes mitonuclear protein imbalance, reduced respiration, and activation of the mitochondrial UPR (Houtkooper et al. 2013). Paradoxically, this imbalance confers an overall positive, hormesis-like effect on life span and appears to be conserved between C. elegans and mammalian (mouse hepatocyte) cell lines. The regulation of mitochondrial genes is therefore important for organismal health, and transcript (or protein) imbalance between mitochondrial proteins may provide one arena for a cell to sense aberrant gene or protein function.

mtDNA substitution affects mtDNA expression


We found expression levels of mtDNA genes to be among the most differentially expressed between mtDNA haplotypes. Importantly, these differences were not unidirectional across all genes. In all nuclear background \times sex combinations, the *siI* haplotype conferred upregulation of expression in some genes (*e.g.*, *ND2* gene), whereas genes from the same complex (complex I, *e.g.*, *ND3*) were among the most downregulated genes as a consequence of mtDNA substitution. This

suggests that the relative abundance of transcripts is lower in *siI* haplotypes, however, there are exceptions to this rule (*e.g.*, *ND2*). For mtDNA genes, we found a strong positive correlation between \log_2 -fold changes in each nuclear background, suggesting that mtDNA genes behave similarly in different nuclear backgrounds and sexes. Importantly, there was a consistent rank order for the genes that were most upand downregulated as a consequence of mtDNA substitution.

Mitochondrial haplotype variation has previously been shown to modify mtDNA copy number variation and mtDNA protein coding gene expression on a common nuclear background in Drosophila (Camus et al. 2015). In that study, the ND5 gene showed expression values consistent with phenotypic divergence, suggesting the mtDNA polymorphisms may behave as expression quantitative trait loci. The ND2 gene was not assayed in Camus et al.'s study due to its high A+T content, so comparisons between the present study and that study cannot be made. We show that mtDNA substitution can have a large impact on relative gene expression when large numbers of nucleotide polymorphisms are present in the contrasting genotypes (e.g., ~103 amino acid substitutions and 418 synonymous SNPs between Oregon R and sil haplotypes). The results from the current study show that the impact of mtDNA haplotypes on mtDNA gene expression may be an additive effect of the point mutations that differ between the compared haplotypes.

Protein sequences or regulatory sequences?

Using the mitonuclear introgression model we specifically substituted alleles in the mtDNA coding region. We do not know the extent of mutations in the regulatory control region of the mtDNAs (D-loop), which is where transcription is initiated in *D. melanogaster* (Goddard and Wolstenholme

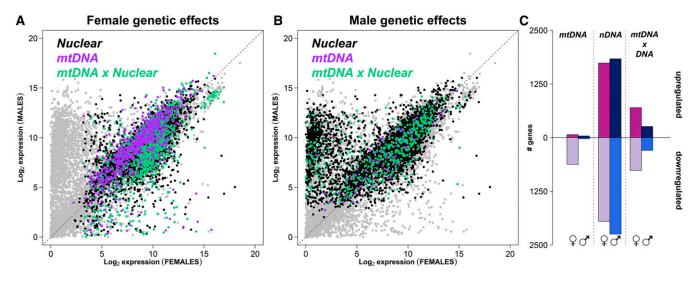


Figure 6 Gene clusters demonstrating a spectrum of genetic effects in females. The abscissa shows the (mito; nuclear) genotype. The log-fold change is shown on the ordinal as determined by MBClusterSeq. The black lines outline individual zero-centered gene profiles across genotypes. The red line is the per-genotype mean value across all genes in the cluster. The cluster figure for males is shown in Figure S7. Colored squares show the main genetic effect captured by the cluster, as cartooned in Figure S1: red, nuclear effect; blue, mtDNA effect; green, nuclear + mtDNA effect; black, mtDNA × nDNA interaction. *A*, *AutW132*; *O*, *OregonR*.

1978) and *D. simulans* (Goddard and Wolstenholme 1980). In both species, at least one (Clayton 1982) origin of replication occurs roughly in the center of the A+T-rich region (Goddard and Wolstenholme 1978; Wolstenholme 1992; Lewis *et al.* 1994; Torres *et al.* 2009). Our findings suggest that protein products of genes that assemble in a single complex (complex I) can have drastically different transcript abundance, and the mutations that segregate between *siI* and *OregonR* haplotypes alter expression in a gene-by-gene basis.

Complex I is one of the largest and most complicated enzymes in the eukaryotic cell (Vinothkumar *et al.* 2014), and its crystal structure has been resolved across a wide range of species, *e.g., Escherichia coli* (Efremov and Sazanov 2011), *Thermus thermophilus* (Efremov *et al.* 2010), and *Bos taurus* (Vinothkumar *et al.* 2014). Among the consistent characteristics are the protein identifiers and their spatial organization within the membrane domain (Vinothkumar *et al.* 2014). One of the earliest genome-wide coexpression analyses provided good evidence in *Saccharomyces cerevisiae* that genes that physically interact or are present in the same metabolic pathway have similar expression levels (DeRisi *et al.* 1997). Our results show that a "healthy" fly can exhibit wide variation in mtDNA transcripts from some complexes (*e.g.*, complex I), yet consistent coexpression patterns across other complexes (*e.g.*, complex IV and ATP synthase). Taken together, these results suggest some transcripts are more sensitive to genetic polymorphism than others, and that transcript *variation* within a protein complex may provide a useful trait to characterize the effects of mutations, and whether these effects are associated with deleterious phenotypes. Finally, the phenotypic effects on separate mitochondrial respiratory functions could help pinpoint whether complexes with tightly regulated transcripts perform better than those that have wide variation. If wide variation is deleterious, we would predict that complex I function, for example, would show more wide-ranging phenotypes between *siI* and *OregonR* haplotypes, than complex IV.

Why would *ND2* be massively upregulated and *ND3* massively downregulated as a result of *siI* mutations? In spite of their physical proximity in the mitochondrial inner membrane domain, we found those OXPHOS genes that were most sensitive to mtDNA variation are adjacent proteins (Vinothkumar *et al.* 2014). For example, Figure 5 shows that gene transcripts *ND3* and *ND4L* are closely grouped in the

Figure 7 The distribution of significant mtDNA, nDNA, and mitonuclear genotypes in expression space. Results of edgeR analyses on the complete data set are shown. Female expression is plotted on the abscissa, males on the ordinal. The position of differentially expressed genes by nuclear (black), mtDNA (purple), and mtDNA \times nDNA (green) variation are shown for (A) females and (B) males. The absolute numbers of significant genes in each category are described in bar plots in (C). Results for each category are divided into up- and downregulated genes. For each category females are shown leftmost, males rightmost.


plot. Likewise, *ND2* and *ND4* are consistently upregulated in both nuclear backgrounds and in both sexes. The patterns of expression are coextensive with the position of protein products; *ND3* and *ND4L*, and *ND2* and *ND4* are adjacent proteins in the membrane. Given that there are only seven mtDNAencoded proteins in the membrane domain it is possible that this observation would be expected by chance, however it does suggest that conversion rates of transcript to protein may depend on the position of a protein in the membrane.

We have previously identified a number of SNPs that are different between the coding regions of sil and OregonR haplotypes and which have putative deleterious effects on protein function (Mossman et al. 2016). One of the private mutations to the sil-OregonR pair resides in the ND2 gene and is two amino acids downstream of a putative deleterious amino acid polymorphism. Future work will aim to characterize whether this putative mutation is involved in the upregulation of the gene, possibly as a response to deleterious protein function; resulting in overall genetic robustness. Previous studies have shown that gene transcription responds to genetic mutation and may rescue phenotypes via a compensatory network (Kafri et al. 2005; Rossi et al. 2015). Moreover, during mammalian mtDNA transcription, polypeptides are theoretically transcribed in a 1:1 ratio because the polycistronic transcripts are fully transcribed from both mtDNA duplex strands (Gagliardi et al. 2004). In Drosophila mtDNA there are five different transcription initiation sites and transcript cleavage is signaled by the presence of cloverleaf structures of tRNAs (Ojala et al. 1981). There is considerable heterogeneity in mRNA expression between mtDNA genes within OXPHOS complexes, and these differences are largest in complex I (NADH dehydrogenase) (Torres et al. 2009). We also found NADH dehydrogenase to have the widest variation in log₂-fold change when comparisons were conducted within a gene (as a consequence of mtDNA variation). That is, mtDNA genetic variation was associated with differences in log₂-fold change. Taken together, these results suggest complex I gene expression shows wide variation (i) across genes within a complex and (ii) within genes as a consequence of mtDNA variation.

Following cleavage via endonucleases, polypeptide mRNAs are processed with a theoretical uniform abundance, which we did not observe. Given our haplotypes were from separate species, and those species have different control regions, with variable length and possibly SNP polymorphisms, it is possible that these regions alone are associated with the expression differences, with SNP variation having negligible effect. However, we favor the hypothesis that SNP variation does impact transcript levels, simply because a main effect of the regulatory (D-loop) region would presumably affect transcript levels in a more universal way, with little evidence of gene-specific expression patterns. Heterogeneity in transcript abundance across genes in Drosophila has been suggested to result from various post-transcriptional mechanisms including differential transcript stability and differences in the processing of mature transcripts (Torres et al. 2009). Our results suggest mtDNA variation can modify mtDNA gene transcriptional regulation and that complex I is particularly sensitive to mtDNA variation in this mtDNA haplotype pair (OregonR vs. sil).

Gene-by-gene interactions for transcription

mtDNA-encoded protein genes showed the most consistent patterns of DE identified using multiple analysis tools. Three mtDNA genes (ND5, ND6, and ATPase6; Figure S12) demonstrated a significant mitochondrial \times nuclear effect in both

Figure 8 Robust differentially expressed genes across (A) mtDNA, (B) nDNA, and (C) mtDNA \times nDNA categories. Venn diagrams describe the intersection of gene identifiers by sex in each category, as determined by DE analysis in edgeR on the complete data set. The area of the circles is relative to the number of genes within a category. Females are shown on the left, and males on the right of each diagram. Genes within the intersection between females and males are listed in Figure S10, Figure S11, and Figure S12 for each category, respectively.

sexes. That is, the effect of mtDNA substitution in one nuclear background was different from the effect in the other. As expected, nDNA variation was associated with DE in many genes in both males and females, however, we found females were generally more sensitive to mtDNA variation, particularly for OXPHOS complex genes. While males showed gene clusters consistent with mitonuclear effects, these were generally low magnitude differences and were not detected using DE analyses. We also found a larger effect in the AutW132 nuclear background than in the OregonR nuclear background in females. Our gene lists (in Figure S10, Figure S11, and Figure S12) documenting the genes that were consistently differentially expressed across sexes are likely conservative estimates. On the other hand, they represent core sets of genes that are robustly differentially expressed across genetic backgrounds and sexes. Our clustering analyses showed clear evidence that many transcripts have gene-by-gene interaction patterns in males, yet mainly mtDNA effects in females; a pattern that was consistent across analysis tools. Interestingly, the nuclear genes involved in OXPHOS showed mitonuclear patterns in males, but no mitonuclear effects in females (red dots in Figure 5). Using an agnostic clustering approach, we identified sets of genes that showed similar expression patterns across genotypes and which were enriched for GO categories associated with mitochondrial function. It is now well established that genes in the same pathway share similar levels of expression (Stuart et al. 2003; Kafri et al. 2005) and we detected a strong signal that mitonuclear interaction gene clusters were enriched for processes involving translation and mitochondrial metabolism in both sexes. Moreover, the mtDNA OXPHOS genes tended to cluster in complex-specific clusters and this effect was more noticeable in females than in males. Similar results have been observed in humans where genes from distinct OXPHOS complexes tend to cluster together (van Waveren and Moraes 2008).

The female transcriptome is more sensitive to genetic variation

Considering the global gene set, we found that females exhibit clear genotype-specific transcript profiles regardless of the gene set analyzed. In contrast, the MDS plots revealed males

are distinguishable by nuclear backgrounds across all genes, but the effects of mtDNA are only present in the most differentially expressed gene sets and mainly restricted to the AutW132 nuclear background. This first suggests that mtDNA genes are among the most differentially expressed in males, and second, that mtDNA \times nDNA interactions are present in males, and these operate on a large subset of the complete gene set. These were generally smaller in magnitude than in females. This phenomenon may help explain why a greater number of mitonuclear interactions were observed in males via gene clustering and these made detection of firstorder effects of mtDNA and nuclear variation more difficult as fewer genes achieved statistical significance with DEanalysis tools. Using a combination of DE analyses provides clearer evidence that male and female transcriptomes respond differently to mitonuclear variation, and suggests a much larger number of genes are sensitive to mitonuclear variation in males, even though these are not "significantly" differentially expressed.

Retrograde signaling is more prevalent in females

We found mtDNA substitution in females conferred large effects on nuclear genes, suggesting pervasive retrograde signaling (mtDNA-to-nDNA feedback) between the genomes, and a clear separation of genotypes based on transcript expression. The effects of mtDNA variation were less obvious in males and a significantly smaller number of nuclear genes responded to mtDNA variation. While we acknowledge that there could be inherent differences between the male and female RNA-seq libraries due to a block effect, we conducted the majority of analyses within a sex to minimize a block effect on analyses interpretation. The magnitude and direction of log₂-fold change in mtDNA genes were similar across sexes, suggesting we were able to capture real biological signal for the most differentially expressed genes. Importantly, when correlations (Figure 5) were compared across sexes, our mitonuclear results demonstrate a clear sexual dimorphism, even though the within-sex effects were calculated with sexspecific dispersion parameters. Under a null hypothesis of no sex-specific mitonuclear effect, we would not expect the sexes to differ in the direction of effect for the global pattern of expression. Given that the majority of male transcripts did not respond significantly to first-order mtDNA variation, the global transcript negative correlation we observed between nuclear backgrounds may be a product of reduced signal of mtDNA effects. However, mtDNA genes did respond and the mtDNA effect, while small for the majority of the transcriptome, was in the opposite direction in females. Our results show that the sensitivity to detect first-order effects of mtDNA variation are hindered by mitonuclear interactions, and a clustering approach is more likely to capture interaction effects. One interesting question arises: is this evidence of sexual antagonism (Rice 1984) for gene expression?

Genes from both mtDNA and nDNA genomes can respond to selection in females. The female environment likely provides the only opportunity for mitonuclear expression to be exposed to selection, even though genes spend, on average, half their lifetime in each sex. Under this scenario, it has been suggested that nuclear genes that interact with mtDNAs would benefit from being on the X chromosome because there is greater opportunity for cotransmission and therefore coadaptation with mtDNA (Rand et al. 2001; Wade and Goodnight 2006). In Drosophila, the X chromosome has been implicated in mitonuclear epistatic interactions (Rand et al. 2001; Montooth et al. 2010), providing an opportunity to reduce intraindividual genetic conflict (sensu Werren 2011). However, mitonuclear genes are underrepresented on the X chromosome in Drosophila (Rogell et al. 2014), a pattern that is consistent also across various mammals (Drown et al. 2012) and C. elegans (Dean et al. 2014). Further, nuclear-mitochondrial gene duplications, which could help mitigate sexual conflict, are rarely relocated to the X chromosome in Drosophila (Gallach et al. 2010). In contrast, birds do not show under- or overrepresentation of mitonuclear genes on the Z chromosome (in birds, males are the homogametic sex and genes on the Z chromosome were tested; Drown et al. 2012).

Alternative sexual conflict-based hypotheses have been proposed to explain these observations (Drown et al. 2012; Dean et al. 2014; Rogell et al. 2014). Our results suggest pervasive retrograde signaling occurs between mtDNA and nuclear genes, motivating that future investigations on mitonuclear coevolution should focus on key regions of the nuclear genome that harbor mitonuclear interacting genes, and not just canonical OXPHOS or mitochondrial genes encoded by nDNA. For example, do these nuclear loci demonstrate evidence of unique patterns of selection compared to closely linked loci? We identified two nuclear genes, CG11966 and Jonah 25Bi, that show consistent evidence of retrograde signaling in all genotypes and in both sexes. These genes are sensitive to mtDNA polymorphism, yet are not OXPHOS genes. We have also described a gene list of mitonuclear genes that are attractive targets of such a study (Figure S12).

mtDNA effects are not limited to males or malelimited genes

The Frank and Hurst hypothesis (Frank and Hurst 1996) that males are more sensitive to mtDNA substitution-has limited support in this study. We found the mtDNA protein coding genes to be enriched in the gene list that was differentially expressed by mtDNA variation, and this effect was consistent across nuclear backgrounds. We also found a similar effect in females. While these findings suggest males are not suffering more than females as a result of mtDNA substitution, the enrichment of mtDNA genes per se is some evidence that males are sensitive to exclusively OXPHOS genes (Figure 4). It is possible that the nucleotide substitutions between siI and OregonR do not manifest with sufficiently large effect sizes on globally expressed genes to be detected in males, as has been observed in other mtDNA-variation studies on gene expression (Innocenti et al. 2011). Moreover in Innocenti et al.'s study, the effects of mtDNA substitution in a

w1118 D. melanogaster background were enriched in malelimited genes. Their finding evidenced a sex-specific selective sieve, whereby mtDNA mutations that were not under selection in males (due to maternal inheritance) could principally manifest in male-limited tissue as males are at a genetic dead end for mtDNA evolution. To independently test for mtDNAassociated expression differences in sex-limited genes, we also conducted our investigation on whole flies, including all reproductive tissue. We acknowledge that whole fly analyses cannot resolve sex-biased expression that may be due to differences in tissue contributions. However, we wanted to make our analyses comparable to other whole organism gene expression studies in Drosophila. We found no differences in fecundity between the strains used in this study (see File S1, Figure S14, Table S2, Table S3), suggesting the rate of turnover of gametes, and hence reproductive tissue mass, was not significantly different between strains and was unlikely to bias gene expression values between genotypes. Pathological mtDNA mutations principally manifest in tissues with high ATP demand (reviewed in Stewart and Chinnery 2015). The tissue-specific pathological effects of mtDNA variants in humans is a good motivation for future work to specifically test gene expression differences in tissues with high ATP demand in fruit flies, such as neuronal tissue, or flight muscle.

We did not recapitulate the sex-specific selective sieve effect in our study, in spite of (i) significant numbers of genes that demonstrated sex-specific gene expression (Figure 1), and (ii) large amounts of nucleotide variation between our haplotypes (>100 amino acid substitutions, and >400 synonymous mtDNA polymorphisms). Instead, we found no enrichment for mtDNA effects in male-biased genes [in regions of the gene expression space associated with male-limited traits (e.g., spermatogenesis and testes)]. We only considered a pairwise comparison of mtDNA variation, in contrast to Innocenti et al.'s five haplotypes, and hence do not have the same polymorphisms present in our experiment. However, it is possible that the w1118 nuclear background used in Innocenti et al. (2011) is more sensitive to mtDNA variation than other nuclear backgrounds and these differences may manifest disproportionately in males. In the present study we found greater mtDNA sensitivity in the AutW132 background, providing good evidence that nuclear background per se can alter the sensitivity of the transcriptome to mtDNA variation. A main take home message in the present study is that there are differences between nuclear backgrounds and these can modify the effects of mtDNA variation. Extensive evidence of mtDNA \times nDNA interactions on phenotypes (Mossman et al. 2016), including comparisons with the w1118 background (Zhu et al. 2014), suggests mtDNA haplotype-associated phenotypes are not always general results across nuclear backgrounds. We are now assessing the effects of environment on mitonuclear interactions to test whether mitonuclear effects are influenced by environment (gene-bygene-by-environment interactions), or whether genotypes are robust to environmental perturbation. Previous studies suggest environment can have a large and sometimes unpredictable effect on mitonuclear interactions (Mossman *et al.* 2016), however, there are no studies quantifying this in *Drosophila* gene expression.

In summary, we found considerable variation in transcript expression as a result of mtDNA, nDNA, and mitonuclear substitution. Contrary to the Frank and Hurst hypothesis, we did not find enrichment of mtDNA effects targeting male-limited gene expression in males. However, we did find large sex differences in the effects of genetic manipulation. In general, females showed larger genetic effects on transcript abundance and female genotypes were distinguishable based on their global gene-expression patterns, inconsistent with the lower sensitivity in males. In males, the majority of transcripts demonstrated mitonuclear effects in clustering analyses. Although mtDNA genes were preferentially differentially expressed, we interpret this as evidence that both mtDNA and nDNA covariation are important for transcript expression in this genotype panel. Future work will identify: (i) if these effects are general over a larger suite of genotypes, and (ii) by what mechanisms of action do mtDNA haplotypes affect gene expression. For example, are the polymorphisms in genic regions of the mtDNA responsible, or is variation in the mtDNA regulatory region key to the observed expression patterns? Are these effects tissue specific? Our general findings suggest that mtDNA effects can vary between nuclear genetic backgrounds depending on the sex tested, and therefore therapeutic methods to overcome mitochondrial diseases in humans should consider mitonuclear covariation as potential sources of phenotypic variation and therapy outcomes.

Acknowledgments

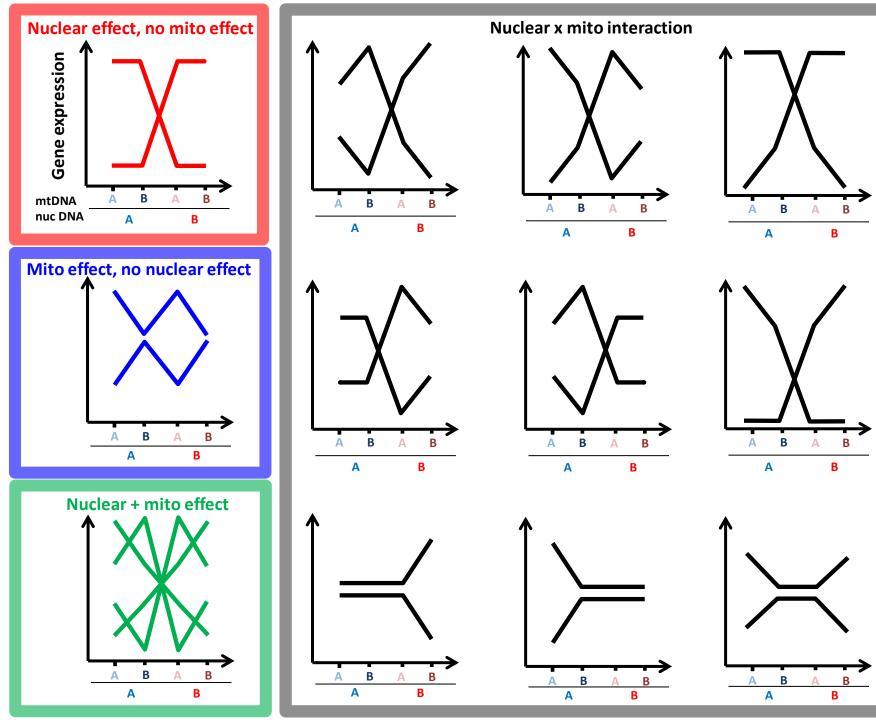
We thank Christoph Schorl for assistance in the processing of RNA sequencing libraries, and Mark Howison for demultiplexing the samples. Jason Wood provided scripting help and Leann Biancani provided assistance with fly husbandry. A.-M. Hernandez gave critical comments on the manuscript. This work was conducted using computational resources and services at the Center for Computation and Visualization, Brown University. This project was funded by National Institutes of Health grants R01 GM-067862 and AG-027849 to D.M.R.

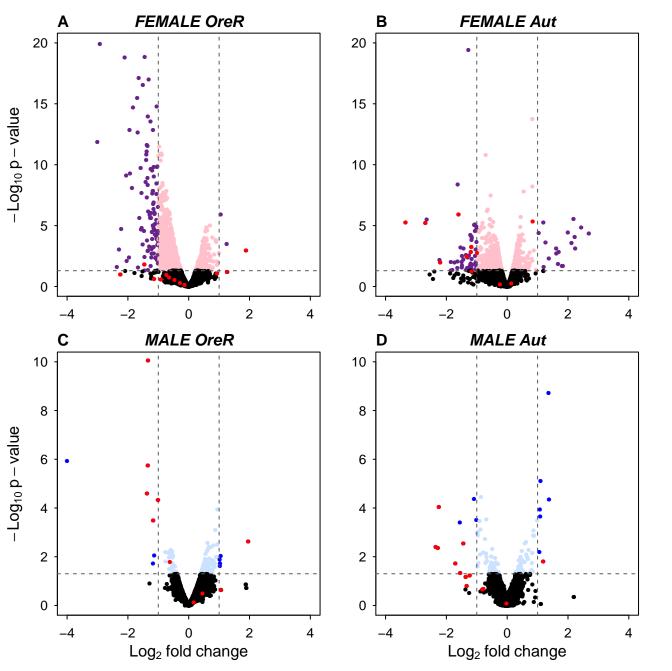
Author contributions: J.G.T. prepared flies for the experiment. J.A.M. and J.G.T. extracted RNA and conducted RNA sequencing. J.A.M. conducted the quantitative PCR analyses, analyzed the data with input from N.L. and W.Z., and wrote the manuscript with comments from D.M.R.

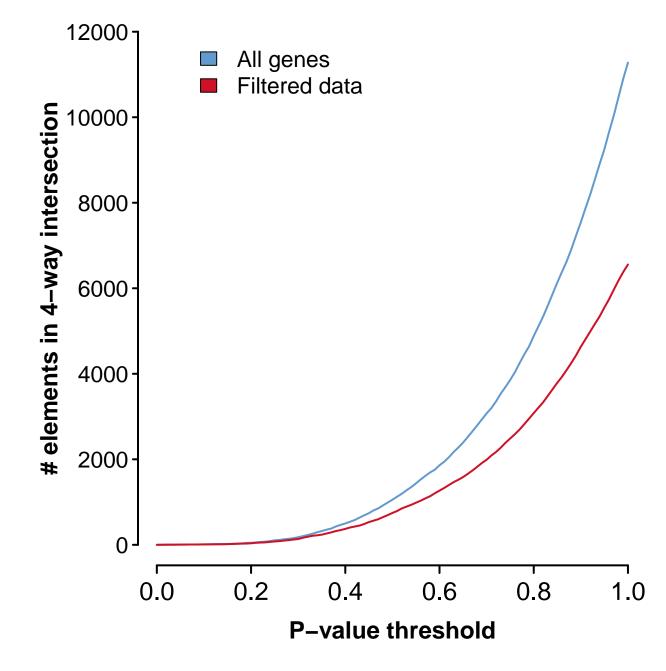
Literature Cited

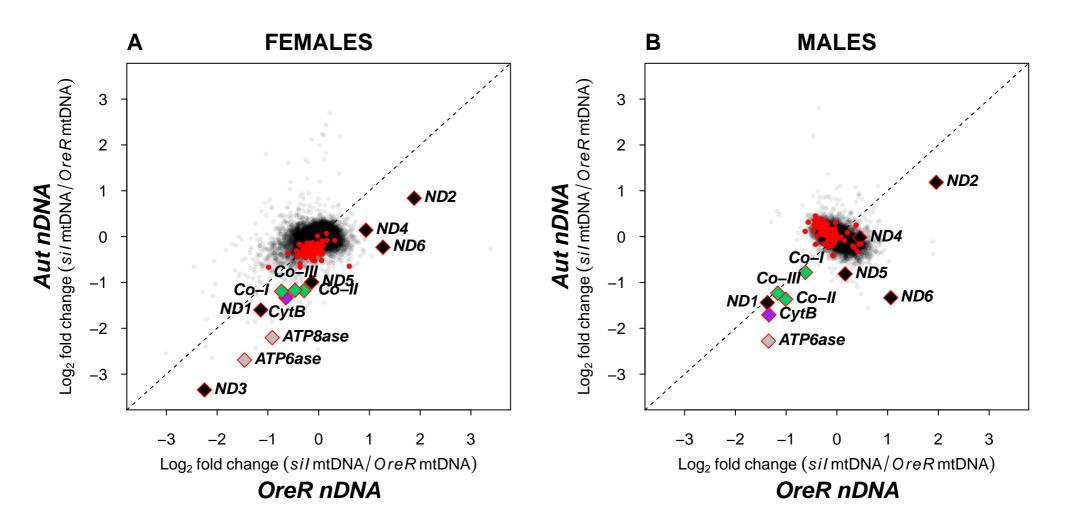
- Anders, S., and W. Huber, 2010 Differential expression analysis for sequence count data. Genome Biol. 11: 1–12.
- Anders, S., P. T. Pyl, and W. Huber, 2015 HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31: 166–169.
- Antonov, A. V., 2011 BioProfiling.de: analytical web portal for high-throughput cell biology. Nucleic Acids Res. 39: 323–327.

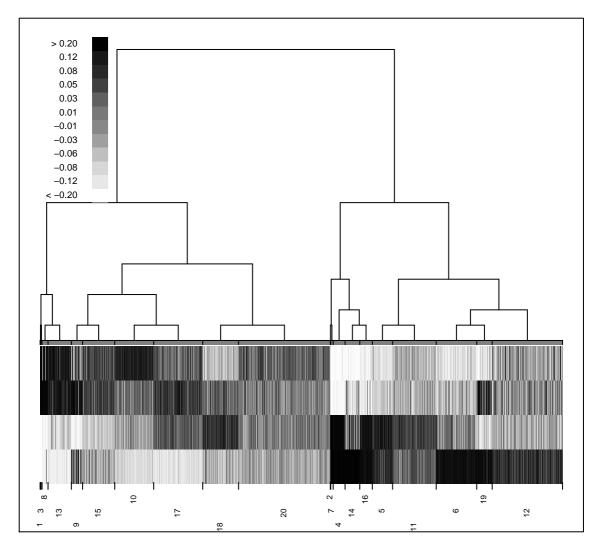
- Antonov, A. V., T. Schmidt, Y. Wang, and H. W. Mewes, 2008 ProfCom: a web tool for profiling the complex functionality of gene groups identified from high-throughput data. Nucleic Acids Res. 36: 347–351.
- Ayroles, J. F., M. A. Carbone, E. A. Stone, K. W. Jordan, R. F. Lyman et al., 2009 Systems genetics of complex traits in Drosophila melanogaster. Nat. Genet. 41: 299–307.
- Benjamini, Y., and Y. Hochberg, 1995 Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57: 289–300.
- Bernes, S. M., C. Bacino, T. R. Prezant, M. A. Pearson, T. S. Wood et al., 1993 Identical mitochondrial DNA deletion in mother with progressive external ophthalmoplegia and son with Pearson marrow-pancreas syndrome. J. Pediatr. 123: 598–602.
- Borowski, L. S., R. J. Szczesny, L. K. Brzezniak, and P. P. Stepien, 2010 RNA turnover in human mitochondria: more questions than answers? Biochim Biophys Acta 1797: 1066–1070.
- Bourgon, R., R. Gentleman, and W. Huber, 2010 Independent filtering increases detection power for high-throughput experiments. Proc. Natl. Acad. Sci. USA 107: 9546–9551.
- Camus, M. F., D. J. Clancy, and D. K. Dowling, 2012 Mitochondria, maternal inheritance, and male aging. Curr. Biol. 22: 1717– 1721.
- Camus, M. F., J. B. Wolf, E. H. Morrow, and D. K. Dowling, 2015 Single nucleotides in the mtDNA sequence modify mitochondrial molecular function and are associated with sexspecific effects on fertility and aging. Curr. Biol. 25: 2717–2722.
- Casademont, J., A. Barrientos, F. Cardellach, A. Rotig, J. M. Grau et al., 1994 Multiple deletions of mtDNA in 2 brothers with sideroblastic anemia and mitochondrial myopathy and in their asymptomatic mother. Hum. Mol. Genet. 3: 1945–1949.
- Clayton, D. A., 1982 Replication of animal mitochondrial DNA. Cell 28: 693–705.
- D'Elia, D., D. Catalano, F. Licciulli, A. Turi, G. Tripoli *et al.*, 2006 The MitoDrome database annotates and compares the OXPHOS nuclear genes of Drosophila melanogaster, Drosophila pseudoobscura and Anopheles gambiae. Mitochondrion 6: 252–257.
- Dean, R., F. Zimmer, and J. E. Mank, 2014 The potential role of sexual conflict and sexual selection in shaping the genomic distribution of mito-nuclear genes. Genome Biol. Evol. 6: 1096– 1104.
- DeRisi, J. L., V. R. Iyer, and P. O. Brown, 1997 Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686.
- Dillin, A., A.-L. Hsu, N. Arantes-Oliveira, J. Lehrer-Graiwer, H. Hsin et al., 2002 Rates of behavior and aging specified by mitochondrial function during development. Science 298: 2398–2401.
- Dimauro, S., and G. Davidzon, 2005 Mitochondrial DNA and disease. Ann. Med. 37: 222–232.
- DiMauro, S., and E. A. Schon, 2003 Mechanisms of disease: mitochondrial respiratory-chain diseases. N. Engl. J. Med. 348: 2656–2668.
- Drown, D. M., K. M. Preuss, and M. J. Wade, 2012 Evidence of a paucity of genes that interact with the mitochondrion on the X in mammals. Genome Biol. Evol. 4: 875–880.
- Eden, E., R. Navon, I. Steinfeld, D. Lipson, and Z. Yakhini, 2009 GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10: 1–7.
- Efremov, R. G., and L. A. Sazanov, 2011 Structure of the membrane domain of respiratory complex I. Nature 476: 414–420.
- Efremov, R. G., R. Baradaran, and L. A. Sazanov, 2010 The architecture of respiratory complex I. Nature 465: 441–445.
- Frank, S. A., and L. D. Hurst, 1996 Mitochondria and male disease. Nature 383: 224.
- Friberg, U., and D. K. Dowling, 2008 No evidence of mitochondrial genetic variation for sperm competition within a population of Drosophila melanogaster. J. Evol. Biol. 21: 1798–1807.

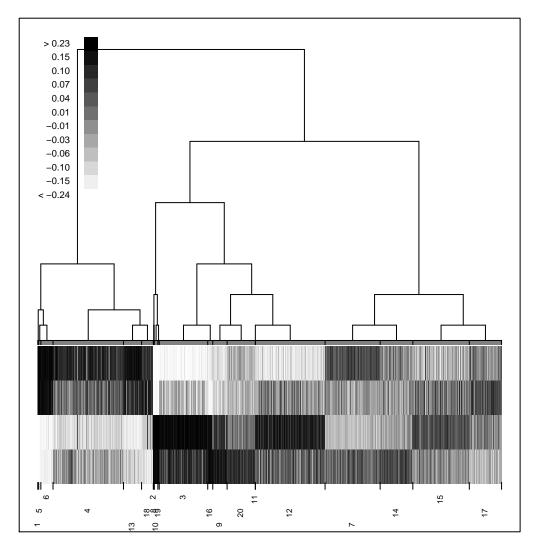

- Friedman, J. R., and J. Nunnari, 2014 Mitochondrial form and function. Nature 505: 335–343.
- Gagliardi, D., P. P. Stepien, R. J. Temperley, R. N. Lightowlers, and Z. M. A. Chrzanowska-Lightowlers, 2004 Messenger RNA stability in mitochondria: different means to an end. Trends Genet. 20: 260–267.
- Gallach, M., C. Chandrasekaran, and E. Betrán, 2010 Analyses of nuclearly encoded mitochondrial genes suggest gene duplication as a mechanism for resolving intralocus sexually antagonistic conflict in Drosophila. Genome Biol. Evol. 2: 835–850.
- Gemmell, N. J., V. J. Metcalf, and F. W. Allendorf, 2004 Mother's curse: the effect of mtDNA on individual fitness and population viability. Trends Ecol. Evol. 19: 238–244.
- Gibson, G., R. Riley-Berger, L. Harshman, A. Kopp, S. Vacha et al., 2004 Extensive sex-specific nonadditivity of gene expression in Drosophila melanogaster. Genetics 167: 1791–1799.
- Giordano, C., L. Iommarini, L. Giordano, A. Maresca, A. Pisano et al., 2014 Efficient mitochondrial biogenesis drives incomplete penetrance in Leber's hereditary optic neuropathy. Brain 137: 335–353.
- Goddard, J. M., and D. R. Wolstenholme, 1978 Origin and direction of replication in mitochondrial DNA molecules from Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 75: 3886–3890.
- Goddard, J. M., and D. R. Wolstenholme, 1980 Origin and direction of replication in mitochondrial DNA molecules from the genus Drosophila. Nucleic Acids Res. 8: 741–757.
- Hoekstra, L. A., M. A. Siddiq, and K. L. Montooth, 2013 Pleiotropic effects of a mitochondrial-nuclear incompatibility depend upon the accelerating effect of temperature in Drosophila. Genetics 195: 1129–1139.
- Holmbeck, M. A., J. R. Donner, E. Villa-Cuesta, and D. M. Rand, 2015 A Drosophila model for mito-nuclear diseases generated by an incompatible interaction between tRNA and tRNA synthetase. Dis. Model. Mech. 8: 843–854.
- Houtkooper, R. H., L. Mouchiroud, D. Ryu, N. Moullan, E. Katsyuba *et al.*, 2013 Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497: 451–457.
- Huang, W., 2012 Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc. Natl. Acad. Sci. USA 109: 15553–15559.
- Huang, W., A. Massouras, Y. Inoue, J. Peiffer, M. Ramia *et al.*, 2014 Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. Genome Res. 24: 1193–1208.
- Innocenti, P., E. H. Morrow, and D. K. Dowling, 2011 Experimental evidence supports a sex-specific selective sieve in mitochondrial genome evolution. Science 332: 845– 848.
- Jacobs, H. T., and D. M. Turnbull, 2005 Nuclear genes and mitochondrial translation: a new class of genetic disease. Trends Genet. 21: 312–314.
- Kafri, R., A. Bar-Even, and Y. Pilpel, 2005 Transcription control reprogramming in genetic backup circuits. Nat. Genet. 37: 295– 299.
- Lewis, D. L., C. L. Farr, A. L. Farquhar, and L. S. Kaguni, 1994 Sequence, organization, and evolution of the A+T region of Drosophila melanogaster mitochondrial DNA. Mol. Biol. Evol. 11: 523–538.
- Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan *et al.*, 2009 The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078–2079.
- Lin, M. T., and M. F. Beal, 2006 Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443: 787–795.
- Mackay, T. F. C., S. Richards, E. A. Stone, A. Barbadilla, J. F. Ayroles *et al.*, 2012 The Drosophila melanogaster genetic reference panel. Nature 482: 173–178.

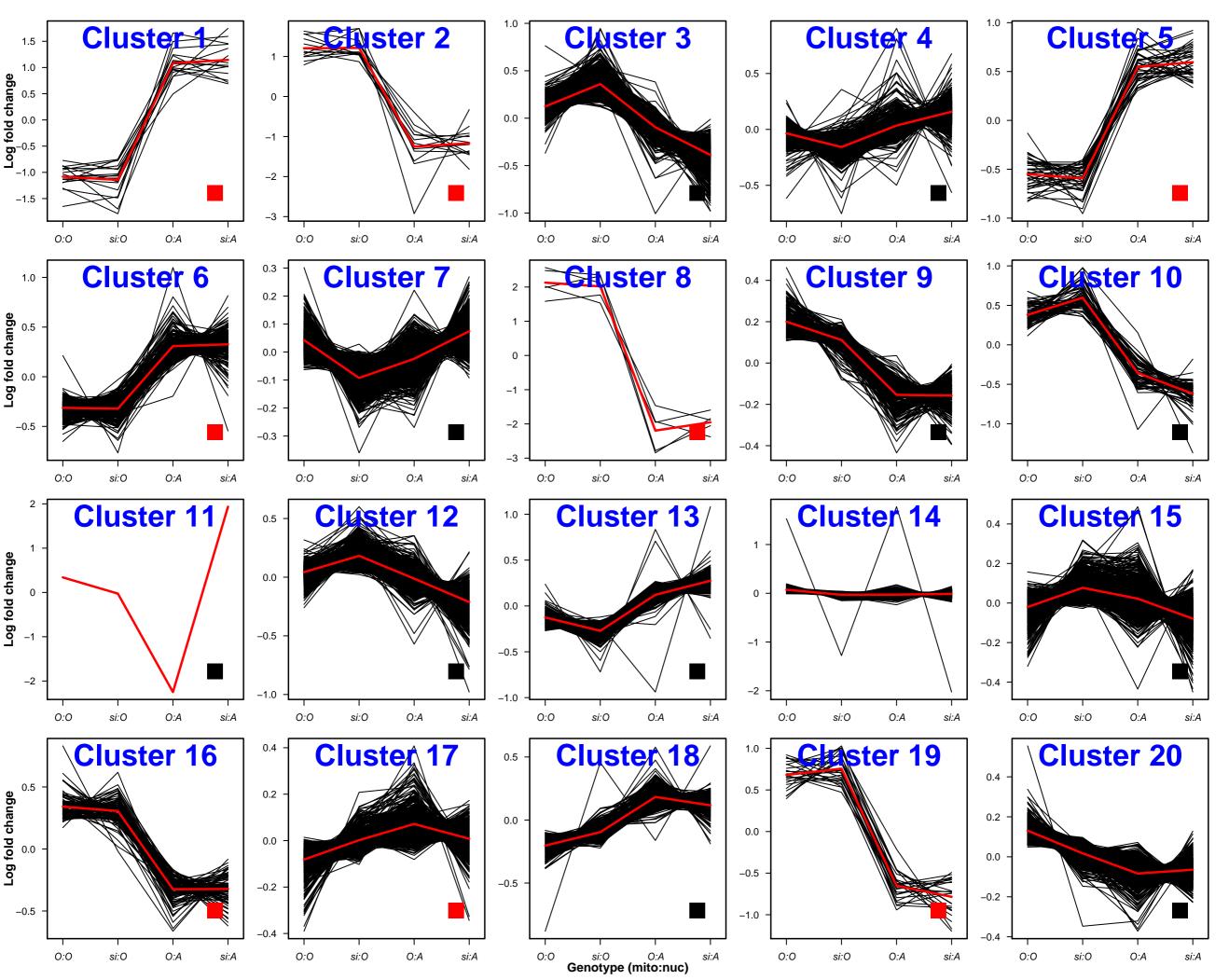

- Martin, W., and M. Muller, 1998 The hydrogen hypothesis for the first eukaryote. Nature 392: 37–41.
- Meiklejohn, C. D., M. A. Holmbeck, M. A. Siddiq, D. N. Abt, D. M. Rand et al., 2013 An incompatibility between a mitochondrial tRNA and its nuclear-encoded tRNA synthetase compromises development and fitness in Drosophila. PLoS Genet. 9: e1003238.
- Montooth, K. L., C. D. Meiklejohn, D. N. Abt, and D. M. Rand, 2010 Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila. Evolution 64: 3364–3379.
- Mootha, V. K., C. M. Lindgren, K.-F. Eriksson, A. Subramanian, S. Sihag *et al.*, 2003 PGC-1[alpha]-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34: 267–273.
- Mossman, J. A., J. Slate, T. R. Birkhead, H. D. Moore, and A. A. Pacey, 2012 Mitochondrial haplotype does not influence sperm motility in a UK population of men. Hum. Reprod. 27: 641–651.
- Mossman, J. A., L. M. Biancani, C.-T. Zhu, and D. M. Rand, 2016 Mitonuclear epistasis for development time and its modification by diet in Drosophila. Genetics 203: 463–484.
- Ojala, D., J. Montoya, and G. Attardi, 1981 tRNA punctuation model of RNA processing in human mitochondria. Nature 290: 470–474.
- Penta, J. S., F. M. Johnson, J. T. Wachsman, and W. C. Copeland, 2001 Mitochondrial DNA in human malignancy. Mutat. Res. Rev. Mutat. Res. 488: 119–133.
- Pereira, L., J. Goncalves, R. Franco-Duarte, J. Silva, T. Rocha *et al.*, 2007 No evidence for an mtDNA role in sperm motility: data from complete sequencing of asthenozoospermic males. Mol. Biol. Evol. 24: 868–874.
- Pesole, G., J. F. Allen, N. Lane, W. Martin, D. M. Rand et al., 2012 The neglected genome. EMBO Rep. 13: 473–474.
- Quiros, P. M., A. Mottis, and J. Auwerx, 2016 Mitonuclear communication in homeostasis and stress. Nat. Rev. Mol. Cell Biol. 17: 213–226.
- Rand, D. M., 2001 The units of selection on mitochondrial DNA. Annu. Rev. Ecol. Syst. 32: 415–448.
- Rand, D. M., A. G. Clark, and L. M. Kann, 2001 Sexually antagonistic cytonuclear fitness interactions in Drosophila melanogaster. Genetics 159: 173–187.
- Rice, W. R., 1984 Sex chromosomes and the evolution of sexual dimorphism. Evolution 38:735–742.
- Ritchie, M. E., B. Phipson, D. Wu, Y. Hu, C. W. Law *et al.*, 2015 limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43: e47.
- Robinson, M. D., D. J. McCarthy, and G. K. Smyth, 2010 edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.
- Rogell, B., R. Dean, B. Lemos, and D. K. Dowling, 2014 Mitonuclear interactions as drivers of gene movement on and off the X-chromosome. BMC Genomics 15: 330.
- Rossi, A., Z. Kontarakis, C. Gerri, H. Nolte, S. Holper *et al.*, 2015 Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524: 230–233.
- Roubertoux, P. L., F. Sluyter, M. Carlier, B. Marcet, F. Maarouf-Veray *et al.*, 2003 Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat. Genet. 35: 65–69.
- Ruiz-Pesini, E., A. C. Lapena, C. Diez-Sanchez, A. Perez-Martos, J. Montoya *et al.*, 2000 Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am. J. Hum. Genet. 67: 682–696.
- Sagan, L., 1967 On the origin of mitosing cells. J. Theor. Biol. 14: 225–274.

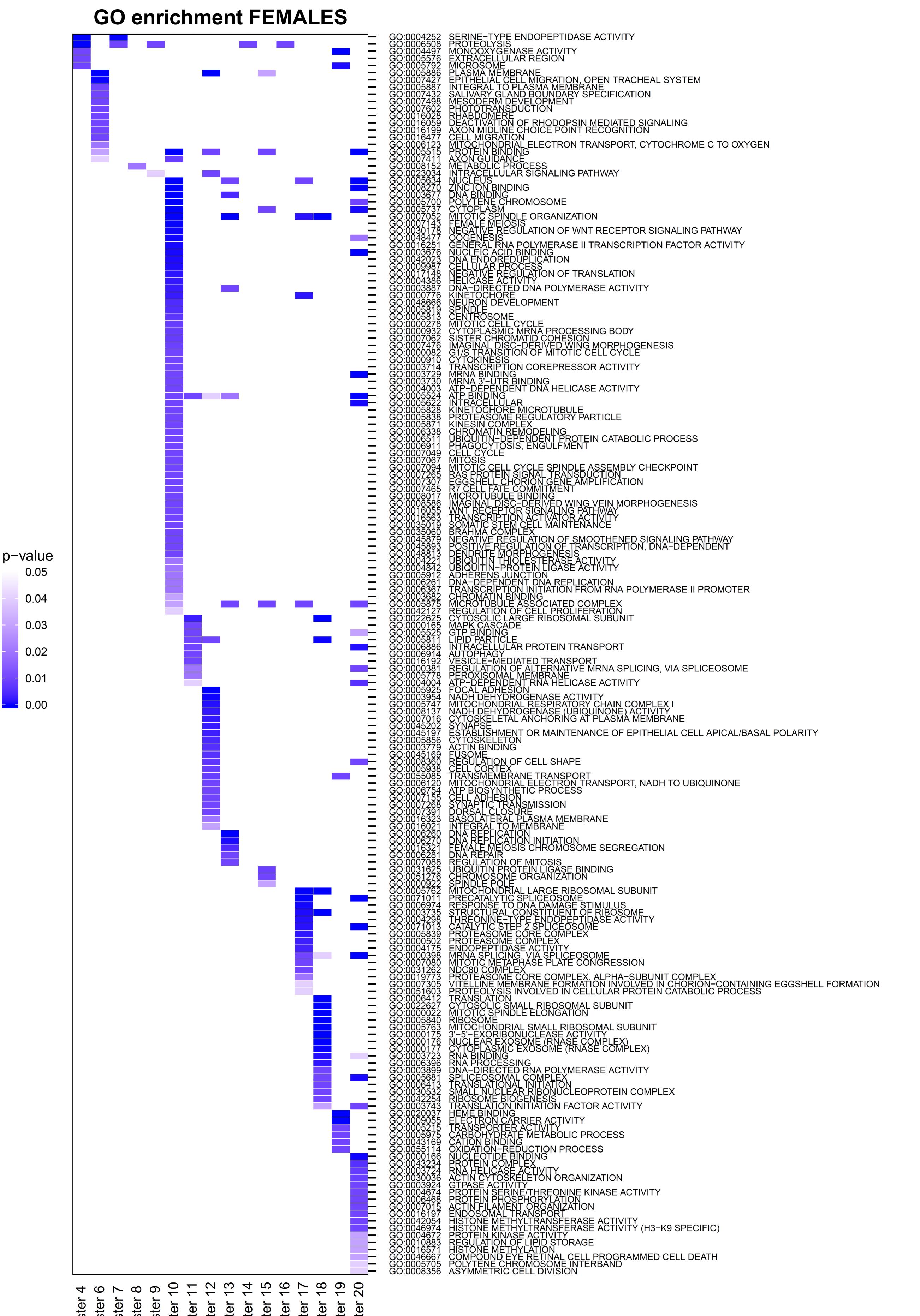

- Sanchez, G., 2014 Introduction to the R package arcdiagram. Available at: http://gastonsanchez.com/software/arcdiagram_ introduction.pdf. Accessed September 8, 2016.
- Sardiello, M., F. Licciulli, D. Catalano, M. Attimonelli, and C. Caggese, 2003 MitoDrome: a database of Drosophila melanogaster nuclear genes encoding proteins targeted to the mitochondrion. Nucleic Acids Res. 31: 322–324.
- Schapira, A. H. V., 1998 Human complex I defects in neurodegenerative diseases. Biochim Biophys Acta. 1364: 261–270.
- Schmittgen, T. D., and K. J. Livak, 2008 Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3: 1101–1108.
- Si, Y., P. Liu, P. Li, and T. P. Brutnell, 2014 Model-based clustering for RNA-seq data. Bioinformatics 30: 197–205.
- Smeitink, J., L. van den Heuvel, and S. DiMauro, 2001 The genetics and pathology of oxidative phosphorylation. Nat. Rev. Genet. 2: 342–352.
- Stewart, J. B., and P. F. Chinnery, 2015 The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat. Rev. Genet. 16: 530–542.
- Stuart, J. M., E. Segal, D. Koller, and S. K. Kim, 2003 A genecoexpression network for global discovery of conserved genetic modules. Science 302: 249–255.
- Swerdlow, R. H., and S. M. Khan, 2009 The Alzheimer's disease mitochondrial cascade hypothesis: an update. Exp. Neurol. 218: 308–315.
- Taanman, J.-W., 1999 The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta. 1410: 103–123.
- Tońska, K., A. Sołyga, and E. Bartnik, 2009 Mitochondria and aging: innocent bystanders or guilty parties? J. Appl. Genet. 50: 55–62.
- Torres, T. T., M. Dolezal, C. Schlötterer, and B. Ottenwälder, 2009 Expression profiling of Drosophila mitochondrial genes via deep mRNA sequencing. Nucleic Acids Res. 37: 7509–7518.
- Trapnell, C., A. Roberts, L. Goff, G. Pertea, D. Kim *et al.*, 2012 Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7: 562–578.

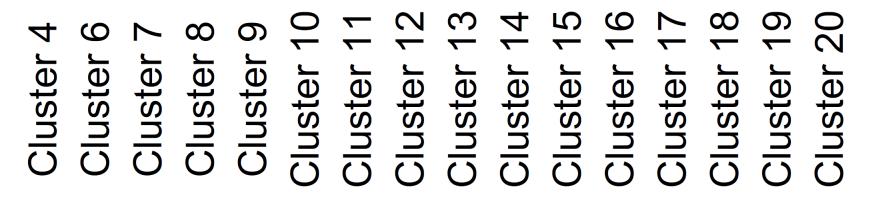

- Tripoli, G., D. D'Elia, P. Barsanti, and C. Caggese, 2005 Comparison of the oxidative phosphorylation (OXPHOS) nuclear genes in the genomes of Drosophila melanogaster, Drosophila pseudoobscura and Anopheles gambiae. Genome Biol. 6: 1–17.
- van Waveren, C., and C. T. Moraes, 2008 Transcriptional coexpression and co-regulation of genes coding for components of the oxidative phosphorylation system. BMC Genomics 9: 1– 15.
- Villa-Cuesta, E., M. A. Holmbeck, and D. M. Rand, 2014 Rapamycin increases mitochondrial efficiency by mtDNA-dependent reprogramming of mitochondrial metabolism in Drosophila. J. Cell Sci. 127: 2282–2290.
- Vinothkumar, K. R., J. Zhu, and J. Hirst, 2014 Architecture of mammalian respiratory complex I. Nature 515: 80–84.
- Wade, M. J., and C. J. Goodnight, 2006 Cyto-nuclear epistasis: two-locus random genetic drift in hermaphroditic and dioecious species. Evolution 60: 643–659.
- Wallace, D. C., 1992 Diseases of the mitochondrial DNA. Annu. Rev. Biochem. 61: 1175–1212.
- Wallace, D. C., 1999 Mitochondrial diseases in man and mouse. Science 283: 1482–1488.
- Werren, J. H., 2011 Selfish genetic elements, genetic conflict, and evolutionary innovation. Proc. Natl. Acad. Sci. USA 108: 10863– 10870.
- Wolstenholme, D. R., 1992 Animal mitochondrial DNA: structure and evolution, pp. 173–216 in *International Review of Cytology*, edited by R. W. David, and W. J. Kwang. Academic Press, San Diego.
- Wong, L. J. C., 2012 Mitochondrial Disorders Caused by Nuclear Genes. Springer, New York.
- Yee, W. K. W., K. L. Sutton, and D. K. Dowling, 2013 In vivo male fertility is affected by naturally occurring mitochondrial haplotypes. Curr. Biol. 23: 55–56.
- Zhu, C.-T., P. Ingelmo, and D. M. Rand, 2014 GxGxE for lifespan in Drosophila: mitochondrial, nuclear, and dietary interactions that modify longevity. PLoS Genet. 10: e1004354.

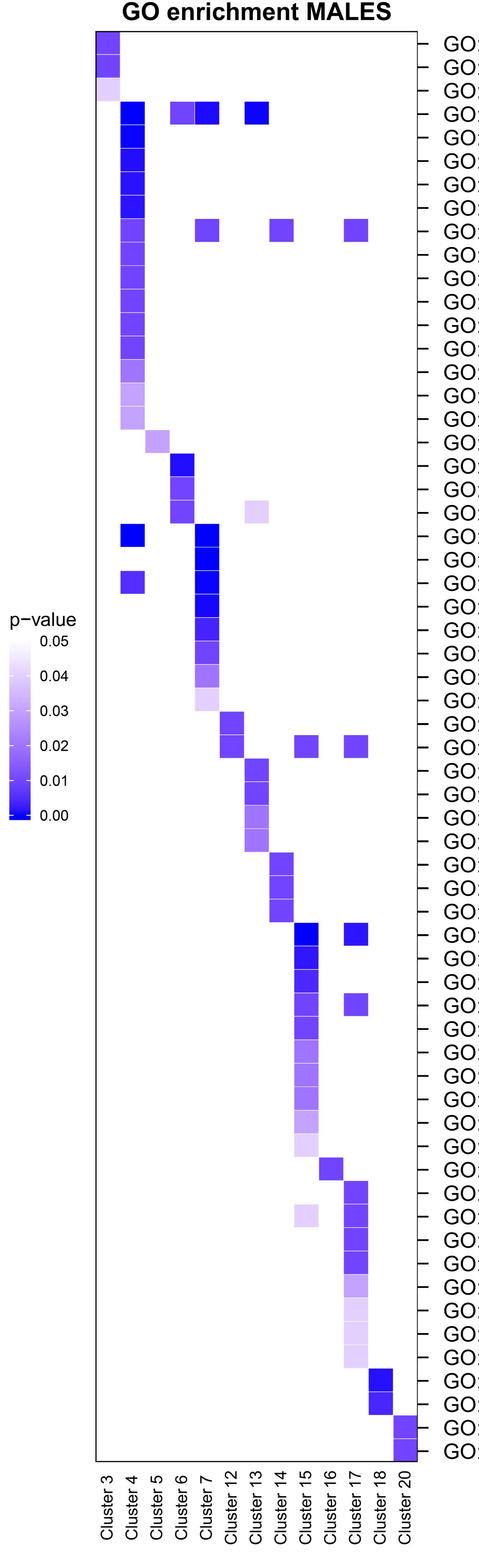

Communicating editor: J. A. Birchler



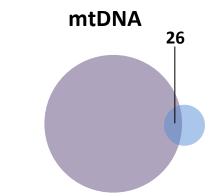






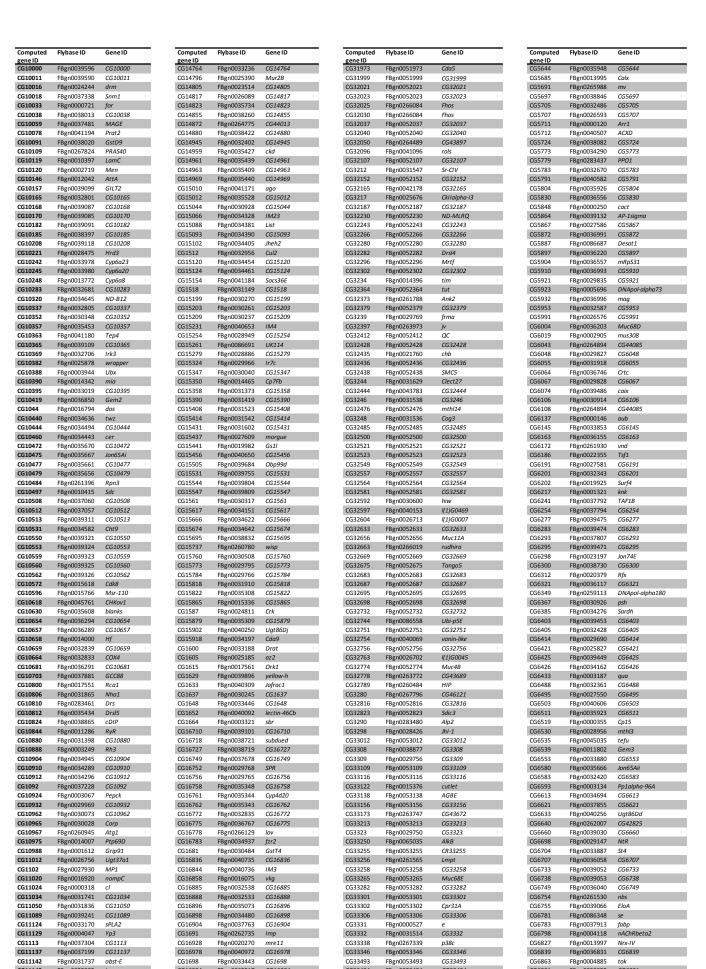


GO enrichment FEMALES



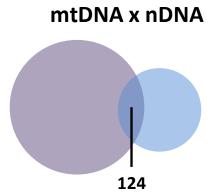
HEME BINDING GO:0020037 POST-MATING BEHAVIOR GO:0045297 TUBULIN-TYROSINE LIGASE ACTIVITY GO:0004835 GO:0005811 LIPID PARTICLE NADH DEHYDROGENASE ACTIVITY GO:0003954 GO:0005747 MITOCHONDRIAL RESPIRATORY CHAIN COMPLEX I GO:0008137 NADH DEHYDROGENASE (UBIQUINONE) ACTIVITY MITOCHONDRIAL ELECTRON TRANSPORT, NADH TO UBIQUINONE GO:0006120 GO:0005737 CYTOPLASM 'DE NOVO' PROTEIN FOLDING GO:0006458 GO:0006890 RETROGRADE VESICLE-MEDIATED TRANSPORT, GOLGI TO ER PROTON TRANSPORT GO:0015992 CYTOSOLIC SMALL RIBOSOMAL SUBUNIT GO:0022627 GO:0030126 COPI VESICLE COAT GO:0045169 FUSOME INTRACELLULAR PROTEIN TRANSPORT GO:0006886 GO:0050660 FLAVIN ADENINE DINUCLEOTIDE BINDING EXTRACELLULAR REGION GO:0005576 GO:0055085 TRANSMEMBRANE TRANSPORT PYRIDOXAL PHOSPHATE BINDING GO:0030170 OXIDATION-REDUCTION PROCESS GO:0055114 STRUCTURAL CONSTITUENT OF RIBOSOME GO:0003735 MITOTIC SPINDLE ELONGATION GO:000022 CYTOSOLIC LARGE RIBOSOMAL SUBUNIT GO:0022625 MITOTIC SPINDLE ORGANIZATION GO:0007052 NEGATIVE REGULATION OF AUTOPHAGY GO:0010507 CHAPERONIN-CONTAINING T-COMPLEX GO:0005832 GO:0042254 RIBOSOME BIOGENESIS UNFOLDED PROTEIN BINDING GO:0051082 HELICASE ACTIVITY GO:0004386 GO:0005524 ATP BINDING GO:0004129 CYTOCHROME-C OXIDASE ACTIVITY GO:0005751 MITOCHONDRIAL RESPIRATORY CHAIN COMPLEX IV GO:0005740 MITOCHONDRIAL ENVELOPE SENSORY PERCEPTION OF CHEMICAL STIMULUS GO:0007606 NUCLEIC ACID BINDING GO:0003676 AMINOPEPTIDASE ACTIVITY GO:0004177 METALLOEXOPEPTIDASE ACTIVITY GO:0008235 PROTEIN BINDING GO:0005515 ENDOCYTOSIS GO:0006897 IMAGINAL DISC-DERIVED WING MORPHOGENESIS GO:0007476 GO:0005886 PLASMA MEMBRANE GO:0005938 CELL CORTEX GO:0005768 ENDOSOME GO:0006911 PHAGOCYTOSIS, ENGULFMENT GO:0035160 MAINTENANCE OF EPITHELIAL INTEGRITY, OPEN TRACHEAL SYSTEM GO:0004672 PROTEIN KINASE ACTIVITY **BRAIN DEVELOPMENT** GO:0007420 GO:0016491 OXIDOREDUCTASE ACTIVITY GO:0005634 NUCLEUS GO:0006468 PROTEIN PHOSPHORYLATION GO:0007391 DORSAL CLOSURE GO:0007498 MESODERM DEVELOPMENT GO:0003702 RNA POLYMERASE II TRANSCRIPTION FACTOR ACTIVITY GO:0002121 INTER-MALE AGGRESSIVE BEHAVIOR GO:0007268 SYNAPTIC TRANSMISSION GO:0008360 REGULATION OF CELL SHAPE CATION BINDING GO:0043169 CARBOHYDRATE METABOLIC PROCESS GO:0005975 GO:0005739 MITOCHONDRION GO:0006626 PROTEIN TARGETING TO MITOCHONDRION

Figure S10. Between sex gene intersections for <u>**mtDNA genes**</u>. Those genes listed are consistently differentially expressed and intersected across the sexes.



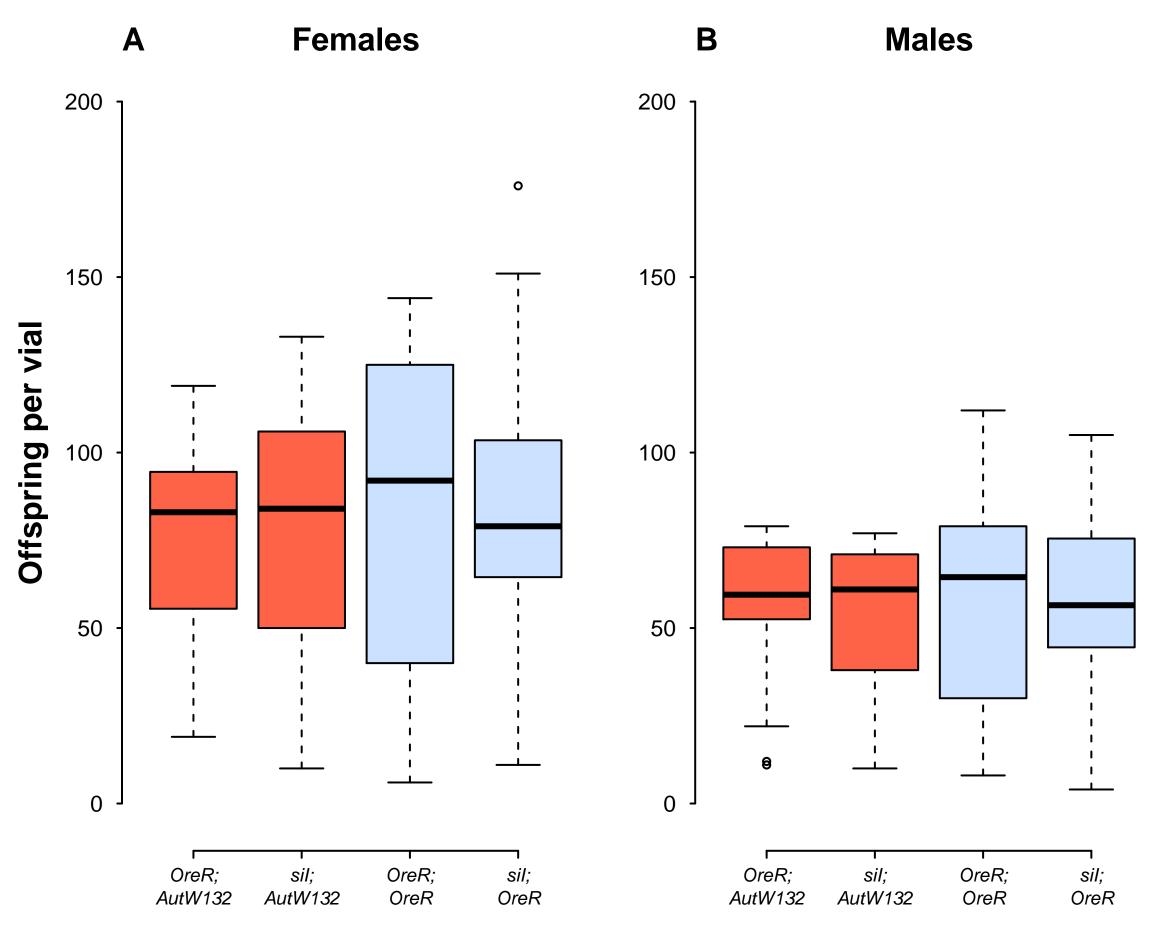
Computed gene ID	Flybase ID	Gene ID
CG10011	FBgn0039590	CG10011
CG1165	FBgn0004430	LysS
CG11966	FBgn0037645	CG11966
CG15505	FBgn0039684	Obp99d
CG33256	FBgn0261565	Lmpt
CG3350	FBgn0039509	bigmax
CG34063	FBgn0013680	mt:ND2
CG34067	FBgn0013674	mt:Col
CG34069	FBgn0013675	mt:Coll
CG34072	FBgn0013673	mt:ATPase8
CG34073	FBgn0013672	mt:ATPase6
CG34074	FBgn0013676	mt:CoIII
CG34076	FBgn0013681	mt:ND3
CG34086	FBgn0013683	mt:ND4L
CG34090	FBgn0013678	mt:Cyt-b
CG34092	FBgn0013679	mt:ND1
CG4099	FBgn0014033	Sr-Cl
CG42254	FBgn0259112	CR42254
CG4950	FBgn0036587	CG4950
CG5779	FBgn0283437	PPO1
CG7002	FBgn0029167	Hml
CG7106	FBgn0040099	lectin-28C
CG7171	FBgn0003961	Uro
CG8193	FBgn0033367	PPO2
CG8942	FBgn0259896	NimC1
CG9192	FBgn0035193	CG9192

Figure S11. Between sex gene intersections for <u>**nuclear**</u> **genes**. Those genes listed are consistently differentially expressed and intersected across the sexes.



1426


CG11137 FBgn0037199 CG11137 CG11142 FBgn0031737 obst-E CG11143 FBgn0025885 Inos CG11145 FBgn0020208 mos	CG1698 FBgn0033443 C CG16984 FBgn0062517 C	G1698 CG33493 G16984 CG33494	FBgn0053346 CG33346 FBgn0053493 CG33493 FBgn0053494 CG33494 FBgn0053494 CG33494	CG6839 FBgn003 CG6863 FBgn000 CG6891 FBgn003	4885 tok 0955 CG6891
CG11156 FBgn0002878 mus101 CG11158 FBgn0030511 CG11158 CG11164 FBgn0030507 CG11164 CG11170 FBgn00340507 CG11164	CG17029 FBgn0036551 C CG17065 FBgn0031099 C	G17029 CG33532 G17065 CG33533	FBgn0053503 Cyp12d1-d FBgn0053532 lectin-37Da FBgn0053533 lectin-37Db FBgn0053533 ectin-37Db	CG6904 FBgn026 CG6906 FBgn002 CG6908 FBgn003	7843 CAH2 7936 CG6908
CG11170 FBgn0034705 CG11170 CG11181 FBgn000392 cup CG11192 FBgn0034507 CG11192 CG11198 FBgn0033246 ACC	CG17108 FBgn0032285 C CG17124 FBgn0032297 C	G17108 CG33547 G17124 CG33653	FBgn0250732 gfzf FBgn0053547 Rim FBgn0053653 Cadps FBgn0034997 CG3376	CG6912 FBgn003 CG6917 FBgn000 CG6934 FBgn026 CG6953 FBgn002	0592 Est-6 1859 CG42788
CG11296 FBgn0033470 Liprin-gamm CG11216 FBgn0034770 Liprin-gamm CG11217 FBgn0034452 Oseg6	CG17129 FBgn0035151 C CG17131 FBgn0029128 ty	G17129 CG3394 m CG33969	FBgn0034999 CG3376 FBgn0034999 CG3394 FBgn0053969 CG33969 FBgn0037975 CG3397	CG6953 FBgn002 CG6958 FBgn003 CG6966 FBgn003 CG6972 FBgn003	9004 Nup133 8286 CG6966
CG11257 FBgn0037290 CG1124 CG11253 FBgn0266709 Zmynd10 CG11267 FBgn0036334 CG11267	CG17150 FBgn0035581 D CG17189 FBgn0039485 C	nah3 CG33977 G17189 CG34005	FBgn0053977 CG33977 FBgn0054005 CG34005 FBgn0260965 CG42588	CG6999 FBgn003 CG7000 FBgn026 CG7002 FBgn002	0085 CG6999 0004 Snmp1
CG11274 FBgn0036340 SRm160 CG11275 FBgn0034706 CG11275 CG11282 FBgn0023095 caps	CG17192 FBgn0039472 C CG17219 FBgn0031494 C	G17192 CG34026 G17219 CG34035	FBgn0054026 CG34026 FBgn0262003 CG42821 FBgn0054043 CG34043	CG7021 FBgn001 CG7029 FBgn003 CG7047 FBgn003	3949 Elal 9026 CG7029
CG11301 FBgn0034726 Mes4 CG1131 FBgn0015569 alpha-Est10 CG11314 FBgn0039800 Npc2g	CG17244 FBgn0039031 G CG17256 FBgn0029970 N	bp3 CG34057 ek2 CG34067	FBgn0054057 CG34057 FBgn0013674 mt:Col FBgn0013675 mt:Coll	CG7066 FBgn008 CG7068 FBgn004 CG7106 FBgn004	7039 Sbp2 1181 Tep3
CG11318 FBgn0039818 CG11318 CG11321 FBgn0031857 CG11321 CG11325 FBgn0025595 AkhR	CG17267 FBgn0038821 C CG17286 FBgn0027500 sp	G17267 CG34072 Dd-2 CG34073	FBgn0013673 mt:ATPase8 FBgn0013672 mt:ATPase6 FBgn0013681 mt:ND3	CG7123 FBgn026 CG7125 FBgn003 CG7134 FBgn003	1800 LanB1 8603 PKD
CG11330 FBgn0000351 cort CG11334 FBgn0039849 CG11334 CG11342 FBgn0035537 CG11342	CG17323 FBgn0032713 C CG17342 FBgn0017581 L	cG34085	FBgn0013684 mt:ND5 FBgn0262952 mt:ND4 FBgn0013678 mt:Cyt-b	CG7169 FBgn003 CG7171 FBgn000 CG7183 FBgn003	7105 <i>S1P</i> 3961 <i>Uro</i>
CG11378 FBgn0040364 CG11378 CG11390 FBgn0011695 EbpIII CG11395 FBgn0034200 Gbp2	CG1744 FBgn0267435 c	CG34109	FBgn0013679 mt:ND1 FBgn0083945 CG34109 FBgn0083985 CG34149	CG7194 FBgn003 CG7219 FBgn003 CG7225 FBgn000	1973 Spn28Dc
CG1140 FBgn0035298 SCOT CG1143 FBgn0035359 CG1143 CG11437 FBgn0037165 CG11437	CG17477 FBgn0038479 C CG17490 FBgn0040009 C	CG34165 CG34166 CG34166	FBgn0030731 Mfe2 FBgn0085194 CG34165 FBgn0085195 CG34166	CG7266 FBgn000 CG7296 FBgn003 CG7298 FBgn003	2283 CG7296 6948 CG7298
CG11448 FBgn0024985 CG11448 CG11459 FBgn0037396 CG11459 CG11466 FBgn0038037 Cyp9f2	CG17523 FBgn0063498 G CG17527 FBgn0063495 G	stE2 CG34176 stE5 CG34208	FBgn0085201 CG34172 FBgn0085205 CG34176 FBgn0085237 CG34208	CG7300 FBgn003 CG7313 FBgn003 CG7322 FBgn003	6783 CheA75a 0968 CG7322
CG11495 FBgn0024194 rasp CG11498 FBgn0039749 CG11498 CG11502 FBgn0003651 svp	CG17531 FBgn0063493 G CG17533 FBgn0063492 G	stE7 CG34232 stE8 CG34236	FBgn0085242 CG34213 FBgn0085261 CG34232 FBgn0085265 CG34236	CG7352 FBgn003 CG7372 FBgn003 CG7375 FBgn003	6522 CG7372 5853 UbcE2M
CG11508 FBgn0260398 Pbp49 CG11527 FBgn0011722 Tig CG11533 FBgn0039908 Asator	CG17556 FBgn0038462 C CG17560 FBgn0038450 C	G17556 CG34261 G17560 CG34291	FBgn0085284 Blos3 FBgn0085290 CG34261 FBgn0085320 CG34291	CG7381 FBgn003 CG7384 FBgn003 CG7390 FBgn003	2262 CG7384 8257 smp-30
CG11550 FBgn0039864 CG11550 CG11576 FBgn0039882 CG11576 CG11594 FBgn0035484 CG11594 CG11628 FBgn0086779 step	CG17565 FBgn0038424 C CG17574 FBgn0033777 C	G17565 CG34329 G17574 CG34330	FBgn0031875 CG3430 FBgn0085358 Diedel3 FBgn0085359 CG34330 FBgn0085360 CG34331	CG7399 FBgn000 CG7402 FBgn003 CG7422 FBgn003 CG7422 FBgn003 CG7447 FBgn003	6768 CG7402 5815 Snmp2
CG11628 FBgn0086779 step CG11655 FBgn0030638 CG11655 CG11668 FBgn0038113 CG11668 CG11671 FBgn0037562 CG11671	CG17600 FBgn0031195 C CG17636 FBgn0025837 C	G17600 CG34334 G17636 CG34343	Fbgn0263800 CG34331 FBgn0263829 CG34334 FBgn0263873 sick FBgn0085408 Shroom	CG7447 FBgn003 CG7449 FBgn002 CG7458 FBgn003 CG7451 FBgn003	9082 hbs 7144 CG7458
CG1171 FBgn0035471 CG1171 CG1172 FBgn00364712 CG1172 CG11750 FBgn0030294 Pa1 CG11765 FBgn0033518 Prx2540-2	CG17725 FBgn0003067 P CG17751 FBgn0038717 C	epck CG34386 G17751 CG34396	FBgn0085408 Sintoini FBgn0085415 CG34386 FBgn0085425 CG34396 FBgn0085440 Lgr4	CG7461 FBgn003 CG7464 FBgn002 CG7497 FBgn003 CG7512 FBgn003	9091 CS-2 6742 CG7497
CG11707 FBgn0033527 CG11777 CG11788 FBgn0034495 CG11788 CG1179 FBgn0004425 Lys8	CG17814 FBgn0040959 P CG17820 FBgn0038914 fi	eritrophin-15a CG34426 CG34452	FBgn0085455 CG34426 FBgn0085481 CG34452 FBgn0085483 CG34454	CG7526 FBgn003 CG7529 FBgn003 CG7538 FBgn001	5798 frac 7090 Est-Q
CG11793 FBgn0003462 Sod CG11797 FBgn0034468 Obp56a CG11798 FBgn0015371 chn	CG17914 FBgn0032601 yr CG17928 FBgn0032603 C	ellow-b CG34456 G17928 CG34462	FBgn0085485 CG34456 FBgn0085491 CG34462 FBgn0005619 Hdc	CG7560 FBgn003 CG7567 FBgn003 CG7571 FBgn003	6157 CG7560 9670 CG7567
CG11814 FBgn0265988 mv CG11821 FBgn0038680 Cyp12a5 CG11835 FBgn0031264 CG11835	CG18013 FBgn0261976 P	<i>sf</i> 2 CG3504	FBgn0014906 Hydr2 FBgn0001263 inaD FBgn0283427 FASN1	CG7583 FBgn002 CG7584 FBgn003 CG7586 FBgn026	9682 Obp99c
CG11842 FBgn0039629 CG11842 CG11861 FBgn0261268 Cu/3 CG11878 FBgn0039310 CG11878	CG1809 FBgn0033423 C	G1809 CG3564	FBgn0004055 uzip FBgn0029709 CHOp24 FBgn0029710 CG3568	CG7601 FBgn002 CG7607 FBgn003 CG7616 FBgn003	6145 CG7607
CG11892 FBgn0039313 CG11892 CG11893 FBgn0039316 CG11893 CG11896 FBgn0038488 m-cup	CG18111 FBgn0039678 O	G18107 CG3585 bp99a CG3597	FBgn0022984 qkr58E-3 FBgn0023458 Rbcn-3A FBgn0031417 CG3597	CG7629 FBgn003 CG7635 FBgn003 CG7639 FBgn003	0993 Mec2 3989 CG7639
CG11899 FBgn0014427 CG11899 CG11911 FBgn0031249 CG11911 CG11912 FBgn0031248 CG11912	CG18136 FBgn0036839 Sr CG1814 FBgn0033426 C	mydA-2 CG3625 G1814 CG3653	FBgn0031418 CG3609 FBgn0031245 CG3625 FBgn0028369 kirre	CG7643 FBgn000 CG7665 FBgn001 CG7675 FBgn003	6650 <i>Lgr1</i> 8610 <i>CG7675</i>
CG11961 FBgn0034436 CG11961 CG11971 FBgn0260243 E(var)3-9 CG11985 FBgn0040534 CG11985	CG18156 FBgn0035725 N CG18171 FBgn0035262 C	tis12 CG3688 G18171 CG3690	FBgn0005670 Cyp4d1 FBgn0001974 I(2)35Bd FBgn0040350 CG3690	CG7676 FBgn003 CG7678 FBgn003 CG7725 FBgn003	8613 Vha100-4 6697 rogdi
CG12001 FBgn0037265 spartin CG12010 FBgn0035443 CG12010 CG12026 FBgn0262624 Tmhs CG12026 FBgn0262624 Tmhs	CG18211 FBgn0010357 b CG1827 FBgn0037263 s	etaTry CG3709 x1 CG3734	FBgn0040342 CG3706 FBgn0031227 CG3709 FBgn0038700 CG3734	CG7754 FBgn001 CG7758 FBgn002 CG7762 FBgn002	7945 ppl 8695 Rpn1
CG12045 FBgn0039805 Cpr100A CG12057 FBgn0030098 CG12057 CG1208 FBgn0037386 CG1208 CG12086 FBgn0011204 cue	CG18327 FBgn0033904 C	opEcR CG3758 S18327 CG3775	FBgn0023530 CG3740 FBgn0001981 esg FBgn0030425 CG3775 FBgn0036833 CG3819	CG7768 FBgn003 CG7780 FBgn000 CG7789 FBgn003 CG7802 FBgn003	0477 DNasell 9698 CG7789
CG12086 FBgn0011204 cue CG12090 FBgn0035227 Iml1 CG12101 FBgn0015245 Hsp60A CG12105 FBgn0035241 CG12105	CG18345 FBgn0005614 tr CG18372 FBgn0041581 A	pl CG3825 ttB CG3829	FBgn0036833 CG3819 FBgn0034948 Gadd34 FBgn0035091 CG3829 FBgn0029866 CG3842	CG7802 FBgn003 CG7825 FBgn002 CG7828 FBgn026 CG7828 FBgn026	5808 Rad17 1112 APP-BP1
CG12105 FBgn0035241 CG12105 CG12110 FBgn0030075 Pld CG12112 FBgn0030048 CG12112 CG12116 FBgn0030041 CG12116	CG18404 FBgn0039761 C CG1842 FBgn0013813 D	CG3850 hc98D CG3857	FBgn0029866 CG3842 FBgn0033782 sug FBgn0023520 CG3857 FBgn0036422 CG3868	CG7838 FBgn026 CG7840 FBgn003 CG7848 FBgn003 CG7851 FBgn003	2014 CG7840 4127 CG7848
CG12116 FBgn0030041 CG12176 CG12117 FBgn0014032 Sptr CG12120 FBgn0086367 t CG12129 FBgn0033475 CG12129	CG18473 FBgn0037683 C CG1851 FBgn0026602 A	G18473 CG3869 dy43A CG3902	FEgn0036422 CG3868 FBgn0029870 Marf FBgn0036824 CG3902 FBgn0029873 CG3918	CG7851 FBgn003 CG7882 FBgn003 CG7900 FBgn003 CG7912 FBgn003	3047 CG7882 7548 CG7900
CG12142 FBgn0027619 Adam CG12142 FBgn0027619 Adam CG12142 FBgn0033128 Tsp42Eg CG12149 FBgn0040234 c12.2	CG18548 FBgn0042206 G CG18559 FBgn0041337 C	stD10 CG3920 vp309a2 CG3926	FBgn0023873 CG3518 FBgn0021800 Reph FBgn0014031 Spat FBgn0010382 CycE	CG7912 FBgn003 CG7916 FBgn002 CG7930 FBgn001 CG7952 FBgn000	8534 CG7916 0424 TpnC73F
CG12175 FBgn0030502 tth CG12179 FBgn0025388 CG12179 CG12184 FBgn0025387 CG12184	CG18594 FBgn0038973 PA CG18596 FBgn0038953 C CG18609 FBgn0034382 C	bp1 CG3941 G18596 CG3943 G18609 CG3953	FBgn0034878 pita FBgn0020545 kraken FBgn0086359 Invadolysin	CG7953 FBgn002 CG7966 FBgn003 CG7972 FBgn000	8533 CG7953 8115 CG7966 2899 mus301
CG12190 FBgn0034763 RYBP CG1221 FBgn0027111 miple1 CG12242 FBgn0010041 GstD5	CG18617 FBgn0028670 V CG18622 FBgn0038460 C CG18649 FBgn0036469 C	ha100-2 CG3954 G18622 CG3955 G18649 CG3969	FBgn0000382 csw FBgn0033793 CG3955 FBgn0263998 Ack-like	CG8024 FBgn000 CG8032 FBgn003 CG8063 FBgn003	2567 Rab32 7606 CG8032 8105 yellow-f2
CG12284 FBgn0260635 Diap1 CG12287 FBgn0004394 pdm2 CG12290 FBgn0039419 CG12290	CG18661 FBgn0040964 C CG18681 FBgn0010425 e	G18661 CG3984 psilonTry CG3986	FBgn0031575 Cep97 FBgn0038291 CG3984 FBgn0022700 Cht4	CG8066 FBgn003 CG8067 FBgn003 CG8094 FBgn000	3891 CG8067 1187 Hex-C
CG12298 FBgn0003545 sub CG12299 FBgn0032295 CG12299 CG12346 FBgn0017414 cag	CG18765 FBgn0042110 C CG18783 FBgn0266450 K	G18765 CG3999 h1 CG40045	FBgn0020513 ade5 FBgn0037801 CG3999 FBgn0058045 CG40045	CG8121 FBgn003 CG8129 FBgn003 CG8147 FBgn004	7684 CG8129 3791 phu
CG12366 FBgn0033901 O-fut1 CG12367 FBgn0033686 Hen1 CG12372 FBgn0028683 spt4	CG18854 FBgn0042174 C CG18858 FBgn0042175 C	R18854 CG40160 S18858 CG4019	FBgn0086532 Spt-I FBgn0058160 CG40160 FBgn0034885 CG4019	CG8175 FBgn001 CG8198 FBgn002 CG8210 FBgn026	6666 MagR 2512 Vha14-1
CG12374 FBgn0033774 CG12374 CG12413 FBgn0039588 CG12413 CG12483 FBgn0040688 CG12483 CG12485 FBgn0040688 CG12483	CG1901 FBgn0039914 m CG1944 FBgn0033995 C	av CG40376 vp4p2 CG40485	FBgn0058198 CG40198 FBgn0058376 CG40376 FBgn0069973 CG40485 FBgn0069973 CG40485	CG8226 FBgn003 CG8234 FBgn003 CG8243 FBgn003	3644 Tret1-2 3349 CG8243
CG12505 FBgn0033926 Arc1 CG12519 FBgn0036872 CG12519 CG12560 FBgn0031974 CG12560 CG12581 FBgn0037213 CG12581	CG1963 FBgn0024841 P CG1982 FBgn0024289 S	cd CG4068 odh-1 CG4078	FBgn0263830 CG40486 FBgn0266000 CG44774 FBgn029798 CG4078 FBgn0085517 CG40793	CG8292 FBgn003 CG8299 FBgn003 CG8303 FBgn003 CG8315 FBgn003	4052 CG8299 4143 CG8303
CG12561 FPg[R0037215 CG12581 CG12592 FBgn0037811 CG12592 CG12625 FBgn0265595 CG44422 CG12655 FBgn0031080 CG12655	CG2023 FBgn0037383 C	G2023 CG40844 G2034 CG40973	Fbgn0065517 CG40793 FBgn0085524 CG40844 FBgn0085549 CG40973 FBgn0014033 Sr-Cl	CG8315 FBgn003 CG8345 FBgn003 CG8353 FBgn003 CG8357 FBgn002	3065 Cyp6w1 2002 CG8353
CG12665 FBgn0030009 fend CG12665 FBgn0030103 Obp8a CG12703 FBgn0031069 Pmp70	CG2056 FBgn0030051 sp CG2064 FBgn0033205 C	birit CG4104 G2064 CG4105	FBgn0027560 Tps1 FBgn0015035 Cyp4e3 FBgn0036640 nxf2	CG8359 FBgn003 CG8359 FBgn003 CG8360 FBgn003	7727 CG8358 7634 hng2
CG1271 FBgn0035392 CG1271 CG12717 FBgn0030420 CG12717 CG12730 FBgn0029771 CG12730	CG2083 FBgn0263392 T CG2092 FBgn0261385 sc	et CG4122 cra CG4123	FBgn0004648 svr FBgn0026061 Mipp1 FBgn0002299 Col4a1	CG8367 FBgn000 CG8376 FBgn026 CG8380 FBgn003	0289 cg 7978 ap
CG12765 FBgn0033813 fsd CG12789 FBgn0025697 santa-maria CG12795 FBgn0031535 CG12795	CG2105 FBgn0033192 C	Drin CG4147 PT2 CG4154	FBgn0001218 Hsc70-3 FBgn0038295 Gyc88E FBgn0028693 Rpn12	CG8396 FBgn001 CG8404 FBgn000 CG8420 FBgn003	5299 Ssb-c31a 5613 Sox15
CG12824 FBgn0033222 CG12824 CG12825 FBgn0033221 CG12825 CG12833 FBgn0263934 esn	CG2191 FBgn0039873 Si	nvt CG4220	FBgn0011708 Syx5 FBgn0004858 e/B FBgn0250862 CG42237	CG8422 FBgn003 CG8425 FBgn001 CG8426 FBgn003	0052 Jhe
CG12837 FBgn0033139 Tsp42Er CG12844 FBgn0033129 Tsp42Eh CG12868 FBgn003395 CG12868	CG2229 FBgn0039777 Jc CG2233 FBgn0029990 C	n99Fii CG42251 G2233 CG4226	FBgn0250869 CG42240 FBgn0264542 CG43921 FBgn0046113 GluRIIC	CG8428 FBgn008 CG8431 FBgn002 CG8448 FBgn003	7091 CysRS 4091 mrj
CG12892 FBgn0033526 Caf1-105 CG12908 FBgn0026403 Ndg CG12910 FBgn0033502 CG12910	CG2341 FBgn0004780 C CG2469 FBgn0035205 C	cp84Ad CG42270 S2469 CG42275	FBgn0259164 CG42269 FBgn0261570 CG42684 FBgn0259170 alpha-Man-Ia	CG8453 FBgn002 CG8457 FBgn003 CG8458 FBgn003	3697 Cyp6t3 8134 wntD
CG12926 FBgn0033437 CG12926 CG12934 FBgn0033541 CG12934 CG13003 FBgn0030798 CG13003 CG13024 FBgn0036665 CG13024	CG2507 FBgn0002306 sc CG2530 FBgn0010313 cc	rto CG42309 CG42326	FBgn0266801 CG45263 FBgn0259209 Mlp60A FBgn0259226 CG42326 FBgn0259246 brp	CG8486 FBgn026 CG8533 FBgn026 CG8560 FBgn003 CG8562 FBgn003	0874 Ir76a 5781 CG8560
CG13024 FBgn0024912 agt CG1303 FBgn0024912 agt CG1304 FBgn0031141 CG1304 CG13059 FBgn0036607 CG13059	CG2679 FBgn0004919 g	CG42351 CG42365	FBgn0259246 brp FBgn0259682 Jabba FBgn0259711 CG42365 FBgn0259715 CG42369	CG8552 FBgn003 CG8579 FBgn000 CG8587 FBgn003 CG8627 FBgn001	1285 Jon44E 3753 Cyp301a1
CG13078 FBgn0032809 CG13078 CG13078 FBgn0032780 CG13078 CG13085 FBgn0032780 CG13085 CG13088 FBgn0032047 CG13088	CG2772 FBgn0031533 C CG2827 FBgn0023477 7	G2772 CG42370 CG42450	FBgn0259716 CG42300 FBgn0259927 CG42450 FBgn0034761 CG4250	CG8639 FBgn003 CG8661 FBgn003 CG8665 FBgn003	3313 Cirl 0837 CG8661
CG13094 FBgn0032048 Dh31 CG13102 FBgn0032088 CG13102 CG1311 FBgn0035523 CG1311	CG2849 FBgn0015286 R	ala CG4259 IP-R CG4267	FBgn0031389 CG4259 FBgn0264979 CG4267 FBgn0001086 fzy	CG8668 FBgn003 CG8687 FBgn003 CG8693 FBgn003	1988 CG8668 3302 Cyp6a14
CG13142 FBgn0032251 Nse4 CG1318 FBgn0041630 Hexo1 CG13215 FBgn0033592 CG13215	CG2961 FBgn0030187 /p	cG4302	FBgn0036272 CG4300 FBgn0027073 CG4302 FBgn0011706 rpr	CG8721 FBgn001 CG8740 FBgn002 CG8757 FBgn003	7585 CG8740 6380 CG8757
CG13222 FBgn0033602 Cpr47Ee CG13229 FBgn0033579 CG13229 CG13281 FBgn0022213 Cas	CG30000 FBgn0050000 G CG30008 FBgn0050008 C	st71 CG4370 G30008 CG4373	FBgn0038795 CG4335 FBgn0039081 Irk2 FBgn0034756 Cyp6d2	CG8770 FBgn000 CG8785 FBgn003 CG8788 FBgn002	3760 CG8785 8955 CG8788
CG13309 FBgn0035933 CG13309 CG13310 FBgn0035928 CG13310 CG13311 FBgn0035929 CG13311	CG30022 FBgn0050022 C CG30028 FBgn0010359 g	G30022 CG4393 cammaTry CG4415	FBgn0028479 Mtpalpha FBgn0039075 CG4393 FBgn0031296 CG4415 FBgn0031290 Mathematical Action	CG8791 FBgn003 CG8801 FBgn002 CG8804 FBgn001	8473 Non1 6078 wun
CG13315 FBgn0040827 CG13315 CG13318 FBgn0037627 CG13318 CG13324 FBgn0033789 CG13324 CG13335 FBgn0261989 CG42807	CG30047 FBgn0050047 C CG3008 FBgn0031643 C	G30047 CG4429 G3008 CG4452	FBgn0031298 Atg4a FBgn0262734 Rbp2 FBgn0035981 CG4452 FBgn0032105 borr	CG8806 FBgn003 CG8819 FBgn003 CG8821 FBgn003 CG8821 FBgn003 CG8825 FBgn026	3749 achi 3748 vis
CG13335 FBgn0275436 PheRS-m CG13388 FBgn0275436 PheRS-m CG13387 FBgn0014417 CG13397	CG30083 FBgn0050083 C CG30104 FBgn0050104 N	G30083 CG4459 T5E-2 CG4461	FBgn0032103 Doff FBgn0038753 CG4459 FBgn0035982 CG4461 FBgn0001226 Hsp27	CG8827 FBgn001 CG8859 FBgn003 CG8864 FBgn002	2037 Ance 3696 Cyp6g2
CG13422 FBgn0034511 GNBP-like3 CG13428 FBgn0034515 CG13428 CG13439 FBgn0040726 dpr1	CG30127 FBgn0264753 R CG3014 FBgn0037519 C	gk1 CG4468 G3014 CG4475	FBgn0038749 Xport-A FBgn0020415 Idgf2 FBgn0028519 hll	CG8867 FBgn002 CG8871 FBgn003 CG8891 FBgn003	0906 Jon25Bi 1653 Jon25Biii
CG1344 FBgn0027507 CG1344 CG13458 FBgn0036479 CG13458 CG13463 FBgn0036470 EAChm	CG30263 FBgn0050263 st CG30281 FBgn0050281 C	um CG4559 G30281 CG4563	FBgn0037843 CG4511 FBgn0020414 Idgf3 FBgn0035006 CG4563	CG8892 FBgn003 CG8928 FBgn003 CG8936 FBgn006	0711 Rrp47 5032 Arpc3B
CG13475 FBgn0040318 HGTX CG13482 FBgn0036419 CG13482 CG13488 FBgn0034670 CG13488	CG30344 FBgn0050344 C CG3036 FBgn0031645 C	G30344 CG4594 G3036 CG4598	FBgn0031306 CG4577 FBgn0032161 CG4594 FBgn0032160 CG4598	CG8947 FBgn025 CG8950 FBgn003 CG8952 FBgn003	4186 CG8950 0688 CG8952
CG13492 FBgn0034662 CG13492 CG13510 FBgn0034758 CG13510 CG13512 FBgn0260767 CG42565 CG13512 FBgn0260767 CG42565	CG30383 FBgn0050383 C CG30403 FBgn0050403 C	G30383 CG4608 G30403 CG4610	FBgn0040064 yip2 FBgn0014135 bnl FBgn0034735 CG4610	CG8960 FBgn003 CG8991 FBgn003 CG8997 FBgn002	3654 Sobp 8920 CG8997
CG13568 FBgn0034965 ppk29 CG13603 FBgn0039135 CG13603 CG13607 FBgn0039151 CG13607 CG13623 FBgn0039205 CG13623	CG30456 FBgn0050456 C CG30466 FBgn0050466 C	G30456 CG4649 G30466 CG4653	FBgn0029936 CG4617 FBgn0022359 Sodh-2 FBgn0030776 CG4653 FBgn0029838 CG4666	CG9001 FBgn003 CG9042 FBgn000 CG9057 FBgn003 CG9111 FBgn000	1128 Gpdh 0608 Lsd-2
CG13623 FBgn0039205 CG13623 CG13624 FBgn0039209 REPTOR CG13656 FBgn0039307 CR13656 CG13658 FBgn0039315 CG13658	-	vp12d1-p CG4710 x CG4715	FBgn0029838 CG4666 FBgn0016926 Pino FBgn0031305 Iris FBgn0033820 CG4716	CG9111 FBgn000 CG9118 FBgn000 CG9120 FBgn000 CG9128 FBgn028	4427 LysD 4431 LysX
CG13659 FBgn0039319 CG13659 CG13667 FBgn0035890 CG13667 CG1368 FBgn0030539 CG1368	CG3097 FBgn0029804 CC CG31000 FBgn0011224 ht CG31006 FBgn0086704 std	G3097 CG4717 eph CG4721 ops CG4723	FBgn0001320 kni FBgn0039024 CG4721 FBgn0039023 CG4723	CG9149 FBgn003 CG9150 FBgn003 CG9181 FBgn026	5203 CG9149 1775 CG9150 7487 Ptp61F
CG13688 FBgn0031267 Ipk2 CG13704 FBgn0035583 CG13704 CG13705 FBgn0035582 CG13705	CG31022 FBgn0039776 P CG31028 FBgn0051028 C CG31029 FBgn0051029 C	H4alphaEFB CG4725 G31028 CG4734 G31029 CG4739	FBgn0039022 CG4725 FBgn0033826 CG4734 FBgn0040257 Ugt86Dc	CG9186 FBgn003 CG9187 FBgn003 CG9188 FBgn003	5206 CG9186 5194 Psf1 1878 sip2
CG13739 FBgn0033403 CG13739 CG13741 FBgn0033374 CG13741 CG13780 FBgn0031888 Pvf2 CG13744 FBgn0031888 Pvf2	CG31039 FBgn0003358 Jc CG31041 FBgn0051041 C	n99Ci CG4757 G31041 CG4760	FBgn0041579 AttC FBgn0027584 CG4757 FBgn0011206 bol FBgn0037546 CG4766	CG9198 FBgn000 CG9232 FBgn026 CG9240 FBgn003 CG9245 FBgn003	3200 Galt 0669 CG9240
CG13794 FBgn0031936 CG13794 CG13822 FBgn0039098 GIL73 CG13833 FBgn0039040 CG13833 CG13836 FBgn0039040 CG13833	CG31075 FBgn0051075 C CG31086 FBgn0051086 C	G31075 CG4772 G31086 CG4775	FBgn0027546 CG4766 FBgn0040252 Ugt86Dh FBgn0031312 Tango14 FBgn0040211 hap	CG9245 FBgn003 CG9259 FBgn003 CG9265 FBgn003 CG9265 FBgn003	2913 CG9259 2910 CG9265
CG13836 FBgn0265042 Irk1 CG13841 FBgn0040588 CG13841 CG13856 FBgn0038959 CG13856 CG1386 FBgn0026268 antdh	CG31091 FBgn0051091 C CG31097 FBgn0051097 C	G31091 CG4783 G31097 CG4784	FBgn0040211 hgo FBgn0038756 CG4783 FBgn0036619 Cpr72Ec FBgn0034215 Mtap	CG9270 FBgn003 CG9273 FBgn003 CG9280 FBgn000 CG9324 FBgn003	2906 RPA2 1114 Glt
CG1386 FBgn0026268 antdh CG13880 FBgn0035122 mRpL17 CG13895 FBgn0035158 CG13895 CG13897 FBgn0035160 hng3	CG31100 FBgn0051100 C CG31102 FBgn0051102 C	G31100 CG4805 G31102 CG4816	FBgn0034215 Mtap FBgn0030795 ppk28 FBgn0022987 qkr54B FBgn0023479 teq	CG9324 FBgn003 CG9377 FBgn003 CG9380 FBgn003 CG9400 FBgn003	2507 CG9377 5094 CG9380
CG13897 FBgn0035160 hng3 CG13901 FBgn0035164 CG13901 CG13905 FBgn0035176 CG13905 CG13912 FBgn0035186 CG13912	CG31142 FBgn0047114 C CG31150 FBgn0265048 c	G31142 CG4838 d CG4857	FBgn0023479 teq FBgn0028644 beat-Ic FBgn0026083 tyf FBgn0034232 CG4866	CG9400 FBgn003 CG9413 FBgn003 CG9414 FBgn002 CG9416 FBgn003	0574 CG9413 8406 Drep4
CG13912 FBgn0035186 CG13912 CG13934 FBgn0035279 Cpr62Ba CG13936 FBgn0035282 CNMa CG13941 FBgn0033928 Arc2	CG31163 FBgn0051163 St CG31169 FBgn0263047 C	KIP CG4881 G43342 CG4962	FBgn0034232 CG4866 FBgn0000287 salr FBgn0036597 CG4962 FBgn0032214 CG4968	CG9416 FBgn003 CG9427 FBgn003 CG9431 FBgn003 CG9434 FBgn003	7721 CG9427 2484 kek4
CG13950 FBgn0031289 CG13950 CG13976 FBgn0039520 Gr98a CG13977 FBgn0039519 Cyp6a18	CG31233 FBgn0051233 C CG31259 FBgn0051259 C	G31233 CG4999 G31259 CG5008	FBgn0035936 Tsp66E FBgn0040321 GNBP3 FBgn0032224 Sps2	CG9436 FBgn003 CG9444 FBgn003 CG9451 FBgn003	3101 CG9436 7730 CG9444
CG14021 FBgn0031702 fusl CG14022 FBgn0031700 CG14022 CG14027 FBgn0031701 TotM	CG31313 FBgn0051313 C	G42788 CG5055 G31313 CG5080	FBgn0028743 Dhit FBgn0000163 baz FBgn0031313 CG5080	CG9452 FBgn003 CG9463 FBgn003 CG9468 FBgn003	2066 LManIII 2069 LManVI
CG14031 FBgn0031695 Cyp4ac3 CG14033 FBgn0046776 CR14033 CG14057 FBgn0036696 CG14057 CG14033 FBgn0036696 CG14057	CG31345 FBgn0051345 C CG31362 FBgn0003357 Jc	G31345 CG5096 m99Ciii CG5097	FBgn0038390 Rbf2 FBgn0032235 CG5096 FBgn0038790 MtnC FBgn0034200 CG5008	CG9470 FBgn000 CG9505 FBgn003 CG9506 FBgn004 CG957 FBgn004	1805 CG9505 3854 slam
CG14073 FBgn0036814 CG14073 CG14102 FBgn0036906 CG14102 CG14112 FBgn0036349 SNCF CG14120 FBgn0036342 CG14120	CG31368 FBgn0051368 C CG31370 FBgn0051370 C	G31368 CG5099 G31370 CG5104	FBgn0034300 CG5098 FBgn0011666 msi FBgn0037009 CG5104 FBgn0037879 scnr-C	CG9527 FBgn003 CG9528 FBgn003 CG9538 FBgn001 CG9540 FBgn002	1814 retm 5010 Ag5r
CG14120 FBgn0036321 CG14120 CG14125 FBgn0036232 CG14125 CG14141 FBgn0036146 CG14141 CG14153 FBgn0036094 CG14153	CG31392 FBgn0261679 C CG31414 FBgn0051414 G	G42726 CG5118 ba1b CG5126	FBgn0037879 scpr-C FBgn0031317 CG5118 FBgn0031320 CG5126 FBgn0031906 CG5160	CG9540 FBgn002 CG9577 FBgn003 CG9609 FBgn003 CG9617 FBgn026	1092 CG9577 0787 CG9609
CG14160 FBgn0036066 CG14160 CG14183 FBgn0036931 CG14183 CG14191 FBgn0030981 CG14191	CG31436 FBgn0051436 C CG31445 FBgn0051445 C CG31463 FBgn0051463 C	G31436 CG5164 G31445 CG5165 G31463 CG5174	FBgn0034335 GstE1 FBgn0003076 Pgm FBgn0034345 CG5174	CG9621 FBgn003 CG9629 FBgn003 CG9633 FBgn001	8172 Adgf-D 6857 CG9629 0173 RpA-70
CG14219 FBgn0031033 CG14219 CG14221 FBgn0031042 CG14221 CG14235 FBgn0031066 COX6B	CG31465 FBgn0051465 CC CG31509 FBgn0028396 T CG3153 FBgn0038198 N	G31465 CG5178 otA CG5179 op2b CG5207	FBgn0000047 Act88F FBgn0019949 Cdk9 FBgn0037889 scpr-A	CG9649 FBgn003 CG9650 FBgn002 CG9668 FBgn000	8211 CG9649 9939 CG9650 3250 Rh4
CG14253 FBgn0039467 CG14253 CG14257 FBgn0039479 CG14257 CG14259 FBgn0039483 CG14259	CG31547 FBgn0051547 CC CG31555 FBgn0263353 CC CG31557 FBgn0046876 C	G31547 CG5224 G11000 CG5246 bp83ef CG5279	FBgn0034354 GstE11 FBgn0038484 CG5246 FBgn0014019 Rh5	CG9672 FBgn003 CG9675 FBgn003 CG9676 FBgn003	0777 CG9672 0774 spheroide 0773 CG9676
CG14292 FBgn0038658 CG14292 CG14314 FBgn0038581 CG14314 CG1433 FBgn0019637 Atu	CG31562 FBgn0051562 CC CG31672 FBgn0028952 K CG31673 FBgn0051673 C	R31562 CG5288 ebab CG5315 G31673 CG5322	FBgn0263199 Galk FBgn0038984 AdipoR FBgn0032253 LManl	CG9682 FBgn003 CG9707 FBgn003 CG9753 FBgn003	9760 CG9682 4628 Acox57D-p 9747 AdoR
CG1435 FBgn0026144 CBP CG14351 FBgn0261509 haf CG14356 FBgn0038207 CG14356	CG3168 FBgn0029896 C CG31683 FBgn0051683 C CG31692 FBgn0032820 ft	G3168 CG5341 G31683 CG5360 p CG5371	FBgn0266671 Sec6 FBgn0261786 mi FBgn0011703 RnrL	CG9771 FBgn004 CG9772 FBgn003 CG9792 FBgn004	0466 Dlip2 7236 Skp2 1711 yellow-e
CG14375 FBgn0038147 CCHo2 CG1438 FBgn0015032 Cyp4c3 CG14390 FBgn0038084 beat-Vc CG14400 FBgn0038086 CG14400	CG31716 FBgn0051716 C CG3173 FBgn0034964 Ir	not4 CG5399 ttS1 CG5404	FBgn0038974 CG5377 FBgn0038353 CG5399 FBgn0038354 CG5404 FBgn0025456 CBEG	CG9811 FBgn026 CG9812 FBgn003 CG9819 FBgn026 CG9842 FBgn001	4860 CG9812 7912 CanA-14F
CG14400 FBgn0032896 CG14400 CG14401 FBgn0032900 CG14401 CG14406 FBgn0030595 CG14406 CG14430 FBgn0261284 bou	CG31761 FBgn0262475 b CG31777 FBgn0051777 C	ru2 CG5431 G31777 CG5455	FBgn0025456 CREG FBgn0265052 St3 FBgn0039430 CG5455 FBgn0036769 Tsp74F	CG9842 FBgn001 CG9852 FBgn001 CG9889 FBgn004 CG9889 FBgn004	0340 140up 1712 yellow-d
CG14430 FBgn0261284 bou CG14495 FBgn0034293 CG14495 CG14500 FBgn0034318 CG14500 CG14511 FBgn0039641 CG14511	CG3178 FBgn0004584 R CG31781 FBgn0051781 C	rp1 CG5498 R31781 CG5524	FBgn0036769 Tsp74F FBgn0027565 CG5498 FBgn0266282 jnj FBgn0039564 CG5527	CG9893 FBgn001 CG9914 FBgn003 CG9925 FBgn003 CG9930 FBgn000	0737 CG9914 8191 CG9925
CG14511 F8gn0039641 CG14511 CG14526 F8gn0027578 CG14526 CG14545 F8gn0040602 CG14545 CG1455 F8gn0010015 CanA1	CG3181 FBgn0024920 7 CG31811 FBgn0028509 C	cG5532 enG1A CG5535	Fbgn0039564 CG5527 Fbgn0034902 CG5532 Fbgn0036764 CG5535 Fbgn0034908 CG5543	CG9930 FBgn000 CG9932 FBgn026 CG9943 FBgn002 CG9964 FBgn003	2160 CG9932 9117 Surf1
CG14567 FBgn0037126 CG14567 CG1462 FBgn0016123 Alp4 CG14636 FBgn0037217 CG14636	CG3182 FBgn0003353 se CG31826 FBgn0051826 C CG31871 FBgn0051871 C	ri CG5546 G31826 CG5550 G31871 CG5553	FBgn0036761 MED19 FBgn0034160 CG5550 FBgn0259676 DNApol-alpha60	CG9976 FBgn001 CG9977 FBgn003 CG9981 FBgn003	6675 Lectin-galC1 5371 CG9977 0746 CG9981
CG14645 FBgn0040687 CG14645 CG14666 FBgn0037307 Tim17a2 CG14683 FBgn0037822 CG14683	CG31886 FBgn0032079 C CG31901 FBgn0051901 M CG3192 FBgn0029888 N	G31886 CG5580 Iur29B CG5590 D-ASHI CG5594	FBgn0010575 sbb FBgn0039537 CG5590 FBgn0261794 kcc	CG9993 FBgn003 CG9994 FBgn003 CG9999 FBgn000	4553 CG9993 2782 Rab9
CG14696 FBgn0037853 CG14696 CG14746 FBgn0043576 PGRP-SC1a			FBgn0038840 CG5621 FBgn0039527 CG5639	_	


Figure S12. Between sex gene intersections for <u>mitonuclear</u> genes. Those genes listed are consistently differentially expressed and intersected across the sexes.

Computed gene ID	Flybase ID	Gene ID
CG10011	FBgn0039590	CG10011
CG10182	FBgn0039091	CG10182
CG10248	FBgn0013772	Cyp6a8
CG10275	FBgn0032683	kon
CG10623	FBgn0032727	CG10623
CG10799	FBgn0033821	CG10799
CG10816	FBgn0010388	Dro
CG10842	FBgn0015037	Cyp4p1
CG11263	FBgn0036330	CG11263
CG1131	FBgn0015569	alpha-Est10
CG1143	FBgn0035359	CG1143
CG11586	FBgn0035520	CG11586
CG1165	FBgn0004430	LysS
CG11752	FBgn0030292	CG11752
CG1179	FBgn0004425	LysB
CG1180	FBgn0004428 FBgn0037645	LysE
CG11966	FBgn0037645	CG11966
CG11985	FBgn0040534	CG11985
CG12400	FBgn0031505	ND-B14.5B
CG12763	FBgn0004240	DptA
CG12883	FBgn0039538	CG12883
CG12934	FBgn0033541	CG12934
CG13177	FBgn0040759	CG13177
CG13306	FBgn0040828	CG13306
CG13321	FBgn0033787	CG13321
CG13482	FBgn0036419	CG13482
CG13551	FBgn0040660	CG13551
CG13751	FBgn0033340	CG13751
CG14120	FBgn0036321	CG14120
CG14125	FBgn0036232	CG14125
CG14688	FBgn0037819	CG14688
CG14715	FBgn0037930	CG14715
CG14745	FBgn0043575	PGRP-SC2
CG14746	FBgn0043576	PGRP-SC1a
CG15065	FBgn0040734	CG15065
CG15066	FBgn0034328	IM23
CG15083	FBgn0034399	CG15083
CG15168	FBgn0032732	CG15168
CG15231	FBgn0040653	IM4
CG15534	FBgn0039769	CG15534
CG15707	FBgn0034098	krimp
CG15918	FBgn0034197	Cda9
CG1623	FBgn0033448	hebe
CG1648	FBgn0033446	CG1648
CG16725	FBgn0036641	Smn
CG16727	FBgn0038719	CG16727
CG17003	FBgn0031082	CG17003
CG17327	FBgn0038107	CG17327
CG17776	FBgn0040899	CG17776
CG1836	FBgn0026777	Rad23
CG18585	FBgn0031929	CG18585
CG18600	FBgn0038601	CG18600
CG18624	FBgn0029971	ND-MNLL
CG1981	FBgn0026869	Thd1
CG2065	FBgn0033204	CG2065
CG2083	FBgn0263392	Tet
CG2210	FBgn0000150	awd
CG2222	FBgn0030196	Psf3
CG30273	FBgn0050273	CG30273
CG30494	FBgn0263077	CG43340
CG3085	FBgn0034816	CG3085
CG31034	FBgn0003356	Jon99Cii
CG31089	FBgn0051089	CG31089
CG31148	FBgn0051148	Gba1a
CG31205	FBgn0051205	CG31205
CG31362	FBgn0003357	Jon99Ciii
CG31463	FBgn0051463	CG31463
CG32019	FBgn0005666	bt
CG32025	FBgn0266084	Fhos
CG32030	FBgn0266084	Fhos
CG32038	FBgn0266124	ghi
CG32557	FBgn0052557	CG32557
CG32599	FBgn0260482	CG32599
CG3264	FBgn0034712	CG3264
CG33002	FBgn0053002	mRpL27
CG33196	FBgn0053196	dpy
CG33256	FBgn0261565	Lmpt
CG33346	FBgn0053346	CG33346
CG3350	FBgn0039509	bigmax
CG33533	FBgn0053533	lectin-37Db
CG34073	FBgn0013672	mt:ATPase6
CG34083	FBgn0013684	mt:ND5
CG34089	FBgn0013685	mt:ND6
CG34212	FBgn0085241	CG34212
CG34227	FBgn0085256	CG34227
CG3683	FBgn0035046	ND-19
CG3759	FBgn0032116	Mco1
CG3939	FBgn0040396	CG3939
CG3986	FBgn0022700	Cht4
CG4000	FBgn0038820	CG4000
CG41421	FBgn0085643	CG41421
CG41536	FBgn0085675	CG41536
CG4178	FBgn0002563	Lsp1beta
CG42254	FBgn0259112	CR42254
CG4847	FBgn0034229	CG4847
CG4869	FBgn0003890	betaTub97EF
CG5242	FBgn0037892	mRpL40
CG5381	FBgn0032218	CG5381
CG5646	FBgn0039525	CG5646
CG5767	FBgn0034292	CG5767
CG5830	FBgn0036556	CG5830
CG6004	FBgn0036203	Muc68D
CG6272	FBgn0036126	CG6272
CG6503	FBgn0040606	CG6503
CG6602	FBgn0035673	CG6602
CG6620	FBgn0024227	aurB
CG6972	FBgn0039008	CG6972
CG7014	FBgn0038277	RpS5b
CG7068	FBgn0041181	Тер3
CG7291	FBgn0031381 FBgn0037134	Npc2a CG7407
CG7407	FBgn0036738	CG7542
CG7407 CG7542 CG7601	FBgn0027583	CG7601
CG7542 CG7601 CG7622	FBgn0027583 FBgn0002579	RpL36
CG7542 CG7601 CG7622 CG8147 CG8577	FBgn0027583 FBgn0002579 FBgn0043791 FBgn0033327	RpL36 phu PGRP-SC1b
CG7542 CG7601 CG7622 CG8147	FBgn0027583 FBgn0002579 FBgn0043791	RpL36 phu
CG7542 CG7601 CG7622 CG8147 CG8577 CG8958	FBgn0027583 FBgn0002579 FBgn0043791 FBgn0033327 FBgn0030725	RpL36 phu PGRP-SC1b CG8958
CG7542 CG7601 CG7622 CG8147 CG8577 CG8958 CG9025 CG9034	FBgn0027583 FBgn0002579 FBgn0043791 FBgn0033327 FBgn0030725 FBgn0034542 FBgn0040931	RpL36 phu PGRP-SC1b CG8958 Fem-1 CG9034

Log₂ fold change comparisons RNA – seq vs qPCR

Genotype

Genotype

Table S1. qPCR primers and sequences used in the RNA-seq validation. Gene names, CG IDs and primer sequences are shown (5'->3' direction).

Gene name	Computed gene ID	Forward primer (5'->3')	Reverse primer (5'->3')	
RpL32 (rp49)	CG7939	GATATGCTAAGCTGTCGCACAAA	TAACCGATGTTGGGCATCAGA	
Cox4A	CG10664	CCAGCTTCTGCCAGACTATCG	GGCAGCTCATCGTACACGAA	
Cox5B	CG11015	TGCATCTGCGAAGAGGATCA	TCTCCACCAGCTTGAACCAA	
Cox6B	CG14235	TCGACCCACGGTTCCCTAA	GCACATCGACTTGTAGACCTTCTG	
Cox7AL	CG18193	CCGAAGACACGTCCTGGAA	TGTTATCCATACTGCCGCCTTT	
Cox8	CG7181	CATCTCCACCGCCGAGAA	TTGTAGTCCCGGATGTGGTAGA	
Hsp68	CG5436	AACTGGAGACCTATTTGTTTGG	CCTTCAGTTTGTACTCGTACTC	

Table S2. Generalized linear models of offspring production in females (analysis of deviance). Terms in the model were nDNA type, mtDNA type, and block. All first order effects and interaction terms were fitted. We report the degrees-of-freedom (df), deviance, residual degrees-of-freedom, residual deviance and p-values based on a Chi-squared distribution. P-values in bold are significant at α =0.05.

Model term	df	Deviance	Residual df	Residual deviance	P (>Chi)
	-	-	92	148.51	-
nDNA	1	0.84	91	147.67	0.36
mtDNA	1	0.23	90	147.45	0.63
Block	1	44.96	89	102.49	2.014E-11
nDNA x mtDNA	1	0.54	88	101.95	0.46
nDNA x block	1	0.31	87	101.64	0.58
mtDNA x block	1	0.17	86	101.47	0.68
nDNA x mtDNA x block	1	2.01	85	99.46	0.16

Table S3. Generalized linear models of offspring production in males (analysis of deviance). Terms in the model were nDNA type, mtDNA type, and block. All first order effects and interaction terms were fitted. We report the degrees-of-freedom (df), deviance, residual degrees-of-freedom, residual deviance and p-values based on a Chi-squared distribution. P-values in bold are significant at α =0.05.

Model term	df			Residual deviance	P (>Chi)
	-	-	92	130.25	-
nDNA	1	0.65	91	129.60	0.42
mtDNA	1	0.03	90	129.58	0.87
Block	1	26.71	89	102.87	2.368E-07
nDNA x mtDNA	1	1.18	88	101.68	0.28
nDNA x block	1	0.68	87	101.00	0.41
mtDNA x block	1	0.22	86	100.78	0.64
nDNA x mtDNA x block	1	0.96	85	99.82	0.33

Supporting Information

Mitochondrial-nuclear interactions mediate sex-specific transcriptional profiles in *Drosophila*

Mossman JA, Tross JG, Li N, Wu Z, Rand DM

gPCR validation of RNA-seq data obtained on an Illumina Hiseq 2000 platform

To validate transcription expression measurements, we conducted qPCR on seven primer pairs to determine if the RNA-seq data showed qualitatively and quantitatively similar results to those obtained by qPCR. We aimed to test whether the log₂-fold changes obtained on the RNA-seq platform (Illumina Hiseq 2000, Illumina, Inc, CA, USA) were similar to those from qPCR (Applied Biosystems[™] 7300 Real Time PCR System, Applied Biosystems, ThermoFisher Scientific, MA, USA).

The accuracy of qPCR depends on the magnitude of log fold change between the contrasting treatments and small fold changes can be difficult to interpret (MOREY *et al.* 2006). Since the mtDNA effects we observed for nuclear genes were small in magnitude, we used the contrast between nuclear backgrounds within a mitochondrial haplotype to validate the expression results. This was done for both mtDNA haplotypes and the contrast was the effect of *AutW132* nuclear background relative to the *Oregon R* nuclear background.

MtDNA primers for qPCR for the two mtDNA haplotypes we studied are problematic to design because of the high A+T content of Drosophila mtDNA and the haplotype variation between *D. melanogaster* and *D. simulans* mtDNA introduces SNPs into useful primer sequences and differential expression cannot be easily teased apart from differential annealing efficiency. To circumvent this problem, we focused on nuclear genes that encode mitochondrial protein products in cytochrome c oxidase (complex IV of the electron transport chain), along with heat shock protein 68 (*hsp68*). These genes showed differences in expression between nuclear backgrounds, as judged by read counts from RNA-seq. We also measured a reference housekeeping gene: Ribosomal protein L32 (*rp49*), which was used as an internal control for RNA concentration. A list of primers and primer sequences are shown in Table S1. Two biological replicates of each genotype were measured, with triplicate technical replicates, totaling 96 PCRs for each gene of interest (48x 'focal' gene and 48x 'internal *rp49* controls'). Conducting the qPCRs in this way prevented comparison across plates for a focal gene. Negative samples were run on a separate plate. All negative samples showed no detectable values of fluorescence.

Table S1. qPCR primers and sequences used in the RNA-seq validation. Gene names, CG IDs and primer sequences are shown (5'->3' direction).

Gene name	Computed gene ID	Forward primer (5'->3')	Reverse primer (5'->3')
RpL32 (rp49)	CG7939	GATATGCTAAGCTGTCGCACAAA	TAACCGATGTTGGGCATCAGA
Cox4A	CG10664	CCAGCTTCTGCCAGACTATCG	GGCAGCTCATCGTACACGAA
Cox5B	CG11015	TGCATCTGCGAAGAGGATCA	TCTCCACCAGCTTGAACCAA
Cox6B	CG14235	TCGACCCACGGTTCCCTAA	GCACATCGACTTGTAGACCTTCTG
Cox7AL	CG18193	CCGAAGACACGTCCTGGAA	TGTTATCCATACTGCCGCCTTT
Cox8	CG7181	CATCTCCACCGCCGAGAA	TTGTAGTCCCGGATGTGGTAGA
Hsp68	CG5436	AACTGGAGACCTATTTGTTTGG	CCTTCAGTTTGTACTCGTACTC

To obtain relevant RNA-seq values, we conducted separate DESeq (ANDERS and HUBER 2010) analyses using the same two biological replicates as used in the qPCR with the contrast between nuclear backgrounds. The log₂-fold changes for the focal genes were used as comparison in the qPCR-RNA-seq correlation.

qPCRs were conducted using Power SYBR[®] Green system (Applied Biosystems, CA, USA) using a two-step protocol. We used the same mRNA template that was used in the main Illumina RNA-seq study.

DNase treatment

Briefly, 44μ l mRNA + H₂0 were mixed with 5μ l 10x Turbo DNase buffer (Invitrogen, ThermoFisher Scientific, MA, USA) and 1μ l Turbo DNase (Invitrogen, ThermoFisher Scientific, MA, USA) to remove any contaminating DNA. After 30 minutes of incubation at 37°C, an additional 1μ l of DNase was added and

this mixture was further incubated for 30 minutes at 37°C. Following, we added 10µl of DNase inactivation buffer (Invitrogen, ThermoFisher Scientific, MA, USA), which was mixed then centrifuged. The supernatant was aspirated, then re-centrifuged. The supernatant from the second centrifugation was the template for cDNA synthesis.

cDNA synthesis

We quantified the RNA concentration using a Nanodrop (ThermoFisher Scientific, MA, USA) and standardized to $5ng/\mu$ l. 15μ l of $5ng/\mu$ l RNA solution was added to 4μ l iScript cDNA synthesis reaction mixture (Bio-Rad Laboratories, Inc, CA, USA) and 1μ l reverse transcriptase (Bio-Rad Laboratories, Inc, CA, USA). cDNA synthesis was carried out using the following thermocycling protocol: 5 minutes at 25° C, 30 minutes at 42° C, then 5 minutes at 85° C. cDNA concentration was measured using a Nanodrop and diluted to a standard concentration ($120ng/\mu$ l). qPCR was conducted on the cDNAs using the following reaction mixture: 10μ l SYBR Green reaction mixture, 0.5μ l of each primer (at 50 pmol/ μ l concentration), 6μ l H₂0, and 3μ l cDNA.

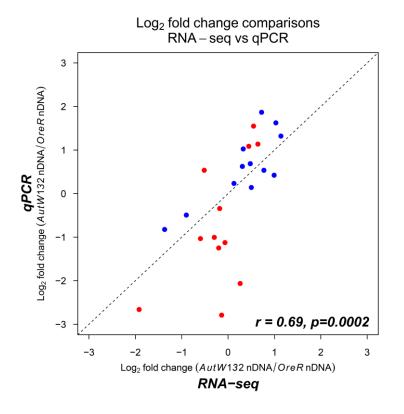
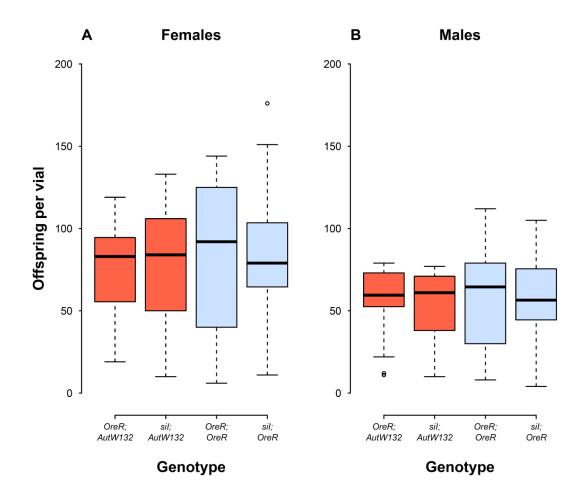
qPCR

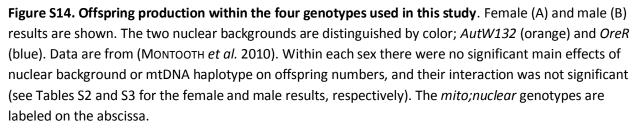
qPCR was conducted using an Applied Biosystems 7300 Real Time PCR System (Applied Biosystems, ThermoFisher Scientific, MA, USA). The thermocycling protocol was as follows: an initial incubation at 50°C (2 minutes), followed by 95°C (10 minutes), then 40 cycles of 95°C (15 seconds) -> 60°C (60 seconds). A dissociation step was added: (95°C, 15 seconds), followed by 60°C (1 minute), 95°C (15 seconds), then 60°C (15 seconds). Melting curves were checked for primer dimers and none were detected. Amplification curves were analyzed using Applied Biosystems Sequence Detection Software v1.4.0.27, with the auto C_T function.

Log₂-fold changes

For each focal gene, we assessed \log_2 -fold changes of *AutW132* nuclear background against the *Oregon R* reference using the comparative threshold cycle, C_T, method (2^{-ΔΔCT}) (SCHMITTGEN and LIVAK 2008), with samples standardized to the *rp49* gene reference (internal control). We estimated the \log_2 -fold difference against each biological replicate 'calibrator', and used the mean value of these two measures in the correlation analysis.

In total, we correlated 24 samples (4x genotypes, 6x genes) and found a significant positive correlation between \log_2 -fold change estimated by RNA-seq and qPCR (r=0.69, t = 4.52, df=22, p=0.00016: Figure S13). When the data were parsed into female and male datasets- the red and blue data in Figure S13, respectively- both subsets demonstrated significant positive correlations between measurement estimates; female correlation: r= 0.60, t= 2.40, df= 10, p= 0.037; male correlation: r= 0.81, t=4.375, df=10, p= 0.001.


Figure S13. Correlation between RNA-seq and qPCR estimates of log2-fold change. Data from all 4 mitonuclear genotypes across 6 nuclear loci are shown. Samples in blue are male genotypes, samples in red are female genotypes. Log₂-fold change estimates were judged using the $\Delta\Delta$ CT method (qPCR) and

DESeq (RNA-seq). The genotype contrasts are between AutW132 and Oregon R (OreR) in both mtDNA backgrounds (*sil* and *Oregon R*). The dashed line shows log_2 -fold change equality between the expression measurement platforms.

Offspring production in the mitonuclear genotype panel

We used results from a previous study (MONTOOTH *et al.* 2010) to investigate whether there were differences in fecundity between the genotypes for females and males. Full details on the materials and methods for this assay can be found in (MONTOOTH *et al.* 2010). Briefly, we summed the total number of offspring that were produced in a fitness assay. The assay consisted of six replicate vials of five females and five males that were allowed to continually mate and lay eggs for two days. Each set of parents were flipped onto fresh food after two days, for a total of 12 days, giving six two-day broods. Each genotype x sex combination (individual boxes in Figure S14) represents 11-12 vials. Figure S14 describes these data.

We tested whether nuclear background, mtDNA haplotype, or their interaction were significantly associated with the number of offspring. The offspring numbers per vial were (overdispersed) count data and we therefore used a negative binomial error structure with log-link function in generalized linear models. We confirmed the analyses results using a quasipoisson error and the results were qualitatively identical. Here, we report only the results of the negative binomial models. The offspring number estimates were conducted in two separate blocks and we therefore fit 'block' as a term in our models.

Across all model terms, block as a first order effect was the only significant association with offspring numbers in females (Table S2) and males (Table S3). nDNA, mtDNA, and their nDNA x mtDNA interaction were non-significant terms. Interactions between mtDNA and nDNA with block, along with the 3-way interaction (mtDNA x nDNA x block) were non-significant in both sexes. These results demonstrate that mtDNA and nDNA, along with their interaction are not associated with offspring numbers – our measure of fecundity- in this genotype panel. It also confirms that first and second order effects were not different between the blocks.

Table S2. Generalized linear models of offspring production in females (analysis of deviance). Terms in the model were nDNA type, mtDNA type, and block. All first order effects and interaction terms were fitted. We report the degrees-of-freedom (df), deviance, residual degrees-of-freedom, residual deviance and p-values based on a Chi-squared distribution. P-values in bold are significant at α =0.05.

Model term	df	Deviance	Residual df	Residual deviance	P (>Chi)
	-	-	92	148.51	-
nDNA	1	0.84	91	147.67	0.36
mtDNA	1	0.23	90	147.45	0.63
Block	1	44.96	89	102.49	2.014E-11
nDNA x mtDNA	1	0.54	88	101.95	0.46
nDNA x block	1	0.31	87	101.64	0.58
mtDNA x block	1	0.17	86	101.47	0.68
nDNA x mtDNA x block	1	2.01	85	99.46	0.16

Table S3. Generalized linear models of offspring production in males (analysis of deviance). Terms in the model were nDNA type, mtDNA type, and block. All first order effects and interaction terms were fitted. We report the degrees-of-freedom (df), deviance, residual degrees-of-freedom, residual deviance and p-values based on a Chi-squared distribution. P-values in bold are significant at α =0.05.

Model term	df	Deviance	Residual df	Residual deviance	P (>Chi)
	-	-	92	130.25	-
nDNA	1	0.65	91	129.60	0.42
mtDNA	1	0.03	90	129.58	0.87
Block	1	26.71	89	102.87	2.368E-07
nDNA x mtDNA	1	1.18	88	101.68	0.28
nDNA x block	1	0.68	87	101.00	0.41
mtDNA x block	1	0.22	86	100.78	0.64
nDNA x mtDNA x block	1	0.96	85	99.82	0.33

Supporting References

- ANDERS, S., and W. HUBER, 2010 Differential expression analysis for sequence count data. Genome Biology **11**: 1-12.
- MONTOOTH, K. L., C. D. MEIKLEJOHN, D. N. ABT and D. M. RAND, 2010 Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila. Evolution **64:** 3364-3379.
- MOREY, J. S., J. C. RYAN and F. M. VAN DOLAH, 2006 Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biological Procedures Online **8:** 175-193.
- SCHMITTGEN, T. D., and K. J. LIVAK, 2008 Analyzing real-time PCR data by the comparative CT method. Nat. Protocols **3**: 1101-1108.