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Abstract
Genome-wide association studies (GWAS) have identified many genetic susceptibility loci

for colorectal cancer (CRC). However, variants in these loci explain only a small proportion

of familial aggregation, and there are likely additional variants that are associated with CRC

susceptibility. Genome-wide studies of gene-environment interactions may identify variants

that are not detected in GWAS of marginal gene effects. To study this, we conducted a

genome-wide analysis for interaction between genetic variants and alcohol consumption

and cigarette smoking using data from the Colon Cancer Family Registry (CCFR) and the

Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). Interactions were

tested using logistic regression. We identified interaction between CRC risk and alcohol

consumption and variants in the 9q22.32/HIATL1 (Pinteraction = 1.76×10−8; permuted p-

value 3.51x10-8) region. Compared to non-/occasional drinking light to moderate alcohol

consumption was associated with a lower risk of colorectal cancer among individuals with

rs9409565 CT genotype (OR, 0.82 [95% CI, 0.74–0.91]; P = 2.1×10−4) and TT genotypes

(OR,0.62 [95% CI, 0.51–0.75]; P = 1.3×10−6) but not associated among those with the CC

genotype (p = 0.059). No genome-wide statistically significant interactions were observed

for smoking. If replicated our suggestive finding of a genome-wide significant interaction

between genetic variants and alcohol consumption might contribute to understanding colo-

rectal cancer etiology and identifying subpopulations with differential susceptibility to the

effect of alcohol on CRC risk.

Author Summary

Alcohol consumption and smoking are associated with CRC risk.We performed a
genome-wide analysis for interaction between genetic variants and alcohol consumption
and cigarette smoking to identify potential new genetic regions associated with CRC.
About 8,000 CRC cases and 8,800 controls were included in alcohol-related analysis and
over 11,000 cases and 11,000 controls were involved in smoking-related analysis. We iden-
tified interaction between variants at 9q22.32/HIATL1 and alcohol consumption in rela-
tion to CRC risk (Pinteraction = 1.76×10−8). If replicated our suggested finding of the
interaction between genetic variants and alcohol consumption might contribute to under-
standing colorectal cancer etiology and identifying subpopulations with differential sus-
ceptible to the effect of alcohol on CRC risk.

Introduction

Colorectal cancer (CRC) is the third-most common cancer in men and the secondmost com-
mon cancer in women worldwide [1]. Both environmental and genetic factors are involved in
the development of CRC [2–7]. Since 2007, genome-wide association studies (GWAS) have
identified about 50 loci associated with CRC risk[8–11]. However, only a small portion of the
familial aggregation of CRC is explained by these identified genetic loci, and additional variants
associated with CRC susceptibility are more likely to be identified through analyses of interac-
tions between genes and environmental risk factors [12, 13]. Single nucleotide polymorphisms
(SNP) that impact only a subgroup of the population or have opposite effects in different
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subgroups are likely to produce weakmain effects that cannot be easily detected by marginal
association testing of the SNPs. However, these variants may be identified by testing for inter-
actions between SNP and environmental risk factors (genome-wide interaction analysis) [14,
15]. These findingsmay provide etiologic insight into CRC and identify potentially susceptible
subpopulations [14, 15].

There is compelling evidence from epidemiologic studies that alcohol consumption and cig-
arette smoking are associated with risk of CRC [16–25]. Both alcohol consumption and ciga-
rette smoking influence disease risk through pathways involving multiple gene products and
regulatory elements, providing potential for biological interactions [26–28]. Accordingly, alco-
hol consumption and smoking are important lifestyle factors to study interactions with genetic
variants. In this study, we performed a genome-wide interaction analysis using the large data-
sets from the Colon Cancer Family Registry (CCFR) and the Genetics and Epidemiology of
Colorectal Cancer Consortium (GECCO) [3] to identify SNPs that modify the effects of alcohol
and smoking on CRC risk.

Results

In this study, we included 14 studies from the Colon Cancer Family Registry (CCFR) and the
Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO) as describedprevi-
ously [3, 29, 30] and in the S1 Text and S1 and S2 Tables. Basic characteristics of the partici-
pants, stratified by study center, are described in S1 and S2 Tables, respectively. We were able
to harmonize measures of alcohol consumption across 8,058 cases and 8,765 controls and mea-
sures of smoking across up to 11,219 cases and 11,382 controls. As seen for other common dis-
eases, such as cardiovascular diseases, alcohol consumption shows a different effect with CRC
risk depending on the level of alcohol consumed. Heavy alcohol intake (>2 standard drinks
per day) has been shown to be associated with increased risk of CRC [16, 17, 31] while light-to-
moderate drinking (<2 standard drinks per day) may have little effect [18, 19] or reduce risk of
CRC [16, 20–22] compared to non-drinkers. Consistent with these previous publications [16–
22, 31] we observed an inverse association with CRC risk for light-to-moderate drinkers
(OR = 0.91, P = 0.006, Fig 1A) but a positive association for heavy drinkers (OR = 1.22,
P = 0.0004, Fig 1B) compared with non-/occasional drinkers. Modeling alcohol using this cate-
gorical approach fitted the association between alcohol intake and CRC risk better than the
continuous variable based on the Akaike Information Criterion (AIC) which was 12.42 smaller
for the model including the two categorical variables compared with the model including the
continuous variable (AIC = 23123.72 for continuous alcohol and AIC = 23111.3 for categorical
alcohol)[32]. Given the opposite effect of light/moderate alcohol drinking vs. heavy drinking, it
is critical that analyses further investigating the impact of alcohol on CRC, such as interaction
analysis do this separately for light/moderate and heavy drinking. Ever-smokers and pack-
years of cigarette smoking were positively associated with CRC risk (OR = 1.18 for ever vs.
never smokers, P = 8.9×10−9; OR = 1.11 per 10 pack-years increase, P = 7.1×10−13, Fig 2A and
2B). None of the smoking and alcohol variables showed evidence of heterogeneous associations
across studies (Pheterogeneity>0.16).

Using conventional logistic regression including multiplicative interaction terms, we identi-
fied genome-wide significant interactions (at P<5×10−8) between 11 SNPs at the 9q22.32/
HIATL1 (Hippocampus Abundant Transcript-Like 1) locus and light-to-moderate drinking
with no evidence of heterogeneity across studies (Pheterogeneity>0.5 for any of the 11 SNPs) (S3
Table, Fig 3). All 11 SNPs were common variants with minor allele frequency (MAF) between
0.31–0.34 and genotyped or imputed with high accuracy (imputation r2>0.98, S3 Table). The
most significant SNP was rs9409565 with Pinteraction = 1.76×10−8; permuted p-value 3.51x10-8
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(Table 1, Fig 4C). The genetic variant was located in an intergenic region (28kb downstream of
HIATL1 and 70kb downstream of FBP2, Fig 3). All the other 10 genome-wide significant SNPs
were in strong linkage disequilibrium (LD) with rs9409565 (LD r2>0.8, S3 Table, Fig 3) and
some of them were located within the gene HIATL1. The observed interaction for rs9409565
was similar in men and women and by cancer site (colon vs rectum) (Fig 4A and 4B, S4 Table).
We did not observe any genome-wide significant interaction between any SNP and heavy
drinking.No inflation was observed in the genome-wide SNP × alcohol interaction analysis
(the inflation factor λ = 0.99 and 1.00 for light-to-moderate drinkers and heavy drinkers,
respectively). To evaluate the potential confounding[33] by other lifestyle and environmental
risk factors of the interactions between rs9409565 and light-to-moderate alcohol consumption
in relation to CRC risk, we adjusted for smoking status (ever vs. never) and BMI (two variables
have the highest correlation r = 0.15 and 0.13 with alcohol consumption in our data), as well as
exercise, fruit and vegetable consumption in the conventional case-control logistic regression
model. Our results did not change (multivariate adjusted interaction p-value = 4.34x10-8).

When stratified by genotype rs9409565, light-to-moderate alcohol consumption (compared
to non/occasional alcohol consumption) significantly decreasedCRC risk in individuals with
CT genotype (prevalence, 45% vs 49%; OR, 0.82 [95% CI, 0.74–0.91]; P = 2.1×10−4) and TT
genotype (prevalence, 42% vs 52%; OR,0.62 [95% CI, 0.51–0.75]; P = 1.3×10−6) but not in
those with CC genotype (P = 0.059) (Table 1, S5 Table). The association between alcohol intake
and CRC was also not heterogeneous within each genotype strata (p-heterogeneity> 0.73; S1
Fig).

We also estimated absolute risks of CRC based on Surveillance, Epidemiology, and End
Results (SEER) age-adjusted incidence rates (Table 2). Compared with non/occasional

Fig 1. The association between CRC and alcohol consumption (non-/occasional drinkers [reference group]; light-to-moderate

drinkers [a]; and heavy drinkers[b]). Men and women were analyzed separately in each study and age and study site (if applicable) were

adjusted in model. Non-/occasional drinkers: drinking < 1 gram of alcohol per day; light-to-moderate drinkers: drinking 1–28 grams of

alcohol per day ([a] alcoholc1-28g/d); and heavy drinkers: drinking >28 grams of alcohol per day ([b] alcoholc>28g/d). OR: odds ratio;

N = total number of subjects; case = number of cases. Colon23: Hawaii Colorectal Cancer Studies 2 and 3; DACHS: Darmkrebs: Chancen

der Verhütung durch Screening; DALS: Diet, Activity and Lifestyle Study; HPFS: Health Professionals Follow-up Study; HPFS_AD: Health

Professionals Follow-up Study for colorectal adenoma; MEC: Multiethnic Cohort Study; NHS: Nurses’ Health Study; NHS_AD: Nurses’

Health Study for colorectal adenoma; PHS: Physicians’ Health Study; PLCO: Prostate, Lung, Colorectal and Ovarian Cancer; Screening

Trial; VITAL: VITamins And Lifestyle; WHI: Women’s Health Initiative. het.pval: p value of heterogeneity.

doi:10.1371/journal.pgen.1006296.g001
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drinking, light-to-moderate drinkingwas associated with 14.0 fewer CRC cases per 100,000
individuals carrying the rs9409565-CT genotype per year; 35.5 fewer CRC cases per 100,000
individuals carrying the rs9409565-TT genotype per year.

Using the Cocktail method as a two-step method that may improve power we did not
observe any genome-wide significant SNP×alcohol interactions. Further, we did not observe
any genome-wide significant interactions for SNP×smoking (smoking history and pack-years
of smoking) using logistic regression or the Cocktail method.

Gene expression analyses

The SNP rs9409565 showing a significant interaction with alcohol is located in an intergenic
region betweenHIATL1 and FBP2. As there is a recombination hotspot lying between
rs9409565 and FPB2 (Fig 3), we focused the gene expression analysis on HIATL1, which is
expressed in normal colon and rectal tissue. [34, 35] Furthermore, based on our gene expres-
sion data for 35 colorectal cancer cases (S2 Text), the expression levels of the HIATL1 gene was
significantly higher in tumor tissues compared with adjacent normal tissues (paired student t
test, P<7.2×10−5, S2 Fig). This finding is consistent with a previous study [36] which is
included in the UCSC Cancer Genomics Browser[37–39] and show that human colon tumors
(n = 100) significantly over-expressed HIATL1 compared to normal colon tissues (n = 5) [36]
(Fisher exact test: P = 0.03). Similarly, we were able to reproduce this observation in 50 inde-
pendent paired colorectal adenocarcinoma and adjacent normal samples from The Cancer
Genome Atlas (TCGA) (paired student t test, P = 0.02, S2 Fig). Furthermore, we observed that

Fig 2. The association between CRC and smoking (ever vs. never smokers [a]; pack-years of smoking [b]). Never smokers were

assigned the value 0 for pack-years of smoking. OR: odds ratio; OR for pack-years of smoking is based on per 20 pack-years increase. Age,

sex (if applicable), and study site (if applicable) were adjusted in model. ASTERISK: The French Association STudy Evaluating RISK for

sporadic colorectal cancer; CCFR: Colon Cancer Family Registry; Colon23: Hawaii Colorectal Cancer Studies 2 and 3.; DACHS: Darmkrebs:

Chancen der Verhütung durch Screening; DALS: Diet, Activity and Lifestyle Study; HPFS:Health Professionals Follow-up Study; HPFS_AD:

Health Professionals Follow-up Study for colorectal adenoma; MEC: Multiethnic Cohort Study; NHS: Nurses’ Health Study; NHS_AD: Nurses’

Health Study for colorectal adenoma; OFCCR: Ontario Familial Colorectal Cancer Registry; PMH-CCFR: Postmenopausal Hormone study-

Colon Cancer Family Registry; PLCO: Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial; VITAL: VITamins And Lifestyle; WHI:

Women’s Health Initiative. CCFR is a collaborating study with GECCO. smk_ever: ever smokers; smk_pkyr20: pack-years of smoking; het.

pval: p value of heterogeneity.

doi:10.1371/journal.pgen.1006296.g002
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Fig 3. Regional association plot for the interaction analyses between moderate alcohol drinking and SNPs at 9q22.32/HIATL1. The–

log10 of p values (left y-axis) are plotted against the SNP genomic position based on NCBI build 37 (x-axis); the estimated recombination rate

from 1000 Genomes Project European populations are on the right y-axis and plotted in blue. The most significant SNP was denoted with purple

diamond. SNPs are colored to reflect correlation with the most significant SNP. Gene annotations are from the UCSC genome browser. Gene

FAM22F is also known as NUTM2F.

doi:10.1371/journal.pgen.1006296.g003

Table 1. Stratification analysesa by genotypes of rs9409565 for the association between alcohol consumption and CRC.

Genotype Non/occasional drinkers Light-to-moderate drinkers P interation
b

Case (n) Control (n) OR Case (n) Control (n) OR (95% CI) P value

rs9409565 CC 1,365 1,593 1.0 1,638 1,717 1.11 (1.00–1.23) 5.9E-02

CT 1,495 1,574 1.0 1,646 2,002 0.82 (0.74–0.91) 2.1E-04

TT 425 387 1.0 434 590 0.62 (0.51–0.75) 1.3E-06

1.76E-08

a: non/occasional drinkers as the reference group. Non-/occasional drinkers: drinking < 1 gram of alcohol per day; light-to-moderate drinkers: drinking 1–28

grams of alcohol per day. Men and women were analyzed separately in each study and age, study site (if applicable), and population structure were

adjusted in model.
b: P value of interaction term between SNP and alcohol consumption, permuted p-value = 3.51x10-8 (p value of heterogeneity = 0.96).

doi:10.1371/journal.pgen.1006296.t001
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HIATL1 showed significant differential expression across various levels of lifetime alcohol con-
sumption in the colon tumor tissues (n = 28, ANOVA test P = 0.03, S3 Fig) and also had differ-
ential gene expression across levels of alcohol consumption at reference time (the year before
enrollment) in the normal colon tissues (n = 33) at P = 0.06 from ANOVA test (S4 Fig). In
addition, for rs9409565 and rs9409567 (LD r2 = 1.0 in CEU population), the two most signifi-
cant SNPs at 9q22.32/HIATL1, are cis-acting quantitative trait loci (eQTL) for HIATL1 expres-
sion in lymphoblastoid cell lines (P<7.0×10−6) and monocytes (P<5.8×10−12) [40, 41], which
is consistent with previously published eQTL results from GTEx, Genevar[42],Westra et al.,
and Lappalainen et al. showing that this these SNPs tag an eQTL locus in lymphoblastoid cells
and related anatomical sources (including spleen, whole blood, esophagus muscularis, and

Fig 4. Forest plot for meta-analysis of interaction analysis for rs9409565 and light-to-moderate drinking among men (a),

women (b) and combined (c). Odds ratios (ORs) and 95% confidence intervals (95% CI) are presented for the multiplicative

interaction between each additional copy of the count (or tested) allele (C) and light-to-moderate vs. non/occasional drinkers. The

box sizes are proportional in size to the inverse of the variance for each study, and the lines visually depict the confidence interval.

Results from the fixed-effects meta-analysis are shown as diamonds. The width of the diamond represents the confidence interval.

P value of heterogeneity for (a), (b), and (c) is 0.93, 0.78, and 0.96, respectively.

doi:10.1371/journal.pgen.1006296.g004
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sun-exposed skin) with p values ranging from 7x10-138 to 4x10-6 (S8 Table). In contrast, evalua-
tion of eQTL in both normal (GTEx) and cancer colorectal tissue from TCGA for the
rs9409565 locus (r2> = 0.2 in Phase 3 1000 genomes EUR data) did not show any significant
eQTL. The inability to detect an eQTL is likely because the enhancer tagged by the locus is
active in some but not all cancer cell lines and the current reference cancer transcriptome data
may not be large enough or molecularly representative of our study population S5 Fig). Fur-
thermore, we investigated whether any of the tagging SNPs are located in variant enhancer loci
(VEL)reported by Akhtar-Zaidi et al.[43] using ChIP-seq (H3k27ac) enhancer signals.We
observed that four of the variants (rs28406858, rs7042481, rs7858082, and rs9409510) in LD
with rs9409565 (LD r2�0.6) were positionedwithin three gained cancer-specificVEL (S6 Fig).

Discussion

We identified a suggestive interaction between variants at 9q22.32/HIATL1 and light-to-moder-
ate alcohol consumption in relation to CRC risk. This is the first genome-wide significant GxE
interaction reported for alcohol intake and risk of CRC and warrants replication in independent
studies. Evidence for overlap between the discovered 9q22.32/HIATL1 region with VEL as well
as gene expression results support the relevance of the 9q22.32/HIATL1 region for CRC risk.

Gene expression analyses indicated that a) SNPs identified in our study impact HIATL1
expression, b) HIATL1 is involved in signaling pathways related to CRC and expression differs
between normal and tumor CR tissue, and c) HIATL1 expression in colon tissue differs by alco-
hol consumption. The most significant variant rs9409565 is correlated with 142 variants (LD
r2�0.5 in Phase 3 1000 Genomes European populations), which spanned across intronic
regions and approximately 50kb downstream and 75kb upstream of HIATL1. Nine of these
variants (including rs9409550, rs4744345, rs9409546, rs9409778, and rs639276, all with inter-
action P<5×10−8) fall within a transcriptionally active region in normal colon, rectal and duo-
denal mucosa [44] as defined by epigenetic signals.[45] Furthermore, these variants fall in a
region of enriched enhancer signal; although we note that currently available ChIP-seq data are
not able to identify a putative transcription factor binding site at any of the tagged SNPs (S6
Fig). In support of our findings that HIATL1 expression is higher in tumor than adjacent nor-
mal colorectal tissue, ChIP-seq (H3k27ac) enhancer signals suggest that this locus implicates a
gained enhancer present in CR tumors that is absent in normal crypt cells (S6 Fig). In sum-
mary, multiple data points suggest that the genetic variants we identified to interact with alco-
hol on CRC risk are located in regulatory regions impacting the expression of HIATL1 and that
HIATL1 expression varies by alcohol consumption.

HIATL1 is a member of the solute carrier (SLC) group of membrane transport, which
enables the directedmovement of substances (such as peptides, amino acids, proteins, metals,

Table 2. Absolute riska of CRC for alcohol consumption among individuals with different genotypes

of rs9409565.

Alcohol consumption rs9409565 genotype

TT CT CC

Non/occasional drinking 93.3 (79.9–106.5) b 79.7 (74.0–85.3) 69.7 (64.6–74.8)

Light-to-moderate drinking 57.8 (50.1–65.43) 65.7 (61.6–69.9) 77.1 (72.2–82.0)

a: Absolute risk calculation was based on Surveillance, Epidemiology, and End Results (SEER) age-

adjusted CRC incidence rates between 1982–2011 among the White population of 74.5 per 100,000 men

and women per year.
b: the number of CRC cases per 100,000 individuals (95% CI).

doi:10.1371/journal.pgen.1006296.t002
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and neurotransmitters) into or out of cells and plays an important role in a variety of cellular
functions [46, 47]. Although the detailed function of HIATL1 remains elusive, this gene was
found to be expressed in a large range of animal species and it is highly evolutionarily con-
served [48], suggesting an potentially important functional role. Transporter proteins are com-
monly upregulated in many cancers [49, 50] and take part in nutrient signaling to the mTOR
pathway [51] which is an important signaling pathway in apoptosis and cancer [52–54]. Alco-
hol may modify the effects of HIATL1 on CRC risk through its influence on the gene expres-
sion of HIATL1. Nonetheless, the precise mechanism(s) of the interaction between alcohol and
HIATL1 on CRC risk remains unclear and further studies are needed.

Our Cocktailmethod for detectingG×E interactions did not identify the statistical interaction
detected by the conventional logistic regression analysis because rs9409565 did not show strong
statistical evidence for associationwith CRC risk in the marginal association analyses (P = 0.54,
OR = 1.014) or with alcohol consumption (P = 0.22). Accordingly, this SNP was ranked low in
step 1 of the Cocktailmethod, resulting in very stringent alpha-threshold for the interaction term
in step 2. Although the conventional logistic regression analysis tends to be less powerful overall
for genome-wide interaction analysis compared with the Cocktailmethod [14, 55], it has greater
power to detect an association if the marginal association of the SNP on disease or the correlation
of the SNP with environmental factor are weak as it was the case for the observed interaction. In
addition, no association between rs9409565 and alcohol consumption excluded the possibility
that the observed interaction was due to the dependence between them [56]. We also explored
the effect of rs9409565 and alcohol using other potentially more powerful single step approaches
and observeda similar interaction effect in the Empirical Bayesian analysis[57] and a weaker
interaction effect in the case-only analysis[58], whichmay be explained by the non-significant
differential effect of alcohol on CRC in individual carrying the CC genotype (S6 Table).

To investigate if genome-wide interactionmay help identifying variants that would bemissed
we looked up the marginal association of rs9409565 in the largest GWAS[59] which is about
twice as large as our study and showed an OR for rs9409565 of 0.975 (95%CI 0.946–1.007, p-
value 0.127). Accordingly, the variant by itself showed only weak evidence for associationwith
CRC. This may not be surprising given that it is estimated that the sample sizes required to iden-
tify GxE interaction vs. main effects is at least 4x larger[60]. Our study has several strengths,
including the large sample size, environmental exposure assessment in well-characterizedpopu-
lations, and standardized harmonization of environmental data across studies. Further, there is
no evidence of heterogeneity across studies for our findings, indicating our results are not domi-
nated by one or a few studies and, indeed, represent evidence across all studies. There are also
some limitations. Because amassing sufficient study power for genome-wide interaction analysis
is a challenge, we combined all studies in the analysis to gain the greatest power[61] instead of
dividing studies into discovery and replication sets. Although we do not have a replication set,
the consistency of our findings across all studies and the independent evidence from different
types of gene expression data and bioinformatics analyses support a novel interaction for CRC
risk between alcohol intake and variants in the 9q22.32/HIATL1 region. Our analyses focused
on current alcohol consumption, rather than lifetime alcohol use, whichmay cause misclassifi-
cation of a certain portion of alcohol users. Both differential and non-differentialmisclassifica-
tions of alcohol consumption levels tend to lead to underestimation of interaction parameters
(e.g. leading to non-significant interaction term between SNP and alcohol intake) [62], accord-
ingly, we may have missed some true interactions. However, it is unlikely that this led to false
positives for the interactions observed.Because, there is no strong evidence that the type of alco-
hol (usually defined as wine, beer and hard liquor) has a differential impact on CRC[63] we
have not investigated interaction between genetic variants and type of alcohol. As we preformed
genome-wide interaction testing for two environmental risk factors (smoking and alcohol
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consumption), additional adjustment for multiple comparisons may be needed.However, we
note that the observed interaction at 9q22.32/HIATL1 would remain borderline significant
(alpha threshold = 5×10−8/2 = 2.5×10−8). The small numbers of heavy drinkers, particular in
women, impeded the reliable estimation of interaction parameters and limited our power to
identify significant interaction between SNP and heavy drinking.We focused gene expression
analysis on HIATL1 because rs9409565 is located in an intergenic region betweenHIATL1 and
FBP2 and further there is a recombination hotspot lying between rs9409565 and FPB2. If we
expand gene expression analyses for all genes 500kb upstream or downstream 500kb of
rs9409565 in the 35 pairs of colorectal tumor-normal tissue samples (S2 Text) we observedno
significant result after false discovery rate (FDR) correction. The most significant results were
for MIRLET7F which has a p value of 0.001 for testing differential gene expression across vari-
ous levels of lifetime alcohol consumption in normal tissues and PTPDC1which has a p value of
0.002 for testing differential gene expression across various levels of alcohol consumption at ref-
erence time. Further studies are needed to confirm our findings.

Alcohol has a particularly detrimental effect on several cancers, possibly including CRC, in
Asian subpopulations with genetic determined alcohol sensitivity[64–66]. However, as we have
focused our analysis on European descent populations and did not observe significant differ-
ences of the alcohol-CRC association between studies (phet = 0.16–0.76) we do not expect
major underlying differences of the effect of alcohol in our study populations.

We did not perform stratification analyses by anatomical sites for our genome-wideGxE
interaction analysis because the association of CRC with alcohol consumption (S7 Table) and
smoking [23] did not vary according to anatomical site within the large bowel. Although we
did observe potential interactions for alcohol consumption, we did not observe statistical evi-
dence for genome-wide SNP x smoking interactions. This may be because smoking has a
weaker association with CRC compared with alcohol intake [24, 26, 67], so we may have been
underpowered even with more than 10,000 cases and 10,000 controls. We also may not have
properly captured the most relevant smoking variables, such as duration of smoking or time
since quitting smoking. The association between smoking and CRC risk are strongest for
tumors that display certainmolecular features such as microsatellite instability (MSI)-high and
CpG island methylator phenotype (CIMP)-positive [68, 69]. Because of the lack of MSI or
CIMP data in several studies, we cannot perform stratification analysis by tumor characteristics
for smoking-related analyses.

We note that it would be too early to make any recommendation on alcohol intake from our
findings even after independent replication given that such recommendation need to be consid-
ered in context of the effect of alcohol on all diseases. Furthermore, it will be important to inves-
tigate the interactions between alcohol and genetic variants in larger studies to comprehensively
evaluate the full impact of genetic variation on the effect of alcohol on colorectal cancer risk.

In summary, we identified a tentative novel interaction for CRC risk between alcohol intake
and variants at 9q22.32/HIATL1. Further replication and functional studies are required to
confirm our findings and understand the biologic implications of the interaction. This, in turn,
could provide further insight into CRC etiology and may identify potentially susceptible
subpopulations.

Materials and Methods

Ethics statement

The overall project was reviewed and approved by the Fred Hutchinson Cancer Research Cen-
ter Institutional ReviewBoard (approval number: 6501 and 3995). Each study was approved by
the local IRB [University of Hawaii Human Studies Program (Colo23 and MEC); University of
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Utah Institutional ReviewBoard (DALS); Partners Human Research Committee (NHS and
PHS); Harvard School of Public Health Institutional ReviewBoard (HPFS); Fred Hutchinson
Cancer Research Center Institutional ReviewBoard (VITAL, overall study); Ethics Committee
of the Medical Faculty of the University of Heidelberg (DKFZ); NCI Special Studies Institu-
tional ReviewBoard (PLCO)]. For each participating study, participants or the next of kin in
the case of deceased participants, provided either written informed consent to participate
(Colo23, DACHS, DALS, MEC, PHS, PLCO, VITAL, WHI) or they provided implied written
consent by the return of the mailed questionnaires (NHS, HPFS). Additional consent to review
medical records was obtained through signed written consent.

Study population

We included 14 study centers from the CCFR and GECCOas described in the S1 Text and S1
and S2 Tables. All colorectal cancer cases were defined as colorectal adenocarcinoma and con-
firmed by medical records, pathologic reports, or death certificates.We included advanced
colorectal adenoma, a well-defined colorectal cancer precursor [70, 71], from two studies (S1
Text). Advanced adenoma was defined as an adenoma 1 cm or larger in diameter and/or with
tubulovillous, villous, or high-grade dysplasia/carcinoma-in-situ histology. Colorectal ade-
noma cases were confirmedby medical records, histopathology, or pathologic reports. Controls
for adenoma cases had a clean sigmoidoscopic or colonoscopic examination. All participants
provided informed consent and studies were approved by their respective Institutional Review
Boards.

Genotyping, quality assurance/quality control and imputation

Average sample and SNP call rates, and concordance rates for blinded duplicates have been
previously published [3]. In brief, genotyped SNPs were excluded based on call rate (< 98%),
lack of Hardy-Weinberg Equilibrium in controls (HWE, p< 1 x 10−4), and low minor allele
frequency (MAF<0.05).We imputed the autosomal SNPs of all studies to the Northern Euro-
peans from Utah (CEU population) in HapMap II. SNPs were restricted based on per-study
minor allele count> 5 and imputation accuracy (R2> 0.3). After imputation and quality-con-
trol (QC) exclusion, approximately 2.7M SNPs were used in analysis.

All analyses were restricted to individuals of European ancestry, defined as samples cluster-
ing with the Utah residents with Northern andWestern European ancestry from the CEPH
collection population in principal component analysis [72], including the HapMap II popula-
tions as reference.
Alcohol consumption and smoking information. All information on basic demographics

and environmental risk factors were collected through interviews or through self-administered
questionnaires. Data for all studies were centrally harmonized at the data coordinating center.
We used the risk-factor information at the reference time, which varied across studies (S1
Text). A multi-step data-harmonization procedure which is described in detail in Hutter et al.
[29] was applied to reconcile differences in individual study questionnaires. We converted con-
sumption of alcoholic beverages into grams of alcohol per day (g/day) by summing the alcohol
content of each beverage consumed per day. To test if the categorical or continuous variable fit-
ted the association between alcohol intake and CRC risk better we used Akaike Information
Criterion (AIC) to compare both models.With our sample size a model with an AIC that is 6
points smaller than the other model is considered a better fitting model[32]. According to this
analysis and consistent with previously described risk profiles [16, 17, 19–22, 73], we grouped
study participants as non-/occasional drinkers (drinking< 1 g/day); light-to-moderate drink-
ers (drinking 1–28 g/day); and heavy drinkers (drinking>28 g/day, one standard drinking is

Gene, Alcohol Consumption, Smoking, and Colorectal Cancer

PLOS Genetics | DOI:10.1371/journal.pgen.1006296 October 10, 2016 11 / 21



approximately equal to 14 grams of alcohol).We coded these categories using indicator vari-
ables for the genome-wide interaction analysis. Smoking history was defined as never- and
ever-smoking; pack-years of smoking was calculated by multiplying the average number of
packs of cigarettes smoked per day by smoking duration (years). Smoking history (ever vs.
never smoking) and pack-years (treated as a continuous variable) of smoking were used in
genome-wide interaction analysis, separately.

Statistical analysis

Statistical analyses of all data were conducted centrally at the GECCO coordinating center on
individual-level data to ensure a consistent analytical approach. Unless otherwise indicated, we
adjusted for age at the reference time, sex (when appropriate), center (when appropriate), and
the first three principal components from EIGENSTRAT to account for potential population
substructure. The alcohol and smoking variables were coded as described above. Each directly
genotyped SNP was coded as 0, 1, or 2 copies of the variant allele. For imputed SNPs, we used
the expected number of copies of the variant allele (the “dosage”), which has been shown to
give unbiased test statistics [74]. Genotypes were treated as continuous variables (i.e. log-addi-
tive effects). Each study was analyzed separately using logistic regression models and study-
specific results were combined using fixed-effectsmeta-analysis methods to obtain summary
odds ratios (ORs) and 95% confidence intervals (CIs) across studies. We calculated the hetero-
geneity p-values usingWoolf ’s test [75]. Quantile-quantile (Q-Q) plots were assessed to deter-
mine whether the distribution of the p-values was consistent with the null distribution (except
for the extreme tail). Subjects with missing data for SNPs or environmental factors were
excluded from the relevant analyses. Considering the potential male-female difference in alco-
hol metabolism[76, 77] and the different levels of alcohol consumption between sexes, we con-
ducted the genome-wide interaction analysis for alcohol separately for men and women and
used fixed effectsmeta-analysis to combine their results. All analyses were conducted using the
R software (Version 3.0.1).

Two statistical methods that leverage SNPs and environmental factors interaction (G×E
interaction) were used to detect potential disease associated loci. First, we used conventional
case-control logistic regression analysis including G×E interaction term(s). As the alcohol con-
sumption variable has three categories there are two interaction terms in the statistical models.
Based on an increasing number of publications [78–83] providing a detailed discussion on the
appropriate genome-wide significance threshold, which all arrive at similar values in the range
of 5 x 10-7to 5 x 10−8 for European populations, we decided to use an alpha level of 5 x 10−8 as
the genome-wide significance threshold, assuming about 1 million independent tests across the
genome (0.05/1,000,000 = 5 x 10−8). For significant results we used permutation approach to
determine the empirical p-value.We defined the number of permutation needed as 1/p-value
(i.e., for a p-value of 5 x 10−8 1/5E-08 = 20,000,000).We permutated the case-control status 1/
p-value times and calculated the p values for the interaction from each meta-analyses to calcu-
late the permuted p-value.

Second, we used our recently developedCocktail method.[55] In brief, this method consists
of two-steps: a screening step to prioritize SNPs and a testing step for GxE interaction. For the
screening step, we ranked and prioritized variants through a genome-wide screen of each of
the 2.7M SNPs (referred to as “G”) by the maximum of the two test statistics frommarginal
association testing of Gs on disease risk [84], and correlation testing betweenG and exposure
(E) in cases and controls combined.[85] Based on the ranks of these SNPs from screening, we
used a weighted hypothesis framework to partition SNPs into ordered groups and assigned
each group an alpha-level cut-off, with higher ranked groups from the screening stage having
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less stringent alpha-level cut-offs for interaction [86, 87]. The second step of the Cocktail
method is the testing step. We used either case-control (CC) or case-only (CO) logistic regres-
sion to calculate a p-value for the interaction. If the G was assigned based on its low marginal
association P value in the screening tests, we used CO test; if it was ranked because of a low cor-
relation screening p-value, we used CC tests. We compared the test step p-value to the alpha-
level cutoff for each SNP in a given group.

We calculated absolute risks for each genotype of the SNP showing significant G×E interac-
tion. Briefly, based upon the Surveillance, Epidemiology, and End Results (SEER) age-adjusted
colorectal cancer incidence rate (denoted by “I”) between 1982–2011 among theWhite popula-
tion of 42.9 per 100,000 men and women per year, we estimated the reference incidence rate of
colorectal cancer (denoted by “I_{reference}”) using the following formula: I_{reference} = I/(P
(AA, non-E) + OR{Aa, non-E}×P(Aa, non-E) + OR{aa, non-E}×P(aa, non-E) + OR{AA, E}×P
(AA, E) + OR{Aa, E}×P(Aa, E)) + OR{aa, E}×P(aa, E)), where P(genotype, E (or non-E)) is the
prevalence of light-to-moderate drinking (or non/occasional drinking) in each corresponding
genotype category among controls (non-cases). Based on this reference incidence rate of colo-
rectal cancer (i.e., I_{reference}), we further calculated absolute colorectal cancer incidence
rates within each subgroup defined by genotype of the SNP according to a light-to-moderate
drinking or non/occasional drinking by multiplying the I_{reference} with each corresponding
OR. Bootstrapmethods were used to calculate the 95% CI of absolute risk estimates [88].

Expression analyses

We used different types of gene expression data to examine putative expression of genes identi-
fied in our genome-wide interaction analysis, and to determine biological plausibility that the
variants identifiedmight impact CRC risk. First, we searched the Genotype-Tissue Expression
project (GTEx) portal (http://www.broadinstitute.org/gtex/searchGenes)[34] and the Human
Protein Atlas (http://www.proteinatlas.org)[35] to establish whether the implicated genes and
corresponding proteins are expressed in human colon/rectal tissues. Second, we used several
eQTL databases including the Browser at University of Chicago (http://eqtl.uchicago.edu/
Home.html),the Genevar (GENe Expression VARiation) at theWellcome Trust Sanger Insti-
tute (http://www.sanger.ac.uk/resources/software/genevar) [42], HaploReg (http://www.
broadinstitute.org/mammals/haploreg/haploreg.php) (PMID:22064851), and the GTEx Portal
Version 4(http://gtexportal.org/home/) (PMID: 26484569) to investigate whether any of the
implicated SNPs may impact the expression of the nearby genes. A cis-eQTL analysis was also
performed in TCGA COAD data in 356 Caucasian samples that have demographic and clinical
data for 15,008 genes (S1 Text). Third, we analyzed expression data for the implicated genes
from 35 pairs of colorectal tumor-normal tissue samples included in the ColoCare Cohort (S2
Text) as well as expression data from the Cancer Genome Atlas (TCGA; http://cancergenome.
nih.gov) in 50 pairs of colorectal adenocarcinoma-normal tissue samples. We searched the
UCSC Cancer Genomics Browser (https://genome-cancer.ucsc.edu) [37–39] to examine
whether the implicated genes showed evidence of differential expression in colorectal tumor
tissue and normal tissue. Last, we used the publically available data in the Gene Expression
Omnibus site (http://www.ncbi.nlm.nih.gov/geo/) [89, 90] and the gene expression data from
normal colon (n = 33) and tumor (n = 28) tissue in the ColoCare Cohort (S2 Text) to investi-
gate whether the expression of implicated genes are correlated with alcohol/smoking history.

Bioinformatics analysis

We explored potential functional annotations for the SNPs that showed evidence for interac-
tions with either smoking or alcohol in our genome-wide interaction analyses. As detailed in
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S1 Text, we queriedmultiple bioinformatics databases using the UCSC genome browser
(http://genome.ucsc.edu),HaploReg (http://www.broadinstitute.org/mammals/haploreg/
haploreg.php), and literature review of published enhancer signatures of colon cancer.
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ples from TCGA (c,d) (P = 0.025). In figures a, b, and c each line represent a colorectal cancer
case connecting the values of gene expression in adjacent normal tissue to tumor tissue from
that same case. In figure d the log2 transformedmean expression with 95% confidence interval
is shown with a line connecting values of gene expression in tumor and adjacent normal tissue.
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