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Summary

The growth hormone/insulin-like growth factor (IGF) axis can be

manipulated in animal models to promote longevity, and IGF-

related proteins including IGF-I and IGF-binding protein-3 (IGFBP-

3) have also been implicated in risk of human diseases including

cardiovascular diseases, diabetes, and cancer. Through genome-

wide association study of up to 30 884 adults of European

ancestry from 21 studies, we confirmed and extended the list of

previously identified loci associated with circulating IGF-I and

IGFBP-3 concentrations (IGF1, IGFBP3, GCKR, TNS3, GHSR, FOXO3,

ASXL2, NUBP2/IGFALS, SORCS2, and CELSR2). Significant sex

interactions, which were characterized by different genotype–

phenotype associations between men and women, were found

only for associations of IGFBP-3 concentrations with SNPs at the

loci IGFBP3 and SORCS2. Analyses of SNPs, gene expression, and

protein levels suggested that interplay between IGFBP3 and

genes within the NUBP2 locus (IGFALS and HAGH) may affect

circulating IGF-I and IGFBP-3 concentrations. The IGF-I-decreasing

allele of SNP rs934073, which is an eQTL of ASXL2, was associated

with lower adiposity and higher likelihood of survival beyond

90 years. The known longevity-associated variant rs2153960

(FOXO3) was observed to be a genomewide significant SNP for

IGF-I concentrations. Bioinformatics analysis suggested enrich-

ment of putative regulatory elements among these IGF-I- and

IGFBP-3-associated loci, particularly of rs646776 at CELSR2. In

conclusion, this study identified several loci associated with

circulating IGF-I and IGFBP-3 concentrations and provides clues to

the potential role of the IGF axis in mediating effects of known

(FOXO3) and novel (ASXL2) longevity-associated loci.

Key words: aging; genomewide association study; growth

hormone axis; IGF-I; IGFBP-3; longevity.

Introduction

The insulin-like growth factor (IGF) axis is an evolutionarily conserved

system that plays important biologic roles in embryonic development,

growth, and adulthood (Le Roith, 1997). IGF-I mediates most of the

activity of growth hormone (GH). The GH/IGF system consists of two

ligands (IGF-I and IGF-II), six IGF-binding proteins (IGFBP-1-6), and three

IGF receptor subtypes (IGF-I receptor, IGF-II receptor, and insulin

receptor) (Jones & Clemmons, 1995). IGF-I promotes mitosis and cell

cycle progression and is involved in human postnatal growth and

development. Circulating IGF-I is mainly bound to IGF-binding proteins

(IGFBPs) (Fowlkes, 1997), which affect activity (Lee et al., 1997) and half-

life of IGF-I (Guler et al., 1989). From the clinical point of view, the

measurement of IGF-I and IGFBP-3 blood concentrations is an important

tool in establishing the diagnosis as well as monitoring treatment of GH-

related diseases (Ho & Participants, 2007; Cohen et al., 2008; Melmed

et al., 2009).

Circulating concentrations of IGF-I and IGFBP-3 have been associated

with risk of type 2 diabetes, cardiovascular diseases, cancer, and

mortality in epidemiological studies (Juul et al., 2002; Vasan et al., 2003;

Renehan et al., 2004; Kaplan et al., 2007; Friedrich et al., 2009; Burgers

et al., 2011; Rajpathak et al., 2012). In animal models, diminished IGF-I/

insulin signaling has been associated with extended lifespans (Ziv & Hu,

2011), although the role of the IGF axis in human longevity remains

inconclusive. Human genetic studies have suggested an association

between polymorphisms in IGF-I signaling pathway genes and longevity

(Willcox et al., 2008; Ziv & Hu, 2011; Di Bona et al., 2014). Heritability

studies have provided evidence for a substantial genetic contribution to

circulating concentrations of IGF-I (with heritability estimates ~40–60%)

and IGFBP-3 (80%) (Harrela et al., 1996; Hong et al., 1996; Souren

et al., 2007). Identifying genetic determinants of circulating IGF-I and

IGFBP-3 could lead to a better understanding of the biological basis of

these factors in relation to human health and might identify pathways or

susceptibility biomarkers that may assist with the development of

interventions that target IGF-I, its receptors, and binding proteins.

Our prior genomewide association study (GWAS) (N = 10 280)

identified four loci with genomewide significant (P < 5 9 10�8)

GWAS reveals IGF-I- and IGFBP-3-associated loci, A. Teumer et al.812
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associations with circulating IGF-I and IGFBP-3 concentrations, including

SNPs in or near IGFBP3, TNS3, SORCS2, and NUBP2/IGFALS, as well as

three additional loci with suggestive associations (P < 1 9 10�6) in or

near RPA3, SPOCK2, and FOXO3 (Kaplan et al., 2011). Some of these

genes are involved in well-described IGF regulatory or signaling

pathways (such as IGFBP3 and IGFALS) (Deal et al., 2001; Gu et al.,

2010; Schumacher et al., 2010) and are believed to influence traits that

are also associated with concentrations or bioactivity of IGFs (e.g.,

FOXO3 locus associated with longevity (Willcox et al., 2008) and IGFBP3

locus associated with hip osteoarthritis (Evans et al., 2014)). To identify

additional genetic variants with smaller effect sizes and enable sex

specific analyses, we expanded our GWAS meta-analysis to include up to

a total of 30 884 individuals of European ancestry from 21 studies with

measured circulating concentrations of IGF-I and IGFBP-3. In addition,

using published GWAS data, we also performed lookups of associations

of identified IGF-I and IGFBP-3 loci with survival beyond 90 years and

other age-related clinical traits.

Results

Characteristics of study samples

An overview of the study samples and data collection methods can be

found in Tables S1 and S2 (Supporting information). Analyses of IGF-I

included up to 30 884 individuals (14 424 men and 16 460 women)

from 21 studies and analyses of IGFBP-3 included up to 18 995

individuals (8053 men and 10 942 women) from 13 studies.

Loci associated with circulating IGF-I and IGFBP-3

concentrations

An overview of the GWAS meta-analysis results is given by the

Manhattan plots in Fig. 1 and in Fig. S1 (Supporting information). There

was no indication of inflated test statistics (i.e., due to unaccounted

population stratification) as seen by the quantile–quantile (QQ) plots, and

genomic control lambda ranged from 1.02 to 1.08 for the meta-analysis

results (Fig. S2, Supporting information) and from 0.98 to 1.08 (median

1.01) for the individual GWAS results. All lead SNPs (independent SNPs

with the smallest P-value within a locus, see Methods) had a good

imputation quality across the studies (median imputation quality >0.9).

After the final stage, which combines results of stages 1 and 2 plus de

novo genotyping in stage 3, we found seven genomewide significant loci

(P < 5.0 9 10�8) associated with circulating IGF-I concentration

(Table 1). In addition to the known locus near TNS3, we identified

new loci in or near GCKR, IGF1, FOXO3, ASXL2, NUBP2, and GHSR

associated with IGF-I concentrations.

We found genomewide significant associations with IGFBP-3 con-

centration for SNPs in or near IGFBP3, TNS3, NUBP2, and SORCS2, thus

confirming all four previously known loci (Table 1). The SNPs at TNS3

and NUBP2 were genomewide significantly associated with both IGF-I

and IGFBP-3 concentrations and had the same direction of effect for

each circulating protein.

For six of ten genomewide significant SNPs, effects were in the same

direction of association for IGF-I concentrations and IGFBP-3 concentra-

tions (Table 1).

Detailed results of the significant associations after the final stage can

be found in Table 1. Results of the individual analysis stages appear in

Table S3 (Supporting information). Regional association plots are shown

in Figs S3 and S4 (Supporting information).

Bivariate analysis of IGF-I and IGFBP-3

We performed a bivariate analysis of IGF-I and IGFBP-3. By leveraging

shared variance between the two outcomes, this analysis can have

improved power to identify SNPs associated with both IGF-I and

IGFBP-3 concentrations, especially in the case of SNPs that have

opposite effects on positively correlated traits (Aschard et al., 2014).

The bivariate analysis identified a new locus at CELSR2 (Table 1),

which had nominal association with IGFBP-3 (P = 2.08 9 10�05) and

IGF-1 (P = 0.0096) in the univariate analysis. SNP rs646776 at CELSR2

had opposite effects on the two traits, being negatively associated

with IGF-1 and positively associated with IGFBP-3 (Table 1, Table S4

and Fig. S5, Supporting information). In addition, SNPs at IGFBP3,

TNS3, NUBP2, SORCS2, GCKR, IGF1, and FOXO3, identified in the

univariate analysis, also showed genomewide significant associations

in the bivariate analysis.

Interaction by sex

The sex-stratified analyses revealed no additional discoveries that were

not detected in the overall population. Although the direction of effect

was similar for IGFBP3 and SORCS2 SNPs within sex subgroups, these

two SNPs were found to have significantly different association effect

sizes between men and women for IGFBP-3, consistent with stronger

associations in women. These findings of sex interaction maintained

statistical significance after Bonferroni correction for the 12 tested

genomewide significant lead SNPs (P < 0.004) (Table S5, Supporting

information).

Gene-based analysis (VEGAS)

Gene-based analyses showed several significant IGF-I-associated genes

within or close to the GCKR GWAS locus: EIF2B4, FNDC4, GCKR, IFT172,

PPM1G, SNX17, ZNF513, GTF3C2, KRTCAP3, MPV17, and NRBP1

(associated with IGF-I). New gene-based associations that were not

covered by a single SNP GWAS association were found for C6orf173

(chromosome 6) on IGF-I concentration. The following genes of the

NUBP2 GWAS locus were associated with circulating IGFBP-3 concen-

tration: EME2, IGFALS, MAPK8IP3, MRPS34, NME3, NUBP2, HS3ST6,

RPL3L, SEPX1, and SPSB. Two genes, IGFBP1 and IGFBP3, at the IGFBP3

locus were associated IGFBP-3 concentration.

Lookup for expression quantitative trait loci associations

A lookup of the lead SNPs for cis expression quantitative trait loci (eQTL)

was performed in the publicly available database of whole blood eQTL

associations (Westra et al., 2013). For the following SNPs, one or more

cis eQTL associations were found: rs1065656 (NUBP2), rs11977526

(IGFBP3), rs2153960 (FOXO3), rs509035 (GHSR), rs780093 (GCKR),

rs934073 (ASXL2), and rs978458 (IGF1) (Table 2).

Additionally, using a similar strategy we performed lookup in the

MuTHER consortium (Grundberg et al., 2012) for cis eQTL associations

found in fat cell, skin cell, and lymphoblastic cell lines (LCL). After

Bonferroni correction for 297 lookups of three different traits

(P < 5.6 9 10�5), rs1065656 (NUBP2) showed significant associations,

specifically with FAHD1 (all tissues) and HAGH (fat cells and LCL)

(Table S6, Supporting information). Furthermore, both genes were also

significant in whole blood cis eQTL for the SNP rs1065656 (NUBP2)

(Table 2).

GWAS reveals IGF-I- and IGFBP-3-associated loci, A. Teumer et al. 813
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Associations of gene expression with circulating IGF-I and

IGFBP-3 concentrations

We next sought to link associations between SNPs and circulating IGF-I

and IGFBP-3 concentrations, with cis eQTL associations of the same

SNPs. In the 986 samples of the SHIP-TREND cohort, we examined

associations between whole blood mRNA expression levels of the genes

located in a 500-kb vicinity of our significant lead SNPs and circulating

IGF-I and IGFBP-3 concentrations. Significance of the 323 array probe

trait associations was defined by a false discovery rate (FDR) <0.05. Only

mRNA levels of genes in vicinity of the NUBP2 GWAS locus were

significantly associated with IGF-I concentration (gene SEPX1) or IGFBP-3

concentration (genes HAGH and RPS2). Of note, HAGH was the gene on

which the corresponding lead SNP (rs1065656) had also a significant cis

eQTL. The complete gene expression association results are listed in

Table S7 (Supporting information).

Table 1 Loci associated with IGF-I and IGFBP-3 concentrations in men and women combined samples at genomewide significance (P < 5 9 10�8) after final stage

Trait SNP A1 A2 F1 P I² Chr Position

Nearest

gene

Gene

distance

Direction effect

IGF-I IGFBP-3

IGF-I* rs700753 C G 0.35 1.60E-23 4.2 7 46,720,209 TNS3 561067 – –

IGF-I rs780093 T C 0.41 2.19E-13 24.5 2 27,596,107 GCKR 0 – +

IGF-I rs978458 T C 0.26 1.56E-10 0.0 12 101,326,369 IGF1 0 + –

IGF-I rs2153960 A G 0.69 5.16E-09 22.5 6 109,082,339 FOXO3 0 + +

IGF-I rs934073 C G 0.71 6.48E-09 21.8 2 25,790,669 ASXL2 25087 – –

IGF-I rs1065656 C G 0.31 1.17E-08 47.9 16 1,778,837 NUBP2 0 – –

IGF-I rs509035 A G 0.31 2.09E-08 0.0 3 173,646,143 GHSR 0 + +

IGFBP-3* rs11977526 A G 0.41 4.16E-161 51.5 7 45,974,635 IGFBP3 47239

IGFBP-3* rs700753 C G 0.35 1.11E-46 26.7 7 46,720,209 TNS3 561067 – +

IGFBP-3* rs1065656 C G 0.31 8.55E-23 24.1 16 1,778,837 NUBP2 0 – –

IGFBP-3* rs4234798 T G 0.39 8.86E-19 0.0 4 7,270,834 SORCS2 0 – –

Bivariate analysis rs646776 T C 0.78 6.87E-9 26.1/43.1 1 109,620,053 CELSR2 152 – –

‘�’ = coding allele associated with lower IGF-1 and IGFBP-3 levels (indicated by bold italicized text were genomewide significant); ‘+’ = coding allele associated with higher

IGF-1 and IGFBP-3 levels (indicated by bold italicized text were genomewide significant); Chr = chromosome; A1 = coding allele; A2 = other allele; F1 = frequency of

coding allele.

*Known association.

Table 2 Results of significant whole blood eQTL associations of the genomewide significant lead SNPs

SNP

GWAS

locus

eQTL

p-value Chr

Probe center

position Probe name

SNP

alleles

Effect

allele

Effect

direction EQTL gene

rs1065656 NUBP2 3.66E-04 16 1,829,861 1710332 C/G C + FAHD1

rs1065656 NUBP2 4.28E-12 16 1,799,259 4900333 C/G C � HAGH

rs1065656 NUBP2 3.78E-04 16 1,809,162 1780356 C/G C � HAGH

rs1065656 NUBP2 9.35E-04 16 1,760,172 5270575 C/G C + MAPK8IP3

rs1065656 NUBP2 3.34E-05 16 1,762,997 6110307 C/G C + MRPS34

rs1065656 NUBP2 7.75E-34 16 1,760,510 6450424 C/G C + NME3

rs1065656 NUBP2 1.09E-14 16 1,778,738 6960730 C/G C � NUBP2

rs1065656 NUBP2 9.87E-05 16 1,766,816 2850433 C/G C � SPSB3

rs2153960 FOXO3 2.95E-06 6 109,129,272 7200189 G/A G � HS.133419

rs509035 GHSR 5.97E-05 3 173,706,575 870202 G/A A + TNFSF10

rs780093 GCKR 2.46E-04 2 27,440,911 5960546 T/C T � EIF2B4

rs780093 GCKR 5.70E-04 2 27,440,904 6370494 T/C T � EIF2B4

rs780093 GCKR 2.69E-05 2 27,518,384 430239 T/C T + NRBP1

rs780093 GCKR 1.00E-10 2 27,453,289 3360468 T/C T + SNX17

rs934073 ASXL2 5.96E-04 2 25,816,038 650075 G/C G + ASXL2

rs978458 IGF1 1.71E-03 12 101,115,257 990136 T/C T + C12ORF48

rs11977526 IGFBP3 1.84E-05 7 45,918,692 6840372 G/A A � IGFBP3

Chr, chromosome; eQTL, expression quantitative trait loci; GWSD, genomewide association study.

mRNA of probe and gene names marked in bold showed also significant association with circulating IGFBP-3 levels (P < 3.5 9 10�4).

Fig. 1 Manhattan plots of the combined stage 1 and 2 meta-analysis results of IGF-I and IGFBP-3 traits in the men and women combined sample. SNPs are plotted on the

x-axis according to their position on each chromosome with the -log10 association P-value on the y-axis. The upper solid horizontal line indicates the threshold for

genomewide significance. Known hits are colored in orange and new findings in blue. Plots are truncated on the y-axis to 20.
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Association with plasma protein levels

In 197 samples of the SHIP-TREND cohort, peptides of the following

proteins that were encoded by genes in a 500-kb vicinity of the lead

SNPs were examined for protein quantitative trait analyses (pQTL):

insulin-like growth factor-binding protein complex acid labile subunit

(ALS encoded by IGFALS at the NUBP2 locus), 28S ribosomal protein

S34, mitochondrial (RT34 encoded by MRPS34 at the NUBP2 locus),

insulin-like growth factor-binding protein 3 (IBP3 encoded by IGFBP3 at

the IGFBP3 locus), and coiled-coil domain-containing protein 121

(CC121 encoded by CCDC121 at the GCKR locus). Of the 32 tested

SNP peptide pairs, peptides of the ALS protein had significant pQTL at

FDR <0.05 (Table S8, Supporting information). Furthermore, strong

associations were found in the same samples for the pQTL-associated

peptides of ALS and IBP3 with circulating levels of IGF-I and IGFBP-3

(P < 1.0 9 10�6).

Allelic heterogeneity of the NUBP2 locus

To further examine the NUBP2 locus, we performed a conditional

analysis of this locus based on the meta-analysis results adjusting for the

lead SNP rs1065656. The analyses revealed an independent genome-

wide significant association of a second SNP rs11644716 with IGFBP-3

(P = 6.3 9 10�14) and an opposite effect direction of the minor allele C

(MAF = 0.05) compared with the lead SNP rs1065656 (MAF = 0.31)

(r² = 0.03 between these two SNPs based on the HapMap R22

reference data). Although not genomewide significant, rs11644716

was also associated with circulating IGF-I concentration

(P = 1.8 9 10�6) and has an eQTL for HAGH (probe 4900333:

P = 3.2 9 10�5; probe 1780356: P = 0.003) and a pQTL with ALS

(eight peptides with P-value <0.01). In all cases, the effect directions

based on the minor allele of rs11644716 were opposite of that for the

minor allele of rs1065656.

Figure 2 summarizes the relationship between the lead SNPs at the

NUBP2 locus and gene expression levels, protein levels, and circulating

IGF-I and IGFBP-3 concentrations.

Associations with serum metabolites

Lead SNPs associated with IGF-I and IGFBP-3 concentrations were

examined in a published metabolite-SNP association database (Suhre

et al., 2011; Shin et al., 2014). The IGF-I-associated SNP rs780093 at

GCKR locus was associated with glucose/mannose ratio (P = 9.4 9

10�143), and the IGFBP-3-associated SNP rs4234798 at SORCS2 locus

was associated with caprylate (8:0)/phenylalanine ratio

(P = 7.3 9 10�7).

Associations of top loci with age-related traits

We also examined the associations of the IGF-I- and IGFBP-3-associated

SNPs with anthropometric traits (height, BMI, waist-to-hip ratio, and fat

percentage) (Heid et al., 2010; Lango Allen et al., 2010; Speliotes

et al., 2010), bone mineral density (Estrada et al., 2012), risk of type 2

diabetes (Voight et al., 2010; Morris et al., 2012) and related traits

(fasting glucose, 2-h glucose, HbA1c, fasting insulin, proinsulin,

HOMA-IR, and HOMA-B) (Dupuis et al., 2010; Saxena et al., 2010;

Soranzo et al., 2010), and coronary artery disease (Coronary Artery

Disease Genetics C, 2011; Schunkert et al., 2011; Consortium CAD

and Deloukas, 2013) (Table S9, Supporting information). Many nominal

associations were expected because of the known influence of the IGF

system on these traits. Of note is the finding that for rs780093 in the

GCKR locus, the allele associated with higher IGF-I concentration was

already known to be associated with elevated risk of type 2 diabetes

(P = 3.7 9 10�6), as well as higher levels of fasting glucose, fasting

insulin, and HOMA-IR (all P < 2.0 9 10�4), lower 2-h glucose levels

(P = 1.7 9 10�6), increased height (P = 2.0 9 10�4), lower waist-to-

DNA

IGFALS HAGH

SNP

pQTL
(plasma)

ALS
Protein

Circula�ng IGFBP-3
IGF-I

eQTL

mRNA
(whole Blood)

SNP GWAS 
associa�on

NUBP2 locus

gene

Fig. 2 Overview of the NUBP2 locus that

shows the relations of gene expression

levels, protein levels and circulating IGF-I

and IGFBP-3 with respect to the SNP. Effect

directions (�) are given for the minor C-

allele of SNP rs1065656 (MAF 31%). Note:

the second signal rs11644716 (MAF 5%)

has opposite expression quantitative trait

loci (eQTL) and protein quantitative trait

analyses (pQTL) effect directions to

rs1065656, but they are consistent.
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hip ratio (P = 0.0003), and higher lumbar spine bone mineral density

(P = 0.002).

Three additional loci (GHSR, CELSR2, and FOXO3) showed strong

associations with height (all P < 1.0 9 10�4). The IGFBP-3-increasing

allele of SNP rs646776 (CELSR2 locus) was associated with increased risk

of coronary artery disease (P = 9.4 9 10�15). The IGF-I-decreasing allele

of SNP rs934073 at ASXL2 showed a nominal association with survival

beyond 90 years (P = 0.018) as well as higher levels of BMI (P = 0.008)

and fat percentage (P = 9.4 9 10�5) and lower lumbar spine bone

mineral density (P = 0.004).

We further performed lookups of top IGF-I- and IGFBP-3-associated

SNPs (P < 10�6 in the meta-analysis of stage 1 and stage 2) for

associations with survival beyond 90 years using published GWAS data

(Broer et al., 2014) (Tables S10 and S11, Supporting information).

Among 15 independent circulating IGF-I-associated SNPs defined based

on linkage disequilibrium (LD) (settings r2 > 0.01, 1 Mb distance), the

SNP rs10457180 (r2 = 0.96 with the lead SNP rs2153960) at FOXO3

(P = 8.6 9 10�5) and SNP rs11892454 (r2 = 0.71 with the lead SNP

rs934073) at ASXL2 (P = 0.003) reached statistical significance after

Bonferroni correction for 15 independent tests. Among 13 indepen-

dent circulating IGFBP-3-associated SNPs, the SNP rs9398172 (r2 = 1

with the lead SNP rs2153960) at FOXO3 (P = 2.5 9 10�4) remained

significantly associated with survival beyond 90 years after Bonferroni

correction.

Enrichment of putative regulatory elements among loci

associated with circulating IGF-1 and IGFBP-3 concentrations

We examined whether the identified SNPs fall within regulatory

elements in the epigenetic ENCODE and ROADMAP data for associated SNPs

using Haploreg (http://www.broadinstitute.org/mammals/haploreg/hap-

loreg.php) (Ward & Kellis, 2012) and RegulomeDB (http://regu-

lomedb.org/) (Boyle et al., 2012) (Table S11, Supporting information).

Lower scores indicate stronger evidence for the presence of a regulatory

element. To determine whether these IGF-I- and IGFBP-3-associated loci

are enriched for regions likely to affect gene expression, we further

examined the distribution of scores among these SNPs compared with all

RegulomeDB SNPs. We found that these identified SNPs are highly

enriched for low Regulome scores (P < 2.2 9 10�16 by multinomial

method, Fig. 3A). The genomic and representative epigenetic context

surrounding rs646776 (CELSR2 locus), a SNP with a Regulome score of

1f, is shown as an example (Fig. 3). SNP rs646776 localizes to a genomic

region of high LD (Fig. 3B) and lies within peaks of histone marks

associated with regulatory elements, and a DNase hypersensitivity region

(Fig. 3C)(Kent et al., 2002). In addition, SNP rs646776 falls in ChIP

identified binding regions for CTCF, POLR2A, REST, and TAF7 (data not

shown).

Discussion

Our second GWAS report from the CHARGE IGF Working Group, here

expanded to include more than >30 000 individuals, revealed several

SNPs influencing circulating levels of IGF-I and IGFBP-3 which also have

been associated with other metabolic and age-related traits. These

included several loci already implicated in the biology of GH/IGF-I (IGF1,

IGFBP3, IGFALS, GHSR, FOXO3) as well other novel findings including

rs934073 SNP on chr 2, which is an eQTL for polycomb group gene

ASXL2 associated with reduced circulating IGF-I. Cross-reference of IGF-

I- and IGFBP-3-associated SNPs against published GWAS of age-related

traits identified the ASXL2 SNP as a (to our knowledge) novel locus for

longevity as defined as survival beyond 90 years. All genomewide

significant associations with IGFBP-3 and IGF-I levels that were reported

in our preceding study (Kaplan et al., 2011) could be confirmed here

using a larger sample. Additionally, our preliminary finding of an

association of circulating IGF-I level with rs2153960 in the FOXO3 gene

reached genomewide significance using this larger sample size. More-

over, bioinformatics analysis also suggests enrichment of putative

regulatory elements among these IGF-I- and IGFBP-3-associated loci,

particularly of rs646776 at CELSR2.

Our study reveals clues about mechanisms of IGF system regulation

through the interplay of IGFBP-3 and genes within the NUBP2 locus,

including IGFALS and HAGH. The IGFALS encodes the insulin-like growth

factor-binding protein complex, acid labile subunit protein (ALS) which

forms a ternary complex with IGF-I and IGFBP-3 (Firth et al., 1998; Twigg

& Baxter, 1998). Like in most GWAS, our analyses cannot establish

which is the causative SNP or gene of a locus. However, IGFALS seems to

be a strong candidate supported by the associations of SNPs in the

vicinity of IGFALS with both circulating IGFBP-3 and plasma levels of the

protein coded by IGFALS. Although the sample size for the plasma

proteome analyses was restricted to 197 probands of SHIP-TREND, the

observed associations of the second signal rs11644716 achieved a

moderately high level of statistical significance (P < 0.0015). IGFALS was

not abundantly expressed in whole blood cells, and its transcript levels

were neither associated with IGF-I nor IGFBP-3 concentration. Certainly,

the protein ALS encoded by IGFALS is abundant in serum, but the gene is

translated in liver. In contrast to IGFALS, HAGH (hydroxyacylglutathione

hydrolase) was sufficiently expressed in whole blood cells and the

amount of its mRNA was strongly correlated with circulating IGFBP-3

serum concentration. Taking into account the eQTL association of the

lead SNP rs1065656 with HAGH and the correlation with the mRNA and

IGFBP-3, this SNP might influence the IGFBP-3 levels by modulating the

amount of HAGH mRNA, whereas both the levels of mRNA and IGFBP-3

are reduced per copy of the minor allele. Although this chain of

associations was revealed in whole blood, it might be present in other

tissues as well because significant eQTL for rs1065656 with HAGH were

observed in other tissues studied in the MuTHER dataset (Grundberg

et al., 2012). Given the more pronounced association with ALS and the

less significant eQTL with HAGH of the second signal compared with the

lead SNP, rs11644716 might reduce the level of circulating IGFBP-3

indirectly by reducing the amount of ALS per minor allele. Of note, there

was no nonsynonymous SNP in LD in the 1000 Genomes v3 dataset

(R² > 0.8, SHIP cohort) for both SNPs which could have helped narrow

down the functional mechanism.

Taken together with genotype–phenotype association data assem-

bled by others, our study revealed that IGF-I- and IGFBP-3-associated

SNPs had expected associations with anthropometric and age-related

chronic disease traits (e.g., bone mineral density, disordered carbohy-

drate metabolism). We also found that SNPs associated with reduced

IGF-I levels tended to be associated with longer survival defined as death

after 90 years (Broer et al., 2014). This is consistent with an observation

from prior analysis of candidate genes associated with the insulin and

IGF signaling axis (van Heemst et al., 2005). In addition, rs934073, an

eQTL for additional sex comb-like 2 (ASXL2), was a genomewide

significant SNP associated with lower IGF-I level which also has enriched

frequency in adults older than 90 years of age (Broer et al., 2014). Other

traits associated with the IGF-I-decreasing allele of rs934073 included

greater adiposity and reduced lumbar spine (but not femoral neck) bone

mineral density. ASXL2 is a polycomb group protein with known

functions in development that has also been associated with pediatric

cancer, but to our knowledge has not before been suggested as a
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longevity gene (Huether et al., 2014). The SNP in the known longevity

gene FOXO3 has not only been previously associated with reduced

fasting insulin and HOMA-IR (Willcox et al., 2008), but here it was found

to produce lower circulating IGF-I levels. Multiple genetic determinants

for circulating IGF-I in normal and IGF1R resistance states might partially

explain the U-shaped association of circulating IGF-I concentration with

mortality (Suh et al., 2008; Burgers et al., 2011).

While our meta-analysis encompasses a large number of samples

from multiple cohorts, this may lead to limitations. Given the different

origin of the cohorts (Table S1, Supporting information), heterogeneity

in the association results might occur due to the different genetic

background and the patterns of intake of nutrients across the individual

studies.

In summary, this project extends our prior work (Kaplan et al.,

2011) through the identification of several new loci related to

circulating IGF-I and IGFBP-3 levels that also may affect aging. While

the effects of insulin/IGF-I signaling on survival often displays sex

dimorphism in humans and other organisms, we found similar genetic

determinants of IGF protein levels in men and women, even with

relatively large sample size finding interaction by sex only for two loci

(IGFBP3 and SORCS2) in association with circulating IGFBP-3. Finally, a

novel identified gene candidate for long-term survival, ASXL2, requires

further study. Taking into account the design of our study, most of the

findings should be considered as important and well-grounded

hypotheses to work on.

Experimental procedures

Participating studies

In total, the CHARGE IGF Working Group included 21 and 13 studies

that participated in the association analysis for IGF-I (N = 27 520, 53%

women) and IGFBP-3 (N = 18 995, 58% women), respectively. Four of

the cohorts (N = 10 280) were previously included in a GWAS meta-

analysis of IGF-I and IGFBP-3 levels (Kaplan et al., 2011). Imputed SNPs

for chromosome X were available for 16 670 and 11 959 individuals

with IGF-I and IGFBP-3 measurements, respectively. Additionally, up to

3364 individuals (55% women) with IGF-I from one study were available

for de novo genotyping of selected SNPs. Detailed information on

participant characteristics, IGF-I and IGFBP-3 measurements, and geno-

typing of all studies participated in the different analyses and stages is

given in Table S2 (Supporting information). All participants provided

informed consent, and human subjects’ research review was obtained

from each participating cohort.

Statistical analyses

GWAS in individual studies

Each study of the GWAS stages performed genotyping on genomewide

arrays and imputed SNPs using the HapMap2 reference panel. Detailed

Fig. 3 Analysis of regulatory element marks in loci associated with serum IGF-1 and IGFBP-3 concentrations. (A) IGF-1- and IGFBP-3-associated SNPs are enriched for

putative regulatory elements compared with all SNPs in RegulomeDB. **P < 0.005, *P < 0.05 (Monte Carlo). Overall distribution of genomewide association study (GWAS)

SNPs vs. RegulomeDB SNPs P < 2.2E-16, multinomial method. (B) Genomic context surrounding rs646776 showing R2 values. (C) Representative regulatory motif tracks

from USCS Genome Browser and ENCODE showing histone mark peaks and DNase hypersensitivity at the location of rs646776.
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information on genotyping and imputation is provided in Table S2

(Supporting information). Association analyses in individual studies were

performed on IGF-I and IGFBP-3 levels measured in ng mL�1 using a

multiple linear regression with an additive genetic model based on allele

dosages adjusted for age and stratified by sex. All cohorts accounted for

relatedness, population substructure using genetic principal compo-

nents, study center, and laboratory batch of IGF measurement where

applicable. Individuals of non-European ancestry, with missing pheno-

typic data, diagnosed growth hormone deficiency, or known use of

human growth hormones were excluded prior to the analyses.

Meta-analysis

From each cohort’s result file, monomorphic SNPs as well as SNPs with

an imputation quality below 0.3 were excluded prior to the meta-

analysis. All study-specific GWAS results were corrected by the genomic

inflation factor kGC if >1. Due to the IGF-I and IGFBP-3 assay-based

differences in both effect sizes and variances of measurements across

cohorts, a sample size-weighted z-score-based meta-analysis imple-

mented in METAL (Willer et al., 2010) was conducted, and the

meta-analysis P-values were corrected for genomic inflation. After

meta-analysis, SNPs with a MAF ≤1% were removed from subsequent

analyses.

Our multistage design had two GWAS stages (stages 1 and 2) and an

additional stage (stage 3) with de novo genotyping data (N = 3364

individuals) to confirm novel loci. After stage 1 GWAS, all 19 lead SNPs

from all traits with a P < 10�6 were taken forward to stage 2. All IGF-I

lead SNPs of novel loci that had a combined stage 1 and stage 2

P < 10�8 (except GCKR) were selected for de novo replication in an

additional cohort. An overview of the design and the significantly

associated loci at each stage is provided in Fig. S6 (Supporting

information). Details on SNP selection and quality control are given in

the Appendix S1 (Supporting information). Regional association plots

were generated using LocusZoom (Pruim et al., 2010).

Assessment of independent signals

To define a lead SNP of each locus, the association results of a GWAS

stage with P-values <1 9 10�5 were grouped based on the LD structure

of the HapMap release 28 CEU dataset using PLINK (settings r2 >0.01,

1 Mb distance) (Purcell et al., 2007). Due to the strong association of the

IGFBP3 locus with IGFBP-3, only one lead SNP was selected regardless of

several grouped results.

The analysis of secondary signals in the NUBP2 locus was performed

using the software GCTA (Yang et al., 2011) and the genotypes of the

SHIP cohort as a reference, and was verified by an analysis using the

genotypes of the NHS/HPFS cohorts as a reference.

Sex interaction analysis

Sex interactions on IGF-I and IGFBP-3 levels were obtained by comparing,

for each SNP, the stage 2 meta-analysis z-scores from men (z_men) (IGF-

I: N = 12 917, IGFBP-3: N = 8052) and women (z_women) (IGF-I:

N = 14 602, IGFBP-3: N = 10 942) using the formula z_interaction=

(z_men-z_women)/√2, assuming independent effect sizes between men

and women, and matched to a common effect allele.

Bivariate meta-analysis of IGF-I and IGFBP-3

The stage 2 meta-analysis z-scores of the combined samples IGF-I and

IGFBP-3 were used to calculate a bivariate meta-analysis implemented in

the function multipheno.T2 of the R-package gtx (version 0.0.8. http://

CRAN.R-project.org/package=gtx). The function corresponds closely

with Hotelling’s T2 test and calculates a multiphenotype association test

for each marker based on the meta-analysis result z-statistics that is

equivalent to using the subject-specific data to perform a multivariate

analysis of variance.

Gene-based analysis

Genomewide gene-based tests which account for both gene length and

LD between SNPs were performed by VEGAS 0.8.27 (Versatile Gene-Based

Association Study) (Liu et al., 2010) using SNP P-value results from the

overall meta-analyses. SNPs were allocated to one or more autosomal

genes using gene boundaries �50 kb. We performed 1 9 107 permu-

tations and defined a gene-based P-value <1 9 10�6 as gene-based

genomewide significant.

Gene expression and eQTL analysis

For each of the lead SNPs of the significant loci after final stage,

significant cis eQTL associations in whole blood, lymphocytes, subcuta-

neous fat, muscle, and skin were looked up in the publically available

association result databases (Grundberg et al., 2012; Westra et al.,

2013). Association analysis of whole blood gene expression data with

serum IGF-I and IGFBP-3 levels was conducted in 986 samples of the

SHIP-TREND cohort (Schurmann et al., 2012).

Association with plasma protein levels

Plasma proteome data were obtained as described in Appendix S1

(Supporting information) using liquid chromatography–mass spectrom-

etry (LC-MS). MASCOT (in-house MASCOT server v2.3.2; Matrix Science,

London, GB) search algorithm was used to match the generated peak

lists with a human FASTA-formatted database containing 20 268 unique

sequence entries (reviewed human database, release of October 2011).

Prior to data analyses, all peptide intensity values were log10-

transformed and median–median-normalized. Association analyses

between peptides and serum IGF-I and IGFBP-3 levels were performed

by linear regression, adjusted for age, sex, and the MS processing batch.

Associations of a SNP with the peptides were conducted by linear

regression, adjusted for age, sex, and the first four principal components

of a peptide-level-based principal component analysis. Protein intensities

used for analyses were obtained by averaging the corresponding peptide

intensities that passed the QC filter, and were put instead of the peptide

intensities into the association model. All measured peptides that passed

QC and that belonged to proteins which were encoded by genes located

in a 500-kb vicinity of our lead SNPs were selected for association

analyses. The assignment of protein names (uniprot identifiers) to the

corresponding genes was performed using the DAVID gene conversion

tool (http://david.abcc.ncifcrf.gov/). Finally, after QC the following

proteins measured in 197 SHIP-TREND samples were available: ALS,

CC121, IBP3, and RT34.

Lookups of top loci in association with IGF correlated traits

Top SNPs associated with levels of IGF-I and IGFBP-3 were examined in

relationship to other phenotypes using published data on serum

metabolites (Suhre et al., 2011; Shin et al., 2014), anthropometric

traits (Heid et al., 2010; Lango Allen et al., 2010; Speliotes et al.,

2010), bone mineral density (Estrada et al., 2012), diabetes (Voight

et al., 2010; Morris et al., 2012) and glycemic traits (Dupuis et al.,

2010; Saxena et al., 2010; Soranzo et al., 2010), coronary artery

disease (Coronary Artery Disease Genetics C, 2011; Schunkert et al.,

2011; Consortium CAD and Deloukas, 2013), and survival beyond

90 years (Broer et al., 2014). Detailed information of the published

datasets used including its references is given in Table S9 (Supporting

information).
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Assessment of regulatory elements associated with identified loci

ENCODE and ROADMAP data were assessed using HAPLOREG (http://

www.broadinstitute.org/mammals/haploreg/haploreg.php) and REGU-

LOMEDB (http://regulomedb.org/). Statistical analysis of individual Regu-

lome scores was performed using Monte Carlo sampling of 10 SNPs (the

size of our ‘observed data’ pool). RegulomeDB assigns scores to SNP loci

based on the presence of histone marks, predicted and experimentally

validated transcription factor binding, DNase hypersensitivity, and other

evidence for regulatory function. Scores range from 1 to 7, with lower

scores indicating stronger evidence for the presence of a regulatory

element. For the purpose of this analysis, score subcategories (1a, 1b,

etc.) were merged. A multinomial test was performed for a statistical

comparison between the observed distribution and the background

distribution. The LD plot in Fig. 3B was generated using HAPLOVIEW 4.2

with genetic data downloaded from version 3, Release 2, using the

genomic region Chr1:109590000-109630000, and analysis panel

CEU + TSI. Histone mark and DNase tracks in Fig. 3C were downloaded

from UCSC Genome Browser.
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