Restrictions on modeling spin injection by resistor networks

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation

Published Version

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:29425366

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
Restrictions on modeling spin injection by resistor networks

Emmanuel I. Rashba
Department of Physics and Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138, USA
and Department of Physics, Loughborough University, Leicestershire LE11 3TU, UK

Because of the technical difficulties of solving spin transport equations in inhomogeneous systems, different resistor networks are widely applied for modeling spin transport. By comparing an analytical solution for spin injection across a ferromagnet-paramagnet junction with a resistor model approach, its essential limitations stemming from inhomogeneous spin populations are clarified.

PACS numbers:

Conventional electronics is based on a single parameter of electron, its charge. Therefore, electronics deals only with electron trajectories. It does not involve electron spin, its internal degree of freedom. The new paradigm of spin-based electronics, or spintronics, is based on active involvement of electron spin in transmission and optical phenomena, and on employing electron spin for both information processing and information storage. During the last decade, semiconductor spintronics developed into a wide and diversified field. Early review papers [1, 2] were followed by more recent surveys covering specific scientific problems and technological perspectives of this rapidly developing field [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. There exists close connection between the recent work on electric spin manipulation in low-dimensional systems and the previous work on anomalous Hall effect [18], electric dipole spin resonance [19], optical orientation [20], and photogalvanic effect [21, 22] in three-dimensional systems. Strong impetus for semiconductor spintronics was given by the discovery of giant magnetoresistance in metallic systems [23, 24] and by its impressive practical applications.

Spin injection from ferromagnetic sources into paramagnetic media is believed to be an important part of the new phenomena and applications in the field of the spin-polarized electron transport. The concept of a field effect spin transistor [25] served as one of the stimuli. Successful experiments on spin injection into superconductors [26] and normal metals [27] were very promising, and theoretical work supported reliability of the idea [28, 29, 30, 31, 32, 33]. Successful detection of the floating potential (spin-e.m.f., electromotive force [34]) at a ferromagnetic probe became an independent confirmation of efficient spin injection. Meantime, the methods that resulted in a remarkable success in spin injection from ferromagnetic metals into paramagnetic metals turned inefficient as applied to the spin injection from ferromagnetic metals into semiconductors. Spin injection at the level of only about 1% was reported [35, 36], and persuasiveness of the results was disputed [37, 38]. Absence of any measurable spin-e.m.f. also indicated that the concentration of the electrically injected nonequilibrium spins was vanishingly small [39].

Inefficiency of a “perfect” contact between a ferromagnetic metal and a semiconductor as a spin emitter, that seemed puzzling, found its natural explanation in the framework of the conductivity mismatch concept [40]. The next step was proposing resistive spin selective contacts, like tunnel or Schottky barriers, as spin sources [41]. The underlying physics is as follows. Elements of the circuit with small effective resistances are “soft”, i.e., the concentration of nonequilibrium spins in them adjusts to the regime imposed by the elements with large effective resistances. E.g., a ferromagnetic metal connected to a semiconductor by a “perfect” (zero-resistance) contact is such a soft element. Inside it the diffusive current of minority spins enhances their Ohmic current, which is poor spin emitter. However, both the metal and semiconductor become “soft” elements if the resistance of a barrier inserted between them is larger than their effective resistances. Under these conditions, spin injection is controlled by spin selectivity of the barrier, i.e., by the difference in its resistances for up- and down-spin electrons.

More detailed diffusive theories of spin injection confirmed this concept [12, 43], and it was general for ballistic transport across spin valves [44, 45, 46] and for optimization of Schottky barriers [47]. It also explained dramatic inefficiency of low-resistance contacts, and early observations of spin injection from STM tips [48], resonant double barriers [49], and Schottky barriers [50]. Finally, it allowed increasing spin injection coefficients from ferromagnetic metals into semiconductors to the level of dozens of percents nearly immediately [51, 52, 53, 54, 55, 56]. Resistive contacts became instrumental even in increasing the metal-to-metal spin injection [57], i.e., in a system where no considerable conductivity mismatch could be anticipated. Actually, the conductivity mismatch (or “bottlenecking”) can already been found in some previous theories [50, 52], but importance of it has not been properly recognized then.

Different approaches for overcoming the suppression...
of spin injection by conductivity mismatch are based on developing semimagnetic semiconductors [58, 59, 60, 61, 62, 63, 64, 65, 66] and half-metals [64, 65, 66] for spin emitters.

The concepts discussed above are based on the solutions found for planar, i.e., one-dimensional, geometry. It is a price for deriving the results that are exact. The limitations of this geometry are very restricting. Geometry of real experimental systems is much more complicated, and it is well known that specific geometry around contacts influences spin injection \[\sigma_{F} = \sigma_{L} + \sigma_{r}\] is the total conductivity of the ferromagnet, \[\Delta \sigma = \sigma_{L} - \sigma_{r}\] describes spin polarization in the bulk of the ferromagnet, and \[\sigma_{N}\] is the conductivity of the N-conductor. As distinct from these bulk parameters, \[\Sigma_{T}\] and \[\Sigma_{g}\] are the conductivities of the tunnel barrier for spin-up and spin-down electrons, respectively, with \[\Sigma = \Sigma_{T} + \Sigma_{g}\] and \[\Delta \Sigma = \Sigma_{T} - \Sigma_{g}\]. Evidently, the ratio \[\Delta \Sigma/\Sigma\] measures spin selectivity of the resistive contact. When deriving Eq. (1) it was assumed that the contact is spin conserving, i.e., \[I_{L}\] and \[I_{r}\] are continuous functions of \[x\] at \(x = 0\), FIG. 1(a). It is seen from Eq. (3) that \[r_{c}\] has a meaning of an effective resistance of the contact, that together with \[r_{F}\] and \[r_{N}\] makes the total effective resistance of the junction \[r_{FN}\]. For \[r_{c} = 0\], equation for \[\gamma\] reduces to \[\gamma = r_{F}(\Delta \Sigma/\Sigma)/(r_{F} + r_{N})\] [31, 40].

Schmidt et al. [70] and Jonker et al. [71] proposed simple and appealing resistor networks for systems including magnetic and normal conductors, see FIG. 1(b). Despite the fact that both networks are “topologically equivalent” and look as nearly identical, they were proposed for different systems. Therefore, the meaning of the resistances in these networks is rather different. The network of Ref. [71] was proposed for a F-N-F spin valve with infinite spin flip time in the normal region, \[L_{N}^{-1} = 0\], and is unrelated to the basic subject of the present paper. On the contrary, the network of Ref. [71] was proposed for spin injection across a F-N-junction and is an excellent candidate for comparing with the results derived for diffusive regime.

The network of Ref. [71] see FIG. 1(b), consists of two channels, each of them for a single component of electron spin, \(\alpha = \uparrow, \downarrow\). Inside each channel, effective resistances of F- and N-conductors and of the barrier contribute in series as

\[R_{\alpha} = L_{F}/\sigma_{\alpha} + 1/\Sigma_{\alpha} + 2L_{N}/\sigma_{N}.\]  

Because the ratio of the currents across these channels equals \[I_{\uparrow}/I_{\downarrow} = R_{\uparrow}/R_{\downarrow}\], one recovers Eq. (2) after simple algebra. Therefore, the resistor network of FIG. 1(b) describes spin injection coefficient \(\gamma\) perfectly, as it was already stated by Jonker et al. [71]. Next physical quantity of interest is the electrical resistance \(R\) of a F-N-junction.

For the resistor network of FIG. 1(b) it equals

\[R_{\gamma}^{-1} = R_{\uparrow}^{-1} + R_{\downarrow}^{-1}.\]  

Electrical resistance \(R\) of a diffusive F-N-junction was found in Ref. [11] and detailed derivation was provided in Ref. [43]. However, because this resistance is critical for our final results, we outline here the basic guidelines for the derivation. On both sides of the junction, inside the F- and N-conductors, electrochemical potentials \(\zeta_{\uparrow,\downarrow}(x)\) of up- and down-spin electrons obey the standard drift-diffusion equations \[\Sigma_{\uparrow,\downarrow}(x)\]. The contact conductivities \(\Sigma_{\uparrow,\downarrow}\) of the F-N-interface, \(x = 0\), are defined by the boundary condition

\[\zeta_{\uparrow,\downarrow}(0) = \Sigma_{\uparrow,\downarrow}(\zeta_{N}^{\uparrow}(0) - \zeta_{F}^{\downarrow}(0)),\]
where $j_{\uparrow,\downarrow}(x)$ are current densities of up- and down-spin electrons, respectively. The superscripts N and F in $\zeta_{F,N}(0)$ indicate that the corresponding potentials $\zeta_{\uparrow,\downarrow}(0)$ should be taken at the F- and N-sides of the interface, respectively. This boundary condition implies the continuity of $j_{\uparrow,\downarrow}(x)$ at $x = 0$, what is tantamount to spin conservation at the F-N-interface. We note that Eq. (2) was derived under the same conditions and by the same procedure.

Under these conditions, the F-N-junction resistance $R$, excluding nominal resistances of the F- and N-conductors, equals [41, 43]

$$R = \Sigma^{-1} + \frac{1}{r_{FN}} \{ r_N (\Delta \Sigma/\Sigma)^2 + r_F (\Delta \sigma/\sigma_F)^2 \} + \frac{1}{r_c r_F} [(\Delta \Sigma/\Sigma) - (\Delta \sigma/\sigma_F)^2]. \quad (7)$$

Remarkably, the resistance $\Sigma^{-1}$ of a tunnel barrier appearing here differs from the effective resistance $r_c$ of Eq. (3). Second term in (7) represents the nonequilibrium part of $R$ that is always positive. It vanishes when $L_F, L_N \to 0$ and nonequilibrium spin populations cease to exist; under these conditions $r_F, r_N \to 0$. F-N-junction acquires a finite resistance, $R \neq 0$, even for a zero-resistance barrier, $r_c = \Sigma^{-1} = 0$. We note that throughout this paper the term “resistive contact” implies $r_c, \Sigma^{-1} \neq 0$.

Comparing Eqs. (6) and (7) shows that $R \neq R_\gamma$. They are related by the equation

$$R = L_F/\sigma_F + r_N = R_\gamma. \quad (8)$$

It shows that $R_\gamma > R$, and $R$ and $R_\gamma$ differ by the diffusive resistances of the ferromagnet, $L_F/\sigma_F$, and the normal conductor, $r_N$ [of which the former does not coincide with $r_F$ of Eq. (4)]. Eq. (8) is shown graphically in FIG. 1(c).

It is seen from Eq. (8) that the difference between $R$ and $R_\gamma$ is a general phenomenon. It is related to spin diffusion in F- and N-regions rather than to a tunnel barrier separating them. Therefore, to uncover the underlying physics we consider a transparent barrier ($r_c, \Sigma^{-1} = 0$) when Eqs. (6) and (7) are essentially simplified. It follows from Eq. (7) that in this case electrical resistance of the junction equals

$$R = \frac{r_{FN}}{r_F + r_N} \left( \frac{\Delta \sigma}{\sigma_F} \right)^2. \quad (9)$$

Therefore it vanishes, $R = 0$, whenever one of the spin diffusion lengths, either $L_F$ or $L_N$, vanishes. It is a result that is anticipated from simple physical arguments. Indeed, when $r_c, \Sigma^{-1} = 0$, electrochemical potentials of up- and down-spin electrons, $\zeta_{\uparrow,\downarrow}(x)$, are continuous at $x = 0$

$$\zeta_F^\uparrow(0) = \zeta_N^\uparrow(0), \quad \zeta_F^\downarrow(0) = \zeta_N^\downarrow(0). \quad (10)$$

When one of the diffusion lengths, say $L_N$, vanishes, electron spins are in equilibrium in the whole N-region, hence, $\zeta_N^\uparrow(x) = \zeta_N^\downarrow(x)$ for $x \geq 0$. Then it immediately follows from Eq. (10) that $\zeta_F^\uparrow(0) = \zeta_F^\downarrow(0)$, and this suggests that $\zeta_F^\uparrow(x) = \zeta_F^\downarrow(x)$ in the whole F-region, $x \leq 0$. Therefore, spin equilibrium on one side of the junction maintains spin equilibrium also on the other side of it, and second term in Eq. (7) always vanishes in the absence of spin nonequilibrium. Under these conditions, $R = \Sigma^{-1}$.

One can check by inspection that $R_\gamma$ of Eq. (6) does not obey this requirement, and it vanishes only when both spin diffusion lengths vanish, $L_F = L_N = 0$. Presence of second and third terms in the left hand side of Eq. (8) reflects this critical difference in the properties of $R$ and $R_\gamma$. Therefore, the network of FIG. 1(b) provides perfect description of spin injection coefficient $\gamma$, but cannot provide a consistent description of the junction resistance $R$. When barrier resistance $\Sigma^{-1}$ is high, $R_\gamma$ describes consistently the leading term in $R$. Inaccuracy in the next terms, originating from spin imbalance in the bulk, depends on specific parameter values.

In conclusion, it is instructive to compare two-channel resistor models of spin injection with the Mott’s two-channel model of spin transport in ferromagnetic metals [72]. In the latter model, scattering influences only the mobilities of the carriers with different spins. Because of homogeneity of the system, scattering does not produce spin imbalance and nonequilibrium spin populations. That is why the conductivities $\sigma_\uparrow$ and $\sigma_\downarrow$ are well defined. On the contrary, nonequilibrium spin populations are central for the spin injection problem, and all processes responsible for spin relaxation critically influence spatial distribution of these populations. Two-channel resistor models, at least in their simplest realizations, are not properly fit for describing the effect of inhomogeneous populations.

FIG. 1: F-N-junction (a) and a resistor network for it (b). In (a), F, T, and N are standing for a ferromagnet, tunnel barrier, and normal conductor, respectively. In (b), upper and lower parts of the network display effective resistances of two parallel channels, one for up-spin and one for down-spin electrons; see text for details. This network provides correct expression for the spin injection coefficient $\gamma$, Eq. (2). However, its resistance $R_\gamma$ differs from the actual resistance of the junction, Eq. (7). Resistances $R$ and $R_\gamma$ are related by the graphical equation shown in (c), see Eq. (8).