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A MEASURE OF SEGREGATION BASED ON SOCIAL
INTERACTIONS*

FEDERICO ECHENIQUE AND ROLAND G. FRYER, JR.

We develop an index of segregation based on two premises: (1) a measure of
segregation should disaggregate to the level of individuals, and (2) an individual
is more segregated the more segregated are the agents with whom she interacts.
We present an index that satisfies (1) and (2) and that is based on agents’ social
interactions: the extent to which blacks interact with blacks, whites with whites,
etc. We use the index to measure school and residential segregation. Using
detailed data on friendship networks, we calculate levels of within-school racial
segregation in a sample of U. S. schools. We also calculate residential segregation
across major U. S. cities, using block-level data from the 2000 U. S. Census.

I. INTRODUCTION

Ethnic and racial segregation is an important and well-stud-
ied social phenomenon. For over 50 years, social scientists have
been concerned with measuring the extent and estimating the
impact of segregation in education, housing, and the labor mar-
ket. The result of this scholarship has been nearly 20 different
indices of segregation and a consensus that the spatial separation
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of many minorities from jobs, role models, health care, and qual-
ity local public goods is a leading cause of racial and ethnic
differences on many economic, social, and health related out-
comes [Kain 1968; Case and Katz 1991; Massey and Denton 1993;
Borjas 1995; Cutler and Glaeser 1997; Collins and Williams 1999;
Almond, Chay, and Greenstone 2003].

We propose a new approach to measuring segregation based
on two premises: (1) a measure of segregation should disaggre-
gate to the level of individuals, and (2) an individual is more
segregated the more segregated are the agents with whom she
interacts. Having a measure of segregation with the flexibility to
disaggregate to the level of individuals opens up windows of
opportunity for empirical work, and a better understanding of the
mechanisms by which social interactions affect economic and
social outcomes. We also desire a measure that gives a larger
level of segregation for individuals whose contacts are more
segregated. Consider Figure I, which depicts the distribution of
blacks across metropolitan Detroit, Michigan. There is a large
oval in the center of the city containing almost exclusively

FIGURE I
Segregation in Metropolitan Detroit

Figure I is based on block-level data from the 2000 U. S. Census.
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black households. Any measure of segregation should report
that the household in the epicenter is more segregated than a
household close to the edge, even when each household has all
black neighbors.

We use social networks—individuals and their connec-
tions—as our mathematical framework. In this framework, we
propose three specific properties that any measure of segregation
in a network should satisfy. We prove that one and only one index
satisfies these properties and the two broad principles above,
which we label as the “Spectral Segregation Index” (SSI). The
properties require that: (a) [Monotonicity] if all individuals in
Network A have a larger share of their interactions with agents of
the same group than in Network B, then Network A is more
segregated than B; (b) [Linearity] an individual is more segre-
gated the more segregated are the agents with whom she in-
teracts, and this relationship takes on a linear form; and (c)
[Homogeneity] if all individuals in a network have half of their
interactions with members of the same group, the index of seg-
regation is one-half. The latter condition normalizes the index.

We defer a formal definition of the SSI to Section IV. Infor-
mally, the SSI measures the connectedness of individuals of the
same group.1 Consider the following recursion. Define “first-order
segregation” as the share of one’s social interactions that are with
individuals of their own group. Let “second-order segregation” be
the average overall own-group social interactions of their first
order segregation. Following this line, an agent’s nth order seg-
regation is the average over own group connections of their n � 1
order segregation and so on. The SSI of an individual is the limit,
as n 3 �, of that individual’s nth order segregation.

The SSI has important advantages over existing measures of
segregation. First, as a gauge of residential segregation, it is
invariant to arbitrary partitions of a city; existing measures are
not.2 Second, it allows one to investigate how segregated multiple
minority groups are permitting comparisons of Asians, Blacks,
Hispanics, Native Americans, and so on, within and across cities.3

The SSI makes it possible to compare Hispanic segregation across

1. Groups can be defined in terms of gender, political affiliation, educational
attainment, race/ethnicity, and so on. Our empirical applications are to race/
ethnicity.

2. As a practical matter, we use the most disaggregated data publicly avail-
able: census blocks.

3. Another way to analyze multiple groups with existing indices is to calcu-
late the weighted average of several dichotomous indices (see Reardon and Fire-
baugh [2002]). It is not clear how to interpret the findings from such an exercise.
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cities, compare the Hispanics of east Los Angeles from the His-
panics in south Los Angeles, or compare them to Blacks in Chi-
cago. Third, our index allows one to analyze the full distribution
of segregation, allowing researchers to move beyond aggregate
statistics, which can be misleading. The typical Black household
is more segregated than the typical Hispanic household, yet the
most segregated Hispanics are orders of magnitude more segre-
gated than any Blacks. Fourth, there are inherent multiplicative
effects captured by SSI, which other indices omit. An individual’s
susceptibility to group-transmitted influences depends on how
many contacts the individual has with members of the group, the
susceptibility of her contacts, the susceptibility of their contacts,
and so on.

The SSI has some disadvantages as well. It depends on the
quality of the information one can obtain about social interac-
tions. In the case of residential segregation, for example, the
information is restricted to where individuals live within a city
and not how they interact. Unlike other indices, however, as
better information on the nature of social interactions is obtained,
the SSI becomes a sharpened proxy of those interactions. Second,
it is sensitive to the fraction of individuals in a network who have
the race/ethnicity under study. We address this issue by calcu-
lating a “baseline,” and adjusting actual SSI taking this into
account. Finally, implementing the SSI can be computationally
demanding, though our applications demonstrate that the com-
putational tasks are often feasible.4

After formally deriving the SSI, we apply the index to two
well-known social phenomena: measuring the extent of school
and residential segregation. We begin by measuring within-
school segregation patterns by race using data on friendship
networks available in the National Adolescent Study of Health
(Addhealth). Our analysis unearths a rich set of new facts. First,
the relationship between the share of black students in a school
and their segregation is nonlinear: When black students are
relatively scarce in a school, their friendship networks tend to be
integrated. As their share of the student population increases,
segregation increases dramatically, plateauing when blacks com-
prise roughly 25 percent of the student population. Schools that
have 25 percent or more black students exhibit severe within

4. We have posted results from some of the more computationally intense
calculations on the authors’ webpages: http://www.hss.caltech.edu/ ˜fede/ (Ech-
enique); http://post.economics.harvard.edu/faculty/fryer/projects.html (Fryer).
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school racial segregation of social interactions. This phenomenon
undermines the intuition that a school that has equal shares of
black and white students is well integrated. A similar, though
less pronounced, pattern exists among Asians and Hispanics, and
is weaker still for Whites. The common practice of using the
percentage of a racial group in a school as a proxy for within
school segregation measures for that group is deeply problematic.

We also calculate the extent of segregation across major
cities in the U. S., using block-level data from the 2000 Census.
We find that, on average, Blacks are more segregated than any
other racial group, but the most segregated Hispanics are more
segregated than the most segregated Blacks. A virtue of the SSI
is the ability to measure segregation at disaggregated levels,
allowing one to measure the intensity of same-race clusters or
uncover the most segregated city blocks in America. For example,
we find that the largest minority ghetto in the U. S. consists of
Hispanics in Los Angeles, CA—17,909 blocks are connected to
each other. It is important to emphasize that these disaggregated
results cannot be obtained with any of the existing measures of
segregation. We also use SSI to correlate segregation with several
MSA-level variables and replicate Cutler and Glaeser’s [1997]
classic work on ghettos.

We compare our results to existing calculations applying
commonly-used measures. The rank correlation between the SSI
and the popular dissimilarity index is .42. The rank correlation
with the index of isolation is .93. Our index can be interpreted as
a measure of segregation as isolation that is rooted in a social-
interactions framework.

The organization of the paper is as follows. Section II pro-
vides a brief discussion of existing segregation indices. Section III
provides an example that previews our general results. Section IV
derives the SSI. Section VI uses the SSI to estimate the preva-
lence of within-school and residential segregation. Section VII
concludes. There are two appendices. Appendix A contains the
technical proofs of all formal results and additional theoretical
results omitted from the text. Appendix B presents a guide to the
programs we used to compute our index.

II. BACKGROUND AND PREVIOUS LITERATURE

At an abstract level, segregation is the degree to which two or
more groups are separated from each other. However, practical
definitions can be quite distinct from one another, conceptually
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and empirically. Massey and Denton [1988] group existing indi-
ces into five classes: evenness, exposure, concentration, central-
ization, and clustering, which they take to resemble the totality of
what is usually meant by “segregation.” Evenness refers to the
differential distribution of two groups across areas in a city.
Measures of exposure are designed to approximate the amount of
potential contact and interaction between members of different
groups. Concentration indices measure the relative amount of
physical space occupied by a minority group. Centralization is the
extent to which a group is located near the center of an urban
area, and clustering measures the degree to which geographic
units inhabited by minority members about one another, or clus-
ter spatially. Of the five dimensions of segregation, only two are
used in the vast majority of applied work in the social sciences:
evenness and exposure. Economists ultimately care about the
degree to which segregation affects social interactions. For this
purpose, concentration and centralization are inadequate, and
measures of clustering are largely avoided because of their sen-
sitivity to the number and population of census regions.

The most popular measure of segregation is the “dissimilar-
ity” index (developed by Jahn, Schmid, and Schrag [1947]), a
measure of evenness.5 Suppose a city is divided into N sections.
The dissimilarity index measures the percentage of a group’s
population that would have to change sections for each section to
have the same percentage of that group as the whole city. In
symbols,

(1) Index of dissimilarity �
1
2 �

i�1

N � Blacki

Blacktotal
�

Non-Blacki

Non-Blacktotal
�,

where Blacki is the number of blacks in area i, Blacktotal is the
total number of blacks in the city as a whole, Non-Blacki is the
number of non-blacks in area i, and Non-Blacktotal is the number
of non-blacks in the city. The dissimilarity index has the appeal-
ing feature that it is invariant to the size of a minority group.

A second commonly-used measure of segregation is “isola-
tion,” a measure of exposure. As Blau [1977] recognized, Blacks

5. Other measures of evenness include the Gini coefficient (the mean absolute
difference between minority proportions weighted across all pairs of geographic
units, expressed as a proportion of the maximum weighted mean difference), the
Atkinson index (similar to Gini coefficient, but allows researchers to decide how to
weight geographic units which are over or under the city-wide distribution), and
Entropy (the weighted average of each geographic unit’s deviation from the racial
entropy of the city as a whole).
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can be evenly distributed among residential areas in a city but
experience little exposure to non-blacks if they are a relatively
large proportion of the city. Isolation measures the extent to
which blacks are exposed only to one other, rather than to non-
blacks. The index is computed as the minority-weighted average
of each section’s minority population:

Index of isolation � �
i

� Blacki

Blacktotal
�

Blacki

personi
�,

where personi refers to the total population of area i.6

Dissimilarity and isolation possess at least two undesirable
properties. First, they explicitly depend on the arbitrary ways in
which cities are partitioned into sections (e.g., census tracts).7

That is, fixing the location of minorities and nonminorities in a
city and redrawing the sections can drastically change the mea-
sure of segregation. An exaggerated example is depicted in Figure
II. The city depicted in the figure has a dissimilarity index of
0—perfect integration—when sections are drawn vertically and
has a dissimilarity index of 1—extreme segregation—when sec-
tions are drawn horizontally; no household has moved. Similarly,

6. Another commonly used measure of exposure is the interaction index,
which is the inverse of the isolation index presented above.

7. We are not the first to draw attention to this flaw in measures of segrega-
tion, see Cowgill and Cowgill [1951], Appendix A in Taeuber and Taeuber [1965],
and Massey and Denton [1988]. While this property is problematic for measures
of residential segregation, it is less likely to affect measures of occupational or
school segregation—where there is a natural clustering of individuals.

FIGURE II
A Hypothetical City
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vertical partitions yield an isolation index of .5 whereas horizon-
tal partitions produce an index of 1. This is a highly undesirable
property of any segregation index, as it may artificially indicate
that a city is more or less segregated as a function of how the
tracts are drawn. The key flaw is that there is no theory of how
the city should be partitioned. Intuition suggests that the more
disaggregated the better, but complete disaggregation results in
all sections having only one race: maximum segregation, regard-
less of the city.

Second, existing measures are not defined when trying to
measure segregation at the level of individuals. It is difficult to
correctly identify the relationship between segregation and out-
comes without individual-level variation in segregation. As a
descriptive matter, individual segregation may be more useful
than city-wide segregation. Rather than correlate individual eco-
nomic outcomes with city-wide segregation, one can correlate
individual outcomes with individual measures of segregation. On
the other hand, the right level of aggregation depends on the
problem at hand; group-level, neighborhood, or city-level segre-
gation may be the appropriate level of aggregation in many ap-
plications. It is an open empirical question, one that cannot be
answered without a measure that disaggregates to the individual
level.8

The literature in economics involving the measurement of
segregation is small [Phillipson 1993; Hutchens 2001; Frankel
and Volij 2004]. Similar to our exercise, their approach is axiom-
atic—identifying desirable properties that an index should pos-
sess. The literature takes an arbitrary partition of a city as given
and uses the partition to identify indices axiomatically. There is
little in common with our approach.

III. A MOTIVATING EXAMPLE

Before moving to a full description of the model, we present
a stark example that previews the Spectral Index and discusses
(informally) some of its properties.

Consider City 1, depicted in Figure III. The nodes in City 1
represent households. Each household can be one of two races:

8. This critique is conceptual—not purely data driven. Existing measures are
not equipped to measure segregation at the level of individuals, irrespective of the
available data.
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black or white. In the figure, household ( A, 1) is white, (B, 1) is
black, and so on.

Our measure of segregation is based on the social network of
the members of a race. Consider the black households in City 1.
For the purposes of this example, we use the information on
where an individual lives to infer whom she interacts with and
trace out a network of social interactions based on residential
patterns. Suppose that each individual interacts only with her
immediate neighbors; ( A, 1) interacts with (B, 1) and ( A, 2); (D,
4) interacts with (C, 4), (E, 4), (D, 3), (D, 5), and so on. The
resulting network of black households is shown on the right in
Figure III. The thickness of a line connecting two individuals
reflects the intensity of their relationships; thicker lines imply a
node is at least one-third of an individual’s social interactions.
Here, (B, 2) has four neighbors, so she has a less intense relation
to each one of them than (B, 1), who has only three neighbors.

Black households are partitioned in two separate networks.
We call each of these subnetworks a connected component (CC).
The fact that social networks are often partitioned in such CCs is
of practical importance; components often correspond to ghettos
or other natural clusterings of individuals. Let the CC on the left,
comprising eight households, be denoted Component 1 and the
component on the right, with three households, Component 2.

We envision segregation as the degree of connectivity of the
race’s social network. The potential effects of segregation arise
because blacks tend to interact with blacks, and whites with
whites. The idea that segregation is synonymous with same-race

FIGURE III
A Simple Example
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interactions has—once a network of social interactions is con-
structed—a formal expression in network connectivity.

The SSI is one measure of network connectivity. It arises as
the unique measure that satisfies certain properties, the most
important of which is a requirement that an individual be more
segregated the more segregated are his direct neighbors. Con-
cretely, an individual’s segregation is the weighted sum of her
neighbors’ segregation, weighted by how much she interacts with
each one of them. We discuss the properties in detail in the next
section.

The SSI for blacks in City 1 is in Table I. Note that Compo-
nent 1 is more segregated than Component 2, which reflects that
the network in Component 1 is more connected than that in
Component 2. The SSI also lets us disaggregate the component-
wide SSI into individual household SSI: the component-wide SSI
is the average of the individual SSI. Note that (C, 1) is the most
segregated household in this example, which captures that this is
an individual who only interacts with blacks. On the other hand,
(D, 4) is the most integrated household in Component 1.

Individual SSI should be interpreted as the distribution of
component-wide SSI within a network. So, a particular individ-
ual’s SSI is relative to the SSI of the component she is in. Note
how (D, 4)’s share in Component 1’s segregation is small, while
the distribution of segregation in Component 2 is quite even. So,
(C, 4)’s SSI is smaller than (C, 5)’s. The component’s SSI is the
average of the individual SSIs; hence, an individual’s SSI may be
much larger than the SSI of her CC.

Finally, we remark that the SSI is invariant to the size of the
population of blacks. If we double the size of City 1 by adjoining
a copy of the city to itself, SSI will not change. We would have two
new components and their respective SSIs, and the city SSI
would be the weighted average of the four components.

TABLE I
SPECTRAL SEGREGATION OF BLACKS IN CITY 1

Component 1 (B, 1) (B, 2) (C, 1) (C, 2) (D, 1) (D, 2) (D, 3) (D, 4) SSI
0.87 0.62 1.26 0.92 0.93 0.75 0.29 0.10 0.72

Component 2 (C, 5) (B, 5) SSI
0.25 0.25 0.25

City 1 SSI
0.63
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IV. MEASURING SEGREGATION BASED ON SOCIAL INTERACTIONS

IV.A. The Social Interactions Framework

The basic building blocks for our measure of segregation is a
set of individuals V and information on whether (and, possibly,
how much) any two individuals interact. Hence, the measure
depends on the network of social interactions among the individ-
uals in V. Our measure identifies segregation of the members of
a group with the intensity of the social interactions among the
members of that group.

Given any two individuals, suppose we know whether they
interact with each other and the intensity of their interaction. For
any two individuals v and v� in V, let the number rvv� � 0
represent the nature of their relationship. If rvv� � 0, then there
is no relation between v and v�; if rvv� � 0 then v and v� have a
relationship. Abusing notation, we use V to refer to the number of
elements in the set V. The information on interactions is then
summarized in a V � V matrix R, with typical element rvv�.

We make two important assumptions about the numbers rvv�

in R. First, we assume that individuals face a budget constraint
for their social interactions:

�
v��V

rvv� � 1

for all v in V. Think of rvv� as the fraction of time that v spends
with v�. Second, we assume that if rvv� � 0, then rv�v � 0, though
we allow rvv� and rv�v to be different when they are not zero. We
allow for rvv� � rv�v because a relationship can have a different
level of importance or intensity to v and to v�. In fact, this comes
up in empirical applications of SSI: v may interact only with v�, in
which case rvv� � 1, while v� may split his time equally among n
other relationships, so rv�v � 1/n.

Now, suppose that we know the race of each individual v �
V. For the rest of the section, fix one race, called Race h, and drop
from the set V all individuals from races other than h. Form the
matrix B from the matrix R by retaining only those rvv� for which
both v and v� belong to Race h. The matrix B (a submatrix of R)
reflects the network of same-race social interactions among the
members of Race h.

Let us briefly discuss two examples, which preview our em-
pirical applications in Section VI. First, suppose we construct B
using information on residential patterns (and only information
on residential patterns). We would need to set a criterion for who
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is a neighbor of whom and set rv,v� � 0 when v and v� are not
neighbors. The criterion could be that v and v� are neighbors if
they live sufficiently close to each other. We can then suppose, in
the absence of additional information on social interactions, that
the relation with each of his neighbors is equally important to v,
and set rvv� to be the inverse of the number of v’s neighbors.
Finally, we keep only those agents that belong to the race under
analysis (Race h). Second, suppose we construct B from a survey
on social interactions where individuals are asked to name their
ten closest friends. We would then set rvv� � 0 if v and v� do not
name each other as friends and set rvv� to be the inverse of the
number of v’s friends, supposing the survey does not let us infer
the relative importance of each friendship. The two examples are
developed in detail empirically in Section VI.

It is important to note that, while we focus on the network of
same-race interactions, the intensity of those interactions is af-
fected by cross-race connections through rvv�. For example, let v
be a member of Race h. If v interacts only with v�, and v� is in
Race h, then rvv� � 1, and 1 will be the only nonzero element of
v’s row of rvv�s in B. On the other hand, if v interacts with nine
members of another race, besides v�, then rvv� � 1⁄10 and 1⁄10 will
be the only non-zero element of v’s row of rvv�s in B. This differ-
ence implies that v is more integrated when he has relations with
individuals of other races. We discuss this feature of our measure
in Section V.C.

A segregation index for Race h is a function that assigns a
real number Sh(B) to each matrix B of same-race interactions,
along with functions assigning a real number sv

h(B) for each
individual member v of Race h, such that Sh(B) is the average of
the individual sv

h(B).
Our definition of a segregation index reflects our desire that

segregation be measured at the individual level. Individual seg-
regation is measured in the same units as racial segregation;
Race-h segregation is the average of the segregation of all indi-
viduals of Race h.

IV.B. Three Properties which Define the SSI

We present three properties that jointly define our measure
of segregation.

The first property requires that an increase in the intensity
of same-race interactions imply an increase in segregation. Con-
cretely, say that a matrix B� has more intense interactions than
matrix B if all the entries of the matrix B� are at least as large as
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those of B. Then, if B � (rvv�) and B � (r�vv�), we have rvv� � r�vv�

for all v and v�. A segregation index satisfies the property of
monotonicity if, whenever B� has more intense interactions than
B, Sh(B) � Sh(B�).

The second property is a normalization of the index. Let d �
0 be a real number. A matrix B is homogeneous of degree d if, for
all v in Race h, ¥v� rvv� � d. An example of a homogeneous of
degree 3⁄4 matrix is

� 0 1⁄4 1⁄2
1⁄4 0 1⁄2
1⁄2 1⁄4 0

�
A segregation index is homogeneous if, whenever B is homoge-
neous of degree d, Sh(B) � d.

Homogeneous networks rarely occur in practice, but the
property gives an interpretation to the segregation of networks
one encounters in applications. For example, a measure of 0.8 can
be read as the segregation Race h individuals would have if they
spent 80 percent of their time with individuals of the same race.
Homogeneity also provides a “scale free” property: if City A has
more households than City B, but each household in both cities
has the same fraction of same-race neighbors, the index will
report the same level of segregation for both cities.

Our third property is the most substantial and potentially
controversial. We want the segregation of an individual i to
depend on the segregation of the individuals with whom she
interacts. We require that this dependence takes a linear form.
We need some auxiliary concepts to present the third property.

Let Nv be the set of individuals of Race h that v interacts
with: the set of v� in Race h with rvv� � 0. In a similar vein,
consider the set of individuals who interacts with the members of
Nv, those that interact with those that interact with the members
of Nv, and so on. The resulting set of individuals with direct or
indirect interactions with v is called the CC of B that v belongs to;
denote this set of individuals by Cv.

The third property requires that sv
h(B) be the average of

sv�
h (B) among v’s Race-h social interactions, relative to the aver-

age segregation of the individuals in v’s CC. If SCv is the average
segregation of individuals in Cv, say that a segregation index
satisfies linearity if

sv
h�B	 �

1
SCv �

v��Nv

rvv�sv�
h �B	.
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There are two qualitative assumptions behind the linearity
property. The first is that v’s segregation depends on his neigh-
bors’ segregation. As described in Section I, if one considers
Figure I, which depicts the distribution of blacks across metro-
politan Detroit, it seems evident that individuals in the center of
the city’s black ghetto should be measured as more segregated
than those closer to the edge. Linearity is one embodiment of this
requirement. In Section V.D we discuss the implications of relax-
ing this assumption. Note that, while the weights rv,v� must add
to one, an individual’s SSI is not bounded by 1.

The second qualitative property is that the dependence is
modulated by the CC’s segregation. That is, a decrease in the
segregation of one of v’s neighbors will affect v less if v lives in a
highly segregated component. The key idea is that v receives the
effects of segregation from her different neighbors, and any one
neighbor is less important when the component is highly segre-
gated.

It is not possible to relax linearity, while retaining the linear
influence of neighbors’ segregation. Suppose that v’s segregation
depends directly on her neighbor’s segregation, but that it does
not take the form assumed in the linearity property. Suppose that
the component’s segregation does not play a role, and that v’s
segregation depends directly on the sum of neighbor’s segrega-
tion. Then, an increase in a neighbors’ segregation gives a one-
for-one increase in v’s segregation, and this, in turn, directly
impacts v’s neighbor. The result does not necessarily (in fact,
generally will not) converge to new levels of segregation. Our use
of the components’ segregation guarantees that the effect of an
increase in segregation for a neighbor does not impact fully on v,
at least not for large values of segregation, ensuring that there is
a solution to the problem of determining all individuals’ segrega-
tion measures.9

The three properties described above jointly define our index.
The SSI is the (unique) segregation index that satisfies the prop-
erties of monotonicity, homogeneity, and linearity (Theorem 1,
Appendix A).

On a CC, SSI is the largest eigenvalue of the corresponding
irreducible submatrix of B. The individual SSI are obtained by

9. The SSI is the weighted average of the SSI by CC (SCv), weighting each
component by how many individuals it has. One may be interested in identifying
highly segregated components, even where the overall population is not highly
segregated. In residential segregation, components can be interpreted as ghettos,
and in school segregation as same-race cliques.
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distributing the component’s SSI among individuals using the
eigenvector corresponding to the largest eigenvalue. Thus, SSI
results from familiar matrix operations and is easy to compute
using standard software, such as MATLAB. The irreducible
submatrices of B are often very sparse, meaning that many of its
entries are zeroes. There are efficient algorithms for computing
the largest eigenvalues of sparse matrices, and MATLAB comes
with one such algorithm incorporated in its eigs command.

V. ANALYSIS OF THE SSI

The previous section described three properties that provide
the precise assumptions underlying the SSI. In this section, we
provide further properties and features of SSI, illuminate an
alternative interpretation for the index, discuss other ways to
incorporate cross-race interactions, and describe the implications
of relaxing the linearity property.

V.A. An Alternative Interpretation of SSI

An alternative way to interpret the SSI is through a model of
group-specific capital transmission. SSI is a measure of how fast
same-group influences are disseminated purely as a result of
social contacts.10

Suppose that the matrix of same group social interactions, B,
has only one CC (without this assumption, the result will hold in
each CC of B). Let xv be a measure of how much group-specific
capital an individual v has. We think of this capital as the depth
of one’s group identity; something that arises from repeated social
interaction with people of one’s own group. There is an inherent
difference between visiting a church once to listen to their gospel
choir and interacting constantly with people who are involved
with gospel music. The intensity with which one experiences the
same social phenomenon is the key to this difference. Segregation
is related to this intensity, and one can show how SSI captures
the intensity of same-group social phenomena.

Suppose that, in each period t, individual i’s h-capital grows
depending on how much h-specific capital her contacts have, and
on how much v interacts with them. Specifically, suppose that

(2) xvt � xvt�1 � �
v��B

rvv�xv�t�1,

10. We thank Erzo Luttmer for suggesting this interpretation.
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and that xv0 is given, for all v.
The law of motion in (2) is our assumption that capital

reflects the intensity of v’s own-race identity. Similar models
have been used to capture cultural transmission in networks; see
Brueckner and Smirnov [2004].11

PROPOSITION 1. For all vectors ( xv�0)v� of initial stocks of capital,
and all v,

lim
t3�

xvt

xvt�1
� 1 � Sh�B	.

Proposition 1 shows that we can interpret SSI as the rate of
growth of group-specific influences. It follows from a familiar
calculation in Perron-Froebenius theory; recall that SSI is the
largest eigenvalue of B in the case where we have only one CC. In
economics the result is reminiscent of the balanced growth result
in the theory of Leontief systems (see e.g., Samuelson and Solow
[1953]).

Examples of this type of group-specific capital transmission
may include language [Lazear 1999] and the choice of first names
[Fryer and Levitt 2004]. In a simple model of culture and lan-
guage, Lazear [1999] shows that incentives to assimilate by
learning to speak the native language are decreasing in the size
of an ethnic enclave. Fryer and Levitt [2004] argue that the choice
of distinctive first names is a cultural investment and show that
this practice is more common in highly segregated areas. Both of
these papers are consistent with the basic model of group-specific
capital transmission described above and, ipso facto, our measure
of segregation.

V.B. General Properties

We discuss here some important and more subtle properties
of SSI.

First, SSI identifies isolated individuals by marking them as
perfectly integrated. If v has no connections (rvv� � 0) to individ-
uals of his group, then sv

h(B) � 0. If v has relations with at least
one individual of his same group, sv

h(B) � 0 (Proposition 3,
Appendix A). Perfectly-integrated groups are rare, but we do
observe perfectly integrated individuals in our applications.

11. The model in Brueckner and Smirnov [2004] is slightly different, as they
allow xvt to be a weighted average of xvt�1 and xv�t�1. The statement in Propo-
sition 1 holds for their model with 
 � Sh(B) instead of 1 � Sh(B), where 
 is the
inverse of the number of neighbors each agent has.
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These are individuals who only interact with others of different
races. SSI singles them out by assigning them a measure of zero.

Second, small changes in the structure of social interactions
will entail small changes in SSI. SSI is a continuous function of
the elements of B (Proposition 5, Appendix A).

Third, SSI is related to a calculation of connections between
individuals. If v has a relation to v� and v� has one to v�, then
information can travel from v to v� by the path v � v� � v�. It is
intuitive to think of the number of such paths as a measure of how
connected v is to v�. Segregation, on the other hand, is the extent
to which individuals of the same group are connected, so counting
paths between individuals gives rise to a natural measure of
segregation. It turns out that SSI has a close connection to the
number of paths that exist between individuals. Counting paths
gives another interpretation of SSI.

We flesh out this connection in Appendix A. Here we give
some simple calculations suggesting the nature of the relation-
ship between counting paths between individuals within the
same group and SSI.

Consider the following special case: each nonzero rvv� takes
the same value, so rvv� is either 0 or r � (0, 1). Let Nv

k be the set
of individuals for which there is a path to v with, at most, k
individuals. Then,

sv
h�B	 � �

v��N v
k

vv�sv�
h �B	,

where vv� is proportional to the number of paths between v and
v�. Note how all the v� in the same component as v affect v’s
segregation. The weight of each v� is affected by the number of
paths between v and v�. Concretely, vv� is obtained as the
number of paths of length k (with k individuals) from v to v�
multiplied by rk/(Sh(B))k. The number of paths from v to v�, in
turn, is the vv� entry of the matrix (1/rk) Bk.

Fourth, and related to the previous property, SSI captures
certain multiplier effects in the social interactions network. An
individual’s susceptibility to own-group influences (patterns of
speech, names, and other group-specific behavior) depends on
how many contacts the individual has with his or her own group
and the susceptibility of those contacts.

Consider the following thought experiment, depicted in Fig-
ure IV. We show the effect of changing the race of one individual
in a network; the resulting changes in SSI capture the essence of
the multiplier effects. Network A has three Black individuals who
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are connected to each other, and all of which are also connected to
one White individual. To illustrate the multiplier effects captured
in SSI, Network B changes the race of Individual 4 so she is also
Black now. To keep the calculations transparent, we assume that
Individual 4 also has three neighbors in total. Table II shows the
levels of segregation before and after Individual 4 changes race.

V.C. More on Cross-Race Interactions

We argued that SSI captures cross-race interactions by their
effect on the intensity of same-race interactions. We expand on
this point here using a simple example and then discuss alterna-
tive ways of incorporating cross-race interactions.

We have argued that, if v interacts only with v� and v� is in
race h, then v would be more segregated than if she interacts
with nine other individuals who are not in Race h. We make the
same point here with a concrete example. Consider Figure V. The
blacks in the city on the left have a SSI of 0.83. If we add white
neighbors to obtain the city on the right, the blacks have a much
lower SSI of 0.5. The change is purely the result of the lower

FIGURE IV
Individual 4 Changes Race

TABLE II
SSI BEFORE AND AFTER THE CHANGE

1 2 3 4 Ŝ

Before 0.67 0.67 0.67 0 0.67
After 0.78 0.78 0.91 0.42 0.72
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intensity of same-race interactions due to a decrease in rvv�s. Note
that the SSI for the city on the right follows immediately because
all black agents spend exactly half their time with other blacks.

An alternative way to incorporate cross-race interactions
would be to explicitly let the segregation of individual v depend on
the segregation of the neighbors that are not the same race as
her. There are two potential problems with this. First, we would
need to decide whether a more segregated white neighbor makes
a black agent more or less segregated. There are simple argu-
ments for both effects: a black agent may be expected to interact
less with a highly segregated white and thus be more isolated
from whites, or she may get more white specific capital from a
segregated white and become less isolated from whites. Our ap-
proach is agnostic with respect to the effect of one race’s segre-
gation on another, and allows for the possibility of deciding the
matter empirically.

The second objection is practical. The computational com-
plexity of calculating SSI depends critically on the dimensions
of the matrices B. If we need to allow explicitly for the inter-
actions that each v has with all her neighbors, we would tend
to get much more connected networks and, thus, much larger
matrices B. As a result, the already slow task of calculating SSI
would become extremely time consuming and likely infeasible in
many applications.

V.D. Relaxing Linearity

Without assuming linearity, we would be unable to derive a
unique numerical index. If, for example, the linearity assumption
is replaced with a monotonicity condition—higher segregation
among i’s same-race neighbors imply higher si

h(�)—one cannot
pin down a specific numerical index. The situation is analogous to

FIGURE V
A Change in the Number of White Neighbors
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that of income distribution measures, where general properties
lead to orderings of Lorenz curves that do not allow one to com-
pare any two distributions. In our framework a Lorenz-curve-type
ordering is readily obtained: Group h is more segregated in �
than in �� if the distribution of (¥j r�ij) dominates that of (¥j rij).
Something similar arises in the measurement of income distribu-
tion. Atkinson [1970] presents a partial order on income distri-
butions, in which two distributions may not be comparable in
terms of income inequality. When Lorenz curves cross, one has to
decide how much weight to assign to each side of the intersection.
Rather than choose ad hoc weights, which could differ for each
application (which, some have argued, is the main reason re-
searchers do not use the Atkinson index as a measure of segre-
gation [Massey and Denton 1988]), we get implicit weights
through the linearity property.

VI. TWO APPLICATIONS OF SSI: MEASURING SCHOOL

AND RESIDENTIAL SEGREGATION

Here we develop two illustrative applications of SSI: estimat-
ing racial segregation of friendship networks in schools and res-
idential segregation.12

VI.A. School Segregation

There is an impressive literature on the effects of segregation
across schools on achievement. Guryan [2004] estimates that half
of the decline in black dropout rates between 1970 and 1980 is
attributable to desegregation plans. Crain and Strauss [1985]
find that students randomly offered the chance to be bussed to a
suburban school were more likely to work in professional jobs
nearly 20 years after the experiment. Jencks et al. [1972] esti-
mate that desegregation raises black achievement by 2–3 per-
cent. Based on a meta-analysis of 93 studies, Crain and Mahard
[1981] conclude that desegregation has a significant effect on
black achievement, especially among younger children, though
other meta-analyses are less conclusive [St. John 1975].

Yet, in the spirit of Martin Luther King, who dreamed that
one day “little black boys and black girls will be able to join hands
with little white boys and white girls and walk together as sisters
and brothers,” some argue that society should strive for integra-

12. Fryer and Torelli [2005] provide another natural application of SSI:
measuring social popularity in schools.
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tion within schools not just across them [Lucas 1999; Mickelson
2001]. Within-school segregation, commonly referred to as “sec-
ond-generation segregation,” is thought to be as important as
segregation across schools in inhibiting the educational opportu-
nities of racial and ethnic minorities [Mickelson 2001]. Previous
studies use traditional measures of segregation (such as exposure
and dissimilarity) to measure segregation across schools. These
measures do not disaggregate to the individual level and cannot
use information on students’ actual social contacts—limiting our
ability to understand the relationship between within-school seg-
regation and outcomes.

Data. The National Longitudinal Study of Adolescent Health
(Addhealth) database is a nationally representative sample of
90,118 students entering grades 7 through 12 in the 1994–1995
school year. A stratified random sample of 20,745 students was
given an additional in-home interview; 17,700 parents of these
children were also interviewed. Thus far, information has been
collected on these students at three separate points in time: 1995,
1996, and 2002. There are 175 schools from 80 communities
included in the sample with an average of more than 490 students
per school, allowing within school analysis. Students who are
missing data on race, grade level, or friendships are dropped from
the sample.

A wide range of data are gathered on the students, as de-
scribed in detail on the Addhealth website (http://www.cpc.
unc.edu/projects/addhealth). Our primary outcome variables are
divided between measures of academic achievement and those
that are more associated with social behaviors. The social vari-
ables include smoking, skipping school (without a valid excuse),
interracial dating, and whether or not a student is happy at his or
her school. Smoking and skipping school are answers to the
question, “During the past twelve months, how often did you . . .”
Answer choices range from never to nearly everyday. Interracial
dating is a dichotomous variable equal to 1 if the student reports
ever dating interracially and zero otherwise. Happiness measures
whether or not students report being happy at their school. The
academic variables include: Peabody Vocabulary Test (PVT)
scores, whether or not a student plans to attend college, grades in
the previous grading period, and a measure of how much effort
the student exerts. All responses (including grades) are self-
reported. For each student, grades were calculated by aggregat-
ing grades in four subjects: math, history, science, and English.
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To measure school segregation, we make use of the informa-
tion on friendship networks within schools available in the Ad-
dhealth database. All students contained in the in-school survey
were asked, “List your closest male/female friends. List your best
male/female friend first, then your next best friend, and so on.”
Students were allowed to list as many as five friends from each
sex. Each friend can be linked in the data, and the full range of
covariates in the in-school survey (race, gender, grade point av-
erage, etc.) can be gleaned from each friend. Friendship links are
defined as unions: Student A is considered to be “friends” with
Student B if A lists B as a friend, B lists A as a friend, or both.

Analysis. The school-level SSI is calculated by taking for
each racial group the average SSI of each CC in the school that
consists of students from that group, weighted by the size of those
CCs. In other words, to calculate the black group SSI for School 1,
assuming there are two black CCs in School 1, we find [(SSI of
CC1)(size of CC1) � (SSI of CC2)(size of CC2)]/[size of CC1 � size
of CC2]. Students who are singletons (who do not have any
friends from their racial group) are considered to be CCs of size 1
with SSI equal to 0—completely integrated.

To make individual SSI comparable across CCs each individ-
ual SSI is multiplied by the size of the CC of which it is a part.

Figure VI depicts the relationship between the percentage of
a racial group in a school and the level of segregation for that
racial group in that school, using the Addhealth database. Each
observation is a school. Grade levels 7–12 are combined. School
level segregation ranges from .014 to .848 across the 175 schools
in AddHealth. The mean level of segregation is .618; the standard
deviation is .146.

Many researchers assume the relationship between the seg-
regation of a racial group within a school and the percentage of
that group in the school is linear (see, for example, Orfield
[1983]). This approximation is a good first pass for Whites
(though we find nearly all White data points above the 45° line),
but less true for Hispanics and Asians. For Blacks, the relation-
ship between percent own-race in a school and own-race segrega-
tion is even more nonlinear. As the percentage of Black students
increases from 0 to 25 percent, Black segregation rises sharply.
Above 25 percent, Blacks are near complete segregation.

It is important to emphasize that our data do not allow one to
disentangle why these patterns exist. The segregation observed
in Figure VI could be a result of own-race preferences for social
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interactions or the response to external discrimination or racism.
Understanding the causal model underlying these observations is
of great importance to our understanding of social interactions,
bussing programs, and the optimal organization of schools,
among other things.

Table III presents estimates of the relationship between in-
dividual-level measures of segregation and individual outcomes.
Individual level segregation ranges from 0 to 174.973 with a
mean of 0.618 and standard deviation of 2.48.

We estimate models of the form:

(3)

Outcomei, j � j � Xi� � �segregationi � �1Black � segregationi

� �2Asian � segregationi � �3Hispanic � segregationi � εi, j,

where i indexes individuals, j indexes schools, Xi represents a set
of individual level controls, and j denotes school fixed-effects.
The coefficient � measures the relationship between the segre-
gation of individual i and a given outcome for i. We concentrate
on �i, which measures the differential effect of individual segre-
gation for group i relative to Whites, and � � �i, which captures
the overall relationship between segregation and outcomes for
Group i.

For Blacks, individuals who are more segregated are less
likely to smoke (a behavior predominant among White teens) and
have lower test scores. Segregated Asians are less likely to skip
school, more likely to have high test scores, put in more effort, and
report being happier. Segregated Hispanics are less likely to
smoke, more likely to have low test scores, low grades, and low
probability of attending college. Not surprisingly, students of all
races are less likely to date interracially when schools are more
segregated. Similar results are obtained when one excludes
school fixed-effects.

VI.B. Residential Segregation

The ideal data to estimate residential segregation would
contain information on the nature of each household’s interac-
tions with other households. In lieu of this, we proceed like we did
for the imaginary city of the example in Section III: We use
geographical distance to infer social interactions. In addition,
since we lack individual-level data, we work with block-level data
from the 2000 U. S. Census. We restrict our sample to the 313
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Metropolitan Statistical Areas (MSAs). The data are available
from Geolytics Inc. (see http://www.geolytics.com/).

Census blocks contain, on average, 300 households and are
approximately 100 meters in radius. We identify a block with the
race/ethnicity of the majority of its inhabitants. This assumption
is not too problematic, as blocks are strikingly homogeneous: 94.3
percent of Iowans live in a homogeneous census block and so do
77 percent of Texans. Save Washington DC, more than 60 percent
of the blocks in all states contain households of only one race (for
half the states, 80 percent or more of the blocks contain only one
race).

We assume that two blocks are neighbors if they are within
one kilometer of each other.13 From this, we know when rij should
be nonzero. The next step is to calculate the intensities of social
interactions, the values of rij. We obtain the total number, di, of
neighbors of block i, i.e., the number of blocks that are within one
kilometer of i, independent of race. Absent further information on
the structure of social interactions in neighborhoods and consis-
tent with the budget constraint described in Section IV, let rij �
1/di. With the resulting matrix B, we are in a position to calculate
SSI using the characterization we present in the Appendix.14

An important caveat to our application of SSI to residential
segregation is that it ignores block density.15 To correct for this,
one could assign all individuals in a census block to the centroid
of that block, and run the resulting individual-level estimation.
This method, however, is computationally very costly.

Baseline Residential Segregation. Since SSI for Race h is a
measure of the connectivity of the Race-h network, it will tend to
be larger in cities with larger fractions of Race-h individuals, even
if individuals are located at random in the city.

We refer to the SSI one would expect to see in a city when
individuals locate at random as Baseline SSI. We provide esti-
mates of both SSI, and of the SSI in excess of Baseline SSI.

We have obtained measures of Baseline SSI by simulating

13. We have used one kilometer radii because one kilometer is the median
radius of a census tract (1.03), and tracts are the traditional notion of a neigh-
borhood in the literature. Our results alter little when we change criterion to 0.5
or 1.5 kilometers.

14. We need to calculate the largest eigenvalue of (each CC of) B. The Matlab
programs to calculate all indices reported in the paper are available at http://
post.economics.harvard.edu/faculty/fryer/fryer.html.

15. This likely induces little error in the estimates of segregation, given our
definition of neighbor usually encompasses several blocks. In areas such as New
York, however, this limitation may be quite restrictive.
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random assignment of races to large regular (in a graph-theoretic
sense) cities with the corresponding fraction of Race-h inhabit-
ants. Concretely, for each fraction p � 0.01, 0.02, . . . , 0.99 we
simulated 1,000 cities of 100 households each, where each house-
hold is of Race h with probability p.16

Figure VII shows the results of our simulations. On the
horizontal axis is the fraction of Race-h inhabitants, while the
vertical axis shows the average SSI. When the share of Race-h
inhabitants in a city is relatively small, SSI mirrors the percent
Race-h in a city closely. This is to be expected. When Race-h

16. For a few values of p we ran simulations of much larger cities, with 2,500
nodes, and we obtain the same results. For the simulation of the full range of p we
chose size 100 because the larger simulations are very time intensive. All simu-
lations were done in Matlab; the code is available from the authors.

FIGURE VII
Simulating the Baseline Spectral Segregation Index

We have obtained measures of Baseline SSI by simulating random assignment
of races to large regular (in a graph-theoretic sense) cities with the corresponding
fraction of Race h inhabitants. For each fraction p � 0.01, 0.02, . . . , 0.99 we
simulated 1,000 cities of 100 households each, where each household is of Race h
with probability p.
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inhabitants are relatively few and assigned to a city at random,
linearity has little power to alter SSI from percent black. As the
fraction of Race-h individuals increases, however, SSI signifi-
cantly departs from the percentage of Race h in a city. We have
used only large cities, as we can prove (see Appendix B) that
baseline SSI converges as a city grows. In fact, the simulations
show the convergence to be quite fast.

The Extent of Segregation across Cities. Detroit, MI, is the
most segregated city for Blacks; Lowell, MA, for whites; McAllen,
TX, for Hispanics, and Honolulu, HI, for Asians.17 The list seems
quite intuitive. It also confirms that SSI is correlated with the
size of a minority group. The latter point begs for a distinction
between SSI and “adjusted” SSI: the segregation in excess of
baseline SSI. It is unclear which is most closely related to eco-
nomic outcomes. Adjusted SSI tells us more about preferences,
while the original SSI is a better measure of the pure connected-
ness in a network. The most segregated cities using adjusted SSI
for Asians, Blacks, Hispanics, and Whites are Los Angeles, CA;
Milwaukee, WI; Flagstaff, AZ; and Pine Bluff, AR, respectively.
Approximately 11 percent of households in Milwaukee are Black,
implying an expected SSI of 0.1145 if blocks were allocated at
random. The actual measure of segregation is a factor of 9 larger.
To generate the level of segregation in Milwaukee, assuming
blocks were assigned a race at random, blacks need to comprise
80 percent of the population.

We have emphasized how the SSI allows one to consider
more disaggregated units than the city. One of the most interest-
ing units is the agglomeration of same-race blocks: Racially ho-
mogenous ghettos, which SSI identifies endogenously as CCs (see
Section IV). This is related to city-wide SSI, but SSI weighs the
ghetto’s SSI against members of the same race in other parts of
the city who are more integrated. For Blacks and Whites, the
largest ghetto is Detroit—implying an enormous amount of city-
wide segregation. Remarkably, 87 percent of black blocks in De-
troit comprise one large ghetto. The largest CC is San Francisco
for Asians, and Los Angeles for Hispanics. Hispanics in Los
Angeles comprise the largest minority ghetto in America; 17,909
Hispanic blocks are connected.

Along with the variation across cities in SSI, there are several

17. For a complete list of the most and least segregated cities, see http://
post.economics.harvard.edu/faculty/fryer/fryer.html.

469A MEASURE OF SEGREGATION BASED ON SOCIAL INTERACTIONS



MSA level characteristics that are associated with higher levels of
racial segregation. For instance, cities that exhibit higher segrega-
tion for Blacks tend to be larger cities, have a high percentage of
female-headed households, and are less likely to be in the West.

Table IV presents a correlation matrix of popular measures
of segregation. These measures include dissimilarity, isolation,
Gini coefficient, exposure, entropy, and interaction. Also included
in the matrix are SSI, SSI minus the baseline, and the ranking of
cities based solely on their fraction of Blacks. All measures were
calculated using data at the census block level for 326 MSAs. The
Spectral index has surprisingly little correlation with dissimilar-
ity, gini, entropy, and interaction—averaging less than 0.5—and
high correlation with isolation and exposure, averaging more
than 0.90. Given the nature of the isolation and exposure indexes,
it is not surprising that SSI is more correlated with the measures
relative to the others. As a measure of residential segregation,
our measure is very similar to existing measures of exposure with
the added ability to disaggregate to the level of individuals and a
well-understood theoretical foundation. Adjusted SSI becomes
even less correlated with dissimilarity and isolation. The fraction
of blacks in a city is highly correlated with SSI, but the linearity
property assures that this correlation is less than perfect.

The Relationship between Residential Segregation and Out-
comes. The economic literature on the effects of segregation on
outcomes is impressive. Case and Katz [1991] show that youths in
a central city are affected by the characteristics of their neigh-
bors. Almond, Chay, and Greenstone [2003] show that segrega-
tion of hospitals in the Jim Crow era had a significant negative
effect on infant mortality. Using evidence from the Moving to
Opportunity experiment, Katz, Kling, and Liebman [2001] and
Kling, Liebman, and Katz [2005] provide evidence that moving
individuals to lower poverty neighborhoods has substantial ef-
fects on mental and physical health of parents and children.

Cutler and Glaeser [1997] is one of the most influential
papers in economics on the impact of segregation. They use the
dissimilarity index as a measure of segregation. We re-estimate
the impact of black segregation on economic outcomes with Cutler
and Glaeser’s specification. Econometrically, we estimate models
of the form

(4) outcomei � X�i� � �1segregationj

� �2segregationj � Blacki � εi,
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where outcomei is measured at the individual level and segrega-
tionj is measured at the MSA level and compare the results
obtained with SSI and the dissimilarity index.

Identical to Cutler and Glaeser [1997], we correlate measures
of segregation with various economic and social outcomes for
young people aged 20–30. We choose to focus on younger individ-
uals for three reasons. First, they are most susceptible to group
level influences as a result of social interactions. Second, the
problems of mobility across metropolitan areas is more easily
avoided. Third, and most importantly, it mirrors the specifica-
tions in Cutler and Glaeser [1997]. For identical reasons, we drop
individuals born in a foreign country. Data from the 1990 1%
Census Public Micro Use Sample are used. Our sample contains
97,976 individuals aged 20–24 and 139,715 individuals between
the ages of 25 and 30 residing in the 204 MSAs with at least
100,000 people and 10,000 blacks in 1990. This sample is identi-
cal to Cutler and Glaeser [1997].

Outcome measures are divided into three categories: educa-
tional attainment, labor market, and social outcomes. Educa-
tional attainment is measured as the probability an individual
graduates from high school or college. There are two measures of
labor market outcomes. The first is whether or not an individual
is idle (not working and not employed). The second is earnings
(sum of wages, salary, and self-employment income). In all spec-
ifications, we use the natural logarithm of earnings, conditional
on the individual not being in school and reporting positive earn-
ings.18 The final outcome variable is a social outcome—whether a
woman is an unmarried mother.

Table V presents a series of ordinary least squares estimates
of the relationship between segregation and outcomes for persons
aged 20–24 and 25–30, using the dissimilarity index and the
SSI—controlling for the standard set of individual and MSA-level
covariates used by Cutler and Glaeser [1997]. Each measure of
segregation has been normalized such that they have a mean of
zero and a standard deviation of one.

The top panel of Table V replicates Cutler and Glaeser’s
[1997] results using the dissimilarity index. The bottom panel
estimates the same specification using SSI. Results differ slightly
between SSI and dissimilarity. On each outcome, cities with
higher dissimilarity indices have inferior outcomes: less likely to

18. Following Cutler and Glaeser [1997], we omit people in school from the
earnings regression, since these individuals are expected to have low income.
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graduate from high school or college, more likely to be unem-
ployed and not in school, earn less money, and more likely to be
a single mother. SSI paints a similar portrait, though the mag-
nitudes are slightly weaker. No qualitative conclusions are un-
changed. In all cases, the R-squared from regressions using the
dissimilarity index and those using the Spectral index are re-
markably similar.

VII. CONCLUSION

For decades, social scientists have used measures of evenness
and exposure to estimate the prevalence and impact of segrega-
tion in housing, firms, and schools. These measures have many
limitations, which we have discussed throughout. This paper
develops a new measure of segregation based on two key ideas: a
measure of segregation should disaggregate to the level of indi-
viduals, and an individual is more segregated the more segre-
gated are the agents with whom they interact. Developing three
properties that any segregation measure should satisfy, our main
result shows that one and only one segregation index satisfies our
three properties and the two aims mentioned above—the SSI. To
illustrate the potential of the index, it is applied to two well-
known social problems: measuring within-school and residential
segregation and several new facts and insights are gleaned. We
hope the Spectral index will be a useful tool for applied research-
ers interested in the agglomeration of individuals in networks.

APPENDIX A: TECHNICAL PROOFS

We present formally the results stated in Sections IV and V.
Fix a race h. Let Ck,k � 1,2, . . . K be the CCs of B. Abusing

notation, let Ck also denote the submatrix of B with columns (and
rows) indexed by the elements of Ck. Let �k be the largest eigen-
value of Ck and xk be its associated eigenvector, normalized so its
entries add to one.19

19. Note that �k and xk must exist by the Perron-Froebenius Theorem.
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The SSI is the index

B � �Ŝh�B	, �ŝi�B		i�h	,

where Ŝh(B) � ¥i�h (ŝi(B)/V) and ŝi(B) � �kxki�Ck�.

THEOREM 2. A segregation index satisfies Monotonicity, Homoge-
neity, and Linearity if and only if it is the SSI.

We note that the properties of Monotonicity, Homogeneity,
and Linearity are independent in the sense that no pair of prop-
erties imply the third.

We state two additional properties of SSI. Proposition 3 was
stated informally in Section IV. Proposition 4 is informative about
SSI and used in the proofs below.

PROPOSITION 3. If v has at least one same-race neighbor, ŝv
h(B) �

0. If v has no same-race neighbors, ŝv
h(B) � 0.

Proof. If i � h has at least one same-race neighbor, then i is
in Ck for some irreducible submatrix Ck. Let �k be the largest
eigenvalue of Ck and xk be its associated eigenvector. By Lemma
6, xk is strictly positive, so xki � 0. Since �k � 0 (Lemma 6), the
definition of ŝi

h(B) implies that ŝi
h(B) � 0. Q.E.D.

PROPOSITION 4. If Ck, k � 1 . . . K are the CCs (the irreducible
submatrices) of B, then

Ŝh�B	 � �
k�1

K � �Ck�
V � ŜCk,

and SCk is the largest eigenvalue of Ck. So Ŝh(B) is the
weighted average of the components’ largest eigenvalues.

Proof. We show that SCk is the largest eigenvalue of Ck.
SCk � ¥i�Ck

si(B)/�Ck� � �k ¥i�Ck
xi. Since x was normalized so

that ¥i�Ck
xi � 1, it follows that SCk � �k. That Sh(B) is the

weighted average of the SCk follows immediately by definition of
Sh(B) and SCk. Q.E.D.

PROPOSITION 5. Ŝh(B) is a continuous function of the entries of B.

Proof. This is a direct consequence of Theorem 2 and the
result in Appendix D of Horn and Johnson [1985]. Q.E.D.

A. Proof of Theorem 2

The proof of Theorem 2 proceeds by stating and proving 5
lemmas that together establish the theorem.
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The first lemma unifies some standard results about irreduc-
ible matrices.

LEMMA 6. Let C be a real, nonnegative, irreducible matrix. Then
A has a real, positive, eigenvalue � with associated eigenvec-
tor y, such that

1. y is strictly positive, so yi � 0 for all i, and y is the unique,
up to a scalar multiple, strictly positive eigenvector of C;

2. � is larger than ���, for any other eigenvalue � of C; in
particular, � is larger than any other real eigenvalue.

Proof. By the Perron-Froebenius Theorem (Theorem 8.4.4 in
Horn and Johnson [1985]), C has a real, strictly positive, eigen-
value, �, with associated strictly positive eigenvector y. The mul-
tiplicity of � is one and � is larger than ���, for any other eigen-
value � of C (� is the spectral radius of C).

Let z be any strictly positive eigenvector, by Corollary 8.1.30
in Horn and Johnson, z is associated to eigenvalue �. The z is a
scalar multiple of y, as � has multiplicity one. Q.E.D.

Now we verify that the SSI satisfies our three axioms.

LEMMA 7. The SSI satisfies Monotonicity.

Proof. Let B� have more intense interactions than B. Let
C� � (c�ij) be an irreducible submatrix of B�. Then the set of rows
in C� is the union of the rows in some collection C1,C2, . . . , CL
of irreducible submatrices of B. Let C � (cij) be the block-
diagonal matrix with C1,C2, . . . , CL in its diagonal. Let x� be an
eigenvector associated to the largest eigenvalue �� of C�. Then
C�x� � ��x�, xi � 0 for all i (Lemma 6), and B� having more
intense interactions than B imply that

(5) �� �
1
x�i

�
j�C�

c�ijx�j �
1
x�i

�
j�C�

cijx�j.

Let � � max {��� : � is an eigenvalue of C} be the spectral
radius of C. Then, by Horn and Johnson’s Theorem 8.1.26,

(6) � � max
i�C

1
x�i

�
j�C

cijx�j.

Statements (5) and (6) imply that � � ��. But �� is SC�

(Proposition 4); so � � ŜC�.
Now we prove that ŜCl � �, for l � 1 . . . L. Let �l be the
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largest real eigenvalue of Cl. Let xl be an eigenvector of Cl,
associated to �l; let y � ( yi)i�C be the vector obtained from xl by
letting yi � xli if i � Cl and 0 otherwise. Then, since C is
block-diagonal, �l is an eigenvalue of C, with associated eigen-
vector y. By definition of �, since �l is real, �l � �. But Proposition
4 implies that �l � ŜCl, so ŜCl � �, for l � 1 . . . L.

Let C�k,k � 1, . . . , K be the irreducible submatrices of Bh�,
and let each C�k be the union of Lk irreducible submatrices of
Bh,C�kl with l � 1, . . . , Lk. By Proposition 4

Ŝh�B	 � �
k�1

K �
l�1

Lk �Ck�
V ŜCkl � �

k�1

K

ŜC�k �
l�1

Lk �Ck�
V

� �
k�1

K

ŜC�k�B�	
�Ck�

V�B�	
� Ŝh�B�	.

Q.E.D.

LEMMA 8. The SSI satisfies Homogeneity.

Proof. Let a � A be h-homogeneous of degree d. Let y � 1,
then homogeneity says that Ay � d1, so d is an eigenvalue with
eigenvector y. By Lemma 6 d must coincide with �, the largest
eigenvalue of B, and the rescaled eigenvector must coincide with
x. So, Ŝh(B) � d. Q.E.D.

LEMMA 9. The SSI satisfies linearity.

Proof. By Proposition 4, ŜCk is an eigenvalue with eigenvec-
tor ( xi), the eigenvector in the definition of the spectral index. For
any i, si(B) � SCkxi�Ck� � �Ck�(Ck � x�i). So,

si�B	 � �
j�Ck

�Ck�rijxj �
1
�k

�
j�Ck

�Ck�rijxj�k �
1

SCk �
j�N i

a

sj�B	.

Q.E.D.

Second, we prove that any index that satisfies the three
axioms must coincide with the spectral index. Let (Sh(B),
(si(B))i�h) be a segregation index that satisfies the three axioms.

LEMMA 10. If B has bij � 0 for all i and j, then si(B) � ŝi(B) for
all i.

Proof. By Homogeneity, Sh(B) � 0, so we must have si(B) �
0 for all i, as si(B) � 0 and Sh(B) is the average si(B). Thus, the
index coincides with the SSI. Q.E.D.

477A MEASURE OF SEGREGATION BASED ON SOCIAL INTERACTIONS



LEMMA 11. For any B, si(B) � ŝi(B) for all i.

Proof. If B is such that bij � 0 for all i and j, we are done by
Lemma 10. Suppose that bij � 0 for at least one i and j.

Let � � min {bij : bij � 0}. Let D � (dij) be the matrix
defined by dij � 0 if bij � 0 and

dij �
�

�� j : bij � 0��
if bij � 0.

Note that ¥j dij � � for all i, so D is homogeneous of degree
�. Then Homogeneity implies that Sh(D) � �. Now, by definition
of D, D has more intense interactions than B. So Monotonicity
implies that Sh(B) � Sh(D) � �. Hence, Sh(B) � 0.

Fix a component Ck such that SCk � 0; since Sh(B) � 0,
there must exist at least one such component. For i � Ck, let xi �
[si

h(B)/�Ck�Sh(B)]. Note that, by definition of SCkxi, ¥i�Ck
xi � 1.

Then SCkxi � si(B)/�Ck� � (1/�Ck�) ¥j�N i
a rijsj/S

Ck, by Linear-
ity. Then SCkxi � ¥j�N i

a rij xj. So SCkx � Ckx; SCk is an eigenvalue
of Ck with eigenvector x.

Now, si(B) � 0 for all i. Since si(B) � 0 for some i would
imply, by Linearity, that all j � Ni have sj(B) � 0, then, by
recursion, sj(B) � 0 for all j � Ck, which would contradict that
SCk � 0. Hence, x is a strictly positive eigenvector.

By Proposition 4 and Lemma 6, now SCk � ŜCk, and by the
rescaling ¥i�Ck

xi � 1, x must coincide with the defining eigen-
vector in the definition of the SSI. Then, si(B) � ŝi(B) for all i.

Finally, take a component with SCk � 0. Then Monotonicity
and Lemma 10 imply that bij � 0 for all i and j in Ck. Q.E.D.

Lemmas (7) through (11) establish the theorem.

B. Results in Section V

We first prove Proposition 1 and then state and prove addi-
tional results that were informally announced in Section V. The
results are formalizations of the discussion of network connectiv-
ity in Section V.

Proof of Proposition 1. Let I denote the V � V identity
matrix. Let D � I � B. Then (2) implies that the vector xt � ( xit)i
satisfies xt � Dxt�1, for all t. So xt � Dtx0. By Lemma 8.4.2 in
Horn and Johnson [1985], 1 � Ŝh(B) is the largest eigenvalue of
D. By Lemma 8.2.7 in Horn and Johnson, there is a matrix L such
that
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lim
t3�

�1 � Ŝh�B		�tDt � L.

Then,

xit

xit�1
� �1 � Ŝh�B		

��1 � Ŝh�B		�tDtx0	i

��1 � Ŝh�B		�t�1Dt�1x0	i

3 �1 � Ŝh�B		.

We provide two results that help interpret the SSI. The first
relates SSI to how many neighbors individuals have. The second
result shows how SSI measures the connectivity of the h-race
network. Both results hold in the neighborhood model, where rij
is either 0 or r � 0.

Here we interpret B as graph, denoted G, for which the
vertexes are the individuals, and there is an edge (link) between
two indexes i and j if rij � 0. The degree of a vertex i, d(i), is the
number of edges at i. Let dmin � min {d(v)�v � V} denote the
minimum degree of G, dmax � max {d(v)�v � V} represent its
maximum degree, and d� � (1/�V�) ¥v�V d(v) represent the
average degree of G.20 Q.E.D.

PROPOSITION 12. Let dmin, d� , and dmax be the minimum, average,
and maximum degrees of Bh, respectively. Then

dmin � d� � Ŝh � dmax.

Proof. See Cvetkovic and Rowlinson [1990]. Q.E.D.

Let di be the number of same-race neighbors of household i.
Proposition 12 proves that, Homogeneity notwithstanding, Ŝh(B)
is larger than the average di over the individuals with a(i) � h.

Now we use walks in a graph to bring out the relation
between SSI and network connectivity. A walk of length k is a
sequence of (not necessarily different) vertexes v1,v2, . . . ,
vk,vk�1 such that for each i � 1,2, . . . , k there is an edge from
vi to vi�1. A walk is closed if vk�1 � v1. Let Wi


 be the number of
walks of length 
 that individual i � V can take in B and define
W
 � ¥i Wi


. Let Wij

 be the number of walks of length 
 between

individual i � V and j � V. A graph is bipartite if its vertex-set
admits a partition into two classes such that every edge has its
ends in different classes. The graphs one encounters in applica-
tions of SSI are never bipartite.

20. We use the most basic notions in Graph Theory. A reader can consult any
graph-theory textbook, for example Diestel [1997]. Some of the ideas we use are
from the field of Spectral Graph Theory; see e.g. Cvetković, Rowlinson, and Simić
[1997] for a comprehensive treatment.
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PROPOSITION 13. For 
 sufficiently large: (1) [Wi

/(Ŝh(B))
�1] is

approximately proportional to ŝi
h(B), and the constant of

proportionality is independent of i; (2) �
W
/nh approximates
Ŝh(B); and (3) if B is non-bipartite, Wij


 is approximately
proportional to (Ŝh(B))
�2ŝi

h(B)ŝj
h(B).

Proof. Let U � (ui) be the eigenvectors of B, normalized to
form an orthonormal basis, so UTU � I. Let D be the matrix with
the eigenvalues of B on the diagonal, and 0 everywhere else. So,
A � UDUT.

If 1 is the vector with 1 in all its entries, the vector of 
-long
walks (Wi


) is defined by (Wi

) � A
1. So, (Wi


) � UD
UT1. The
(ui) vectors form a basis, so there are scalars (�i) such that 1 � ¥i �iui.

Then (Wi

) � ¥i �iUD
UTui. But UTui � ei, the vector with

i-th entry 1, and 0 elsewhere. So (Wi

) � ¥i �i�i


Uei � ¥i �i�i

 ui.

Let �1 � Sh; �1 has multiplicity 1, as B has a unique nontrivial
eigenvector (Theorem 2.1.3 in Cvetkovic, Rowlinson, and Simic
[1997]). So Sh(�) � �i, i � 2,3 . . . �h�.

Then

(7)
1

�Sh�B		
�1 �Wi

	 � Sh��	 �

i

�i

�i



�1

 ui

(8) 3 Sh�B	�1ui,

as �i

/�1


 3 0 for all i � 1. Since u1 is a scalar multiple of the ( xi)
vector in the definition of the spectral index, Sh(B)�1u1 is a scalar
multiple of si

h.
The second statement is a theorem of Cvetkovic, stated in the

survey by Cvetkovic and Rowlinson [1990]. The third statement is
essentially Theorem 2.2.5 in Cvetkovic, Rowlinson, and Simic.

Q.E.D.

Proposition 13 (1) says that, as 
 grows, Wi

(Ŝh(B))
�1 converges.

Thus Ŝh measures the growth in the number of walks that i can
take. Further, it converges to something proportional to ŝi, thus,
individual SSI measures explain the differences, among individ-
uals, in how many walks they can take relative to Ŝ. Statement
(2) in Proposition 13 says that W
 � V(Ŝh(�))
. The total number
of walks will grow at rate Ŝh(B) (a statement that is similar, and
has a similar proof to that of Proposition 1). Finally, (3) says that
two individuals’ measures are related to how many walks there
are between the two individuals, relative to the total number of
walks (given by Ŝh(B), in light of Statement (2)).
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C. Baseline Segregation

Here we present a theoretical justification for our “baseline”
simulations. SSI converges as a city’s size grows, so we can
estimate SSI for relatively large cities (the size of 6,400 is enough
in our simulations).

Let H � {0, 1} be the set of races. We are interested in only
one race here, so working with H � {0, 1} is without loss of
generality. Let Vn be set of households, such that if n � m, then
Vn � Vm.

Let �n � HVn be the set of possible assignments of house-
holds to races. Abusing notation, let � � �n represent the result-
ing Vn � Vn matrix of social interactions. Endow the power set of
�n with the probability measure pk obtained by letting each
household be Race 1 with probability � � (0, 1), independent of
the races of other households.

Let

EnŜh � �
� � �n

Ŝh��	 pn��	

be the expected value of the SSI.

PROPOSITION 14. There is S� such that En 1 S� as n 3 �.

Proof. We shall prove that, if n � m, then

�
���n

Ŝh��	 pn��	 � �
���m

Ŝh��	 pm��	.

Since the EnŜh are bounded above by (1), the result follows.
Let qn,m be the probability distribution on HVm�Vn induced by

letting each household be race 1 with probability � � (0, 1),
independently of the races of other households. Abusing notation,
we shall use qn,m for the probability distribution induced by qn,m
on {� � �m : ��Vn

� {0}Vn}. Then,

�
���m

Ŝh��	 pm��	 � �
����n

pn���	� �
����m:��Vn����

qn,m(� � ��)Ŝh(�)�
� �

����n

pn���	� �
����m:��Vn����

qn,m(� � ��)Ŝh(��)�
� �

����n

pn���	Ŝh���	 �
����m:��Vn����

qn,m�� � ��	 � �
����n

pn���	Ŝh���	.

Q.E.D.
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APPENDIX B: A BRIEF GUIDE TO PROGRAMS CALCULATING THE

SPECTRAL INDEX

All programs to calculate the Spectral Index are in Matlab.
There are three files that are used: callspec.m, neighbors.m, and
blockspectral.m. We briefly describe each below. The version of
the programs described is for geographic analysis of census blocks
at the MSA level. Programs can be easily adapted for use in
myriad applications.

callspec.m is the shell program that calls the other programs.
It allows you to run the SSI algorithm on a list of cities. The list
should be in a text file called list#.txt, where # is an identification
string (does not necessarily need to be a number). For instance,
you might want to create a list of five cities, and denote it list1.txt.
The contents of list1.txt might be:

“001”
“002”
“003”
This list, when supplied as an input to callspec.m, would tell

the program to calculate the SSI for cities whose identification
numbers are 001, 002, 003, 100, and 369. Identification numbers
should be in double quotes, and each should be on a new line. The
file list1.txt should be placed in the same folder as callspec.m and
the other m-files.

To run the program, simply type “callspec” at the Matlab
prompt. You will receive a prompt for list number. In this case,
you would type ‘1’ to call the above list.

Next you will receive a prompt to specify which race you wish
to calculate SSI for. As the program stands, you can choose any of
four races (or they could be nonrace groups, depending on your
application), or you can choose to calculate all four at once.

Finally, you are prompted to supply a neighbor radius, in
kilometers. When constructing the neighbor matrix, neighbors
will be considered anyone within this radius.

callspec.m will call blockspectral.m sequentially on each of
the identification numbers in list#.txt, which in turn calls neigh-
bors.m so as to construct the matrix. To construct this matrix, it
must reference a set of files named msa_#.txt, where # stands in
for the city identifiers. In the case of list1.txt, you would need files
msa_001.txt, msa_002.txt, msa_003.txt, msa_100.txt, and
msa_369.txt. All files should again be in the same folder. These
files should have the following structure: Each line is a census
block (or whatever your geographic unit of reference is) and four
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comma-separated columns. The first column is an identifier and
should be in double quotes. The second is latitude. The third is
longitude. The fourth is the group identifier for that block. For
example, msa_369.txt might be:

“360150102006073”,42.24114,-76.81282,1
“360150108003016”,42.13062,-76.82308,1
“360150102003009”,42.20382,-76.88979,2
This would correspond to city 369 having eight census blocks,

of which five are majority group 1, two are majority group 2, and
one is majority group 4. neighbors.m uses this information to
make the neighbor matrix needed to calculate the SSI.

The program generates two main types of output. Summary
data appears in matrix called sipartial.mat. Information about
individual blocks appears in output files called si_#.txt, where
again # is the city identifier. The sipartial.mat matrix has twelve
columns:

Column 1: city identifier
Column 2: group identifier
Column 3: SSI for group for city
Column 4: number of CCs for group
Column 5: number of singletons for group
Column 6: median CC size for group
Column 7: largest CC size for group
Column 8: smallest CC size for group
Column 9: total number of blocks of group
Column 10: percent of blocks belonging to group
Column 11: average number of neighbors for group
Column 12: average number of same-group neighbors for

group
As you can see, columns 1 and 2 identify the unique city/

group combination; column 3 gives the SSI; and columns 4–12
give supporting statistics.

If you wish to find the SSI for each individual block you must
look at the si_#.txt output files. These files have five columns
each:

Column 1: city identifier
Column 2: CC identifier
Column 3: block identifier
Column 4: SSI for block
Column 5: SSI for CC
For example, to find the individual SSI for block

360150102006073 in city 369 you would look in the file si_369.txt
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for the row that has 360150102006073 in the third column. The
individual SSI is the value in the fourth column.

If you wish to adapt these files for use in a nongeographic
application, the main point of modification would be at line 38 of
neighbors.m, which is the linking rule. If you wished to study the
segregation of, for instance, a social network, this line of code
(which currently calculates geographic distance and compares it
with the “neighbor radius” solicited earlier) would be replaced by
code that checks whether two people have a link in the social
network. Other code would have to change too of course (for
instance, latitude and longitude might be replaced by a list of
friends’ IDs), but the essential thing that determines the type of
application is the linking rule.
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