Thermal Injury to Reconstructed Breasts from Commonly Used Warming Devices: A Risk for Reconstructive Failure

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Published Version doi:10.1097/GOX.0000000000001033

Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29625988

Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Thermal Injury to Reconstructed Breasts from Commonly Used Warming Devices: A Risk for Reconstructive Failure

Heather R. Faulkner, MD, MPH
Amy S. Colwell, MD
Eric C. Liao, MD, PhD
Jonathan M. Winograd, MD
William G. Austen Jr, MD

Background: Sensation is decreased or absent after breast reconstruction. This leaves reconstructed breasts vulnerable to injury from common household thermal sources such as heating pads and hot water bottles. We sought to categorize these injuries, provide a treatment plan, and prevent these injuries in the future.

Methods: A retrospective review of patients who had sustained burns to reconstructed breasts with household devices was performed at a single institution. A PubMed search was performed to identify and summarize articles cataloguing patients who had suffered burns to breast reconstructions.

Results: Five patients in our practice were affected. Fifteen articles were identified in the literature search. A total of 40 patients had sustained thermal injury to reconstructed breasts, with the majority being full thickness burns (67.5%). Patients who sustained full thickness burns to reconstructed breasts were more likely to require an operative procedure compared with patients who sustained partial thickness burns ($P = 0.0076$).

Conclusions: Reconstructed breasts are at risk for injury from commonly used household warming devices and ambient heat from the sun. As a result, patients should be counseled about these risks accordingly, to avoid injury or loss of reconstruction. These injuries require immediate vigilant treatment. (Plast Reconstr Surg Glob Open 2016;4:e1033; doi: 10.1097/GOX.0000000000001033; Published online 27 October 2016.)

During the previous winter season in New England, multiple plastic surgeons in our division treated patients that had sustained injury to their reconstructed breasts as a result of the use of common household warming devices. The goals of this study are to characterize thermal injuries to reconstructed breasts, review the various methods of treatment, and prevent this type of injury in the future.

METHODS

A retrospective review was performed of patients in our division that underwent breast reconstruction of any modality in addition to having sustained a burn from a commonly used warming device or household device within the past year. We collected demographic information, method of reconstruction, degree of thermal injury, and outcome for each patient.

Additionally, a PubMed search was performed to identify peer-reviewed studies, case reports, or letters to the editor cataloguing thermal injuries to reconstructed breasts. Articles were culled for information about each patient, including method of reconstruction, degree of thermal injury, and outcome for each patient.

Disclosure: The authors have no financial interest to declare in relation to the content of this article. The Article Processing Charge was paid for by the authors.
RESULTS

A summary of the affected patients (n = 5) from our practice is shown in Table 1. The mean age at surgery was 46 years (range, 41.3–51.5 years). One patient had diabetes mellitus. All patients had bilateral mastectomies (1 skin-sparing, 4 nipple-sparing). Three patients received radiation (2 preoperatively, 1 postoperatively). All patients had chemotherapy preoperatively, or postoperatively, or both. All patients had an implant or expander in place. One patient sustained a superficial partial thickness burn, which resolved completely (Fig. 1). The remaining 4 patients (80%) sustained full thickness burns (Fig. 2). Two patients had the implant/expander removed without further reconstruction. One patient required a latissimus dorsi flap with implant exchange (Fig. 3).

Patient 1 was 51 years old, and had prior left breast lumpectomy and radiation therapy. She developed a recurrent cancer in the left breast, and underwent bilateral nipple-sparing mastectomies and immediate reconstruction with implants and acellular dermal matrix. She developed a focal hematoma on the left after drain removal, and the patient used a heating pad for discomfort. She developed a superficial partial thickness burn of the left breast which resolved spontaneously, as did the hematoma.

Patient 2 was 45 years old and was diagnosed with left breast cancer, which was node positive. She underwent neoadjuvant chemotherapy. She underwent bilateral nipple-sparing mastectomies and immediate reconstruction with tissue expanders using total muscle coverage. About 1 week after surgery, she had used a heating pad on the left breast for discomfort, and sustained a full thickness burn. This was treated with Silvadene for 1 week, and then without significant improvement, she was taken to the op-

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age at Surgery (y)</th>
<th>Days from Surgery to Injury</th>
<th>Mechanism of Burn</th>
<th>Burn Thickness</th>
<th>Reconstructive Method</th>
<th>Received Radiation Therapy?</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>51.5</td>
<td>40</td>
<td>Electric heating pad</td>
<td>Superficial partial</td>
<td>Implant with acellular dermal matrix</td>
<td>Yes</td>
<td>Spontaneous resolution</td>
</tr>
<tr>
<td>2</td>
<td>44.9</td>
<td>6</td>
<td>Microwaveable heating pad</td>
<td>Full</td>
<td>Expander (total muscle coverage)</td>
<td>No</td>
<td>Excised and closed</td>
</tr>
<tr>
<td>3</td>
<td>41.3</td>
<td>48</td>
<td>Hot water bottle</td>
<td>Full</td>
<td>Implant with acellular dermal matrix</td>
<td>No</td>
<td>Excised, implant removed</td>
</tr>
<tr>
<td>4</td>
<td>51.2</td>
<td>2,201</td>
<td>Hand warmer</td>
<td>Full</td>
<td>Expander (total muscle coverage)–implant</td>
<td>Yes</td>
<td>Excised, latissimus flap performed, implant exchanged</td>
</tr>
<tr>
<td>5</td>
<td>41.3</td>
<td>347</td>
<td>Electric blanket</td>
<td>Full</td>
<td>Implant with acellular dermal matrix</td>
<td>Yes</td>
<td>Excised, implant removed</td>
</tr>
</tbody>
</table>

Fig. 1. Superficial burn to left breast reconstructed with implant.

Fig. 2. Full-thickness burns to breasts reconstructed with implants, one with implant exposure (A).
Fig. 3. Full thickness burn, salvaged with latissimus flap and implant exchange. A, 1 week postburn. B, 4 weeks postburn. C, 6 weeks after latissimus dorsi flap.

Table 2. Summary of Peer-reviewed Literature

<table>
<thead>
<tr>
<th>Reference</th>
<th>Year</th>
<th>Burn Mechanism</th>
<th>Burn Type</th>
<th>Reconstructive Method</th>
<th>Radiation Therapy</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxwell et al5</td>
<td>1989</td>
<td>Electric curlers</td>
<td>Full</td>
<td>Pedicled TRAM</td>
<td>n/a</td>
<td>Healed by secondary intention after debridement of necrotic tissue (2 patients required excisional scar revision)</td>
</tr>
<tr>
<td>Lejour⁶</td>
<td>1996</td>
<td>Sunburn</td>
<td>Full</td>
<td>Implant</td>
<td>Yes</td>
<td>Latissimus dorsi, implant exchange</td>
</tr>
<tr>
<td>Alexandrides et al⁷</td>
<td>1997</td>
<td>Sunburn</td>
<td>Full</td>
<td>Pedicled TRAM</td>
<td>n/a</td>
<td>Healed by secondary intention</td>
</tr>
<tr>
<td>Lejour⁶</td>
<td>1996</td>
<td>Prolonged contact with vessel of hot beverage</td>
<td>Full</td>
<td>Pedicled TRAM</td>
<td></td>
<td>Excision and full thickness skin graft</td>
</tr>
<tr>
<td>Beckenstein et al⁸</td>
<td>1997</td>
<td>Sunburn</td>
<td>Partial</td>
<td>Pedicled TRAM</td>
<td>n/a</td>
<td>Healed by secondary intention</td>
</tr>
<tr>
<td>Kay and McGeorge⁹</td>
<td>1997</td>
<td>Hair dryer</td>
<td>Full</td>
<td>Free TRAM</td>
<td>n/a</td>
<td>Healed by secondary intention</td>
</tr>
<tr>
<td>Davison and Mercer¹⁵</td>
<td>1997</td>
<td>Heating pad</td>
<td>Full</td>
<td>Pedicled TRAM</td>
<td>n/a</td>
<td>Split thickness skin graft</td>
</tr>
<tr>
<td>Davidson¹²</td>
<td>1998</td>
<td>Hot water bottle</td>
<td>Full</td>
<td>Pedicled TRAM</td>
<td></td>
<td>Healed by secondary intention</td>
</tr>
<tr>
<td>Davison¹²</td>
<td>1999</td>
<td>Prolonged contact with vessel of hot beverage</td>
<td>Full</td>
<td>Pedicled TRAM</td>
<td>n/a</td>
<td>Split thickness skin graft</td>
</tr>
<tr>
<td>Price et al¹³</td>
<td>1999</td>
<td>Hot water bottle</td>
<td>Full</td>
<td>Implant</td>
<td>Yes</td>
<td>Healed by secondary intention</td>
</tr>
<tr>
<td>Agarwal and Williams¹⁴</td>
<td>2002</td>
<td>Hot water bottle</td>
<td>Full</td>
<td>Pedicled latissimus dorsi-expander</td>
<td>Yes</td>
<td>Healed by secondary intention</td>
</tr>
<tr>
<td>Seth et al¹⁵</td>
<td>2008</td>
<td>Microwaved heating pad</td>
<td>Full</td>
<td>Implant</td>
<td>No</td>
<td>Implant removal, excision, split thickness skin graft</td>
</tr>
<tr>
<td>Delfino et al¹⁶</td>
<td>2007</td>
<td>Sunburn</td>
<td>Full</td>
<td>Pedicled TRAM</td>
<td>Yes</td>
<td>Healed by secondary intention</td>
</tr>
<tr>
<td>Mahajan et al¹⁷</td>
<td>2010</td>
<td>Sunlight through reading glasses</td>
<td>Full</td>
<td>Pedicled latissimus dorsi-expander</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Jabir et al¹⁸</td>
<td>2013</td>
<td>Hot water bottle</td>
<td>Full</td>
<td>DIEP</td>
<td>n/a</td>
<td>Split thickness skin graft</td>
</tr>
<tr>
<td>Gandolfi et al¹⁹</td>
<td>2014</td>
<td>Cigarette</td>
<td>Full</td>
<td>Expander-implant</td>
<td>Yes</td>
<td>Implant removal</td>
</tr>
</tbody>
</table>

*One patient in each report sustained a burn to the abdomen, but not the breast. These 2 patients are not included in the table.
†Likely same patient, 2 separate reports.

TRAM, transverse rectus abdominis myocutaneous flap; DIEP, Deep inferior epigastric perforator flap; n/a, not available.
In the operating room and the burn was excised and closed primarily. The expander was not exposed. Two months later, the patient successfully underwent exchange of tissue expanders for implants.

Patient 3 was 41 years old, and had right breast cancer, which was node positive. She underwent neoadjuvant chemotherapy, followed by bilateral nipple-sparing mastectomies and immediate reconstruction with tissue expanders and total muscle coverage. She subsequently had exchange of the tissue expanders for implants. Four years afterward, the patient placed hand warmers into her bra for a cold sensation in the implants, and she sustained a full thickness burn to the left breast. She was taken to the operating room for a latissimus flap and implant exchange.

Patient 4 was 51 years old, and had diabetes (type 2). She had prior left breast cancer and lumpectomy with radiation. She developed a recurrent cancer on the left, and underwent bilateral skin-sparing mastectomies and immediate reconstruction with tissue expanders with total muscle coverage. She subsequently had exchange of the tissue expanders for implants. Four years afterward, the patient placed hand warmers into her bra for a cold sensation in the implants, and she sustained a full thickness burn to the left breast. She was taken to the operating room for a latissimus flap and implant exchange.

Patient 5 was 41 years old, and was diagnosed with right breast cancer, node positive. She underwent neoadjuvant chemotherapy, followed by bilateral nipple-sparing mastectomies and immediate reconstruction with implants and acellular dermal matrix. She was diagnosed with metastatic cancer and underwent postoperative chemotherapy and radiation therapy to the right breast and multiple other sites. One year later, she used a heating blanket, and sustained a full thickness burn to the right breast with implant exposure. The implant was removed and the wound was closed primarily. One month later, the patient died of metastatic breast cancer.

A summary of the 15 articles of the PubMed search is shown in Table 2. Combining our patients with the patients from the review, a total of 40 patients sustained thermal injury to reconstructed breasts. The top 3 most common causes of thermal injury to reconstructed breasts were sunburn (26%), heating pad (21%), and hot water bottle (19%). The frequency of burn sources responsible for injury in the 39 patients is represented in Figure 4.

Most patients sustained full thickness burn injury (n = 27; 67.5%). The top 3 methods of reconstruction overall were pedicled TRAM (47%), implant or expander (35%), and pedicled latissimus dorsi flap (7%; Fig. 5). Fifteen patients (5 in our group and 10 in the peer-reviewed papers) had information regarding the receipt of radiation; of those, 11 patients had received radiation. Most burns healed by secondary intention (n = 24, 60%), 11 of whom had sustained partial thickness burns (45.8%). The proportion of patients requiring treatment with a surgical procedure was significantly higher in the group that sustained full thickness burns in comparison with partial thickness burns [n = 14, 51.9% (full) versus n = 1, 8.3% (partial); P = 0.0076]. Five patients had full or split thickness skin grafts, 6 had removal of the implant or expander (one required a split thickness skin graft in addition), 2 patients required salvage with latissimus dorsi flaps, and 2 had local flaps (local tissue rearrangement).

CONCLUSIONS

After breast reconstruction using any available method, patients are vulnerable to thermal injury to their recon-
structed breasts, because of loss of sensation.1 29 Although a subset of patients may have partial return of sensation after breast reconstruction, there is still insufficient sensation to provide protection from exposure to commonly utilized household thermal devices such as heating pads and hot water bottles. In addition, patients are not routinely made aware of the perils of these devices on their reconstructed breasts, and it may be helpful to furnish patients with a list of such devices to avoid.

Once a patient has sustained a thermal injury to a reconstructed breast, immediate evaluation and treatment is necessary. Partial thickness burns can often be treated with local wound care and close observation. Full thickness burns are likely to require surgery (either immediately or in a delayed fashion) to remove an exposed implant or expander, and excise a full thickness burn. These patients may require split or full thickness skin grafts or a myocutaneous flap for salvage.

Burn injuries to reconstructed breasts may occur more frequently in colder climates. As such, we have added an item to our postoperative instructions for patients explicitly stating to avoid the use of warming or cooling devices on reconstructed breasts. We counsel patients to avoid direct sun exposure to reconstructed breasts, and it may be helpful to furnish patients with a list of such devices to avoid.

Burn injuries to reconstructed breasts may occur more frequently in colder climates. As such, we have added an item to our postoperative instructions for patients explicitly stating to avoid the use of warming or cooling devices on reconstructed breasts. We counsel patients to avoid direct sun exposure to reconstructed breasts in addition. We have extended these instructions to patients that have undergone free tissue transfer for reconstruction of other body regions, such as the scalp or extremities.28 Patients should be notified that these risks are not just in the immediate postoperative period, and in fact do last for their lifetime.

\textbf{REFERENCES}

\textbf{Heather R. Faulkner, MD, MPH}
Department of Surgery/Division of Plastic and Reconstructive Surgery
Massachusetts General Hospital/Harvard Medical School
104 E d i c o t t Street, Suite 200
Danvers, MA 01923
E-mail: hrfaulkner@partners.org