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“Threshold-crossing”: A Useful Way to Establish
the Counterfactual in Clinical Trials?
H-G Eichler1, B Bloechl-Daum2, P Bauer3, F Bretz4, J Brown5, LV Hampson6, P Honig7, M Krams8,
H Leufkens9, R Lim10, MM Lumpkin11, MJ Murphy12, F Pignatti1, M Posch3, S Schneeweiss13,
M Trusheim14 and F Koenig3

A central question in the assessment of benefit/harm of new treatments is: how does the average outcome on the new
treatment (the factual) compare to the average outcome had patients received no treatment or a different treatment
known to be effective (the counterfactual)? Randomized controlled trials (RCTs) are the standard for comparing the factual
with the counterfactual. Recent developments necessitate and enable a new way of determining the counterfactual for
some new medicines. For select situations, we propose a new framework for evidence generation, which we call
“threshold-crossing.” This framework leverages the wealth of information that is becoming available from completed RCTs
and from real world data sources. Relying on formalized procedures, information gleaned from these data is used to esti-
mate the counterfactual, enabling efficacy assessment of new drugs. We propose future (research) activities to enable
“threshold-crossing” for carefully selected products and indications in which RCTs are not feasible.

What is the counterfactual?
The human condition is an uncontrolled experiment. Socrates
once advised a young man who asked whether he should get mar-
ried: “Do as you wish, you will likely regret, no matter what you
choose.” Why would the sage expect his friend to have postdeci-
sion blues? Whatever road the young man takes, he would cer-
tainly experience the consequences of his action (the factual) but
there is no way he could learn the—possibly superior—
consequences of the road not taken (the counterfactual). One
might argue that the young man could still explore the counter-
factual by marrying later in life or getting a divorce. However,
this argument is flawed because the comparison between an early-
in-life event with a late-in-life event is inadmissible; in modern
research terms, the comparison is confounded. Alas, we shall rare-
ly know the counterfactuals in our lives, the road not taken.
The assessment of the causal effects (benefits and harms) of

any treatment revolves around the same question: how does the
outcome of (test) treatment (the factual) compare to “what
would have happened [if patients] had not received the test
treatment or if they had received a different treatment known

to be effective”1 (the counterfactual)? The question is asked by
clinicians treating individual patients and by population-level
decision-makers, including drug developers, regulators, health
technology assessment (HTA) bodies, and payers of health care.
However, the counterfactual outcomes of individual patients
can rarely be observed. Decision-makers must instead focus on
comparing average population counterfactual outcomes between
different interventions (which are estimable) to deduce causal
effects on a population (see Table 12–11 for review of the con-
cept of the counterfactual and how it underpins the definition
of a causal treatment effect).
How does the concept of the counterfactual underpin the defi-

nition of a causal treatment effect? Here, we review the current
ways of estimating the counterfactual to enable the assessment of
causal treatment effects. We reflect on how scientific and societal
developments necessitate and enable a new way of determining
the counterfactual for some new medicines. We then propose a
new framework for evidence generation, which we will refer to as
“threshold-crossing.” Finally, we propose future research and oth-
er activities to enable a move toward threshold-crossing for
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Table 1 Summary of key components relevant to the concept of the counterfactual and how it underpins the definition of a causal
treatment effect

Term/concept Description

Counterfactual Suppose a patient may receive one of two treatments: an experimental drug E or a control C.
Then patient i has two potential outcomes: their response if they receive treatment E, denoted
by Yi(Ti 5 E), and their response if they receive treatment C, Yi(Ti 5 C). Only the outcome
corresponding to the treatment actually received will be observed and, thus be factual, the
other will remain counterfactual.

Causal effect We often ask what is the effect on outcome Y of taking drug E (as opposed to drug C) keeping
all other things equal?

Individual causal effect The causal effect of drug E on individual i is measured by Yi(Ti 5 E) – Yi(Ti 5 C). However,
individual causal effects are not identifiable because only one of a patient’s potential
outcomes can ever be observed (the factual but not the counterfactual).

Average causal effect The average causal effect of drug E on outcome Y can be expressed as the difference between
the mean counterfactual outcome that would be observed if all population members received
treatment E and the mean outcome that would be observed if everyone received C.

RCT estimating causal
effects

Under certain assumptions, average causal effects can be estimated from RCTs. Randomly
assigning treatments to patients ensures that (at least under repeated sampling) treatment
groups will be exchangeable in the sense that pairs of counterfactual outcomes (Yi(Ti 5 E),
Yi(Ti 5 C)) will be distributed in the same way across patients in groups E and C. This implies
that the average observed outcome in group C will equal the average counterfactual outcome
that would be observed if all patients in group E had received drug C instead, and vice versa.
Thus, the average causal effect of drug E can be estimated by comparing average outcomes
across treatment arms.

Causation vs. association Association is the phenomenon whereby two occurrences tend to be seen together, for
example, higher response rates among contemporary patients on drug E than among historical
controls. However, the risk of confounding means that association does not imply
causation. Instead, the higher response rates on drug E may be attributable to a common
cause linking both the treatment received and response. Examples include an imbalance in
the baseline prognostic characteristics of patients, which may be a result of a drift in disease
detection rates or improvements in patient management, or by fundamentally different patient
populations being included in the studies.

Bias The estimate of the average causal effect of drug E obtained from a direct comparison of
average outcomes among contemporary experimental patients and historical controls will be
biased if these groups are not exchangeable. Departures from exchangeability may arise due
to a myriad of reasons including2: (a) confounding; (b) selection bias if the investigator
intentionally cherry picks the historical control group to make the new treatment appear more
effective than it really is; (c) external biases arising, for example, from the well-known
efficacy-effectiveness gap3 if the historical cohort is taken from RWD assessing the
effectiveness of control under the usual circumstances of health care practice, whereas the
single-arm trial will evaluate the efficacy of drug E in a controlled and idealized setting; and
(d) internal biases inherent in the single-arm trial due to a lack of blinding or allocation
concealment.4,5

Historical controls for
estimating average causal
effects

By comparing the outcome of a single-arm trial with historical controls, we can estimate the
average causal effect among contemporary patients of receiving drug E as opposed to drug C.
Below, we outline a selection of techniques that could be used to control for confounding
when comparing outcomes from a single-arm trial with historical controls.

Multivariable regression Obtain an estimate of the causal effect by fitting a regression model to the historical and
contemporary data adjusting for all confounders.

Inverse probability of
treatment weighting6,7

Create exchangeable treatment groups by weighting each individual by their fitted probability
of receiving the treatment they actually received given their baseline covariates. Estimate
causal effects by fitting models using weighted least squares.

Propensity scores8 Conditional probability of an individual receiving drug E given their baseline covariates.
Stratification9 or inverse probability weighting7 by estimated propensity scores can be used to
deduce causal effects. However, using scores to create balanced treatment groups through
patient matching can increase imbalance and bias.10

Instrumental variables11 Causal effects are identifiable if one can find a strong “instrument” associated with the
outcome only through its association with the treatment received.

RCTs, randomized controlled trials; RWD, real world data.
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selected products and indications in which randomized con-
trolled trials (RCTs) are not feasible.
For ease of presentation, throughout this paper we will refer to

the average outcome on placebo/control corresponding to a
group of patients who received a new experimental treatment
simply as “the counterfactual.” For a comprehensive review of
this topic, the reader is referred to Hern�an and Robins.12

The ascendancy of the RCT
The search for the counterfactual in medicine changed irrevers-
ibly with the introduction of the RCT. The concept of a concur-
rent control group had arisen earlier in history13 but the RCT
era is generally considered14 to have begun in 1948 with the icon-
ic RCT of streptomycin for pulmonary tuberculosis.15

The idea of the RCT was revolutionary in that it combined
three important concepts into one methodology; each of which
relates to one of the letters in the “R-C-T” acronym: (a) the rec-
ognition that the counterfactual for individual patients may never
be known but the average counterfactual for groups of similar
patients can be understood. Hence, the need to compare group-
to-group averages rather than one patient to the next.16 This is
the “T” in RCT. (Exceptions to this rule are clinical conditions
that lend themselves to n-of-1 crossover trials; this study type will
not be further considered here.) (b) The concept that the coun-
terfactual for a group of patients treated with an (experimental)
therapy can be determined by observing the outcome of interest
in a control group that will remain untreated/receive placebo or
be treated with another therapy. This relates to the “C” in RCT.
(c) The recognition that the comparison between the experimen-
tal and the control groups needs to be unbiased and unconfound-
ed in order to be meaningful (i.e., one needs to compare
like-with-like).13 This goal is best achieved by randomization of
preselected patients into the experimental (E) and control (C)
groups. The average causal effect of drug E can be estimated by
comparing average outcomes across treatment arms (see Table
12–11 for more details). If bias/confounding is minimized by ran-
domization (and ideally combined with double-blinding), then
association can be taken to imply causation, that is, differences
between groups in outcome measures can be inferred to be the
result of differences in treatment received, not differences in
characteristics at baseline or other external influences. This is the
“R” in RCT.
The (double-blind) RCT became the standard17 for demon-

strating efficacy in the context of marketing authorizations and
reimbursement decisions on drugs: a clinically relevant and statis-
tically significant difference between an experimental group and a
concurrent comparator group has to be shown. Thus, “difference
showing” in an RCT became almost synonymous with estimation
of the counterfactual and became the basis of the evidence-based
medicine (EBM) movement.18

However, there have always been scenarios in which the coun-
terfactual is sufficiently well understood to obviate the need for
an RCT. Such cases are often referred to as “parachute cases,”
based on a satirical essay19 that pointed out that the use of para-
chutes has never been subject to an RCT; therefore, according to
EBM standards, the efficacy of parachutes should not be trusted

even though we know very well what happens if you jump from
an airplane without a parachute.
Here, we define a “parachute case” as a situation in which the

factual and the counterfactual are sufficiently well understood
and in which the difference between the two is likely to be suffi-
ciently large to reasonably exclude chance or bias as an
explanation.
We submit that, in the future, assessors of medicines will often

have to ask (a) when is the counterfactual sufficiently clear to
allow robust inferences about the causal effects of a new treat-
ment (the factual) when an RCT is not feasible? and/or (b) how
can we make the counterfactual sufficiently clear, not just for
obvious parachute cases?

Current routes to estimating the counterfactual
We summarize options available for estimating the counterfactu-
al in an order of decreasing robustness but increasing strength of
required assumptions.
The (double-blind) superiority showing RCT is the most wide-

ly used study type in the clinical development of new medicines20

and generally considered to have the highest level of internal
validity.1 With a conventional (frequentist) superiority showing
RCT, any preexisting knowledge about the counterfactual is
deliberately excluded from the statistical analysis, as only analyses
based on the randomization will inherit the benefits of randomi-
zation and allow causation to be deduced from association. (A
special case of the “difference showing” paradigm is the noninfer-
iority [NI] RCT, which is not considered here.)
In a historically controlled trial, the outcome of a group of

patients receiving the test treatment is compared to that of a
defined group of patients external to the study, which serves as
the counterfactual.
With uncontrolled trials, background knowledge (e.g., from the

scientific literature) is deemed sufficiently clear to allow inferences
about new treatments in the absence of any defined control group,
the assumption of natural disease progression serves as the counter-
factual. Although ICH E10 expresses caveats about such designs
that are based on assumptions that often cannot be verified,1

uncontrolled trials have been in special circumstances the basis of
marketing authorizations for a sizable fraction of all of medicines’
indications recently authorized.20,21

Some may take issue with marketing authorizations not based
on the “top level” difference showing RCT. However, this is not
evidence of a low standard being set by regulators but is a sign of
a changing reality. We discuss these changes below and argue that
the fraction of new medicines authorized based on methodologies
other than difference showing RCTs is set to grow in the future.

What has changed since the 1948 Streptomycin trial?
Addressing the “C” and “T”
In 1948, the frequentist RCT was not only the best but also, in
most instances, the only way to estimate the counterfactual in the
context of treatment evaluations. Moreover, an RCT could be
performed in the majority of new drug development programs.
Much has changed since 1948. Some developments make the

conventional RCT less feasible or relevant in a growing number

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 100 NUMBER 6 | DECEMBER 2016 701



of development programs and necessitate alternative methods of
ascertaining the counterfactual (demand side).

Demand side
Ethical concerns. Ethical concerns come to the fore in both epi-
demic and nonepidemic situations of high unmet need in which
the natural history of the disease presents high levels of morbidity
and/or mortality. Promising results from animal studies,
pharmacokinetic/pharmacodynamic experiments, or other find-
ings can create a perceived loss of equipoise posing ethical dilem-
mas for randomization22 and, often, an unwillingness of patients
to participate in trials in which they will not receive the experi-
mental medication. In these situations, patients’ tolerance for the
risk of the unknowns about the product (in terms of both efficacy
and safety) is often heightened by the known high morbidity and/
or mortality of their disease. Simon et al.23 identified a number of
scenarios in oncology in which it may not be possible to conduct
an RCT at all. In these situations, having an alternative trial
design to an RCT that, nonetheless, provides interpretable data
would be an improvement over current uncontrolled trials and
numerous n-of-1 compassionate care cases.

The rise of one-time interventions with long-term outcomes. Over
the next decade, a growing fraction of new medicinal products
will likely be gene therapies, cell therapies, or tissue engineered
products.24,25 These products come with their own challenges in
regard of evidence generation: some of them are expected to be
administered only once in a lifetime but the effect size can only
be ascertained after prolonged periods.
In some cases, ethical considerations, as discussed above, may

preclude RCTs due to the absence of a comparator treatment,
perceived loss of equipoise, and high-unmet need. In other
instances, an RCT with an untreated control group may be
acceptable, but blinding of patients and clinicians in an RCT is
not a realistic option. This may be a result of the need for ancil-
lary interventions, such as myeloablative conditioning26 or inva-
sive tissue biopsies.27 In such unblinded long-term RCTs,
dropout of patients assigned to the control arm (and crossover to
the experimental group, if allowed by the protocol) is expected to
be high and will threaten the reliability of results.23 An example
of the difficulties of conducting RCTs for such therapies was
Holoclar, the first cell-based therapy authorized in the EU.27

Smaller treatment-eligible populations. A growing number of drug
development programs are targeted toward small populations,28

diminishing the number of patients available for clinical drug
testing within a reasonable time frame. Unsurprisingly, a large
fraction of recently approved drugs for rare conditions were not
studied in RCTs.29

The trend toward the ever smaller treatment-eligible popula-
tions will be accelerated by the quest for precision/stratified med-
icine.23 Comprehensive molecular diagnostic profiling of patients
will enable “treatment matching” pathways, in which an individ-
ual patient’s genomic/phenotypic profile can be matched to a
specific treatment. This may yield larger effect sizes but further

reduce the practicalities of conducting conventionally powered
RCTs in a reasonable timeframe.30

Personalized treatment combinations. There is growing realization
that single drug interventions will not be successful in many
pathologies.31–34 Most patients may need some form of combina-
tion therapy that will be determined individually, based on panels
of clinical and biomarker predictors.
Klauschen et al.32 demonstrated that often tens of thousands

of patients would need to be screened to enable a reasonably
powered RCT of a given combination of, say, three mutation-
directed treatments. It follows that with increasing combinatorial
complexity, difference showing against a matched, concurrent
control group will become impossible. An alternative may be to
compare a group of patients with a combination of defined bio-
markers (e.g., mutations) to unselected patients receiving stan-
dard of care. Although technically feasible, such a comparison is
no longer like-with-like and is flawed if it cannot be ruled out
that the predictive markers are not also prognostic.

Interindividual variance: shift from noise to the focus of inter-

est. The trend toward precision medicine and personalized com-
binations dictates that another aspect of evidence generation
needs to be reconsidered. We recall that the parallel-group RCT
focuses on group-to-group statistical comparisons; this is the “T”
in RCT. Under this paradigm, interindividual variance must be
considered “noise.” Because a high level of noise will reduce the
signal-to-noise ratio, it follows that variance should be reduced as
much as possible to minimize the type II error rate while retain-
ing manageable sample sizes. Yet, as we better understand the
biological basis of variance and its implications for therapy selec-
tion (e.g., because of multiple different sets of mutations), the
very notion of variance changes, from being a nuisance to be min-
imized, variance becomes the focus of research. The research
question changes radically from: “Is A better than B in a defined
group of patients?” to: “Given that compound A has been con-
vincingly shown to modulate target X (i.e., it has shown pharma-
codynamic activity), (how) can we identify patients who will
benefit from A, rather than B?” Some would argue that the ques-
tion could be addressed by way of an RCT subgroup analysis.
This may be true for binary or high frequency predictive markers
but any realistic RCTs will be hopelessly underpowered to
address the combinatorial complexity presented by large numbers
of low frequency markers. Klauschen et al.32 argue “that the
requirement of the classical clinical trials that patients should be
similar and groups should be homogeneous [. . .] is irreconcilable
with the molecular diversity and diverse therapeutic options of
the future personalized medicine approaches [. . .].” It is likely
that there will be shifts in the judgment of the scientific commu-
nity whether RCTs are the appropriate standard for development
of drugs for diseases with high patient heterogeneity, once the big
data concept has effectively entered practice.
To summarize, the scenarios described above converge to make

the RCT less practical in a small, but growing fraction of drug
development programs; alternative methodologies are needed.
Fortunately, promising developments on the “supply side” may

          

702 VOLUME 100 NUMBER 6 | DECEMBER 2016 | www.wileyonlinelibrary/cpt



enable ever more accurate and precise ascertainment of the coun-
terfactual as an alternative to the RCT.

Supply side
Availability of patient-level RCT data. The recent decade saw lively
debate about public availability and sharing of data from com-
pleted RCTs. As a result, the growing availability to the research
community of individual patient level data from RCTs has
already been put to use35 and offers scientists a novel opportunity
to understand the counterfactual in a given clinical condition.
Several pharmaceutical companies have set up procedures to
enable researchers to access the patient level data from completed
RCTs.36,37

Arguably, the largest repository of accessible RCT data on can-
cers is Project Data Sphere (PDS), an independent collaborative
initiative that collects and makes available in analyzable format
patient-level, comparator arm, and phase III cancer data. All data
to be shared have been deidentified to ensure patient privacy.
PDS aims for 100,000 patients in the near future, a catalyst to
foster an open ecosystem in medical research. An illustrative
example of the usefulness of PDS data was provided by the
reanalysis of data from the control arms of two phase III RCTs,
comparing survival and toxicity of two different drug regimens.38

The high granularity of the datasets allowed the researchers to
control for a large range of covariates.
A similar initiative is the UK-based Virtual International

Stroke Trials Archive (VISTA) that currently holds stroke trial
data on >82,000 patients.39

Data from PDS, VISTA, and a growing number of other sour-
ces offer the advantage of being high quality and, frequently, hav-
ing been vetted by regulatory agencies in the recent past. The
datasets are also often large (i.e., providing for precision of esti-
mates) and have information on a substantial number of covari-
ates (i.e., providing in-depth understanding of the patient
population). As they originate from RCTs, the data may not be
of high external validity but can be useful to provide the counter-
factual to a cohort of patients treated with an experimental thera-
py (i.e., a virtual control group).

Availability of real world data. The quantity of electronic (e) medi-
cal data is expanding rapidly. E-data come from many different
healthcare environments and from a range of sources, including
administrative insurance claims data, e-health records, and dedi-
cated registries. There are practical and methodologic challenges
in using real world data (RWD) for secondary analyses; these
relate to patient consent, ownership of data, protection of per-
sonal information, and biases introduced as part of the data-
capture process.
Nonetheless, there are now initiatives with sufficient time-in-

use to demonstrate the potential of querying RWD to answer
both effectiveness and safety questions about particular treat-
ments. Both distributed (e.g., Sentinel, ENCePP) and centralized
data systems (e.g., Optum Labs) have been useful for rapidly
exploiting the wealth of information that, at present, remains
largely hidden in numerous isolated and scattered healthcare
environments.

Similar to extant patient-level RCT data, this information can
be used to construct cohorts of patients satisfying predefined
selection criteria to ascertain their outcomes over time and natu-
ral history of disease, that is to estimate the counterfactual for a
given treatment scenario. Advantages in using RWD to estimate
the counterfactual include: (i) high external validity, in which the
data are taken not from an artificial RCT situation but from dai-
ly clinical practice (note that this can also increase the chance of
bias when comparing RWD to data generated in an experimental
setting); (ii) multisourced information, in which the data can be
gleaned simultaneously from different healthcare environments
providing an opportunity to assess reproducibility; (iii) speed and
relevance, in which the turnaround time from formulating the
research question to obtaining results from RWD can be as short
as a few months. This is of importance as the proximity in time
between estimating the counterfactual and the effect of the treat-
ment under study can minimize the distorting influence of
“drift.”
On the downside, RWD are usually messier than RCT data;

there is often limited data standardization due to differently
defined variables, time points for measurements, exposure and
event definition, different coding systems, missing data, and lack
of information on, for example, patient-reported outcomes.
RWD can even be linked to tissue samples. For example, the

Life Raft Group (LRG) has set up a registry matching clinical
data of patients with gastrointestinal stromal tumors (GISTs) to
tissue samples, donated by patients for the explicit purpose of
benefiting all GIST research laboratories worldwide.40 The Euro-
pean Organization for Research and Treatment of Cancer
(EORTC) has successfully set up similar initiatives for a broader
spectrum of cancers.41 Observatoire français de la scl�erose en pla-
ques (OFSEP), a French registry of more than 40,000 patients
with multiple sclerosis, combines clinical data with biological sam-
ples and imaging data. Linking archived biologic samples to either
RCT data or RWD enables the retrospective determination of
(genomic) patient markers long after an observation was made
and, with appropriate consent, even after a patient has died.
We consider individual level RCT data and RWD as comple-

mentary sources of information that may inform estimation of
the counterfactual in a given therapeutic situation. In clinical
conditions for which there are both extant RCT data and RWD,
the use of both sources can enable data triangulation; informa-
tion is collected using a variety of methods, with a view to provid-
ing more robust estimates than would be possible based on only
one single data type.
The European Medical Information Framework (EMIF) ini-

tiative integrates large-scale RWD records with smaller scale, in-
depth translational medicine boutique studies, creating an
integrated medical information framework enabling a model-
based approach to answering research questions.42

Progress in methods to analyze non-RCT studies
We conclude that the “C” in RCT—establishing a control group
to estimate the counterfactual—can now be achieved by other
means than the concurrent RCT methodology. However, having
“some” information about the counterfactual does not in itself
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assure that like is compared with like. We acknowledge that the
“R”—randomization to minimize confounding and bias—is
more challenging to replace for the following reasons.
When using historical controls from RWD or external RCT

data to estimate the counterfactual to the findings from a cohort
of patients treated with an experimental therapy, bias could be
caused by confounding (for example, by indication, severity, or
prognosis) or a raft of other data issues that threaten the validity
of nonrandomized comparisons (see Table 1).2–11 However,
recent methodological developments in the field of epidemiology
and more broadly RWD analyses might help address these issues.
Potentially relevant approaches include methods that exploit the
concepts of causal inference12 to control for confounding (for
example, multivariable regression model adjusting for confound-
ers,43,44 weighting or stratifying analyses by propensity scores
derived from high dimensional covariate data6–9) or using
between-provider variation in prescribing preference as an instru-
ment in an instrumental variable analysis11 (for more details on
statistical methods see Table 1).2–11

These methods may be useful as sensitivity analyses to the pri-
mary direct comparison of average outcomes among contempo-
rary and historical patients. However, it should be noted that
some causal approaches rely on strong, untestable assumptions
and can be highly sensitive to departures from these. Thus, when
interpreting results, the analyst must bear in mind that the differ-
ences between the primary and causal sensitivity analyses may be
due to departures from assumptions rather than confounding.
Nonetheless, these and other methodological developments as

well as improvements in quality and interoperability of data may
bring the research community closer to accepting the validity of
these improved historical controls.

Design and analysis of Bayesian RCTs
Bayesian RCTs begin with a thorough evaluation of what is
understood about trial treatments, once new data become avail-
able, this prior understanding is updated using Bayes theorem to
make posterior inferences about treatment effects.45,46 Individual
patient data from completed RCTs and RWD provide a rich
source of information that can be mined to formulate prior dis-
tributions in Bayesian RCTs. The increasing availability of these
data has led several authors47–49 to propose the concept of
“borrowing strength” from existing patient-level or summary data
to augment contemporary information on the control arm (i.e.,
the counterfactual) of an RCT. “Borrowing strength” is most eas-
ily performed in a Bayesian framework and could allow for a
more efficient allocation of trial resources to the test treatment
because fewer patients need to be randomized to the control
group. Some companies may use Bayesian techniques to incorpo-
rate historical data into phase II studies and to inform internal
decision-making regarding whether to initiate phase III trials.50

However, we are unaware of any drug products authorized based
on pivotal RCTs with borrowed data. The approach may gain
more traction in the future, as data from past clinical trials are
shared more widely. We consider the concept of borrowing
strength as a precursor to the threshold approach.

Threshold-crossing, description of the approach
A new framework for evidence generation will be required for
select drug development programs to address the challenges
described above; we propose an approach we call “threshold-
crossing.”
The concept capitalizes on the growing availability of pertinent

patient data and is based on an idea that is cursorily mentioned,
but not further elaborated on, in the ICH E10 guideline: “It may
be tempting in exceptional cases to initiate an externally con-
trolled trial, hoping for a convincingly dramatic effect, with a
prompt switch to randomized trials if this does not materialize.”1

Our ideas are, in part, building on what was termed a multi-
stage approach, proposed for Ebola treatments by Cooper
et al.51 Elements of the threshold-crossing concept have been
proposed and used in the context of phase II oncology studies
(e.g., the Simon design for phase II).52,53 Many single-arm stud-
ies in oncology have a prespecified response threshold. They are
similar in spirit as both are single-arm trials and are looking to
detect large effect sizes. In both cases, even in the light of poten-
tial biases, the evidence-supporting efficacy of the drug should
be unequivocal. There are also similarities between our
proposed concept and the establishment of a NI margin in the
context of NI trials. In such trials, an NI margin has to be
predetermined before the trials starts, ideally derived from a
systematic review of preexisting studies, usually placebo-
controlled RCTs.
Threshold-crossing involves upfront definition of an appropri-

ate estimand defining in detail what needs to be estimated to
address the scientific question of interest, based on the
treatment-eligible population, the variable of interest, and the
measure of intervention effect.54–57 Subsequently, the counterfac-
tual is determined in a transparent way from existing RWD and/
or past RCT data (e.g., some performance measure in a defined
population that had been on currently available treatment) and
an efficacy threshold higher than the estimate of the counterfac-
tual is set and agreed by relevant decision-makers alongside a
detailed study protocol and analysis plan. Only then will patients
who conform to the predefined treatment eligibility criteria be
enrolled in a single arm study. In case the threshold is crossed,
efficacy is judged to be established. If the result is inconclusive,
the product is channeled to a conventional RCT (where practi-
cal) or to a second single arm study (in case an RCT cannot be
performed). A poor result will lead to prompt termination of the
product development.
Note that our discussion is focused on demonstration of effica-

cy. Applying the threshold-crossing concept to demonstration of
safety will be more challenging because safety is usually not mea-
sured by a single variable.
A flow diagram of the threshold-crossing process is shown in

Figure 1. In the following, we describe the individual steps in
more detail.

Step 1. Definition of an appropriate estimand. The first step in a
threshold-crossing trial is a precise definition of the estimand,
starting with the treatment-eligible population. Normally, this
will be the population described by phenotypic and genotypic
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criteria that is expected to derive the greatest clinical benefit from
the investigational treatment. There is debate whether clinical
trial populations should be narrowly or broadly defined. These
considerations apply equally to conventional RCTs and to
threshold-crossing trials and will not be further elaborated on
here. However, it bears emphasizing that selection criteria need
to be sufficiently precise to allow for unequivocal definition of
the historical control cohort and the contemporary intervention
cohort (see below).
Precise definition of the variable of interest is essential to agree

on what is measured and how. For example, a given clinical out-
come could be based on a range of clinical scales, assessed at vari-
ous time points, and expressed as relative or absolute difference,
or by way of responder definition. Hence, an upfront agreement
on a precise definition of estimand is critical to avoid post-hoc
cherry picking.
Finally, the measure of intervention effect quantifies the treat-

ment benefit in terms of the variable(s) of interest. It should
adjust for covariates that are relevant for describing the treatment
benefit. It should also address, in a way that is consistent with the
scientific question of interest, the impact of treatment-related events
occurring after initiation of study treatment, such as noncompliance,
discontinuation of intervention, treatment switching, or use of res-
cue medication.

For additional considerations on how to select estimands in
clinical practice, we refer to the forthcoming addendum of the
ICH E9 guidance.55

Step 2. Agreement on rules for estimation of the counterfactual and

on the overall statistical analysis plan. Rules for estimation of the
counterfactual for the chosen estimand have to be established
before selection of the historical cohort. This step is analogous to
drafting the statistical analysis plan of an RCT, and should be
pre-agreed with regulators and other decision-makers, where
applicable. The statistical analysis plan should also provide details
of the transition to subsequent steps (as described under step 7
below).

Step 3. Selection of historical control cohort and estimation of the

counterfactual. Following the definition of selection criteria
(step 1); one or more suitable control cohorts are identified from
RWD, existing RCT data, or a combination of both. Normally,
patients in the control cohort will have received standard of care,
best supportive care or similar, perhaps with add-on placebo
administration if the control cohort is extracted from past RCT
control arms. Sufficient and robust information must be available
from the data sources to enable the estimation of the average
counterfactual outcome for the prospective single-arm trial.

Figure 1 Flow diagram of a threshold crossing trial. The top panel shows the initial, linear sequence of steps, and the bottom panel describes the adap-
tive follow-up after completion of the initial single-arm trial. RCT, randomized controlled trial.
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This step is susceptible to bias. Cherry picking of a “favorable”
historical control group (i.e., selection of controls in which the
outcome/effect of comparator treatment is artificially poor) is a
threat to the internal validity of trial results. As selection bias can-
not be controlled for at the analysis stage, safeguards should be
put in place at the design stage to minimize the risk of its occur-
rence. (i) Historical control groups should be identified from a
systematic, transparent, and reproducible review of the existing
evidence following a prespecified protocol. Methods and guide-
lines for the conduct and reporting of systematic reviews devel-
oped in the context of meta-analyses may be applicable.58,59

(ii) Wherever possible, more than one control cohort should be
selected from different sources. Multiple sources will provide
more heterogeneity of patient populations and treatment settings
and enable researchers and assessors to perform sensitivity analy-
sis of the counterfactual. (iii) The control group(s) must be estab-
lished before patients are enrolled in the prospective, single-arm
trial of the experimental treatment, and agreement be sought
with regulators and other decision-makers.
After the control cohort(s) have been established, the counter-

factual and measures of imprecision are estimated by quantifying
the historical/external information, according to the overall anal-
ysis plan (step 2), along with sensitivity analyses, where feasible.

Step 4. Setting the threshold. Once the counterfactual has been
estimated, a threshold value is determined based on the historical
data and agreed with regulators and other decision-makers. The
threshold will be the benchmark for the primary analysis, for
example, if the (confidence bounds of the) result from the single-
arm trial (the factual) exceeds the threshold, the treatment will
be deemed efficacious.
The motivation for prespecifying the threshold is to avoid the

temptation of setting it once the results from the interventional
part of the study are known. Thus, the threshold is determined
only by historical control data and expert knowledge. If new
external control data become available after initiating the single-
arm trial, this information should still be used for further adjust-
ed sensitivity analyses, for example, to assess whether there is a
drift in the pattern of response on control.
In addition to the efficacy threshold, a sponsor may wish to

also set a futility threshold.52 If the result from the single-arm tri-
al falls below the threshold, the sponsor would terminate the
drug development program.

Step 5. Conduct of single-arm trial. The interventional phase of a
threshold-crossing trial is no different from the conduct of a con-
ventional single-arm trial. All patients receive the experimental
treatment according to trial protocol. Care must be taken that
the experimental group is selected according to the same criteria
as the historical control group(s). Concealed allocation is not
possible in a single-arm trial, making it susceptible to several sour-
ces of bias (e.g., assessment bias). Although this concern cannot
be entirely eliminated, some forms of bias can be mitigated by,
for example, blinding assessors to endpoints, such as radiologists
assessing tumor response rates.

Step 6. Sensitivity analyses to compare historical controls and con-

temporary patients in the single-arm trial. Ensuring that patients
in the contemporary intervention and historical control groups
are recruited on the basis of identical selection criteria will help
reduce bias but is no guarantee that the groups will be comparable.
In addition to the primary analysis, therefore, further sensitivity
analyses should be performed to verify the robustness of conclu-
sions and ensure comparability. However, many methods rely on
untestable assumptions. The impact of these assumptions on the
validity of the final results as well as the impact of unknown and/
or unmeasured confounders should be acknowledged.

Step 7. Transition to subsequent steps. Subsequent steps will be
determined by the outcome and in accordance with the pre-
agreed action plan (Figure 1). In case the efficacy threshold is
successfully crossed, the product is deemed effective. In the
absence of prohibitive risks, it can be granted an initial license
and, potentially, reimbursement—usually with a pre-agreed plan
for continuing on-market evidence generation. In case the effica-
cy result is below a (predefined) futility threshold, the product is
deemed ineffective and development is terminated. When the
result falls between the two thresholds, the product is considered
promising51 and the subsequent step will depend on practical
considerations: a conventional RCT is performed where practi-
cal. Any ethical concerns, as described above, should at this stage
be less of an obstacle to performing a placebo-controlled RCT
because the result of the single-arm trial make a dramatic effect
of the experimental treatment unlikely, moving expectations clos-
er to clinical equipoise. However, in some clinical scenarios, an
RCT would not be practical, in which case, the trial will be rolled
over into a second single-arm trial, based on an agreed protocol
and analysis plan.51

Should the threshold be set high or low?
As discussed above, after estimation of the counterfactual, an effi-
cacy threshold will need to be set some distance above this point
estimate (step 4, above). It is evident that the distance drives the
risk of false conclusions from the trial results: a large distance
between the estimate and the threshold (that is, a high hurdle)
will entail a small risk of a false-positive conclusion (type I error),
but a high risk of a false-negative conclusion (type II error) about
the drug’s efficacy. Conversely, a low hurdle will entail a high
false-positive but low false-negative risk. Patients and other stake-
holders, such as healthcare payers, will pay a price for either false
conclusion.
It is unlikely that there will emerge any hard and fast rules for

this critical and potentially controversial step in the threshold
approach. However, we submit that the distance between the
counterfactual estimate and the efficacy threshold should be
determined based on two sets of considerations:

(1) Methodological considerations
Perceived accuracy and precision of the counterfactual: the lev-

el of confidence in the validity of the counterfactual estimate will
be directly related to (i) the quality and completeness of the data-
set(s) from which it was derived, (ii) the total number of patients
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on whose data the estimate was based, (iii) the number of sources
that were available for the exercise, and (iv) the degree of agree-
ment of the estimates derived from the different sources. In turn,
the degree of confidence in the robustness of the positive result
of the single-arm trial will be inversely related to the distance
between the counterfactual estimate and the efficacy threshold
that decision-makers might be willing to accept.
Potential for bias: even a high level of confidence in the coun-

terfactual estimate is not, in itself, sufficient to ensure credibility
of the threshold-crossing trial. A second sine qua non is compara-
bility of the counterfactual to the factual derived from the single-
arm interventional cohort. To enable assessors of the study to
conclude that indeed “like-with-like” was compared, it will be
necessary to understand as many relevant covariates (and their
distribution in the historical control and contemporary interven-
tion cohorts) as possible, and to perform additional adjusted sen-
sitivity analyses, as described in step 6 above.
By definition, the presence of unknown confounders can never

be excluded in nonrandomized studies, not even in an RCT.
With the availability of ever more patient-level data, and more
information on covariates, the risk of unknown confounders in
threshold-crossing trials will diminish. Nonetheless, experiment-
ers and decision-makers will have to evaluate on a case-by-case
basis the risk of confounding and bias. In turn, this will inform
the choice of the threshold, above which a “parachute case” can
be assumed.

(2) Ethical considerations
Montazerhodjat and Lo60 have recently argued that the weight

given by regulators to avoiding a type I error (approving ineffec-
tive therapies) vs. avoiding a type II error (rejecting effective ther-
apies) should not be equal across disease and clinical indications:
“For terminal illnesses where patients have no choice but death
[like patients with stage IV pancreatic cancer], the relative costs
of type I and II errors are very different than for non-life-
threatening conditions.” They propose RCT designs in which
the error rates are informed by some measure of disease burden
rather than by “arbitrary” convention (usually a 5 2.5% for one-
sided tests, and usually 1 - b 5 80%). We envisage that the
setting of the efficacy threshold should be influenced by
nonmethodological externalities, including severity of disease and
unmet need of the target population, availability of alternative
treatments, patients’ input on what would be clinically relevant
to them, societal burden of disease, and expected frequency of
serious adverse effects.

Benefits and risks of the threshold concept
The concept of threshold-crossing may enable the development
of products that are potentially beneficial but difficult to assess in
RCTs for the reasons described above. Compared to performing
an uncontrolled study and hoping for the best, threshold-crossing
can potentially increase the predictability of, and public trust in,
decision-making about difficult products and indications. This
requires that all steps in the process, including the reasons and
assumptions for setting the efficacy threshold, are prespecified

and fully transparent to decision-makers, and made public once a
product is authorized and reimbursed.
As was described above, an RCT may not be feasible because

of a lack of suitable patients available to populate both an experi-
mental and a concurrent control group. However, many more
patients, including an accumulating number of deceased patients,
will be available in (archived) RWD and RCT databases to pro-
vide information on the counterfactual.
A priori definition of the success criterion for a single-arm trial

can inform a sponsor’s go/no go decision-making during the early
clinical development phase. Once a threshold has been agreed
upon with other stakeholders, the decision is only dependent on
the sponsor’s confidence in the potential of their product and
regulatory or HTA/payer uncertainty should be reduced. Howev-
er, the latter uncertainty can never be entirely eliminated because
unexpected adverse effects will impact the final assessment of the
product’s benefit-risk tradeoff, relative effectiveness, and value.
With threshold-crossing, the speed, investment, and effort

required up to the point of initial licensing and reimbursement
or termination is biased in favor of products that are either highly
effective or (near-)ineffective. This is welcome because it is more
important to provide timely access to highly beneficial than incre-
mental treatments, and to terminate quickly and economically
nonviable assets.
For the same reason, threshold-crossing may provide an oppor-

tunity to steer pharmaceutical research and development to areas
of greater unmet need, as the threshold is expected to be set less
stringent (i.e., easier to cross) in such conditions. This would not
only address past criticism of pharmaceutical research and devel-
opment for focusing too many resources on “me-too” products
but may also fast-track research programs on subpopulations
with unmet need ahead of programs for undifferentiated block-
buster indications.61

Thresholds make explicit and quantify the currently ill-defined
concept of clinical relevance by declaring upfront what each
decision-maker would consider an effect size of sufficient
importance.
Reuse of existing data makes drug development faster and

more economical. The majority of currently performed RCTs are
balanced two-arm trials (i.e., patients are randomized 1:1 to
experimental and control groups). Obviating the need for a con-
trol group could reduce the trial sample size by almost 75% in
the best case when a large number of historical controls are avail-
able, at least for highly effective therapies. In addition, eliminat-
ing the control group will help focus research on those aspects we
know least about. If the average response on control is already
well characterized, usually, we only seek to learn more about the
experimental treatment. Hence, the number of patients needed
for the control arm in the parallel group design could be used to
increase the number of patients treated with the experimental
treatment in a single-arm trial.
The threshold-crossing approach addresses the ethical issues

associated with RCTs in which prior assumptions about a drug’s
potential are strong, leading to a (perceived) lack of equipoise.
Here, the result from the initial single-arm trial may render an
RCT acceptable.
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Most patients enrolling in clinical trials do so with an assump-
tion of contributing to medical knowledge. Reuse of past RCT
data to determine the counterfactual to responses on future treat-
ments allow patients to maximize the impact of their philanthro-
py because more than one research question can be addressed as a
result of their participation in a trial.
Although these benefits of threshold-crossing seem self-

evident, we identify at least two broad areas of risk:

(1) Methodological risk—comparing like-with-like
The obvious advantages of the RCT over other methods of esti-

mating causal effects are randomization and blinding; these fea-
tures provide the best known way (but no guarantee) of reducing
bias and imbalances between treatment groups due to known or
unknown confounders. By contrast, the threshold-crossing concept
does not provide these safeguards and is at higher risk of compar-
ing like-with-unlike, potentially leading to false conclusions. For
example, Figure 2 shows that there might be a large inflation of
the type I error for the threshold design, but not for a standard
two-arm RCT, if the treatment effect is changing over time.
Therefore, we are not advocating that threshold-crossing trials

should replace RCTs but believe they should be explored as a
pathway for selected clinical development programs. We are con-
fident that with increasing availability of better and more granu-
lar patient data and with growing experience in analyzing such
studies, any sweeping arguments about “the inherent lack of
internal validity of nonrandomized studies” will lose ground.

(2) Expectation risk—setting (un)realistic thresholds?
We have argued that a threshold-crossing trial increases

decision-maker predictability compared with conventional devel-
opments. However, this is only true from the moment when a
threshold has been agreed on. It could be argued that regulators,
HTA bodies, and payers will insist upon unrealistically high
thresholds to guard against any false-positive decision. This risk
could be mitigated by ensuring that patients are involved in a sys-
tematic and transparent way when the threshold is set and that
their voice is heard on what is clinically relevant to them.
The proposed framework focuses on efficacy. In practice, howev-

er, the threshold-crossing approach will have to be implemented
with a view to demonstrate an acceptable benefit-risk profile. Safe-
ty and tolerability are usually not measured by a single variable and
are often associated with low incidences. Hence, the formal frame-
work will not likely be applicable for safety assessment. It bears
reminding, though, that a formal evaluation plan is also not part of
the difference-showing paradigm, at least in cases of small RCTs.
Under any paradigm, safety assessment has to follow the more con-
ventional approach of “looking at the totality of data.”
As for any new drug, a plan for postlicensing knowledge gener-

ation should be in place at the time of initial licensing, describing
methods and milestones for studies to generate additional affir-
mative evidence on efficacy and safety.

The way forward
A range of practical, science, and policy issues need to be
addressed before the potential of the threshold-crossing approach
can be exploited.

Here, we provide a gap analysis and recommend concrete steps
to enable the conduct of threshold-crossing trials in the future.
(a) Development of a formal set of eligibility criteria. The
threshold-crossing paradigm should be reserved for carefully
selected products and clinical conditions in which RCTs are not
practical. Hence, agreement needs to be reached on qualifying cri-
teria for candidate assets to be considered justifiable for
threshold-crossing. A starting point for such discussions could be
the Bradford Hill considerations on causality62 and the criteria
proposed by Byar et al.63 to justify uncontrolled phase III clinical
trials. (b) Practicalities of clinical data sharing. Sharing of clinical
trial data has come a long way and there is now broad in princi-
ple consensus that all data from past RCTs and other sources
should be made available to facilitate future research. However,
practical issues must be resolved before threshold-crossing trials
can be conducted within a reasonable timeframe and with rea-
sonable effort. This includes, but is not limited to, issues of data
format and interoperability, appropriate level of deidentification,
governance, and legal interaction between data custodians and
data requesters. For sensible interpretation of historical data,
access is needed not only to the raw data but also to the clinical
trial protocols and statistical analysis plans together with the soft-
ware code, data dictionaries, and the study reports.64 Several
groups, such as the UK-based Wellcome Trust (for past RCT
data) or the Sentinel Initiative in the United States and the Farr
Institute in the United Kingdom (for RWD) are establishing
themselves as leading data custodians or data brokers. We pro-
pose that a dedicated project be funded (e.g., by the EU Innova-
tive Medicines Initiative (IMI)), to set global standards and
processes for data sharing for virtual control groups. The pro-
posed project would bring together data custodians, drug devel-
opers, and prospective trial assessors (regulators, HTA bodies,
payers) and would, hopefully, be the last step in the on-going
data-sharing journey. This project could also address recommen-
dations c and d. (c) Archived biological samples. Knowledge
about stratification biomarkers emerges on an ongoing basis, and
it is to be expected that information on a (genomic) stratification
marker may not have been analyzed in the past in a group of
patients that would now be relevant for estimating the counter-
factual. In such cases, it will be helpful to have access not only to
electronic data archives but also to archived tissue or other bio-
samples that may still be available (e.g., from past RCTs).23

Hence, the pivotal role of biobanks for threshold-crossing trials
must be acknowledged and their establishment and usability sup-
ported. This needs to encompass standards for the data collection
methods, quality assurance (certified biobanks and annotation of
samples), and achieving the right balance between data protection
and data availability for researchers. (d) Patient informed con-
sent. Aside from technical and governance bottlenecks to data
sharing, a key issue is the question over the need for dedicated
patient consent for the reuse of their data (and biosamples, where
applicable). This has proved to be an obstacle for some attempts
at secondary use of patient data in the past and will require novel
legal and political solutions that may be different in various juris-
dictions. For the European Union, for example, the new Clinical
Trial Regulation65 and the new General Data Protection
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Figure 2 We performed clinical trial simulations to evaluate the operating characteristics of threshold-crossing trials when frequentist hypothesis tests
and corresponding sample size calculations for single-arm trials are naively applied.To demonstrate the efficacy of a new drug, the most common
approach is to conduct parallel group trials to show superiority of the new treatment over control, i.e. testing the null hypothesis H0 : lN � lC versus the
alternative H1 : lN > lC at one-sided significance level of 2.5%, where lN and lC denote the expected response in the new and control treatment arm,
respectively. For the results presented we assume a normally distributed endpoint with r51. For example, if such a trial was powered at 80% to detect a
standardized effect difference of D5

lN2lC
r 50.2 between the new and the control treatment, a sample size of around 400 patients per group would be

required resulting in a total trial sample size of 800 (red horizontal line in panel a). Alternatively, one may apply a threshold-crossing single arm trial test-
ing Ht

0 : lN � t versus Ht
1 : lN > t using a one-sample test at one-sided level 2.5%, where t is the a-priori fixed threshold determined from historical

controls. What is the impact on the error rates, if one takes a rejection of Ht
0 : lN � t naively as a rejection for H0 : lN � lC? Assume trialists naively

use the observed mean estimated from historical controls as threshold t. A conventional sample size calculation for a single arm trial yields a trial sample
size of about 200 for a standardized effect of D50.2. Hence, in a best-case scenario, with no uncertainty on the effect size in the control arm, sample
size can be reduced to a quarter relative to a parallel group design. However, due to sampling variability, the observed mean in the controls typically does
not coincide with the true population mean lC (even assuming lC would be identical for historical and concurrent controls). As a consequence, the power
to reject H0 decreases with decreasing sample size in the historical controls due to increasing variability of the historical estimate (blue line panel b). In
addition, the type I error rate to erroneously reject H0 can be substantially inflated for small sample sizes of historical controls (blue line panel c). In
contrast, both the type I error rate and the power (if the true standardized effect is indeed D50.2) of the parallel group design with concurrent controls do
not depend on the historical data (red line in panels b and c). The uncertainty due to the sampling variability when estimating the historical response could
be addressed by a more cautious choice of the threshold t, e.g., taking the upper boundary of a two-sided 95%-confidence interval for mC computed from
historical controls. A conventional sample size calculation for a single arm trial accounting for a higher threshold (i.e., adjusting the standardized effect
0.2 size by the half width of the confidence interval) yields a sample size of about 400 (5half of that for the parallel group design), if about 1000 historical
controls were available (see black line in panel a). The more historical data are available, the lower the resulting sample size for the new threshold-cross-
ing trial. Assuming lC is identical for historical and concurrent controls, the type I error rate is controlled (black line panel c), however a loss of power is
observed if the historical control data base is small (black line panel b). Furthermore, if lC differs between historical and concurrent controls, e.g., the
mean response under control treatment is increasing over time, there might be an inflation of the type I error rate with the thresholding single-arm design
(panel d black line), but not for the traditional two arm parallel group design (with concurrent controls). To address such biases, one may apply even more
conservative (larger) thresholds t, for example by adding a percentage of the assumed standardized effect to the upper boundary of the historical 95%
confidence interval (e.g., adding 0.1D, 0.2D, and 0.3D for yellow, green and gray lines in panels). This comes at the cost of larger sample sizes (see
panel a), but by using sufficiently conservative (large) thresholds, an inflation of the type I error rate to erroneously reject H0 can be avoided (see green
and gray line in panel d). For simplicity we have assumed that all historical controls come from one data source, e.g., a single clinical trial or a registry.
If several sources are to be used, one has to account for between trial variability as well, e.g., by replacing the sample mean estimate of mC by a meta-
analytic estimate of mC obtained from a fixed or random effects meta-analysis of historical controls. panel a: Sample sizes, power and type I error rate
are given for a parallel-group design and single-arm threshold designs applying different thresholds. The sample size of the historical controls is shown
on the x-axis. The operating characteristics of the designs shown in panels b, c, and d are based on the sample sizes shown in panel a (that depend on
the size of historical controls and assumed thresholds).
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Regulation66 have introduced provisions enabling reuse of per-
sonal data for the purpose of scientific research. (e) Patient educa-
tion and involvement. We have outlined that patient
involvement will be key to ensuring the success and acceptance of
threshold-crossing trials. If the process of patient involvement is
to be representative, transparent, and reproducible, it cannot be
based solely on a convenience sample of patients and anecdotal
input. Systematic, validated methods and specific patient training
will be required to ensure meaningful guidance on what is rele-
vant to patients themselves. A number of groups, including the
IMI PREFER consortium, are exploring such methods and we
would encourage them to consider adding threshold concept
issues to their ongoing projects. (f) Methodology development.
Computational techniques used in other fields could be used to
run the simulations and develop the virtual control arms needed
for the threshold-crossing concept (see Figure 2 on statistical
simulations). Well-established epidemiological analytic methods
might be applicable to single arm clinical trials incorporating his-
torical controls to enable causal inferences. Sensitivity analyses
will be essential to elaborate on how underlying assumptions
impact the interpretation of trial results. Bayesian methods are
well suited for informing internal decision-making in drug com-
panies (e.g., go or no-go decisions from phase II to III). Similar
techniques could be developed to incorporate historical informa-
tion into regulatory and reimbursement decisions. The uptake of
Bayesian methods would be encouraged by more examples of suc-
cessful applications. Clinical trial simulations to determine the
(frequentist) operating characteristics of Bayesian approaches will
assume a more prominent role. How to design, perform, and
report such simulation studies deserve further attention and stan-
dardization. For reproducibility, documented software (code)
should be made accessible to all stakeholders. However, if simula-
tions are computationally intensive or the code is complex, it will
be challenging to independently verify the results. Quantitative
methods to extrapolate from existing information to support
decision-making are addressed in a recent draft reflection paper.67

Another important avenue for future research is the development
of statistical methods that balance the need to anonymize patient
data with the need to preserve essential information. (g) Piloting
the threshold approach. Finally, a prudent way to introduce a
new concept is to test whether it works in theory before deploy-
ing it in practice—to “look before leaping.” We propose using
existing platforms that will allow learning about the concept ret-
rospectively before applying it prospectively. This work should
include reanalysis of RCTs as single-arm trials with historical
comparators, where possible, to see whether similar results are
obtained—and if not, why not. Existing multistakeholder collab-
orations, like projects sponsored by the IMI or the Massachusetts
Institute of Technology-based NEWDIGS, might lend them-
selves as potential fora.
In parallel, a compromise between single-arm trials and two-

arm trials could be “hybrid” designs,48,50,68 using unequal ran-
domization and augmenting the control arm with historical data.
Adaptive versions of these designs would also offer the flexibility
to recruit fewer concurrent controls if interim data supported the
commensurability of historical and contemporary patients.47

However, adaptive designs have their own caveats that go beyond
the scope of this paper.69,70

Conclusions
It is time to make use of a resource that was not available to the
RCT pioneers in the mid-20th century but is now becoming
abundant. Rich data on past and current patients can provide
much needed information on the counterfactual for emerging
treatments.
The benefits of using existing data in the framework of a

threshold-crossing study are self-evident: fewer patients need to
be enrolled in trials and the value of data gleaned from those
who do will be multiplied; the efficiency and speed of clinical tri-
als are increased; and clinical research could be nudged toward
highly effective treatments.
On the downside, we reiterate that the usefulness of the

threshold-crossing approach will ultimately hinge on the ability
to minimize confounding and bias. Larger sample sizes afforded
by the use of preexisting data will not, per se, address this issue.
We are not advocating replacing RCTs with threshold-

crossing trials but they should be explored for selected develop-
ment programs that are difficult to run with current
methodologies. The practical obstacles that need to be addressed
and the conceptual risks of the proposed approach must be fully
understood and tested before threshold-crossing trials become a
part of the standard drug development toolbox.
Finally, it bears remembering that any prelicensing evidence,

randomized or not, requires confirmation and expansion by way
of on-market evidence generation.
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