Genome-wide association study identifies 74 loci associated with educational attainment

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1038/nature17671</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:29626149</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>

Genome-wide association study identifies 74 loci associated with educational attainment

A full list of authors and affiliations appears at the end of the article.

Summary

Educational attainment (EA) is strongly influenced by social and other environmental factors, but genetic factors are also estimated to account for at least 20% of the variation across individuals. We report the results of a genome-wide association study (GWAS) for EA that extends our earlier discovery sample of 101,069 individuals to 293,723 individuals, and a replication in an independent sample of 111,349 individuals from the UK Biobank. We now identify 74 genome-wide significant loci associated with number of years of schooling completed. Single-nucleotide polymorphisms (SNPs) associated with educational attainment are disproportionately found in genomic regions regulating gene expression in the fetal brain. Candidate genes are preferentially expressed in neural tissue, especially during the prenatal period, and enriched for biological pathways involved in neural development. Our findings demonstrate that, even for a behavioral phenotype that is mostly environmentally determined, a well-powered GWAS identifies replicable associated genetic variants that suggest biologically relevant pathways. Because EA is measured in large numbers of individuals, it will continue to be useful as a proxy phenotype in efforts to characterize the genetic influences of related phenotypes, including cognition and neuropsychiatric disease. We study educational attainment (EA), which is measured in all main analyses as the number of years of schooling completed (EduYears, N = 293,723, mean = 14.33, SD = 3.61; Supplementary Information sections 1.1-1.2). All genome-wide association studies (GWAS) were performed at the cohort level in samples restricted to individuals of European descent.
whose EA was assessed at or above age 30. A uniform set of quality-control (QC) procedures was applied to the cohort-level summary statistics. In our GWAS meta-analysis of ∼9.3M SNPs from the 1000 Genomes Project, we used sample-size weighting and applied a single round of genomic control at the cohort level.

Our meta-analysis identified 74 approximately independent genome-wide significant loci. For each locus, we define the “lead SNP” as the SNP in the genomic region that has the smallest \(P \)-value (Supplementary Information section 1.6.1). Fig. 1 shows a Manhattan plot with the lead SNPs highlighted. This includes the three SNPs that reached genome-wide significance in the discovery stage of our previous GWAS meta-analysis of EA. The quantile-quantile (Q-Q) plot of the meta-analysis (Extended Data Fig. 1) exhibits inflation (\(\lambda_{GC} = 1.28 \)), as expected under polygenicity.

Extended Data Fig. 2 shows the estimated effect sizes of the lead SNPs. The estimates range from 0.014 to 0.048 standard deviations per allele (2.7 to 9.0 weeks of schooling), with incremental \(R^2 \) in the range 0.01% to 0.035%.

To quantify the amount of population stratification in the GWAS estimates that remains even after the stringent controls used by the cohorts (Supplementary Information section 1.4), we used LD Score regression. The regression results indicate that ∼8% of the observed inflation in the mean \(\chi^2 \) is due to bias rather than polygenic signal (Extended Data Fig. 3a), suggesting that stratification effects are small in magnitude. We also found evidence for polygenic association signal in several within-family analyses, although these are not powered for individual SNP association testing (Supplementary Information section 2 and Extended Data Fig. 3b).

To further test the robustness of our findings, we examined the within-sample and out-of-sample replicability of SNPs reaching genome-wide significance (Supplementary Information sections 1.7-1.8). We found that SNPs identified in the previous EA meta-analysis replicated in the new cohorts included here, and conversely, that SNPs reaching genome-wide significance in the new cohorts replicated in the old cohorts. For the out-of-sample replication analyses of our 74 lead SNPs, we used the interim release of the U.K. Biobank (UKB) (\(N = 111,349 \)). As shown in Extended Data Fig. 4, 72 out of the 74 lead SNPs have a consistent sign (\(P = 1.47 \times 10^{-19} \)), 52 are significant at the 5% level (\(P = 2.68 \times 10^{-50} \)), and 7 reach genome-wide significance in the U.K. Biobank dataset (\(P = 1.41 \times 10^{-42} \)). For comparison, the corresponding expected numbers, assuming each SNP's true effect size is its estimated effect adjusted for the winner's curse, are 71.4, 40.3, and 0.6. (Supplementary Information section 1.8.2). We also find out-of-sample replicability of our overall GWAS results: the genetic correlation between EduYears in our meta-analysis sample and in the UKB data is 0.95 (s.e. = 0.021; Supplementary Table 1.14).

It is known that EA, cognitive performance, and many neuropsychiatric phenotypes are phenotypically correlated, and several studies of twins find that the phenotypic correlations partly reflect genetic overlap (Supplementary Information section 3.3.4). Here, we investigate genetic correlation using our GWAS results for EduYears and published GWAS results for 14 other phenotypes, using bivariate Linkage-Disequilibrium (LD) Score...
regression (Supplementary Information section 3). First, we estimated genetic correlations with EduYears. As shown in Fig. 2, based on overall summary statistics for associated variants, we find genetic covariance between increased EA and increased cognitive performance ($P = 9.9 \times 10^{-50}$), increased intracranial volume ($P = 1.2 \times 10^{-6}$), increased risk of bipolar disorder ($P = 7 \times 10^{-13}$), decreased risk of Alzheimer’s ($P = 4 \times 10^{-8}$), and lower neuroticism ($P = 2.8 \times 10^{-8}$). We also found positive, statistically significant, but very small, genetic correlations with height ($P = 5.2 \times 10^{-15}$) and risk of schizophrenia ($P = 3.2 \times 10^{-4}$).

Second, we examined whether our 74 lead SNPs are jointly associated with each phenotype (Extended Data Fig. 5 and Supplementary Information section 3.3.1). We reject the null hypothesis of no enrichment at $P < 0.05$ for 10 of the 14 phenotypes (all the exceptions are subcortical brain structures).

Third, for each phenotype, we tested (in the published GWAS results) each of our 74 lead SNPs or proxy for association at a significance threshold of 0.05/74. We found a total of 25 SNPs meeting this threshold for any of these phenotypes, but only one reaching genome-wide significance. While these results provide suggestive evidence that some of these SNPs may be associated with other phenotypes, further testing of these associations in independent cohorts is required (Supplementary Tables 3.2-3.4, Extended Data Fig. 6).

To consider potential biological pathways, we first tested whether SNPs in particular regions of the genome are implicated by our GWAS results. Unlike what has been found for other phenotypes, SNPs in regions that are DNase I hypersensitive in the fetal brain are more likely to be associated with EduYears by a factor of ~ 5 (95% confidence interval 2.89–7.07; Extended Data Fig. 7). Moreover, the 15% of SNPs residing in regions associated with histones marked in the central nervous system (CNS) explain 44% of the heritable variation (Extended Data Fig. 8a and Supplementary Table 4.4.2). This enrichment factor of ~ 3 for CNS ($P = 2.48 \times 10^{-16}$) is greater than that of any of the other nine tissue categories in this analysis.

Given that our findings disproportionately implicate SNPs in regions regulating brain-specific gene expression, we examined whether genes located near EduYears-associated SNPs show elevated expression in neural tissue. We tested this hypothesis using data on mRNA transcript levels in the 37 adult tissues assayed by the Genotype-Tissue Expression Project (GTEx)10. Remarkably, the 13 GTEx tissues that are components of the CNS—and only those 13 tissues—show significantly elevated expression levels of genes near EduYears-associated SNPs (FDR < 0.05; Extended Data Fig. 8b and Supplementary Table 4.5.2).

To investigate possible functions of the candidate genes from the GWAS associated loci, we examined the extent of their overlap with groups of genes (“gene sets”) whose products are known or predicted to participate in a common biological process11. We found 283 gene sets significantly enriched by the candidate genes identified in our GWAS (FDR < 0.05; Supplementary Table 4.5.1). To facilitate interpretation, we used a standard procedure11 to group the 283 gene sets into “clusters” defined by degree of gene overlap. The resulting 34 clusters, shown in Fig. 3, paint a coherent picture, with many clusters corresponding to

\textit{Nature.} Author manuscript; available in PMC 2016 November 11.
stages of neural development: the proliferation of neural progenitor cells and their specialization (the cluster npBAF complex), the migration of new neurons to the different layers of the cortex (forebrain development, abnormal cerebral cortex morphology), the projection of axons from neurons to their signaling targets (axonogenesis, signaling by Robo receptor), the sprouting of dendrites and their spines (dendrite, dendritic spine organization), and neuronal signaling and synaptic plasticity throughout the lifespan (voltage-gated calcium channel complex, synapse part, synapse organization).

Many of our results implicate candidate genes and biological pathways that are active during distinct stages of prenatal brain development. To directly examine how the expression levels of candidate genes identified in our GWAS vary over the course of development, we used gene expression data from the BrainSpan Developmental Transcriptome. As shown in Extended Data Fig. 9, these candidate genes exhibit above-baseline expression in the brain throughout life but especially higher expression levels in the brain during prenatal development (1.36 times higher prenatally than postnatally, \(P = 6.02 \times 10^{-8} \)).

A summary overview of some promising candidate genes for follow-up work is provided in Table 1.

We constructed polygenic scores to assess the joint predictive power afforded by the GWAS results (Supplementary Information section 5.2). Across our two holdout samples, the mean predictive power of a polygenic score constructed from all measured SNPs is 3.2% \((P = 1.18 \times 10^{-39}; \) Supplementary Table 5.2 and Supplementary Information section 5).

Studies of genetic analyses of behavioral phenotypes have been prone to misinterpretation, such as characterizing identified associated variants as “genes for education.” Such characterization is not correct for many reasons: EA is primarily determined by environmental factors, the explanatory power of the individual SNPs is small, the candidate genes may not be causal, and the genetic associations with EA are mediated by multiple intermediate phenotypes. To illustrate this last point, we studied mediation of the association between the all-SNPs polygenic score and EduYears in two of our cohorts. We found that cognitive performance can statistically account for 23-42% of the association \((P < 0.001) \) and the personality trait “openness to experience” for approximately 7% \((P < 0.001; \) Supplementary Information section 6).

It would also be a mistake to infer from our findings that the genetic effects operate independently of environmental factors. Indeed, a recent meta-analysis of twin studies found that genetic influences on EA are heterogeneous across countries and birth cohorts. We conducted exploratory analyses in the Swedish Twin Registry to illustrate how environmental factors may amplify or dampen the impact of genetic influences (Supplementary Information section 7). We found that the predictive power of the all-SNPs polygenic score is heterogeneous by birth cohort, with smaller explanatory power in younger cohorts (Extended Data Fig. 10; see also Supplementary Information section 7.4 for discussion of the contrast between these results and findings from a seminal twin study that estimated EA heritability by birth cohort).
Methods

All methods are described in the Supplementary Information.

Extended Data

Extended Data Figure 1. Quantile-quantile plot of the genome-wide association meta-analysis of 64 EduYears results files

Observed and expected P-values are on a $-\log_{10}$ scale. The grey region depicts the 95% confidence interval under the null hypothesis of a uniform P-value distribution. The observed λ_{GC} is 1.28. (As reported in Supplementary Information section 1.5.4, the

Nature. Author manuscript; available in PMC 2016 November 11.
unweighted mean λ_{GC} is 1.02, the unweighted median is 1.01, and the range across cohorts is 0.95–1.15.

Extended Data Figure 2. The distribution of effect sizes of the 74 lead SNPs
a, SNPs ordered by absolute value of the standardized effect of one more copy of the education-increasing allele, with 95% confidence intervals. b, SNPs ordered by R^2. Effects on EduYears are benchmarked against the top 74 genome-wide significant hits identified in the largest GWAS conducted to date of height and body mass index (BMI), and the 48 associations reported for waist-to-hip ratio adjusted for BMI (WHR). These results are based on the GIANT consortium’s publicly available results for pooled analyses restricted to European-ancestry individuals: https://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium.
Extended Data Figure 3. Assessing the extent to which population stratification affects the estimates from the GWAS

a, LD Score regression plot with the summary statistics from the GWAS. Each point represents an LD Score quantile for a chromosome (the x and y coordinates of the point are the mean LD Score and the mean χ^2 statistic of variants in that quantile). The facts that the intercept is close to one and that the χ^2 statistics increase linearly with the LD Scores suggest that the bulk of the inflation in the χ^2 statistics is due to true polygenic signal and not to population stratification. b, Estimates and 95% confidence intervals from individual-level and within-family regressions of EduYears on polygenic scores, for scores constructed with sets of SNPs meeting different P-value thresholds. In addition to the analyses shown here, we conduct a sign concordance test, and we decompose the variance of the polygenic score. Overall, these analyses suggest that population stratification is unlikely to be a major concern for our 74 lead SNPs. See Supplementary Information section 3 for additional details.
Extended Data Figure 4. Replication of 74 lead SNPs in the UK Biobank data

Estimated effect sizes (in years of schooling) and 95% confidence intervals of the 74 lead SNPs in the meta-analysis sample (N = 293,723) and the UK Biobank replication sample (N = 111,349). The reference allele is the allele associated with higher values of *EduYears* in the meta-analysis sample. SNPs are in descending order of R^2 in the meta-analysis sample. Of the 74 lead SNPs, 72 have the anticipated sign in the replication sample, 52 replicate at the 0.05 significance level, and 7 replicate at the 5×10^{-8} significance level.
Extended Data Figure 5. Q-Q plots for the 74 lead *EduYears* SNPs (or LD proxies) in published GWAS of other phenotypes

SNPs with concordant effects on both phenotypes are pink, and SNPs with discordant effects are blue. SNPs outside the gray area pass Bonferroni-corrected significance thresholds that correct for the total number of SNPs we tested (*P* < 0.05/74 = 6.8 × 10⁻⁴) and are labeled with their rs numbers. Observed and expected *P*-values are on a –log₁₀ scale. For the sign concordance test: * *P* < 0.05, ** *P* < 0.01, and *** *P* < 0.001.
Extended Data Figure 6. Regional association plots for four of the ten prioritized SNPs for MHBA phenotypes identified using EduYears as a proxy phenotype.

a, cognitive performance; b, hippocampus; c, intracranial volume; d, neuroticism. The four were selected because very few genome-wide significant SNPs have been previously reported for these traits. Data sources and methods are described in Supplementary Information section 3. The R^2 values are from the hg19/1000 Genomes Nov 2014 EUR references samples. The figures were created with LocusZoom (http://csg.sph.umich.edu/locuszoom/). Mb, megabases.
Extended Data Figure 7. Application of fgwas to EduYears. See Supplementary Information section 4.2 for further details.

a, The results of single-annotation models. “Enrichment” refers to the factor by which the prior odds of association at an LD-defined region must be multiplied if the region bears the given annotation; this factor is estimated using an empirical Bayes method applied to all SNPs in the GWAS meta-analysis regardless of statistical significance. Annotations were derived from ENCODE and a number of other data sources. Plotted are the base-2 logarithms of the enrichments and their 95% confidence intervals. Multiple instances of the same annotation correspond to independent replicates of the same experiment.

b, The results of combining multiple annotations and applying model selection and cross-validation. Although the maximum-likelihood estimates are plotted, model selection was performed with penalized likelihood.

c, Reweighting of GWAS loci. Each point represents an LD-
defined region of the genome, and shown are the regional posterior probabilities of association (PPAs). The x-axis gives the PPA calculated from the GWAS summary statistics alone, whereas the y-axis gives the PPA upon reweighting on the basis of the annotations in b. The orange points represent genomic regions where the PPA is equivalent to the standard GWAS significance threshold only upon reweighting.

Extended Data Figure 8. Tissue-level biological annotation

a, The enrichment factor for a given tissue type is the ratio of variance explained by SNPs in that group to the overall fraction of SNPs in that group. To benchmark the estimates for *EduYears,* we compare the enrichment factors to those obtained when we use the largest GWAS conducted to date on body mass index, height, and waist-to-hip ratio adjusted for BMI. The estimates were produced with the LDSC python software, using the LD Scores and functional annotations introduced in Finucane et al. (2015) and the HapMap3 SNPs with MAF > 0.05. Each of the 10 enrichment calculations for a particular cell type is performed independently, while each controlling for the 52 functional annotation categories in the full baseline model. The error bars show the 95% confidence intervals.

b, We took measurements of gene expression by the Genotype-Tissue Expression (GTEx) Consortium and determined whether the genes overlapping *EduYears*-associated loci are significantly overexpressed (relative to genes in random sets of loci matched by gene density) in each of

Nature. Author manuscript, available in PMC 2016 November 11.
37 tissue types. These types are grouped in the panel by organ. The colored bars corresponding to tissues where there is significant overexpression. The y-axis is the significance on a $-\log_{10}$ scale.

Extended Data Figure 9. Gene-level biological annotation

a, The DEPICT-prioritized genes for *EduYears* measured in the BrainSpan Developmental Transcriptome data (red curve) are more strongly expressed in the brain prenatally rather than postnatally. The DEPICT-prioritized genes exhibit similar gene-expression levels across different brain regions (gray lines). Analyses were based on log$_2$-transformed RNA-Seq data. Error bars represent 95% confidence intervals. **b,** For each phenotype and disorder, we calculated the overlap between the phenotype's DEPICT-prioritized genes and genes believed to harbor *de novo* mutations causing the disorder. The bars correspond to odds ratios. *EduYears*, years of education; BMI, body mass index; WHR, waist-to-hip ratio adjusted for BMI. **c,** DEPICT-prioritized genes in *EduYears*-associated loci exhibit substantial overlap with genes previously reported to harbor sites where mutations increase risk of intellectual disability and autism spectrum disorder (Supplementary Table 4.6.1).
Extended Figure 10. The predictive power of a polygenic score (PGS) varies in Sweden by birth cohort
Five-year rolling regressions of years of education on the PGS (left axis in all four panels), share of individuals not affected by the comprehensive school reform (a, right axis), and average distance to nearest junior high school (b, right axis), nearest high school (c, right axis) and nearest college/university (d, right axis). The shaded area displays the 95% confidence intervals for the PGS effect.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Authors
Aysu Okbay1,2,3,*, Jonathan P. Beauchamp4,*, Mark A. Fontana5,*, James J. Lee6,*, Tune H. Pers7,8,9,10,*, Cornelius A. Rietveld1,2,3,*, Patrick Turley4,*, Guo-Bo Chen11, Valur Emilsson12,13, S. Fleur W. Meddens14,3,15, Sven Oskarsson16, Joseph K. Pickrell17, Kevin Thom18, Pascal Timshel19,8, Ronald de Vlaming1,2,3, Abdel Abdellaoui20, Tarunveer S. Ahluwalia21,9,22, Jonas Bacelis23, Clemens Baumbach24,25, Gyda Bjornsdottir95, Johannes H. Brandsma26, Maria Pina

Nature. Author manuscript; available in PMC 2016 November 11.

Affiliations

1Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, 3062 PA, Rotterdam, The Netherlands 2Department of Epidemiology, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands 3Erasmus University Rotterdam Institute for Behavior and Biology, Rotterdam 3062 PA, The Netherlands 4Department of Economics, Harvard University, Cambridge, MA 02138, USA 5Department of Economics, University of Michigan, Ann Arbor, MI 48109-1220, USA 6Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA 7Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA 2116, USA 8Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 9The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, 2100, Denmark 10Statens Serum Institut, Department of Epidemiology Research, Copenhagen, DK 2300, Denmark 11Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia 12Icelandic Heart Association, Kopavogur, 201, Iceland 13Faculty of Pharmaceutical Sciences, University of Iceland, 107 Reykjavík, Iceland 14Department of Complex Trait Genetics, VU University, Center for Neurogenomics and Cognitive Research, Amsterdam, 1081 HV, The Netherlands 15Amsterdam Business School, University of Amsterdam, Amsterdam, 1018 TV, The Netherlands 16Department of Government, Uppsala University, Uppsala, 751 20, Sweden 17New York Genome Center, New York, NY 10013, USA 18Department of Economics, New York University, New York, NY 10012, USA 19Center for Biological Sequence

Nature. Author manuscript; available in PMC 2016 November 11.
Analysis, Department of Systems Biology, Technical University of Denmark Lyngby, 2800, Denmark 20Department of Biological Psychology, VU University Amsterdam, Amsterdam, 1081 BT, The Netherlands 21COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, 2820, Denmark 22Steno Diabetes Center, Gentofte, 2820, Denmark 23Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, SE 416 85, Sweden 24Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany 25Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany 26Department of Cell Biology, Erasmus Medical Center Rotterdam, 3015 CN, The Netherlands 27Istituto di Ricerca Genetica e Biomedica U.O.S. di Sassari, National Research Council of Italy, Sassari, 07100, Italy 28Psychology, University of Illinois, IL 61820, Champaign, USA 2923andMe, Inc., Mountain View, CA 94041, USA 30Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, The Netherlands 31Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, 34100, Italy 32Department of Public Health, University of Helsinki, Helsinki, FI-00014, Finland 33Department of Cardiovascular Sciences, University of Leicester, Leicester, LE3 9QP, UK 34NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, LE3 9QP, UK 35Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK 36Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK 37Department of Neurology, General Hospital and Medical University Graz, Graz, 8036, Austria 38Institute for Medical Informatics, Statistics and Documentation, General Hospital and Medical University Graz, Graz, 8036, Austria 39Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Oxford, OX3 7LE, UK 40Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK 41MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK 42Institute of Behavioural Sciences, University of Helsinki, Helsinki, FI-00014, Finland 43Nutrition and Dietetics, Health Science and Education, Harokopio University, Athens, 17671, Greece 44Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, 171 77, Sweden 45Folkhälsan Research Centre, Helsinki, FI-00014, Finland 46Institute for Computing and Information Sciences, Radboud University Nijmegen, Nijmegen, 6525 EC, The Netherlands 47Quantitative Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia 48Lifespan Psychology, Max Planck Institute for Human Development, Berlin, 14195, Germany 49Department of Twin Research and Genetic Epidemiology, King’s College London, London, SE1 7EH, UK 50NIHR Biomedical Research Centre, Guy’s and St. Thomas’ Foundation Trust, London, SE1 7EH, UK 51Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, 9700 RB, The Netherlands 52
New Lambton, NSW 2305, Australia 53Faculty of Health and Medicine, University of Newcastle, Newcastle, NSW 2300, Australia 54Centre for Integrated Genomic Medical Research, Institute of Population Health, The University of Manchester, Manchester, M13 9PT, UK 55School of Psychological Sciences, The University of Manchester, Manchester, M13 9PL, UK 56Department of Health, THL-National Institute for Health and Welfare, Helsinki, FI-00271, Finland 57Psychiatry, VU University Medical Center & GGZ inGeest, Amsterdam, 1081 HL, The Netherlands 58Laboratory of Genetics, National Institute on Aging, Baltimore, MD 21224, USA 59Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, 20521, Finland 60Department of Medical Genetics, University of Lausanne, Lausanne, 1005, Switzerland 61Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland 62Department Of Health Sciences, University of Milan, Milano, 20142, Italy 63Institute for Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, Essen, 45147, Germany 64Centre for Global Health Research, The Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, EH8 9AG, UK 65Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892-9780, USA 66Icelandic Heart Association, Kopavogur, 201, Iceland 67Faculty of Medicine, University of Iceland, Reykjavik, 101, Iceland 68MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK 69School of Oral and Dental Sciences, University of Bristol, Bristol, BS1 2LY, UK 70Institute for Community Medicine, University Medicine Greifswald, Greifswald, 17475, Germany 71Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, 9700 RB, The Netherlands 72Institute of Epidemiology and Social Medicine, University of Muenster, Muenster, 48149, Germany 73Divisions of Genetics and Rheumatology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, MA 02115, Boston, USA 74Partners Center for Personalized Genetic Medicine, Boston, MA 02115, USA 75Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA 76Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA 77Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA 78Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, 9713 GZ, The Netherlands 79Institute of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, D-93053, Germany 80Institute of Molecular Genetics, National Research Council of Italy, Pavia, 27100, Italy 81Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL 60612, USA 82Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK 83Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK 84Saïd Business School, University of Oxford, Oxford, OX1 1HP, UK 85William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK 86Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah, 21589, Saudi Arabia 87The Berlin Aging Study II;
Research Group on Geriatrics, Charité – Universitätsmedizin Berlin, Germany, Berlin, 13347, Germany
Institute of Medical and Human Genetics, Charité-Universitätsmedizin, Berlin, Berlin, 13353, Germany
German Socio-Economic Panel Study, DIW Berlin, Berlin, 10117, Germany
Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI 48109, USA
Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, MO 63018, USA
Institute of Human Genetics, University of Bonn, Bonn, 53127, Germany
Department of Genomics, Life and Brain Center, University of Bonn, Bonn, 53127, Germany
deCODE Genetics/Amgen Inc., Reykjavik, IS-101, Iceland
Institute of Biomedical and Neural Engineering, School of Science and Engineering, Reykjavik University, Reykjavik 101, Iceland
Laboratory of Epidemiology, Demography, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-9205, United States
Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
Manchester Medical School, The University of Manchester, Manchester, 9PT, UK
Program in Translational NeuroPsychiatric Genomics, Departments of Neurology & Psychiatry, Brigham and Women's Hospital, Boston, MA 02115, USA
Harvard Medical School, Boston, MA 02115, USA
Department of Genes and Environment, Norwegian Institute of Public Health, Oslo, N-0403, Norway
Department of Genomics of Common Disease, Imperial College London, London, W12 0NN, UK
Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
Department of Clinical Physiology, University of Tampere, School of Medicine, Tampere, 33014, Finland
Public Health, Medical School, University of Split, 21000 Split, Croatia
Institute of Social and Preventive Medicine, Lausanne University Hospital (CHUV), Lausanne, 1010, Switzerland
Neuroepidemiology Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892-9205, USA
Amsterdam Brain and Cognition Center, University of Amsterdam, 1018 XA, Amsterdam, The Netherlands
Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305-5797, USA
LifeLines Cohort Study, University of Groningen, University Medical Center Groningen, Groningen, 9713 BZ, The Netherlands
Estonian Genome Center, University of Tartu, Tartu, 51010, Estonia
Medical Genetics Section, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
Department of Internal Medicine, Internal Medicine, Lausanne University Hospital (CHUV), Lausanne, 1011, Switzerland
Tema BV, 2131 HE Hoofddorp, The Netherlands
Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia
Institute of Health and...
Biomedical Innovation, Queensland Institute of Technology, Brisbane, QLD 4059, Australia 121Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA 122The Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 123Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA 124Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, 00014, Finland 125Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA 126Medical Genetics, Institute for Maternal and Child Health IRCCS “Burlo Garofolo”, Trieste, 34100, Italy 127Social Impact, Arlington, VA 22201, USA 128Department of Economics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA 129Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem, Evanston, IL 60201-3137, USA 130Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL 60637, USA 131Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki 00300, Finland 132Research Unit for Genetic Epidemiology, Institute of Molecular Biology and Biochemistry, Center of Molecular Medicine, General Hospital and Medical University, Graz, Graz, 8010, Austria 133Information Based Medicine Stream, Hunter Medical Research Institute, New Lambton, NSW 2305, Australia 134Medical Research Institute, University of Dundee, Dundee, DD1 9SY, UK 135Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Science, University of Leuven, Leuven, 3000, Belgium 136R&D VitaK Group, Maastricht University, Maastricht, 6229 EV, The Netherlands 137Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany 138Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig Maximilians-Universität, Munich, 81377, Germany 139Department of Geriatrics, Florida State University College of Medicine, Tallahassee, FL 32306, USA 140Department of Health Sciences and Genetics, University of Leicester, Leicester, LE1 7RH, UK 141Department of Internal Medicine, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands 142Research Center for Group Dynamics, Institute for Social Research, University of Michigan, Ann Arbor, MI 48104, USA 143Platform for Genome Analytics, Institutes of Neurogenetics & Integrative and Experimental Genomics, University of Lübeck, Lübeck, 23562, Germany 144Neuroepidemiology and Ageing Research Unit, School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London SW7 2AZ, UK 145Department of Health Sciences, Community & Occupational Medicine, University of Groningen, University Medical Center Groningen, Groningen, 9713 AV, The Netherlands 146Department of Psychology, Union College, Schenectady, NY 12308, USA 147Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, 9042, Italy 148Institute of Biomedical Technologies, Italian National Research Council, Segrate (Milano), 20090, Italy 149Department of General Practice and Primary Health Care, University
of Helsinki, Helsinki, 00014, Finland 150Departments of Human Genetics and Psychiatry, Donders Centre for Neuroscience, Nijmegen, 6500 HB, The Netherlands 151Sidra, Experimental Genetics Division, Sidra, Doha 26999, Qatar 152Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, 17475, Germany 153Department of Psychiatry and Psychotherapy, HELIOS-Hospital Stralsund, Stralsund, 18437, Germany 154Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, 3062 PA, The Netherlands 155Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen. 9700 RB, The Netherlands 156Durrer Center for Cardiogenetic Research, ICIN-Netherlands Heart Institute, Utrecht, 1105 AZ, The Netherlands 157Generation Scotland, Centre for Genomics and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK 158Centre for Population Health Research, School of Health Sciences and Sansom Institute, University of South Australia, SA5000, Adelaide, Australia 159South Australian Health and Medical Research Institute, Adelaide, SA5000, Australia 160Population, Policy and Practice, UCL Institute of Child Health, London, WC1N 1EH, UK 161Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment & Health, School of Public Health, Imperial College London, London, W2 1PG, UK 162Center for Life Course Epidemiology, Faculty of Medicine, University of Oulu, Oulu, FI-90014 , Finland 163Unit of Primary Care, Oulu University Hospital, Oulu, 90029 OYS, Finland 164Biocenter Oulu, University of Oulu, FI-90014 Oulu, Finland 165Fimlab Laboratories, Tampere, 33520, Finland 166Department of Clinical Chemistry, University of Tampere, School of Medicine, Tampere, 33014, Finland 167Economics, NYU Shanghai, 200122, Pudong, China 168Policy Studies, Queen's University, Kingston, K7L3N6, Canada 169Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029, Australia 170Institute of Molecular and Cell Biology, University of Tartu, Tartu, 51010, Estonia 171Centre for Clinical and Cognitive Neuroscience, Institute Brain Behaviour and Mental Health, Salford Royal Hospital, Manchester, M6 8HD, UK 172Manchester Institute Collaborative Research in Ageing, University of Manchester, Manchester, M13 9PL, UK 173Faculty of Medicine, University of Split, Croatia, Split 21000, Croatia 174Department of Clinical Genetics, VU Medical Centre, Amsterdam, 1081 HV, The Netherlands 175Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospitals, The Capital Region, Frederiksberg, 2000, Denmark 176Montpellier Business School, Montpellier, 34080, France 177Panteia, Zoetermeer, 2715 CA, The Netherlands 178Department of Psychiatry, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands 179Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands 180Department of Internal Medicine, Erasmus Medical Center, Rotterdam, 3015 GE, The Netherlands 181Department of Sociology, New York University, New York, NY 10012, USA 182School of Medicine, New York University, NY 10016, New York, USA 183Bioethics Program, Union Graduate College - Icahn School of Medicine at Mount Sinai, Schenectady, NY 12308, USA 184The University of Queensland Diamantina Institute, The Nature. Author manuscript; available in PMC 2016 November 11.
Acknowledgments

This research was carried out under the auspices of the Social Science Genetic Association Consortium (SSGAC). The SSGAC seeks to facilitate studies that investigate the influence of genes on human behavior, well-being, and social-scientific outcomes using large genome-wide association study meta-analyses. The SSGAC also provides opportunities for replication and promotes the collection of accurately measured, harmonized phenotypes across cohorts. The SSGAC operates as a working group within the CHARGE consortium. This research has also been conducted using the UK Biobank Resource. This study was supported by funding from the Ragnar Söderberg Foundation (E9/11), the Swedish Research Council (421-2013-1061), The Jan Wallander and Tom Hedelius Foundation, an ERC Consolidator Grant (647648 EdGe), the Pershing Square Fund of the Foundations of Human Behavior, and the NIA/NIH through grants P01-AG005842, P01-AG005842-20S2, P30-AG102810, and T32-AG000186-23 to NBER, and R01-AG042568 to USC. We thank Samantha Cunningham, Nishanth Galla and Justin Rashtian for research assistance. A full list of acknowledgments is provided in the supplementary materials.

References

Figure 1. Manhattan plot for EduYears associations (N = 293,723)
The x-axis is chromosomal position, and the y-axis is the significance on a $-\log_{10}$ scale. The black line shows the genome-wide significance level (5×10^{-8}). The red x’s are the 74 approximately independent genome-wide significant associations (“lead SNPs”). The black dots labeled with rs numbers are the 3 Rietveld et al.1 SNPs.
Figure 2. Genetic correlations between *EduYears* and other traits
Results from bivariate Linkage-Disequilibrium (LD) Score regressions\(^9\): estimates of genetic correlation with brain volume, neuropsychiatric, behavioral, and anthropometric phenotypes using published GWAS summary statistics. The error bars show the 95% confidence intervals.
Figure 3. Overview of biological annotation

34 clusters of significantly enriched gene sets. Each cluster is named after one of its member gene sets. The color represents the P-value of the member set exhibiting the most statistically significant enrichment. Overlap between pairs of clusters is represented by an edge. Edge width represents the Pearson correlation ρ between the two vectors of gene membership scores ($\rho < 0.3$, no edge; $0.3 \leq \rho < 0.5$, thin edge; $0.5 \leq \rho < 0.7$, intermediate edge; $\rho \geq 0.7$, thick edge), where each cluster's vector is the vector for the gene set after which the cluster is named.
Table 1
Selected candidate genes implicated by bioinformatics analyses

Fifteen candidate genes implicated most consistently across various analyses. To assemble this list, each gene in a DEPICT-defined locus (Supplementary Information section 4.5) was assigned a score equal to the number of criteria it satisfies out of ten (see Supplementary Table 4.1 for details). The DEPICT prioritization \(P \)-value was used as the tiebreaker. “SNP”: the SNP in the gene's locus with the lowest \(P \)-value in the *Edu Years* meta-analysis. “Syndromic”: which, if any, of three neuropsychiatric disorders have been linked to *de novo* mutations in the gene (Supplementary Information section 4.6). “Top-ranking gene sets”: DEPICT reconstituted gene sets of which the gene is a top-20 member (Supplementary Table 4.5.1). The three most significant gene sets are shown if more than three are available. ID, intellectual disability; ASD, autism spectrum disorder; SCZ, schizophrenia.

<table>
<thead>
<tr>
<th>Gene</th>
<th>SNP</th>
<th>Syndromic</th>
<th>Score</th>
<th>Top-ranking gene sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBR1</td>
<td>rs4500960</td>
<td>ID, ASD</td>
<td>6</td>
<td>Developmental biology, decreased brain size, abnormal cerebral cortex morphology</td>
</tr>
<tr>
<td>MEF2C</td>
<td>rs7277187</td>
<td>ID, ASD</td>
<td>5</td>
<td>ErbB signaling pathway, abnormal sternum ossification, regulation of muscle cell differentiation</td>
</tr>
<tr>
<td>ZSWIM6</td>
<td>rs61160187</td>
<td>–</td>
<td>5</td>
<td>Transcription factor binding, negative regulation of signal transduction, PI3K events in ErbB4 signaling</td>
</tr>
<tr>
<td>BCL11A</td>
<td>rs2457660</td>
<td>ASD</td>
<td>5</td>
<td>Dendritic spine organization, abnormal hippocampal mossy fiber morphology, SWI-SNF-type complex</td>
</tr>
<tr>
<td>CELSR3</td>
<td>rs11712056</td>
<td>SCZ</td>
<td>5</td>
<td>Dendrite morphogenesis, dendrite development, abnormal hippocampal mossy fiber morphology</td>
</tr>
<tr>
<td>MAPT</td>
<td>rs192818565</td>
<td>ID</td>
<td>5</td>
<td>Dendrite morphogenesis, abnormal hippocampal mossy fiber morphology, abnormal axon guidance</td>
</tr>
<tr>
<td>SBNO1</td>
<td>rs7306755</td>
<td>SCZ</td>
<td>5</td>
<td>Protein serine/threonine phosphatase complex</td>
</tr>
<tr>
<td>NBAS</td>
<td>rs12987662</td>
<td>–</td>
<td>5</td>
<td>–</td>
</tr>
<tr>
<td>NBEA</td>
<td>rs9544418</td>
<td>SCZ</td>
<td>4</td>
<td>Developmental biology, signaling by Robo receptor, dendritic shaft</td>
</tr>
<tr>
<td>SMARCA2</td>
<td>rs1871109</td>
<td>ID</td>
<td>4</td>
<td>–</td>
</tr>
<tr>
<td>MAP4</td>
<td>rs11712056</td>
<td>ASD</td>
<td>4</td>
<td>Developmental biology, signaling by Robo receptor, SWI-SNF-type complex</td>
</tr>
<tr>
<td>LINC00461</td>
<td>rs10061788</td>
<td>–</td>
<td>4</td>
<td>Decreased brain size, abnormal cerebral cortex morphology, abnormal hippocampal mossy fiber morphology</td>
</tr>
<tr>
<td>POU3F2</td>
<td>rs9320913</td>
<td>–</td>
<td>4</td>
<td>Dendrite morphogenesis, developmental biology, decreased brain size</td>
</tr>
<tr>
<td>RAD54L2</td>
<td>rs11712056</td>
<td>SCZ</td>
<td>4</td>
<td>Decreased brain size, SWI/SNF-type complex, nBAF complex</td>
</tr>
<tr>
<td>PLK2</td>
<td>rs2964197</td>
<td>–</td>
<td>4</td>
<td>Negative regulation of signal transduction, PI3K events in ErbB4 signaling</td>
</tr>
</tbody>
</table>

Nature. Author manuscript; available in PMC 2016 November 11.