A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Published Version</td>
<td>doi:10.1016/j.virol.2016.07.002</td>
</tr>
<tr>
<td>Citable link</td>
<td>http://nrs.harvard.edu/urn-3:HUL.InstRepos:29626150</td>
</tr>
<tr>
<td>Terms of Use</td>
<td>This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA</td>
</tr>
</tbody>
</table>
A +1 ribosomal frameshifting motif prevalent among plant amalgaviruses

Max L. Nibert, Jesse D. Pyle, Andrew E. Firth

*Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA 02115, USA
†Harvard Ph.D. Program in Virology, Division of Medical Sciences, Harvard University, Boston, MA 02115, USA
‡Division of Virology, Department of Pathology, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK

A R T I C L E I N F O

Article history:
Received 2 April 2016
Returned to author for revisions 30 June 2016
Accepted 1 July 2016
Available online 4 September 2016

Keywords:
Amalgaviridae
Coiled coil
Database mining
dsRNA virus
Fungal virus
Plant virus
Ribosomal frameshifting

A B S T R A C T

Sequence accessions attributable to novel plant amalgaviruses have been found in the Transcriptome Shotgun Assembly database. Sixteen accessions, derived from 12 different plant species, appear to encompass the complete protein-coding regions of the proposed amalgaviruses, which would substantially expand the size of genus Amalgavirus from 4 current species. Other findings include evidence for UUU_CGN as a +1 ribosomal frameshifting motif prevalent among plant amalgaviruses; for a variant version of this motif found thus far in only two amalgaviruses from solanaceous plants; for an of α-helical coiled coil propensity conserved in a central region of the ORF1 translation product of plant amalgaviruses; and for conserved sequences in a C-terminal region of the ORF2 translation product (RNA-dependent RNA polymerase) of plant amalgaviruses, seemingly beyond the region of conserved polymerase motifs. These results additionally illustrate the value of mining the TSA database and others for novel viral sequences for comparative analyses.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Family Amalgaviridae is a recently recognized taxon that currently comprises four species of plant viruses (Blueberry latent virus, Rhododendron virus A, Southern tomato virus, and Vicia cryptic virus M) in one genus (Amalgavirus) (Adams et al., 2014; Liu and Chen, 2009; Martin et al., 2011; Sabanadzovic et al., 2009, 2010). These plant amalgaviruses have small dsRNA genomes (3427–3437 bp) and have not yet been shown to form virions. Instead, they are transmitted vertically through seeds and are thought unlikely to be capable of efficient extracellular transmission, unless possibly by vector. The genomic plus strands of plant amalgaviruses encompass two partially overlapping long open reading frames (ORFs), with downstream ORF2 overlapping ORF1 in the +1 frame. They are thereby thought to encode only two proteins, an ORF1-encoded product of unknown specific function (though potential icosahedral capsid protein (CP), filamentous nucleocapsid (NC) protein (Krupovic et al., 2015), or replication factory matrix-like protein (Isogai et al., 2011)) and an ORF1+2-encoded fusion protein that is translated consequent to +1 programmed ribosomal frameshifting (PRF) (Depierreux et al., 2016; Firth et al., 2012; Liu and Chen, 2009; Martin et al., 2011; Sabanadzovic et al., 2009, 2010). The ORF2-encoded portion of this fusion protein is indicated by conserved sequence motifs to be the viral RNA-dependent RNA polymerase (RdRp).

For the current report, we undertook studies to identify novel plant amalgavirus sequences, with the goal of learning more about these viruses through sequence comparisons. Liu et al. (2012) searched the Expressed Sequence Tags (EST) database at GenBank/EMBL/DDJB for amalgavirus-like sequences and identified partial sequences (268–2127 nt in length) from 7 different plant species. We searched instead the Transcriptome Shotgun Assembly (TSA) database at GenBank/EMBL/DDJB in an effort to identify more complete sequences. Here we report the complete protein-coding sequences of 16 proposed new amalgaviruses, derived from 12 different plant species, plus the nearly complete protein-coding sequences of 3 others. Detailed examinations of these sequences provided several new insights as described below.

2. Results

Using the predicted ORF1+2-encoded fusion protein sequence of blueberry latent virus (BLV) (GenBank YP_003934623) as query for a tblastn search of the TSA database for plants (NCBI taxonomic identifier 3193), we identified 37 TSA accessions with E-value scores of 0.0, indicating strong sequence similarities, and lengths...
between 2793 and 3478 nt, approximating the genome lengths of previously characterized plant amalgaviruses (Table 1, bottom). Some of the E=0.0 accessions derived from the same plant species (*Allium cepa* and *Lolium perenne*) and were nearly identical to one another (>99% identity), so that after the shorter among these replicates were also excluded, we were left with a set of 19 distinct TSA accessions for further study (Table 1, top). Using the predicted ORF1 + 2-encoded fusion protein sequences of the other previously characterized plant amalgaviruses as queries in tblastn searches of NCBI GenBank for each of these TSA accessions. By examining the SRA database at NCBI, which were accessible for each of these TSA accessions. In an effort to correct this situation, we turned to data sets in the Sequence Read Archive (SRA) database at NCBI, which were accessible for each of these TSA accessions. By examining the SRA data sets and incorporating additional reads into the transcript contigs, we were able to extend the lengths of 5 of the TSA accessions (GenBank GAYX01076418, GBDZ01009138, GEEC01028534, GDBZ01009138, and GECO01025317). See Table S1 for reassembly information for the reassembled sequences.

Table 1

<table>
<thead>
<tr>
<th>Putative host species (cultivar)</th>
<th>GenBank accession no.</th>
<th>Amalgavirus (abbrev.)</th>
<th>Length (bp)</th>
<th>ORF1p (aa)</th>
<th>ORF2p (aa)</th>
<th>ORF1 + 2p (aa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allium cepa (OH1)</td>
<td>GAAK01011981*</td>
<td>AcAV1</td>
<td>3453</td>
<td>391</td>
<td>779</td>
<td>1057</td>
</tr>
<tr>
<td>Allium cepa (DHS225)</td>
<td>GAAK01008476*</td>
<td>AcAV2</td>
<td>3453</td>
<td>390</td>
<td>787</td>
<td>1065</td>
</tr>
<tr>
<td>Anthoxanthum odorum</td>
<td>GBEI0124896*</td>
<td>AoAV1</td>
<td>3356</td>
<td>382</td>
<td>783</td>
<td>1056</td>
</tr>
<tr>
<td>Camelina oleifera (Xianglan4)</td>
<td>GCVF0104381</td>
<td>CoAV1</td>
<td>3335</td>
<td>398</td>
<td>774</td>
<td>1066</td>
</tr>
<tr>
<td>Capsicum annuum (C3134)</td>
<td>JW101175</td>
<td>CaAV1</td>
<td>3478</td>
<td>375</td>
<td>774</td>
<td>1062</td>
</tr>
<tr>
<td>Chlorella moeresula</td>
<td>GDRJ01206549</td>
<td>CdAV1</td>
<td>3443</td>
<td>402</td>
<td>774</td>
<td>1070</td>
</tr>
<tr>
<td>Eriogonum brevesciscapanum</td>
<td>GQDF01209448</td>
<td>EbAV1</td>
<td>3433</td>
<td>384</td>
<td>784</td>
<td>1049</td>
</tr>
<tr>
<td>Festuca pratensis (Lauria)</td>
<td>GBXZ01009574</td>
<td>FpAV1</td>
<td>3412</td>
<td>382</td>
<td>782</td>
<td>1057</td>
</tr>
<tr>
<td>Festuca pratensis (Laura)</td>
<td>GBXZ01002308</td>
<td>FpAV2</td>
<td>3411</td>
<td>385</td>
<td>774</td>
<td>1053</td>
</tr>
<tr>
<td>Grevillea avellana (Mol.)</td>
<td>GACE01063629</td>
<td>GaAV1</td>
<td>(2793)</td>
<td>(228)</td>
<td>774</td>
<td>(896)</td>
</tr>
<tr>
<td>Lolium perenne (P226/135/16)</td>
<td>GAYX01076418*</td>
<td>FlPV1</td>
<td>(3296)</td>
<td>(385)</td>
<td>(770)</td>
<td>(1049)</td>
</tr>
<tr>
<td>Medicago sativa</td>
<td>GAFI0127743</td>
<td>MsAV1</td>
<td>3423</td>
<td>394</td>
<td>772</td>
<td>1058</td>
</tr>
<tr>
<td>Phalaenopsis equestris</td>
<td>GDHJ01028335</td>
<td>PeAV1</td>
<td>3394</td>
<td>384</td>
<td>781</td>
<td>1059</td>
</tr>
<tr>
<td>Pinus patula</td>
<td>GECO01025317</td>
<td>PeAV1</td>
<td>(3015)</td>
<td>(322)</td>
<td>777</td>
<td>(1003)</td>
</tr>
<tr>
<td>Salicornia europaea</td>
<td>GAMH01005363</td>
<td>SeAV1</td>
<td>(2798)</td>
<td>(382)</td>
<td>(613)</td>
<td>(880)</td>
</tr>
<tr>
<td>Secale cereale</td>
<td>GCJW01039808*</td>
<td>ScAV1</td>
<td>(2851)</td>
<td>(382)</td>
<td>(633)</td>
<td>(916)</td>
</tr>
<tr>
<td>Blueberry latent virus</td>
<td>HM029246</td>
<td>BLV</td>
<td>3431</td>
<td>377</td>
<td>774</td>
<td>1062</td>
</tr>
<tr>
<td>Rhododendron virus A</td>
<td>HSI0128706</td>
<td>RSH-A</td>
<td>3427</td>
<td>404</td>
<td>777</td>
<td>1077</td>
</tr>
<tr>
<td>Southern tomato virus</td>
<td>EF442760</td>
<td>STV</td>
<td>3437</td>
<td>377</td>
<td>774</td>
<td>1062</td>
</tr>
<tr>
<td>Vicia clystia</td>
<td>EU371895*</td>
<td>VCV-M</td>
<td>3434</td>
<td>394</td>
<td>771</td>
<td>1057</td>
</tr>
</tbody>
</table>

* Nucleotide sequences that appear to be truncated at one or both ends have their lengths listed in parentheses.
* For apparently full-length ORF1 translation products, the lengths are calculated from the first in-frame Met residue to the first in-frame stop codon. For ORF1 translation products that appear to be truncated at one or both ends, the lengths are calculated to the terminals and are listed in parentheses.
* For apparently full-length ORF1 translation products, the lengths are calculated from the first residue following the proposed +1 PRF site to the first in-frame stop codon. For ORF2 translation products that appear to be truncated at the C-terminal end, the lengths are calculated from the first residue following the proposed +1 PRF site to the C-terminus and are listed in parentheses.
* For apparently full-length ORF1 + 2 translation products, the lengths are calculated from the first in-frame Met residue in ORF1p to the first in-frame stop codon in ORF2p, taking into account the proposed +1 PRF site. For ORF1 + 2 translation products that appear to be truncated at one or both ends, the lengths are calculated to the respective termini, taking into account the proposed +1 PRF site.
* Sequences for which peer-reviewed papers are also available, as indicated in the text.
* Sequences that were extended by reassembling contigs from SRA entries (see text and Table S1).
and UUC are decoded by a single tRNAPhe iso-acceptor that has anticodon 3′GAG (Grosjean et al., 2010). First positioned on codon UUU in the A site, the tRNA is then thought to slip forward by one nucleotide (arrow) in the P site (onto codon UUC), positioning the next codon (GNN) in the A site for continued translation.

![Table 1](http://example.com/table1.png)

Table 1 includes the protein lengths of the ORF1-, ORF2-, and ORF1+2-encoded translation products deduced from the 19 TSA-derived amalgavirus-like sequences as well as from the four originally characterized plant amalgaviruses. Notably, the ORF1-, ORF2-, and ORF1+2-encoded protein lengths deduced from the 16 sequences that encompass complete protein-coding regions span narrow ranges (ORF1p, 375–403 aa; ORF2p post-fameshifting sequences, 769–787 aa; ORF1 +2p, 1048–1071 aa), very similar to those spanned in the original plant amalgaviruses (ORF1p, 375–404 aa; ORF2p post-fameshifting sequences, 771–789 aa; ORF1 +2p, 1054–1077 aa) (Table 1). These protein lengths deduced from the other 3 TSA-derived amalgavirus-like sequences are generally smaller, consistent with their partial truncation at one or both ends, probably due to incomplete sequencing.

When the 19 deduced ORF2p sequences were used as queries in PSI-BLAST searches of the Non-redundant Protein Sequences (NR) database, each was found to be highly similar to the ORF2p (RdRp) sequences of originally characterized plant amalgaviruses (E-values, 0.0). As another way to address the degrees of similarity among these proposed and original plant amalgaviruses, we performed pairwise alignments. The pairwise identity scores for their separate ORF1 and ORF2 products are shown in Fig. 2 and provide further evidence that they are all closely related, especially as reflected by the scores for ORF2p (RdRp). Some pairs are especially closely related, namely, Capsicum annuum amalgavirus 1 (CaAV1) and STV, MsAV1 and VCV-M, AoAV1 and FpAV1, and FpAV3 and LpAV1 (See Table 1 for other abbreviations). Interestingly, in each of these four pairs, the sequences originated from plants of the same taxonomic family and subfamily: CaAV1 and STV, Solanaceae/Solanoidae; MsAV1 and VCV-M, Fabaceae/Faboideae; AoAV1 and FpAV1, Poacea/Pooidae; and FpAV3 and LpAV1, Poacea/Pooidae. These latter findings are consistent with coevolution of amalgaviruses with their respective plant hosts.

The 19 deduced ORF2p (RdRp) sequences were next compared by phylogenetic methods. The sequence set for these studies included not only the proposed and original plant amalgaviruses but also a number of viruses whose RdRp sequences have been previously noted to be related to them: ZbV-2 (Depierreux et al., 2016), monosegmented viruses from proposed genus Unirnavirus (Jiang et al., 2015; Koloniu et al., 2015; Kotta-Loizou et al., 2015; Lin et al., 2015; Nerva et al., 2015; Zhu et al., 2015); viruses related to CTTV, which are presumably all bisegmented (Botella et al., 2015; Márquez et al., 2007; Vainio et al., 2012; Yu et al., 2009; Zheng et al., 2013); and representative bisegmented viruses from family Partitiviridae (Nibert et al., 2014) (see Table S2 for abbreviations and GenBank numbers for the additional viruses; RdRp is generally encoded on RNA1 of the bisegmented viruses). Sequences were aligned using MAFFT (Katoh et al., 2013) and then used for maximum-likelihood phylogenetic analyses using PhyML (Guindon et al., 2010) with the LG or rKev substitution model for amino acids. The resulting RdRp-based trees provided consistent strong evidence that the proposed and original plant amalgaviruses all cluster together in the same taxon (Fig. 3), corresponding to approved genus Amalgavirus. Amalgla-like mycovirus ZbV-2 is next most closely related to this taxon (Fig. 3), consistent with previous findings (Depierreux et al., 2016; Koloniu et al., 2015).

Multiple sequence alignments for ORF2p from proposed and original plant amalgaviruses were also examined in detail for conserved residues including known RdRp motifs (Poch et al., 1989; Koonin, 1991; Brunnen, 2003). The 795-position alignment generated using MAFFT appears notably robust in terms of including gaps at only 7 positions other than in the terminal regions, in having 136 positions (17%) that are wholly conserved among the 21 ORF2p sequences included in this comparison, and in having 451 positions in the consensus (57%) that are at least similar among all 21 of the sequences (Fig. S1). RdRp motifs A, B, and C (or IV, V, and VI) are especially easy to spot in the consensus and occur in the usual order: A, 341–shhELDwtKFDFRNP-352; B, 406–hpGMVPSGLWTGHshsTuhNhHy-426; and C, 445–CAGDNNLNT-454 (h, hydrophobic; n, negatively charged; p, polar; s, small; t, turn-like; u, tiny). There are also regions of strong sequence conservation near the C-terminus of ORF2p, seemingly beyond the central region of conserved RdRp motifs (Fig. S1, Fig. 4A), suggesting that another conserved function might be mediated by these C-terminal sequences. A large central portion of the MAFFT alignment is nearly identical with one generated using PROMALS3D, which additionally predicts a consensus secondary structure comprising a mixture of α-helices and β-strands (Fig. S1).

Multiple sequence alignments for ORF1p from proposed and original plant amalgaviruses were also examined in detail for conserved residues. As expected from the pairwise scores (Fig. 2), the 413-position alignment generated using MAFFT shows a much lower degree of conservation than the alignment for ORF2p,
Fig. 2. Pairwise sequence identity scores. Sequences of the ORF1 (lower left) and ORF2 (upper right) translation products of the indicated viruses (original and proposed) were compared in pairs using EMBOSS: needle or needleall. Sequence identity scores are shown in %. Shading off the diagonal highlights more closely related pairs for which the ORF1p score is \(\geq 40\% \) and the ORF2p score is \(\geq 65\% \). For these analyses, the ORF1p sequences of AoAV1 and PpAV1 began with the first residue instead of the first Met residue since their encoding sequences appear to be 5′-truncated, and the ORF2p sequences of AoAV1 and SeAV1 ended with the last residue instead of the last residue before the downstream stop codon since their encoding sequences appear to be 3′-truncated; as a result, their scores here may be artificially low in some instances.

Fig. 3. Phylogenetic tree, ORF2p (RdRp). Sequences of the ORF2 translation products were aligned using MAFFT and then subjected to phylogenetic analysis using PhyML as described in Materials and Methods. Values estimated from the data were Proportion of invariable sites, 0.010, and Gamma shape parameter, 1.473. Alternative use of the rtREV amino acid substitution model for PhyML (in place of LG) yielded results largely identical to those shown here. Proposed plant amalgaviruses new to this report are labeled in gray. The tree is displayed as a rectangular phylogram rooted on the branch to family Partitiviridae members. Branch support values are shown in %, and those with support values \(< 50\% \) are collapsed to the preceding node. The few branches with support values between 50% and 80% are drawn with thinner lines. Scale bar, average number of substitutions per alignment position. See Table S2 for a summary of abbreviations and GenBank numbers. Vertical lines: approved or proposed spans of genera and families (family Amalgaviridae has been proposed to encompass proposed genus Zybavirus by Depierreux et al. (2016)). For each genus-level taxon, the number of characterized genome segments for each virus (1 or 2) and known hosts (P, plants; F, fungi; A, alveolate protist) are indicated.
including only 1 position (a Gly residue) that is wholly conserved among the 22 ORF1p sequences included in this comparison. The ORF1p alignment nevertheless appears robust in including gaps at only 4 alignment positions besides in the terminal regions and in having 89 alignment positions (22%) at which at least similar residues are found in all 22 of the sequences (Fig. S2). A large central portion of this alignment is nearly identical with one generated using PROMALS3D, which additionally predicts a consensus secondary structure comprising many α-helices and notably no β-strands (Fig. S2). Prediction of predominantly α-helical content for amalgavirus ORF1p has been previously reported (Sabanadzovic et al., 2009, 2010; Krupovic et al., 2015). In addition, we newly observed that a central span of 19–46 residues is predicted in all of the different proposed and approved plant amalgaviruses to form an α-helical coiled coil structure (Fig. S2, Fig. 4B), which would be an unusual finding for a viral CP that assembles into an isosahedral particle. This new observation may thus support the suggestion that amalgavirus ORF1p forms some other type of structure, such as a filamentous nucleocapsid (Krupovic et al., 2015) or a more amorphous replication factory matrix (Isoigai et al., 2011). Interestingly, too, the ORF1 products from ZbV-Z and unirnaviruses, as well as the RNA2 products from most CTTV-like viruses (all but ZbV-Z), are derived respectively from two cultivars, OH1 and DH5225, representing putative plant amalgaviruses, which were infecting the respective plants at the times of sampling for transcriptome analyses.

The two TSA accessions from A. cepa (bulb onion), which we now propose to represent novel plant amalgaviruses (Table 1), were derived respectively from two cultivars, OH1 and DH5225, seeds of which were gifted to us by Dr. Michael J. Havey (USDA-ARS and University of Wisconsin-Madison). Using internal primers designed from these two accessions, we were able to generate RT-PCR amplicons of expected sizes (825–875 bp) from RNA isolated from shoots (OH1) or seeds (DH5225) of these two cultivars. Moreover, upon Sanger sequencing of the amplicons, we found their sequences to be >99.5% identical to those of the respective TSA accessions (matching nt 1710–2531 of OH1 and nt 1522–2313 of DH5225). These findings provide further evidence that each of these two A. cepa cultivars is persistently infected with the respective amalgavirus.

3. Discussion

One question that arises is whether the TSA-derived sequences characterized here (see Table 1) represent transcripts of chromosomal or extrachromosomal, host or viral, origin. In recent years, remnants of many non-retroviral RNA virus genomes have been found integrated in host chromosomes (Chiba et al., 2011; Katzourakis and Gifford, 2010; Taylor and Brun, 2009) and, if transcribed, may be detected in transcript-derived databases. In the vast majority of these cases, however, the integrated viral elements are notably fragmented, and their ORFs are disrupted by stop codons and frame-shift mutations. This is notably unlike the case for the TSA-derived sequences listed in Table 1, which approximate the lengths of complete plant amalgavirus genomes and have the expected long ORFs for expressing ORF1p and ORF1+2p. Thus, we conclude that all of the TSA accessions in Table 1 likely represent bona fide plant amalgaviruses, which were infecting the respective plants at the times of sampling for transcriptome analyses.

The TSA accession from C. annum, representing putative amalgavirus CaAV1, is notable for lacking a copy of the UUU_CGN consensus motif for +1 PRF in its ORF1–ORF2 overlap region. As noted above, CaAV1 is quite similar to STV in pairwise comparisons (Fig. 2), and indeed their two RdRp sequences approach an identity threshold (65–70%) often used for assigning RNA virus strains to the same or different species. Interestingly, STV is also like CaAV1 in lacking a copy of the UUU_CGN consensus motif for +1 PRF in its ORF1–ORF2 overlap region (Depierreux et al., 2016; Firth et al., 2012), and their respective plants of origin, tomato and pepper, are members of the same taxonomic family and subfamily, Solanaceae/Solanoidae, indeed of two closely related tribes, Solanaceae and Capsicaceae, within that subfamily (Särkinen et al., 2013). In an effort to identify an atypical +1 PRF motif in CaAV1, we examined the multiple sequence alignments of both the plus-strand RNA and the full-length ORF2 translation products of the proposed and original plant amalgaviruses (Fig. S3). Based on these alignments, the motif for +1 PRF in CaAV1 is predicted to be CUU_AGU_C (Fig. 1C), where translation of the CUU codon is followed by translation of the AGU codon consequent to +1 PRF. Notably with this motif, the anticodon 3′-GAI (I=inosine) decoding codon CUU (Grosjean et al., 2010) could remain engaged in the ribosomal P site upon forward slippage to codon UUA, including a G:U pair in the first position. Although the +1 shift in STV was previously suggested to occur on motif AGG_CGU_C (see Fig. 1B), based on the RNA alignment (Fig. S3) and other considerations, we now suggest that the +1 PRF motif of STV would be better revised

![Graphical analyses, ORF2p (RdRp) and ORF1p. (A) The ORF2p (RdRp) alignment for plant amalgaviruses shown in Fig. S1 was analyzed using EMBOSS: plotcon, with a window size of 10 for averaging the similarity scores. Labels A, B, and C indicate peaks corresponding to those respective RdRp motifs. The horizontal line at top indicates the span of homologies to picornavirus RdRps identified by hpred, as implemented with defaults at http://toolkit.tuebingen.mpg.de/hpred. Asterisks identify peaks corresponding to highly conserved sequences in a C-terminal region seemingly outside the conserved core RdRp region. (B) The ORF1p alignment for plant amalgaviruses shown in Fig. S2 was analyzed using PCOILS. Results are shown for averaging windows of 14 (dotted line), 21 (dashed line), and 28 (solid line). Fig. S2 also highlights the regions of coiled coil propensity predicted for each individual virus. Graphical results for a representative individual plant amalgavirus sequence (STV) and others are shown in Fig. S4.](image-url)
backward by one codon to CUU_AGG_C, making it very similar to CUU_AGU_C in CaAV1 and still allowing P-site anticodon-codon pairing after ribosomal slippage from CUU to UUA (Fig. 1C).

Interestingly, the same heptanucleotide, CUU_AGG_C, is utilized for highly efficient +1 PRF in Saccharomyces cerevisiae Ty1, Ty2, and Ty4 elements (Belcourt and Farabaugh, 1990). There, high S. cerevisiae propensity (Fig. S2). These

gion of ORF1p from all these viruses that aligned in three large

tRNAs that further associate with the BLV ORF1

determined sequences of yet other amalgaviruses (E-value scores

206

M.L. Nibert et al. / Virology 498 (2016) 201–208

4. Materials and methods

All database searches were performed with the indicated pro-

gov/cgi/Blast.cgi. Searches of the TSA database with protein sequence

queries deduced from nucleotide sequences were performed using

blastx. Searches of the TSA database with nucleotide sequence

queries were performed using discontinuous megablast. For the

TSA and SRA searches, default settings were sometimes altered to

allow larger numbers of target sequences (× > 100) to be displayed.

Sequences of the ORF1 region of amalgavirus and protein sequence

queries deduced from nucleotide sequences were performed using blastx or PSI-BLAST, respectively.

Given the incomplete protein-coding regions in some of the

amalgavirus-like TSA accessions that we first discovered

(GAMH01005363, GAYX01076418, GBIE01028534, GBXZ01009138, GCJW01039808, GEAC01063629, and GECO01025317; Table 1, top), we accessed the TSA data sets from each of those transcriptome projects and in discontinuous megablast searches found reads that

mapped to each of the original TSA accessions. We then used CAP3 (Huang and Madan, 1999) or CLC Genomics Workbench 8 (Qiagen)

to assemble contigs that were compared with the TSA sequence. In the cases of TSA accessions GAYX01076418, GBXZ01009138, GCJW01039808, GEAC01063629, and GECO01025317, we were able to extend the original sequence at one or both termini in this manner. We reiteratively repeated this process to add new SRA accessions to each extending terminus until newly matching accessions were no longer found. The SRA data sets searched for each of the originally truncated TSA sequences were: GAMH01005363, SRX329048 and SRX329051; GAYX01076418, SRX670823–SRX670828; GBIE01028534, SRX173382–SRX1733825; GBXZ01009138, SRX757539; GCJW01039808, DRX000652–DRX000659; GECO01063629, SRX1374942–SRX1374944; and GECO01025317, SRX1427152–SRX1427157.

ORFs were identified in nucleotide sequences using EMBOSSEXplorer or ExPASY Translate as implemented at http://web.expasy.org/translate/. Multiple sequence alignments of RNA or protein

sequences were performed using MAFFT 7.2 (L-INS-i) (Katoh and Standley, 2013) as implemented with defaults at http://mafft.
cbcrc.jp/alignment/server/. Multiple sequence alignments accom-
panied by secondary structure predictions were obtained using PROMALS3D (Pei and Grishin, 2014) as implemented with defaults

Table S2 for abbreviations and GenBank numbers) are two recently
described mycoviruses with monosegmented dsRNA genomes that

were infecting these additional plant species at the times of

sampling for transcriptome analyses. TSA accessions with E-value

scores > 1e–30 in the initial tblastn search may also hold inter-
esting findings but were outside the focus of this study.

The TSA accessions and SRA data sets used in this study are as-

associated with peer-reviewed publications in some cases (Czaban

et al., 2015; Duangjit et al., 2013; Farrell et al., 2014; Gould et al.,

2015; Khalil et al., 2015), but not in others. Moreover, none of the TSA

accessions are currently annotated to indicate their viral origins. This

lack of annotation will make it difficult for many investigators to

locate these sequences for inclusion in phylogenetic analyses or other

comparisons. We have therefore been attempting, though without

success to date, to deposit the newly proposed plant amalgavirus

sequences summarized in Table 1 as Third-Party Annotations at

GenBank, in an effort to make them easier to locate via their meta-
data. A more routine procedure for encouraging and accepting such

new deposits based on sequence data previously made public at

NCBI – especially those sequence data in the TSA, SRA, and other
databases that have been rapidly expanding consequent to next-
generation sequencing methods – seems likely to be of broad benefit.

Nerva, L., Ciufo, M., Vallino, M., Margarita, P., Varese, G.C., Gnavi, G., Turina, M.,...

