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Abstract

There is growing evidence of shared risk alleles between complex traits (pleiotropy), including 

autoimmune and neuropsychiatric diseases. This might be due to sharing between all individuals 

(whole-group pleiotropy), or a subset of individuals within a genetically heterogeneous cohort 

(subgroup heterogeneity). BUHMBOX is a well-powered statistic distinguishing between these 

two situations using genotype data. We observed a shared genetic basis between 11 autoimmune 

diseases and type 1 diabetes (T1D, p<10−4), and 11 autoimmune diseases and rheumatoid arthritis 

(RA, p<10−3). This sharing was not explained by subgroup heterogeneity (corrected 

pBUHMBOX>0.2, 6,670 T1D cases and 7,279 RA cases). Genetic sharing between seronegative and 

seropostive RA (p<10−9) had significant evidence of subgroup heterogeneity, suggesting a 

subgroup of seropositive-like cases within seronegative cases (pBUHMBOX=0.008, 2,406 

seronegative RA cases). We also observed a shared genetic basis between major depressive 

disorder (MDD) and schizophrenia (p<10−4) that was not explained by subgroup heterogeneity 

(pBUHMBOX=0.28 in 9,238 MDD cases).

 INTRODUCTION

Recent studies have demonstrated that many diseases share risk alleles1–4 and exhibit 

significant coheritability5–7. Coheritability studies are defining the relationship between 

complex traits, and providing new insights into disease mechanisms. Critically, as the 

number of phenotypes studied with genetics expands in the context of emerging deeply 

phenotyped population-wide cohorts8, including the Precision Medicine Initiative9, 

coheritablity between traits will become even more apparent. In the genomic era, methods 

for detecting coheritability have moved beyond traditional approaches such as twin or family 

studies10, 11. Now, alternative approaches using genome-wide association study (GWAS) 

data from unrelated individuals are widely used. Polygenic risk score approaches3, 12, 13 

build genetic risk scores (GRSs) for one phenotype and test their association with a second 

phenotype. Mixed-model approaches5, 6, 14 can estimate the genetic covariance between two 

traits on the observed scale. Genetic covariance can be used to calculate genetic correlation 

and coheritability6. Cross-trait LD Score regression (LDSC) utilizes linkage disequilibrium 
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(LD) and summary statistics obtained from GWAS to estimate genetic correlation 

attributable to SNPs7. In addition, the p-values of independent SNPs associated with 

multiple phenotypes can be tested for a significant deviation from the null distribution2. 

These approaches have been applied to demonstrate significant shared genetic structure 

among many phenotypes5, 7, 15 including autoimmune2 and neuropsychiatric diseases3, 6, 13. 

The observed coheritability and genetic sharing suggests the possibility of pleiotropy, 

defined here as the sharing of risk alleles across traits at specific loci or at a genome-wide 

level. An example of pleiotropy is the PTPN22 variant R620W, which is associated with 

multiple autoimmune diseases16.

Shared risk alleles across diseases can be driven by all individuals or by a subset of 

individuals. In the former, the sharing is clearly driven by pleiotropy (whole-group 
pleiotropy). In the latter, only a subset of individuals is genetically similar to another 

disease. We call this subgroup heterogeneity – a situation where a patient cohort consists of 

genetically distinct subgroups that may or may not result in distinct symptom profiles and 

treatment outcomes. Subgroup heterogeneity can occur in the context of misclassifications 

(e.g. cases with atypical clinical presentations for a different disease are erroneously 

included), molecular subtypes (e.g. two different etiologies cause a disease, resulting in a 

subset of cases that share pathogenesis with a different disease), asymmetric causal 

relationships (e.g. one disease causes another disease, resulting in a subset of cases that also 

have the causal disease; often called mediated pleiotropy), or ascertainment bias (e.g. cases 

also affected with a different disease are more likely to come to clinical attention and be 

included in the study). These situations result in a subset of cases that is genetically similar 

to another disease, creating shared genetic structure17. Indeed, there is now evidence that 

misclassifications18–21, etiological diversity22, and ascertainment bias23 are prevalent across 

certain human diseases, leading to the conclusion that significant heterogeneity may 

exist24–27. Since the potential contribution of subgroup heterogeneity to any genetic sharing 

observed between diseases represents a critical disease insight, statistical methods are 

needed to distinguish subgroup heterogeneity from whole-group pleiotropy. For the purposes 

of this paper, we will use the term pleiotropy to refer to whole-group pleiotropy and 

heterogeneity to refer to subgroup heterogeneity.

 RESULTS

 Overview of BUHMBOX

Genetic sharing between disease A (DA) and disease B (DB) could be due to pleiotropy, but 

could also be due to heterogeneity (i.e. a subset of DA cases are genetically more similar to 

DB cases). If we calculated GRSs for DA cases using DB-associated loci and their effect 

sizes (GRSB), the mean of GRSB would be statistically different between DA cases and 

controls under either pleiotropy or heterogeneity. Under pleiotropy, some DB risk alleles 

impose DA risk, and DB risk alleles will be enriched in DA cases compared to controls. 

Under heterogeneity, a subset of DA cases will have genetic characteristics of DB, and 

therefore DB risk alleles will also be enriched in those individuals. In both situations, the 

enriched DB risk alleles in DA cases will result in an increased mean GRSB in individuals 

that are DA cases. For the same reasons, if we calculated the rg of DA and DB using cross-
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trait LDSC7 in this scenario, the rg would be positive under both pleiotropy and 

heterogeneity.

To detect heterogeneity, even in the presence of pleiotropy, we developed BUHMBOX 

(Breaking Up Heterogeneous Mixture Based On Cross-locus correlations). Our method tests 

for the presence of heterogeneous subgroups (i.e. DB-like cases) in an otherwise 

homogenous phenotype (i.e. DA). To do this, BUHMBOX requires (1) a list of known DB-

associated SNPs with corresponding risk alleles, risk allele frequencies, and effect sizes, and 

(2) individual-level genotype data for DB SNPs in DA cases. BUHMBOX leverages the fact 

that in the setting of heterogeneity, DB risk alleles have higher allele frequencies only in a 

specific subset of DA cases. In contrast, under true pleiotropy, DB risk alleles are expected to 

have higher allele frequencies across all DA cases (Figure 1). If DB risk alleles are enriched 

in one subgroup, the expected correlations of risk allele dosages between loci will be 

consistently positive (for details see Supplementary Table 1 and Supplementary Note). 

BUHMBOX combines these pairwise correlations into one statistic and tests for it; 

heterogeneity can lead to a significant BUHMBOX test statistic. In contrast, the lack of true 

heterogeneity or insufficient power to detect the presence of heterogeneity (type II error) can 

lead to a non-significant BUHMBOX test statistic. Insufficient power occurs when the 

number of DA cases, heterogeneity proportion, or number of known risk alleles and/or their 

effect sizes for DB are small.

 BUHMBOX discriminates between heterogeneity and pleiotropy

To demonstrate that BUHMBOX detects heterogeneity (even in the presence of pleiotropy), 

we conducted simulations with the following parameters: sample size of DA case individuals 

(N), number of risk loci associated to DB (M), and the proportion of DA cases that actually 

show genetic characteristics of DB (heterogeneity proportion, or π). To simulate realistic 

distributions of effect sizes and allele frequencies, we sampled odds ratio (OR) and risk 

allele frequency (RAF) pairs from reported associations in the GWAS catalog28 (Online 
Methods).

To characterize the false positive rate (FPR) of BUHMBOX we simulated 1,000,000 studies 

(N=2,000 and M=50) where there was no heterogeneity (π=0, Online Methods) or 

pleiotropy. BUHMBOX obtained a 5.1% FPR at p<0.05; it also obtained appropriate FPRs 

at a wide range of statistical significance thresholds (p<0.05 to 0.0005, Supplementary Table 

2).

To evaluate the FPR of BUHMBOX where there actually was pleiotropy without 

heterogeneity (π=0), we simulated 1,000 studies (N=2,000 and M=50) assuming DA and DB 

shared 10% of risk loci (five loci). We quantified the proportion of instances where 

BUHMBOX and GRS approaches obtained p-values smaller than the threshold p<0.05. GRS 

appropriately demonstrated 64.8% power to detect shared genetic structure. BUHMBOX 

demonstrated an appropriate false positive rate of 4.3% to detect heterogeneity 

(Supplementary Figure 1).

Finally, to evaluate BUHMBOX’s power to detect heterogeneity we repeated these 

simulations assuming there was no pleiotropy, but that there was indeed subtle 
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heterogeneity. We assumed that 10% of DA cases were actually DB (π=0.1). Here, 

BUHMBOX demonstrated 81.7% power to detect heterogeneity at p<0.05 (Supplementary 

Figure 1). The GRS approach demonstrated 100% power to detect shared genetic structure. 

Note that the power difference of the GRS approach in the pleiotropy and heterogeneity 

simulations is because of the stochastic chance that sampled effect sizes of all five loci may 

be small in the pleiotropy simulation; in simulations where we fixed the OR (1.25) and RAF 

(0.3) for all loci, the power of GRS was similar: 91.8% in pleiotropy and 92.0% in 

heterogeneity.

Together, these simulations illustrate that BUHMBOX is sensitive to heterogeneity but 

robust to pleiotropy, while the GRS detects both scenarios and cannot discriminate between 

the two. Thus, BUHMBOX complements methods for detecting pleiotropy by helping to 

interpret shared genetic structure (Supplementary Table 1).

 Weighting pairwise correlations increases power

BUHMBOX combines multiple pairwise correlations into one statistic. A pair of loci with 

larger allele frequencies and effect sizes will show larger expected correlation given the 

same π, and may be more informative than other pairs of loci (Supplementary Figure 2). We 

hypothesized that accounting for this unequal information between SNP pairs could increase 

power. We defined a scheme to weight pairwise correlations between loci as a function of 

their effect sizes and allele frequencies (Online Methods). In simulations we observed 

substantial power gain with this weighting scheme. Assuming 1,000 cases and 50 loci, we 

compared the BUHMBOX power implemented with and without weighting correlations 

(equation (12) in Supplementary Note). Across a wide range of π we observed that 

weighting dramatically increased power (Figure 2). For example, at π=0.1 the weighted 

implementation of BUHMBOX obtained 74% compared to the unweighted implementation 

which obtained only 36% power.

 Power is proportional to number of samples and loci

The statistical power of BUHMBOX is a function of many factors including sample size N 
of the cases we are testing for heterogeneity in, heterogeneity proportion π, number of loci 

M for the coheritable disease, RAF, and OR. We sampled pairs of RAF and OR from the 

GWAS catalog. Given a sample size of N=2,000 cases and 2,000 controls, assuming π=0.2 

and 50 risk loci, BUHMBOX achieved 92% power at p<0.05 (Figure 3). As many GWAS 

now consist of more than 2,000 cases, and many diseases are approaching 50 known 

associated loci28, BUHMBOX is currently well powered to detect a moderate amount 

heterogeneity (π=0.2) for many human traits. Modest heterogeneity is more challenging to 

detect at this sample size; power decreased to 67% at π=0.1 and to 38% at π=0.05. Power 

can be augmented with larger sample size (Figure 3) and larger effect sizes (Supplementary 

Figure 3). Power can also be increased by including large numbers of loci with even nominal 

evidence of association in addition to established genome-wide significant loci 

(Supplementary Note and Supplementary Figure 4).
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 Controlling for linkage disequilibrium

Although BUHMBOX adequately controlled the FPR when loci were truly independent, we 

were concerned that long-range LD between apparently independent loci may introduce 

false positives29. To ensure BUHMBOX was robust to LD, we implemented the following 

strategies: (1) stringent LD-pruning of DB loci to exclude SNPs with r2>0.1, and (2) 

accounting for any remaining residual LD by assessing the relative increase of correlations 

in cases compared to controls (delta-correlations). We evaluated these strategies by 

measuring FPR using the RA Immunochip Consortium data30. In 1,000 different loosely 

pruned (r2<0.5) SNP sets constructed using the Sweden EIRA data (Online Methods), the 

FPR without using delta-correlations was high (22.4% at p<0.05). Applying delta-

correlations reduced this FPR to 9.5%. When we used stringent pruning (r2<0.1), FPR was 

appropriately controlled (FPR 5.9% and FPR 5.3% with and without delta correlations, 

respectively). Although LD pruning alone was sufficiently effective for FPR control in this 

simulation, we used both strategies throughout the paper to be conservative.

 Accounting for population stratification

Another potential confounding factor is population stratification. If population stratification 

exists, weak correlations between unlinked loci may occur, leading to inappropriate 

significance. If similar population stratification exists in cases and controls, the use of delta-

correlations mitigates this effect. To more aggressively control for the effect of stratification 

at the individual level, we implemented BUHMBOX to regress out principal components 

(PCs) from risk allele dosages before calculating correlation statistics. To evaluate this 

strategy, we simulated extreme population stratification using HapMap31 data (60 CEU and 

60 YRI founders as cases, and 90 JPG+CHB founders as controls; λGC=26.5). 

Unsurprisingly, in 5,000 randomly sampled sets of independent SNPs we observed an 

inflated BUHMBOX FPR (14.1% at p<0.05). After regressing the effect of ten PCs from 

risk allele dosages, we observed that the FPR was appropriately controlled (5.7% at p<0.05). 

As an additional test under a more realistic scenario, we merged genotype data from 

Northern Europe (Sweden EIRA cohort; 2,762 cases/1,940 controls) and Southern Europe 

(Spain cohort; 807 cases/399 controls) in the RA Immunochip Consortium case-control 

dataset30 (Online Methods) to create a highly stratified dataset. In 1,000 sets of randomly 

sampled independent SNPs, we observed an inflation of the FPR (8.6% at p<0.05); this was 

appropriately corrected (5.9% at p<0.05) when we regressed out the effect of ten PCs.

 Application to autoimmune diseases

Autoimmune diseases share genetic loci2, 4, 32–36, clustering in specific immune 

pathways2, 27, 36. We used the GRS approach to evaluate shared genetic structure between 

autoimmune diseases, and then applied BUHMBOX to assess heterogeneity. We obtained 

individual-level genotype data from the Type 1 Diabetes Genetics Consortium (T1DGC) UK 

case-control cohort (6,670 cases and 9,416 controls)37 and the RA Immunochip 

Consortium’s six RA case-control cohorts (7,279 seropositive RA cases and 15,870 

controls)30 (Online Methods). We evaluated genetic sharing between a spectrum of 

autoimmune diseases with T1D and RA. We obtained associated independent loci for all 18 

autoimmune diseases (r2<0.1, including MHC SNPs) from ImmunoBase (see URLs and 
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Supplementary Table 3), and tested the association of GRSs for these autoimmune diseases 

with T1D and RA case status.

We observed substantial genetic sharing between autoimmune diseases. T1D demonstrated 

significant sharing with alopecia areata (AA), autoimmune thyroid disease (ATD), celiac 

disease (CEL), Crohn’s disease (CRO), juvenile idiopathic arthritis (JIA), primary biliary 

cirrhosis (PBC), primary sclerosing cholangitis (PSC), RA, Sjögren’s syndrome (SJO), 

systemic lupus erythematosus (SLE), and vitiligo (VIT) (positive association, p<10−4). RA 

exhibited significant sharing with AA, ankylosing spondylitis (AS), ATD, CEL, JIA, PBC, 

PSC, SLE, systemic sclerosis (SSC), T1D and VIT (p<10−3). Overall, GRSs showed 

significant positive associations for 11 autoimmune diseases each in T1D and RA cohorts, 

respectively (GRS p<2.9×10−3 [=0.05/17 correcting for 17 diseases tested]; Table 1, 

Supplementary Table 4). We considered only these traits for subsequent analyses.

To evaluate the degree of heterogeneity necessary to achieve the observed genetic sharing 

for these autoimmune diseases, we calculated the GRS regression coefficient, which we 

previously showed approximates the expected heterogeneity proportion π38 assuming no 

pleiotropy. Based on the GRS coefficients, we observed π estimates ranging from 0.08–0.76 

across the different autoimmune diseases in T1D and from 0.10–0.43 in RA (Figure 4, Table 

1).

We estimated the power of BUHMBOX to detect heterogeneity, correcting for 11 tests 

(p<4.5×10−3). BUHMBOX was well powered for some autoimmune traits; at π=0.2, four 

traits had >90% power for T1D, and four traits had >90% power for RA (Figure 5). Despite 

this, we observed no evidence of heterogeneity at all (corrected p>0.2; Figure 6, Table 1). 

Our findings suggest that autoimmune diseases share similar risk alleles and pathways with 

T1D and RA, and not by subgroups of genetically similar cases resulting from 

misclassifications or molecular subtypes.

 Application to subtype misclassifications in RA

RA consists of two subtypes, seropositive and seronegative, with distinct clinical outcomes 

and MHC associations38. These two subtypes are classified by whether patients are reactive 

to anti-CCP antibody. While anti-CCP testing is specific, its lack of sensitivity can result in 

some seropositive RA patients being misclassified as seronegative RA20. We previously 

demonstrated that there is shared genetic structure between seropositive and seronegative 

RA using the GRS approach38, which could imply misclassifications of up to 26.3% 

between the two RA subtypes.

We used BUHMBOX to evaluate whether seropositive RA misclassifications are present in a 

seronegative RA cohort. We used the seronegative RA cohort (2,406 cases/15,870 controls) 

from the RA Immunochip Consortium30. Among 68 RA-associated independent loci, we 

chose SNPs that are associated to seropositive RA (p<5×10−8) but not seronegative RA 

(p>5×10−8) in our Immunochip data. This criterion resulted in 14 specific loci exclusively 

associated to seropositive RA (Supplementary Table 3). The seropositive RA GRS was 

significantly associated with seronegative RA case status (β=0.30, p=1.1×10−10). The 

regression coefficient (β=0.30) represents an upper bound for π (Figure 4). BUHMBOX 

Han et al. Page 7

Nat Genet. Author manuscript; available in PMC 2016 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



suggested that heterogeneity was indeed present (p=0.008, Figure 6, Table 1, Supplementary 

Table 4), consistent with potential subtype misclassifications. As a more stringent test, we 

selected SNPs based on between-RA-subtype heterogeneity test results; for this test we 

obtained p-values by assigning seropositive RA as cases and seronegative RA as controls. 

We chose SNPs that are associated to seropositive RA (p<5×10−8) and show nominally 

significant between-RA-subtype heterogeneity (p<0.05, Supplementary Table 3). Applying 

BUHMBOX to these 12 loci still showed significant heterogeneity within the seronegative 

RA cohort (p=0.017).

 Application to major depressive disorder and schizophrenia

Current definitions of psychiatric disorders reflect clinical syndromes, with overlapping 

clinical features. As a result, psychiatric diagnoses for a patient may change as their 

symptoms evolve21. In addition to the potential for misdiagnosis, a subset of true MDD 

cases may be genetically more similar to schizophrenia. If heterogeneity with respect to 

schizophrenia risk alleles exists among MDD cases, then genetic studies would suggest 

evidence of coheritability between the two disorders17 as has been observed in previous 

studies3, 6, 7. The unintentional inclusion of “schizophrenia-like” MDD cases, due to 

diagnostic misclassification or genetically distinct subgroups, has been acknowledged and 

explored as a potential source of bias in coheritability studies by previous investigators3, 17.

We used BUHMBOX to test for a subgroup of “schizophrenia-like” cases in MDD. If a 

subset of MDD cases are misdiagnosed and in fact have schizophrenia, or are more 

genetically similar to schizophrenia, we would expect to see subgroup heterogeneity among 

MDD cases with respect to schizophrenia risk loci. We first evaluated evidence of shared 

genetic structure among 90 known schizophrenia associated loci39 (Supplementary Table 3) 

in 9,238 MDD cases and 7,521 controls from the Major Depressive Disorder Working Group 

of the Psychiatric Genomics Consortium40 (Supplementary Table 5). Consistent with 

previous findings (Supplementary Table 6)3, 6,7, the GRS was associated with MDD case 

status (p=1.54×10−5) indicating shared genetic structure (Figure 4). For the GRS analysis we 

used a refined subset of the total sample (6,382 MDD cases and 5,614 controls), excluding 

samples that overlapped with the schizophrenia GWAS39 (Online Methods). Application of 

cross-trait LDSC7 to estimate the genetic correlation obtained further evidence of shared 

genetic structure between MDD and SCZ (rg=0.47, SE=0.07, p=1.61×10−10), of similar 

magnitude to previous reports7. However, the BUHMBOX p-value was not significant 

(p=0.28), indicating no excess positive correlations among schizophrenia loci within MDD 

cases (Figure 6, Supplementary Table 4). Our findings suggest no evidence of a subgroup of 

schizophrenia-like MDD cases. However, we note that we lacked adequate statistical power 

to detect heterogeneity in the context of a small heterogeneity proportion. Given the MDD 

sample size and the number of currently known schizophrenia risk loci, there was 53% 

power at π=0.20 but only 25% power at π=0.10 (Figure 5).

 DISCUSSION

BUHMBOX can distinguish whether shared genetic structure between traits is the 

consequence of heterogeneity or pleiotropy based on SNP genotype data alone. It can help to 
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interpret recent observations of shared genetic structures in complex traits including 

autoimmune, neuropsychiatric, and metabolic diseases. The intuition behind BUHMBOX is 

that if heterogeneity exists, independent loci will show non-random positive correlations. 

Hence, correcting for population structure and long-range LD is critical for this approach to 

be effective. We emphasize that it is necessary to appropriately interpret the source of 

heterogeneity, which will depend on the biological and clinical relationship between the two 

traits. We provide detailed information to guide interpretation in the Supplementary Note.

We demonstrated that genetic sharing between autoimmune diseases is due to pleiotropy, 

noting that for a few traits we had only modest power (Figure 5). One notable exception was 

seronegative RA, which might contain misclassified seropositive RA cases. The results 

presented here demonstrate that seronegative RA is a heterogeneous phenotype with respect 

to genetic overlap with seropositive RA, bringing clarity to an ongoing debate about the 

nature of this disease. In contrast we were underpowered to draw more definitive 

conclusions as to whether a subset of MDD cases are genetically similar to schizophrenia 

cases; as MDD cohorts increase in size we will be able to reassess more accurately whether 

smaller proportions of heterogeneity might partially explain observed coheritability. Our 

results are consistent with recent analyses concluding that pleiotropy between psychiatric 

diseases is unlikely explained by misclassifications alone17.

We showed that the power of BUHMBOX is a function of sample size, heterogeneity 

proportion π, and the number, effect sizes and allele frequencies of loci. Power for subtle 

heterogeneity (π<0.1) in current datasets is limited. But, in future studies, increasing sample 

size and number of known associated loci will augment power. One potential strategy to 

augment power is to use a polygenic modeling3, 12, 13 approach, including a larger number 

of SNPs with less stringent significance thresholds (Supplementary Note and Supplementary 

Figure 4).

BUHMBOX has certain key caveats. First, it is designed to detect a specific type of 

heterogeneity resulting from the presence of a subgroup comprising a known second trait. 

Thus, BUHMBOX cannot currently be applied agnostically to detect the presence of 

heterogeneity within a dataset. Second, BUHMBOX requires prior knowledge of associated 

loci and their effect sizes. For diseases with few known loci, BUHMBOX may perform 

suboptimally. Also, if known effect size estimates are inaccurate, power may decrease 

because appropriate weighting is crucial (Figure 2). Third, BUHMBOX requires individual-

level genotype data for a limited number of loci. Fourth, BUHMBOX can be sensitive to 

confounding factors. We recommend careful control of LD and population structure using 

LD pruning and PCs. Fifth, interpretation of the BUHMBOX test statistic is not simplistic. 

Positive findings indicate the presence of heterogeneity but cannot distinguish between the 

various causes of this (e.g. misclassifications, molecular subtypes, mediated pleiotropy, 

ascertainment bias), and negative findings may indicate no heterogeneity or low power. To 

aid interpretation, BUHMBOX provides a power calculation based on sample size and risk 

allele information, but it may not always be accurate. For example, if pleiotropy and 

heterogeneity co-exist, power may be overestimated. Sixth, if the heterogeneity proportion π 

is small (e.g. 0.05), BUHMBOX’s ability to detect heterogeneity is limited. We expect that π 

will vary between situations, and further clinical and biological investigations are necessary 
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to uncover true π. Finally, there is the unlikely possibility that real epistasis can manifest as 

positive signal for BUHMBOX. Broadly, BUHMBOX can be thought of as capturing a 

specific form of epistasis where risk alleles correlate positively within the additive model. 

As such, if this specific form of epistasis occurs naturally between DB-associated SNPs, and 

if this epistasis structure is shared with DA, it has the potential to create a significant 

BUHMBOX test result and confound these analyses. However, this specific type of epistasis 

seems unlikely; were it present, application of BUHMBOX using DB-associated SNPs in DB 

cases to detect apparent “heterogeneity” might yield a significant result.

When comparing BUHMBOX to existing approaches, we focused on the GRS method. 

However, the results of our comparison also apply to other existing methods such as mixed-

model-based approaches5, 6 and LD-score-based approaches7, which are similar to the GRS 

approach in the sense that they detect both pleiotropy and heterogeneity. We expect that 

BUHMBOX will complement any of these methods to facilitate interpretation of observed 

genetic sharing between traits. Our statistical approach may be extended to have application 

beyond heterogeneity, including identification of missing heritability resulting from this type 

of heterogeneity41. These applications will become more feasible as functional annotations 

of SNPs advance in the coming years.

 ONLINE METHODS

 Genetic risk score approach

Given M independent risk loci associated to DB, we calculated the GRS of individual i as

where xij is individual i’s risk allele dosage at marker j, and βj is the effect size (log odds 

ratio) of risk allele at marker j for disease DB. The GRS approach calculates GRSs for all 

individuals and associates GRSs to the case/control status of DA. In the logistic regression 

framework for associating GRSs and DA status, we can obtain the regression coefficient for 

GRS (βGRS). We previously showed that βGRS approximates the proportion of DA cases that 

are genetically DB (heterogeneity proportion π), if we assume is no pleiotropy and the GRS 

association is solely driven by a subgroup38. Thus, βGRS represents an upper bound of π.

 The BUHMBOX approach

To detect heterogeneity within DA cases driven by a subgroup that is genetically similar to 

DB patients, we utilize the following procedure:

1. Prepare genotype data of DA cases and controls, and information about SNPs 

associated to DB (risk allele, RAF, and OR).

2. Prune SNPs associated to DB based on LD in control samples (excluding SNPs 

with r2>0.1 or within ±1Mb of other SNPs)

3. Obtain risk allele dosages of pruned SNPs from DA cases and controls
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4. Regress out PCs from risk allele dosages to obtain residual dosages, each locus 

at a time

5. Calculate R, the correlation matrix of residual dosages of risk alleles in N 
cases with DA and R′, in N′ controls

6. Calculate Y, a z-score matrix from delta-correlations:

7. Calculate the BUHMBOX statistic:

where yij is the element in Y at row i and column j. Given M pruned SNPs, (i,j) 
iterates M(M−1)/2 non-diagonal elements of Y. The wij term is a weighting 

function that is designed to maximize power, such that (equation (13) in 

Supplementary Note):

where pi is RAF of SNP i, and γi is the OR of SNP i for DB. The BUHMBOX 

statistic follows N(0,1) under the null hypothesis. We calculate the significance 

of this statistic as a positive one-sided test; the p-value is pBUHMBOX = 1 − 

Φ(SBUHMBOX) where Φ is the cumulative density function of the standard 

normal distribution. In the context of heterogeneity, excessive positive 

correlations among DB risk alleles in DA cases result in pBUHMBOX < α. See 

Supplementary Table 1 for a comparison of BUHMBOX and GRS approaches. 

The BUHMBOX test statistic was inspired by previous work deriving 

covariance between correlation estimates42 and on combining dependent 

estimates43, 44. For details of the intuition, derivation, optimization, and 

interpretation of the BUHMBOX test statistic, see Supplementary Note.

 Code availability

BUHMBOX has been fully implemented as a publicly available R script (see URLs).

 Power and false positive rate simulations

Given sample size of DA cases (N), proportion of DA cases that actually show genetic 

characteristics of DB (heterogeneity proportion π), and number of risk loci associated to DB 

(M), we simulated studies to estimate power of our method as follows. To simulate a 

reasonable joint distribution of RAFs and ORs, we downloaded the GWAS catalog (as of 29 
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April 2014). Among all binary traits in the catalog, we selected traits with ≥50 reported 

SNPs resulting in 22 traits with 1,480 SNPs. From these SNPs, we sampled M pairs of RAF 

(p) and their corresponding OR (γ). To simulate genotypes, we set the RAF of a subgroup 

(Nπ individuals) to γp/((γ−1)p+1) and p for the other subgroup (N(1−π) individuals), 

because Nπ individuals can be thought of as DB cases. Within each subgroup, we generated 

genotypes assuming that risk alleles are distributed according to the Hardy-Weinberg 

equilibrium (HWE) and risk loci are independent. We assumed HWE in cases because we 

assumed an additive disease model. Then we applied BUHMBOX to calculate the p-value. 

We repeated this 1,000 times to approximate power as the proportion of simulations with p-

values ≤0.05. We evaluated power for different values of N, M, and π.

Under the assumption that the loci are independent, the FPR simulation was equivalent to 

the power simulation described above with the only difference being that π was set to zero, 

which forced the null hypothesis. We measured the FPR by assuming N=1,000 and M=20, 

and constructing 1,000,000 such studies.

 Linkage disequilibrium simulations

To simulate realistic LD, we used chromosome 22 data from control individuals in the 

Swedish EIRA cohort of the RA dataset (2,762 cases/1,940 controls)30. We assigned half of 

control individuals as cases and the rest as controls. To generate 1,000 random sets of SNPs, 

we began from all SNPs and thinned the SNP set by 10-fold with different seed numbers 

using PLINK45 (with the command --thin 0.1). We then pruned each of the 1,000 datasets 

using PLINK45 with r2 criterion of 0.5 or 0.1.

 Population stratification simulations

To assess the effects of population stratification, we conducted two sets of simulations. First, 

used data from HapMap31 release 23 data (60 CEU founders, 60 YRI founders, and 90 JPT

+CHB founders) setting CEU+YRI as cases and JPT+CHB as controls. We calculated PCs 

after LD pruning (r2<0.1). For DB SNPs we randomly selected 5,000 sets of 22 independent 

SNPs; we selected a single SNP from each autosome. Second, we used genotype data from a 

Northern Europe RA cohort (Swedish EIRA; 2,762 cases/1,940 controls) and a Southern 

Europe cohort (Spain; 807 cases/399 controls) from the RA dataset30. For this simulation we 

used SNPs that we had generated for LD simulations (described above, thinned from 

Swedish EIRA chromosome 22 with criterion r2<0.1), by setting them as cases and adding 

Spain samples as controls.

 Application to specific phenotypes

 Type 1 diabetes dataset—To evaluate pleiotropy and heterogeneity between 18 

autoimmune diseases and T1D, we applied GRS and BUHMBOX approaches to the UK 

case-control dataset provided by the T1DGC37, which consisted of a total of 16,086 samples 

(6,670 cases and 9,416 controls) from three collections: (1) cases from the UK-GRID, (2) 

shared controls from the British 1958 Birth Cohort and (3) shared controls from Blood 

Services controls (data release 4 February 2012, hg18). The samples were collected from 13 

regions. All samples were collected after obtaining informed consent, and were genotyped 

Han et al. Page 12

Nat Genet. Author manuscript; available in PMC 2016 November 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on the Immunochip array. GRS and BUHMBOX analyses were conducted using the region 

index as covariates.

 Rheumatoid arthritis dataset—To evaluate pleiotropy and heterogeneity between 18 

autoimmune diseases and RA, we used the RA Immunochip consortium data from six RA 

case-control cohorts (UK, US, Dutch, Spanish, Swedish Umea, and Swedish EIRA)30. To 

evaluate pleiotropy to autoimmune diseases, we used 7,279 seropositive RA cases and 

15,870 controls. To evaluate misclassifications of RA subtypes, we used 2,406 seronegative 

RA samples and the same controls. Seropositive and seronegative RA patients were defined 

in each cohort using standard clinical practices to assess whether patients were reactive to 

anti-CCP antibody38. All samples were obtained with informed consent, and were collected 

through institutional review board approved protocols. All individuals self-reported as white 

and of European descent. Samples were genotyped with the Immunochip array. We merged 

the data of six cohorts into one, and used binary variables representing cohorts as well as 10 

PCs as covariates in the analysis.

 Defining autoimmune risk loci—We accessed ImmunoBase (7 June 2015 version) to 

define genome-wide significant risk loci for 18 autoimmune diseases. We did not include 

inflammatory bowel disease, due to its redundancy with Crohn’s disease and ulcerative 

colitis. For each of the 18 autoimmune diseases analyzed we pruned the list of index SNPs 

obtained from ImmunoBase in PLINK45 with options --r2 --ld-window-r2 0.1, using the 

1000 Genomes Phase 1 European reference panel for LD. For all pairs of SNPs with r2>0.1, 

we kept the most strongly associated SNP. To ensure completely independent risk loci we 

also removed SNPs annotated as being located in the same chromosomal region in 

ImmunoBase, again keeping the most strongly associated index SNP (Supplementary Table 

3). When a locus was not in the Immunochip datasets, we looked for a proxy (r2>0.2) based 

on the 1000 Genomes data.

 Major depressive disorder dataset—We used BUHMBOX to investigate the 

relationship between MDD and schizophrenia, which have been previously reported to share 

genetic etiology based on polygenic risk scoring3 and coheritability analyses6. The full 

MDD sample analyzed comprised nine GWAS datasets collected from eight separate studies 

(Supplementary Table 5) as previously described40. All samples were collected through 

institutional review board approved protocols and were obtained with informed consent. 

Independence of the training (SCZ) and target (MDD) datasets is crucial in GRS analyses; 

GRSs are constructed using effect size estimates obtained using allele frequency differences 

between cases and controls in the training GWAS, and overlapping cases or controls will 

therefore bias the association of GRSs to the target dataset in the positive direction. In 

contrast the BUHMBOX test statistic is based on the correlation of risk allele dosages 

among cases, which is orthogonal to allele frequency differences in cases and controls, and 

is therefore not inflated by sample overlap. Thus, for the GRS analysis individual MDD 

samples (four cases, 886 controls) that overlapped with those in the schizophrenia GWAS39 

were removed from the analysis; three GWAS cohorts with an insufficient number of 

independent control samples (N<5) were also removed from the analysis. GRS analyses 

were conducted in each of the remaining six GWAS datasets (Supplementary Table 5), 
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followed by meta-analysis of the GRS. To obtain the overall GRS effect size (β) and test 

statistic we used the inverse-variance weighted fixed effects method. For BUHMBOX, we 

used the full dataset; analyses were conducted in each of the nine GWAS datasets 

(Supplementary Table 5) followed by meta-analysis. Because the BUHMBOX statistic is a 

z-score, we meta-analyzed BUHMBOX results across the datasets using the standard 

weighted sum of z-score approach, where z-scores are weighted by the square root of the 

sample size.

 Defining schizophrenia risk loci—Schizophrenia associated SNPs were selected as 

those showing genome-wide significant association with schizophrenia (p<5×10−8) in the 

most recent Psychiatric Genomics Consortium39 GWAS. For schizophrenia associated SNPs 

not directly genotyped in the MDD GWAS datasets, we selected proxy SNPs as those with 

the highest r2 from the list of all proxies with r2>0.2 using the 1000 Genomes Phase 1 

European reference panel. Of the 97 schizophrenia associated SNPs (11 indels were not 

considered in our analysis), 90 LD-independent SNPs (r2>0.1, distance to each other is 

>1Mb) were available for analysis in the MDD GWAS datasets either via direct genotyping 

or by a proxy SNP (see Supplementary Table 3 for a detailed list of SNPs).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of BUHMBOX
(a) Under the scenario of subgroup heterogeneity, risk alleles of disease B (DB)-associated 

loci will be enriched in a subgroup of disease A (DA) cases, producing positive correlations 

between DB risk allele dosages from independent loci. (b) Under the scenario where there is 

no heterogeneity and DA and DB share alleles due to pleiotropy (i.e. whole-group 

pleiotropy), DB risk alleles will be uniformly distributed and have no correlations. Red 

boxes: risk alleles; white boxes: non-risk alleles.
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Figure 2. Power gain by weighting SNPs by allele frequency and effect size
We compared the statistical power of BUHMBOX with a weighting scheme that optimally 

weights correlations between SNPs (weighted) to an alternative approach that weights 

correlations uniformly (unweighted; equation (12) in Supplementary Note). We simulated 

1,000 case individuals and assumed 50 risk loci, whose OR and RAFs were sampled from 

the GWAS catalog. Colored bands denote 95% confidence intervals of power estimates.
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Figure 3. BUHMBOX power analysis
Power of BUHMBOX for detecting heterogeneity as a function of the number of risk loci, 

number of case samples, and the proportion of samples that actually have different 

phenotype (heterogeneity proportion, π). We assume that we have the same number of 

controls as cases. White lines denote 20, 40, 60, and 80% power. (a) Power as a function of 

number of case individuals and heterogeneity proportion, when the number of risk loci is 

fixed at 50. (b) Power as a function of number of risk loci and heterogeneity proportion, 

when the case sample size is fixed at 2,000.
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Figure 4. Genetic sharing between autoimmune diseases and psychiatric disorders
In (a) and (b), we show only the diseases that have significantly positive GRS p-values out 

of the 17 tested. Y-axis denotes the expected heterogeneity proportion (π) to explain 

observed genetic sharing. Vertical bars indicate 95% confidence intervals. Heterogeneity 

proportion estimates are based on GRS analysis, assuming no pleiotropy for (a) T1D, (b) 

RA, (c) seronegative RA, and (d) MDD.
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Figure 5. Statistical power of BUHMBOX to detect heterogeneity
We calculated power by performing 1,000 simulations with corresponding sample size, 

number of risk alleles, risk allele frequencies, and odds ratios. To calculate power for (c) and 

(d), we used a significance threshold of 0.05. For (a) and (b), the threshold was adjusted 

using the Bonferroni correction accounting for 11 tests in T1D and RA, respectively.
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Figure 6. BUHMBOX results
We show only diseases with significantly positive GRS p-values (for complete results for all 

traits tested, see Supplementary Table 4). Significant GRS p-values indicate evidence of 

shared genetic structure; significant BUHMBOX p-value indicates evidence of 

heterogeneity. Point size represents the number of DB-associated SNPs included in the 

analysis. Dashed vertical lines denote the Bonferroni-adjusted significance threshold for the 

BUHMBOX test statistic. Arrow indicates significant BUHMBOX test statistic.
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