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Abstract

Purpose—This study examined the utility of sets of Single Nucleotide Polymorphisms (SNPs) in 

familial but non-BRCA-associated breast cancer (BC).

Methods—We derived a polygenic risk score (PRS) based on 24 known BC risk SNPs for 4,365 

women from the BCFR and kConFab familial BC cohorts. We compared scores in women based 

on cancer status at baseline. 2,599 women unaffected at enrollment were followed for an average 

of 7.4 years. Cox proportional hazards regression was used to analyze the association of PRS with 

BC risk. The BOADICEA risk prediction algorithm was used to measure risk based on family 

history alone.

Results—The mean (SD) PRS baseline was 2.25 (0.35) for the affected and 2.17 (0.35) for 

unaffected women from combined cohorts (p<10−6). During follow-up, 205 BCs occurred. The 

hazard ratios for continuous PRS (per SD), and upper vs. lower quintiles were 1.38 (95% CI: 

1.22–1.56) and 3.18 (95% CI: 1.84–5.23) respectively. Based on their PRS-based predicted risk, 

management for up to 23% of women could be altered.

Conclusion—Including BC-associated SNPs in risk assessment can provide more accurate risk 

prediction than family history alone and can influence recommendations for cancer screening and 

prevention modalities for high-risk women.

Keywords

risk prediction; breast cancer; non-BRCA associated; polygenic risk score; cancer screening

INTRODUCTION

In the recent initiative towards “precision medicine” announced by the National Institutes of 

Health1, the use of genetic information for the identification of high-risk groups for targeted 
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screening and/or prevention is gradually becoming part of routine medical care. Once 

limited to pathogenic mutations in high-risk genes such as BRCA1, BRCA2, p53, and the 

mismatch repair genes associated with Lynch Syndrome, the last decade has seen the 

identification of additional genes for which pathogenic variants are associated with perhaps 

two- to five-fold increased risks of cancer, as well as an ever-increasing set of common 

SNPs, each of which is associated with a relative risk of 1.05 to 1.3 of developing breast 

cancer2,3. Although these SNPs are not useful for risk prediction when considered 

individually, theoretical calculations indicate that a combined score based on genotypes at a 

large number of such loci could have substantial predictive value for risk stratification in the 

general population4,5, as well as in BRCA1 and BRCA2 carriers6. The combination of high-

risk genes such as BRCA1 and BRCA2 and the known SNPs described above is estimated to 

explain less than half of the familial aggregation of breast cancer. This notwithstanding, such 

sets of SNPs may have clinically useful predictive power in the familial setting, due to the 

increased risk of breast cancer conferred by a woman’s family history alone. To date, there 

has only been a single study7 examining the utility of such SNP panels in the familial 

context, and none in a prospective fashion. Sawyer et al.7 looked at differences in a PRS 

based on 22 SNPs between BRCA1/2 carriers and BRCA1/2 negative women with breast 

cancer from a familial cancer clinic in Australia, and a set of controls. They found that non-

carrier cases had a higher PRS than BRCA1/2 carriers and that a higher proportion of non-

BRCA1/2 cases individuals with a PRS in the top quartile had breast cancer diagnosed 

before age 30 compared to the lowest quartile. The goal of the present study was to examine 

the utility of panels of SNPs in the context of familial breast cancer, where women are 

already at elevated risk due to their family history and to determine if such SNP panels could 

stratify women into clinically useful risk groups. Currently, various advisory bodies have 

proposed guidelines for the use of magnetic resonance imaging (MRI) in addition to 

mammography for women at high risk. For example, the American Cancer Society8 

proposes lifetime risk thresholds of 20 – 25% for MRI while the UK NICE guidelines9 use a 

threshold of 30%. Here we examine women in families not known to have BRCA1/2 
mutations from two different familial breast cancer resources – the Breast Cancer Family 

Registry (BCFR) cohort and the Kathleen Cuningham Consortium Foundation for Research 

into Familial Breast Cancer (kConFab). This study is novel in two ways: first, it examines 

women who are already at increased familial risk, and second it prospectively analyzes 

women who were unaffected at cohort enrollment.

MATERIALS AND METHODS

SNP selection and genotyping

BCFR—For BCFR subjects, a total of 24 SNPs were successfully genotyped (Supplemental 

Table S1 online). These correspond to the loci known to be associated with breast cancer at 

the start of the study and do not include the more recent loci discovered as part of the 

iCOGS analyses2,3. These SNPs were genotyped using a capture-based next generation 

sequencing method developed by one of us (A.M.) specifically for this study.

kConFab—In kConFab, SNPs were genotyped in two phases using two different 

technologies. In the first phase,18 SNPs were typed using iPLEX, and in the second phase, 
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an additional 90 SNPs were typed using Fluidigm technology. In order to have comparable 

scores for the two data sets to allow a combined analysis, we chose 24 SNPs, which were 

either the same SNP or in complete or strong ( R2 > 0.9 ) linkage disequilibrium (LD) with 

the SNP genotyped in BCFR. Supplemental Table S1 online shows the minor allele 

frequency and odds ratio (OR) for the SNPs genotyped in each cohort.

Subjects—The BCFR is a National Cancer Institute sponsored resource of familial breast 

cancer (www.bcfamilyregistry.org )10,11. It consists of over 15000 families enrolled since 

1995 from six sites in the U.S. (Utah, Northern California, New York, Philadelphia), 

Australia, and Canada, with data collection on lifestyle factors, tumor histopathology, and 

increasingly, genetic information. Three of the sites incorporated a clinic-based 

ascertainment strategy, while the other three were population-based. Recruitment and 

genetic studies were approved by the University of Utah IRB, and the local IRBs of the 

BCFR centers from which we received blood samples and data. Written informed consent 

was obtained from each participant. Families were selected for this study on the basis of 

availability of DNA samples in the family and age (at least one woman diagnosed with BC 

under age 60 years prior to enrollment and one or more unaffected women over age 30 years 

at baseline with a DNA sample available). In total, 2,467 women were successfully 

genotyped for at least 20 of the 24 SNPs; of these, 96% had at least 22 valid genotypes 

called. After exclusion of 376 women without the required dates of birth, enrollment, and 

follow-up end-points, 2,091 women from 707 families were included in the analyses. Of 

these, 991 women in 481 families who were unaffected with BC and were less than 70 years 

of age at baseline were included in the prospective analyses.

The second data set analyzed as part of this project was based on the kConFab12 resource 

that has enrolled BC families since 1997 and systematically followed up women every 3 

years.13 Details on the resource and the ascertainment criteria have been described elsewhere 

(www.kconfab.org). Subjects were selected for genotyping based solely on their phenotype 

at baseline, without regard for any subsequent cancers. For this study, eligibility was 

restricted to families with at least one family member genotyped for the SNPs of interest. 

Families were systematically screened for and excluded if found to contain a mutation in 

BRCA1, BRCA2, PALB2 or ATM. In this study we included 2,732 women from 535 

families who had sufficient genotype data to compute PRS. After excluding women who did 

not meet the inclusion criteria, there were 2,274 women from 523 families eligible for 

analysis. Of these, 1,608 women from 488 families were included in the prospective cohort 

based on the same inclusion criteria as for BCFR described above. All participants in this 

study signed informed consent and the study was approved by the Human Research Ethics 

Committee of the Peter MacCallum Cancer Center, as well as at all participating centers.

Statistical Methods

Calculation of PRS—We created a PRS for each genotyped individual based on their 

genotypes at each of the 24 loci, defined for the jth individual as , 

where nij is the number of risk alleles carried by the jth individual at the ith SNP, nij = {0,1,2} 

and Ri is the per-allele Relative Risk (estimated by the per allele Odds Ratio (OR) in 

Europeans from large published studies3) associated with the ith SNP. When SNP genotypes 
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were missing for an individual (maximum of four missing genotypes per individual), they 

were included in the overall PRS by weighting each genotype by its expectation given the 

MAF at that locus and their relatives’ genotypes (if any) as estkiamted from 10,000 

replicates of the data set using the simulation program SLINK14.

For the 24 SNPs used here, the theoretical expected value of the PRS is 2.123 with variance 

of 0.117, based on the ORs and MAF for each SNP.

Assessment of family history—As part of the Prof-SC cohort11 the BOADICEA 

model15 was used to predict BC risk in over 18,000 unaffected women from the BCFR and 

KConFab cohorts. Although originally designed to predict probabilities of an individual 

carrying a BRCA1 or BRCA2 mutation, BOADICEA also predicts a woman’s risk of breast 

and ovarian cancer both for the next 10 years and until age 80 (remaining lifetime risk) and 

has shown to an accurate predictor of breast cancer risk in a prospective study16. Specifically 

we used the predicted 10-year risk of BC as calculated by BOADICEA as a summary 

measure of each woman’s familial risk given her age and the ages/age at diagnosis and 

cancer (breast, ovarian, prostate and pancreatic) status of all their relatives and incorporates 

any available BRCA1/2 genetic testing results. Of the 2,599 women in the prospective 

analysis, BOADICEA scores were available for 2457 (95%) women. Lastly, we used the 

BOADICEA remaining lifetime risk as a baseline for modification by PRS as described 

below to examine lifetime risk changes as a function of the SNP-based PRS.

Statistical Analysis of PRS scores—We compared PRS scores in women who were 

affected and unaffected with BC at entry into the into the BCFR or kConFab cohorts, In this 

analysis, all women with a PRS were included without regard to previous history of other 

cancers (e.g., ovarian cancer). To adjust for the slight differences in the specific SNPs used 

in the two cohorts and to express the estimated hazard ratios (HRs) per standard deviation, 

we normalized the PRS scores by subtracting the theoretical mean from each score and 

dividing by the theoretical standard deviation prior to analysis. The primary analyses were 

prospective in which women who were unaffected by BC and who had not undergone 

bilateral prophylactic mastectomy (BPM) prior to cohort enrolment were eligible for follow-

up with the primary endpoint development of invasive BC or DCIS during the follow-up 

period. Women were censored at the earliest of 1) diagnosis of BC (invasive or DCIS); 2) 

BPM; 3) death; or 4) last follow-up questionnaire (or last date known to be alive and cancer 

free). The characteristics of the 2,599 women who form the prospective cohort are presented 

in Table 1. We used Cox proportional hazards models to evaluate the effect of PRS on BC 

risk in this cohort. In these analyses, we used both the continuous PRS score as an 

independent predictor as well as a comparison of the upper and lower quintile of such scores 

(calculated separately for BCFR and kConFab cohorts). The main analyses were stratified 

by study center (the six BCFR sites and kConFab) and all analyses used a robust variance 

estimator based on family membership to adjust the variance for correlations in scores and 

overall cancer risks in related individuals. Interactions with family history, age, and study 

center were done using multivariable Cox models including main effects and an interaction 

term.
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In order to examine the effect of the PRS on the estimated lifetime risk of breast cancer as 

assessed by BOADICEA ( LRB ) we estimated a SNP-based cumulative risk for each 

woman in the sample by 1 − exp(−LRB * HRi ) where HRi = exp(β* PRSi ) and β is the 

natural logarithm of the estimated HR for continuous PRS in the prospective cohort and 

PRSi is the standardized PRS for the ith woman in the cohort.

All statistical analyses were done using STATA 12.0 (StataCorp, College Station TX).

RESULTS

We first compared the PRS in all subjects at baseline. A total of 1,496 women affected with 

breast cancer (1,084 BCFR; 412 kConFab) and 2,869 (1,007 BCFR; 1,862 kConFab) 

unaffected women were available for analysis. There were highly significant differences 

between the mean PRS in affected women at baseline compared to unaffected women in 

each cohort as well as the combined set (p=3x10−5, 1x10−6, and1x10−10, respectively). The 

mean PRS in unaffected women of 2.170 is slightly higher than the theoretical mean of 

2.123, which is expected given their selection from a positive family history. PRS scores 

were quite comparable between the two cohorts, especially in unaffected women. Table 1 

shows the characteristics of the prospective cohort. The overall breast cancer incidence was 

higher in the BCFR cohort (p=0.0012) but this is likely because women in the BCFR were 

on average older at start of follow-up than those in kConFab (46.4 vs. 42.6; p<10−5) and 

may have had a less stringent family history criterion for entry than that for the BCFR. The 

results of the Cox proportional hazards models in the analysis of prospective data are shown 

in Table 2. In both of the cohorts and for both the continuous and upper vs. lower quintile 

PRS score, the PRS was associated with highly significant increased risk with a HR for 

upper vs. lower quintile of 3.18. HRs by quintile, for each study are shown in Supplemental 

Table S2 online. The HRs for the continuous PRS were not significantly different between 

the BCFR and kConFab study cohorts (p=0.13) for study*PRS interaction, but were 

borderline significant for the upper vs. lower quintile (P=0.05), nor did the HR vary 

significantly as a function of age at baseline (p=0.88 and p=0.71 for the two cohorts, 

respectively). We tested the validity of the proportional hazards assumption implicit in the 

Cox models; neither the quintiles defined by PRS (p=0.85) nor the continuous PRS score 

(p=0.64) showed departure from the proportional hazards assumption. In a sensitivity 

analyses we excluded women who had been affected with any cancer at baseline (including 

ovarian) and censored women at date of diagnosis of any non-breast cancer occurring during 

follow-up. Results were only slightly changed from those above.

We used Kaplan-Meier survival analysis to look at the cumulative risks of BC for the lower 

quintile, three middle quintiles, and upper quintile as shown in Figure 1. Risks to age 70 

were 51% (95% CI: 42% − 60%) for women in the highest quintile of PRS compared to 

21% (14% − 31%) in the lowest. Similar plots for each of the two cohorts individually are 

presented in Supplemental Figure S1 online.

Analysis of PRS and family history

In order to explore the joint relationship of the PRS and family history on risk, we added the 

BOADICEA 10-year risk score to the Cox models and looked at the effect of the PRS score 
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adjusted for family history. For the set of individuals with these scores, the HR associated 

with the PRS in the combined dataset was 1.36 (p=2x10−6) while with the BOADICEA 10-

year score in the model the HR was only slightly reduced (1.34 (p=1x10−5)). The 

BOADICEA 10-year risk estimate was also a significant predictor (HR=1.1; p=9x10−4) of 

BC risk. There was no evidence of an interaction between the PRS and BOADICEA 10-year 

risk (p=0.31). Supplemental Figure S2 online shows the Kaplan-Meier plots for the lowest, 

middle, and highest tertiles of the baseline BOADICEA 10-year risk.

Figure 2 displays a plot of the BOADICEA lifetime risk plotted against the estimated 

remaining lifetime risk based on the BOADICEA score and the individual PRS with 

indicators of the 20% and 25% risk categories which would be considered cutoffs for 

recommending screening breast MRI. Table 3 shows the numbers of women in each of the 

risk quadrants for the two thresholds. For example, assuming the 20% threshold for MRI 

screening, 249 women out of 1,585 (16%) moved from below the threshold to above this 

threshold.

DISCUSSION

The results of this study show that using even a subset of the current ~96 breast cancer-

associated SNPs can provide a potentially useful stratification of women into risk groups. 

However, the SNPs that we did not include in our study are, in general rarer, and/or have 

smaller effect size so we believe we have captured a significant proportion of the known 

genetic variance of BC due to common alleles of small effect. Based on the theoretical 

standard deviation of the score calculated from 77 SNPs in Mavaddat et al.5 We calculate 

that our PRS score captures about 2/3 of the genetic variance represented in the more recent 

panel. It is likely that inclusion of more complete sets of SNPs would further increase the 

discriminatory power. To our knowledge this is the first prospective study (familial or 

otherwise) to demonstrate the ability of such SNP panels to predict breast cancer outcome. 

Sawyer et al.7 estimated an HR of 2.08 for the lowest quartile compared to the highest 

quartile in assessing the risk of contralateral BC using a PRS based on 22 SNPs. However, 

this was a retrospective analysis in which women who presented with bilateral BC were 

compared with unilateral cases. This compares with the HR of 3.18 for highest and lowest 

quintile in our prospective analysis based on a PRS composed of 24 SNPs. Comparing 

familial BC cases to controls, the Sawyer study found an Area Under the Curve (AUC) of 

0.64 for predicting BC based on their PRS; in our prospective analysis we found an AUC of 

0.59 (95% CI 0.55 − 0.63). The absolute risks associated with women in the highest quintile 

of PRS were quite high, but it must be noted that these women in the BCFR were selected 

for genotyping based on having a family history, and women/families enrolled in kConFab 

are selected on the basis of their family history.

Both the American Cancer Society8 and the National Comprehensive Cancer Network17 

guidelines propose that women with a lifetime risk for BC above 20 to 25% should receive 

MRI screening. Using the BOADICEA algorithm to predict lifetime risk and assuming the 

25% threshold, 14% of women in this familial cohort would theoretically have a change in 

management (i.e., screening or prevention recommendations); with the lower threshold of 

20%, this figure increases to 23%. However, these estimates are based on the HRs for the 
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PRS estimated from the data and thus would not be, strictly speaking, valid estimates of risk 

and are specific to the risk distribution in this set of selected families. However, this does 

demonstrate how the PRS can be used to more effectively target screening/prevention 

choices in BRCA1/2-negative women with a family history of the BC.

In summary, we have shown that SNP panels can be a useful adjunct to genetic testing for 

high penetrance genes in women with a family history of BC. Inclusion of risk scores based 

on BC associated SNPs in risk assessment can provide more accurate risk prediction than 

family history alone and can influence recommendations for cancer screening and 

prevention modalities for high-risk women.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Kaplan-Meier plot of breast cancer risk in the prospective cohort for the upper, middle three, 

and lower quintiles of the PRS. P-value shown corresponds to log-rank test comparing the 

three curves.
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Figure 2. 
Scatter plot of BOADICEA lifetime risk against estimated lifetime risk based on the 

combination of BOADICEA score and the individual PRS. In the bottom panel solid 

horizontal and vertical line indicate the 20% threshold of lifetime risk while dashed lines 

denote the 25% threshold. Each red dot corresponds to an individual woman in the 

prospective cohort. Those in the upper left and lower right quadrants would be those who 

potentially could have a change in screening recommendations based on current guidelines.
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Table 2

Prospective Analysis of breast cancer risk as a function of PRS.

Study Analysis Hazard Ratio 95% CI p-value

BCFR Continuous PRS 1.30 (1.12, 1.51) 6.3 × 10−4

Upper vs. Lower Quintile 2.38 (1.37, 4.13) 2.0 × 10−3

kConFab Continuous PRS 1.59 (1.29, 1.96) 1.2 × 10−5

Upper vs. Lower Quintile 10.82 (2.73, 42.86) 6.9 × 10−4

Combined Continuous PRS 1.38 (1.22, 1.56) 2.9 × 10−7

Upper vs. Lower Quintile 3.18 (1.84, 5.23) 4.7 × 10−6
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Table 3

Number of women below and above MRI screening threshold based on BOADICEA remaining lifetime risk 

and BOADICEA and PRS score. Two thresholds for screening are shown: 20% and 25%.

BOADICEA Lifetime risk BOADICEA +PRS Risk Number of women Percent change

<0.2 <0.2 1336 249/1585=15.7%

<0.2 >=0.2 249

>=0.2 <0.2 312 312/873=35.7%

>=0.2 >=0.2 561

Overall change 561/2458=23%

<0.25 <0.25 1944 232/2176=10.7%

<0.25 >=0.25 232

>=0.25 <0.25 119 119/282=42.2%

>=0.25 >=0.25 163

Overall Change 351/2458=14%
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