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Abstract

Background: Both higher and lower fetal growth are associated with cardio-metabolic health later in life,
suggesting that prenatal developmental programming determines long-term cardiovascular disease risk.
Epigenetic mechanisms, which orchestrate fetal growth and development, may offer insight on the early
programming of health and disease. We investigated whether birth weight-for-gestational is associated with
DNA methylation at birth and mid-childhood, measured via the Infinium 450K array.

Methods/results: Participants were from Project Viva, a pre-birth cohort of pregnant women and their children in
Eastern Massachusetts. After exclusion of participants with maternal type 1 or 2 diabetes and gestational age <34 weeks,
we used DNA methylation assays from 476 venous umbilical cord blood samples and a subset of 235 who additionally
had peripheral blood samples available in mid-childhood (age 7–10 years). Among 392,918 CpG sites analyzed, birth
weight-for-gestational age z-score was associated with cord blood DNA methylation at 34 CpGs (false discovery rate
P < 0.05), after adjusting for maternal age, race/ethnicity, education, smoking, parity, delivery mode, pre-pregnancy BMI,
gestational diabetes status, child sex, and estimated cord blood cell proportions based on a cord blood reference panel.
Two of these CpGs were previously reported in epigenome-wide analyses of birth weight, and several other CpGs map
to genes relevant to fetal growth and development. Namely, higher birth weight-for-gestational age was associated
with higher methylation at four CpGs at the PBX1 locus (e.g., β (95% CI) for lead signal at cg06750897 = 1.9 (1.2, 2.6)),
which encodes a transcription factor that regulates embryonic development. Birth weight-for-gestational age was also
associated with mid-childhood blood DNA methylation at four of the 34 CpGs identified in cord blood analyses,
including sites at the PBX1 locus described.

Conclusions: We identified CpG sites where birth weight-for-gestational age was associated with DNA methylation
at birth, and for a subset of these sites, birth weight-for-gestational age was also associated with DNA methylation at
mid-childhood.
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Background
Fetal growth predicts both short- and long-term health,
including cardio-metabolic health. Low birth weight has
been associated with higher blood pressure, insulin
resistance, type 2 diabetes, coronary heart disease events,
and cardiovascular mortality later in life [1–4], and there
is strong evidence that these associations are particularly
due to impaired fetal growth [5, 6]. Conversely, studies
of high birth weight have shown an association with
higher subsequent risk of obesity [7, 8]. The link be-
tween fetal growth and later life cardio-metabolic events
remains poorly understood. Identification of molecular
markers that are measured early and persist over time
may provide insight into developmental origins of
chronic cardio-metabolic diseases.
Epigenetic mechanisms such as DNA methylation play

a central role in fetal growth and development [9].
Furthermore, an adverse in utero environment can influ-
ence establishment of epigenetic patterning and affect
fetal development [10, 11]. Several studies have shown
associations between DNA methylation patterns and
exposures during the in utero period, such as maternal
famine, smoking, and diet [12–16]. Therefore, DNA
methylation patterns associated with an indicator of fetal
growth, such as birth weight adjusted for gestational age,
may serve as epigenetic markers of an adverse fetal
environment and help elucidate the early programming
of associated cardio-metabolic risk.
A handful of initial studies in humans have revealed

associations between birth weight and DNA methylation
[17–21]. These past studies have either mainly focused
on targeted genomic regions, have been relatively small
in size, have not adequately accounted for gestational
age, or have looked at DNA methylation at only one
time point. More recently, Engel et al. performed a com-
prehensive epigenome-wide scale analyses in a large
homogeneous Norwegian study population from the
MoBa cohort, and reported associations of birth weight
(independent of gestational age) with cord blood DNA
methylation at 19 CpG sites [22]. However, their study
also examined DNA methylation at only one time point.
If DNA methylation is a stable marker of fetal pro-

gramming, then the association of fetal growth with
DNA methylation patterns might be expected to persist
over time. In the longitudinal ALSPAC cohort in South
West England, birth weight (independent of gestational
age) was associated with cord blood DNA methylation
in 23 CpG sites [23]. The investigators further used lon-
gitudinal analyses and observed that methylation levels
changed at the majority of these sites, concluding that
birth weight-associated differential methylation does not
persist with time. However, other data provide evidence
that suggests persistence of DNA methylation effects in
response to in utero environmental conditions. In

samples collected 60 years after the Dutch Hunger
Winter, there were DNA methylation differences be-
tween individuals who were prenatally exposed to in
utero famine in comparison to their unexposed same-
sex siblings [12]. These DNA methylation changes were
observed in biological pathways related to growth and
metabolism and in genes associated with birth weight
[24]. Currently, whether associations of fetal growth with
DNA methylation persist over time remains an open
question.
Finally, it is important to note that prior epigenetic

association studies in cord blood have made statistical
adjustments for cell type proportions using an adult
peripheral blood methylation reference panel [22, 23].
However, this may not be appropriate for epigenetic
studies of cord blood [25]. According to recent evidence,
the distribution [26] and methylation profiles [27] of
cord blood cell types are distinct and differ from blood
at later ages. This is particularly the case for nucleated
red blood cells (nRBCs), which are commonly present
only in cord blood, and also appear in buffy coat isolated
from cord blood. Thus, it is important to account for
cord blood cell type proportions in epigenome-wide ana-
lyses by using an appropriate reference panel.
We conducted an epigenome-wide DNA methylation

analysis to examine the extent to which birth weight-for-
gestational age (BW/GA) is associated with DNA methy-
lation at birth, using cord blood DNA methylation
profiles in 476 individuals from the Project Viva cohort.
We adjusted for cord blood cell type proportions using
the cord blood methylation reference panel recently
made available by Bakulski et al. [27], which was also
recently validated against directly measured cell type
composition in cord blood [28]. For CpG sites where
BW/GA was associated with cord blood DNA methyla-
tion, we further investigated the extent to which BW/
GA was associated with peripheral blood DNA methyla-
tion at mid-childhood.

Methods
Study population
Study participants were from Project Viva, a prospective
observational cohort study in Eastern Massachusetts
that recruited pregnant women from 1999 to 2002 [29].
Research personnel recruited women at their first pre-
natal visit at one of eight obstetric offices of Atrius
Harvard Vanguard Medical Associates, a multi-specialty
group practice. Eligibility requirements were the ability
to answer questions in English, at <22 weeks of gestation
at study entry, and a singleton pregnancy. All women
provided written informed consent, and institutional
review boards of participating institutions approved the
study [29]. Of 2218 live births, we collected 1018 venous
umbilical cord blood samples at the time of delivery. Of
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these, cord blood DNA methylation assays were com-
pleted in 2014 for 507 Viva infants with genetic consent,
of whom 22 were excluded due to low quality or irre-
concilable sample swaps. Among remaining participants
(n = 485), we excluded infants if mothers had type 1 dia-
betes (n = 1), type 2 diabetes (n = 1), missing covariate
info (n = 1 missing pre-pregnancy body mass index,
BMI), or if the infant’s gestational age at delivery was
<34 weeks (n = 6). The final analytic sample for cord
blood analyses was 476. Of these 476 participants, 235
also had DNA methylation samples (assayed concur-
rently with cord blood samples) from mid-childhood
(mean 7.9 years, range 6.7–10.5 years) peripheral white
blood cells.

Ascertainment of birth data and measurement of birth
weight-for-gestational age
We obtained infant birth weight in grams and date of
delivery from hospital medical record. We calculated
length of gestation in days by subtracting the date of the
last menstrual period (LMP) from the date of delivery. If
gestational age according to the second-trimester ultra-
sound differed from that according to the LMP by
>10 days, we used ultrasound dating to determine gesta-
tional age. We determined sex-specific BW/GA z-scores
from a US national reference [30].

Covariates
Research personnel used interviews, mailed question-
naires, and clinical records to obtain information on
maternal characteristics, including race/ethnicity (non-
Hispanic white, black, Hispanic, Asian, or other), educa-
tional status (less than high school, high school diploma,
some college, BA or BS, or graduate degree), smoking
status (never, former, smoked any time during preg-
nancy), maternal age (reported at enrollment), maternal
pre-pregnancy BMI (based on self-report at enrollment
of height and pre-pregnancy weight), parity, mode of
delivery (cesarean or vaginal delivery), gestational dia-
betes status (obtained from prenatal clinical records on
maternal glucose tolerance testing; categorized as nor-
mal, isolated hyperglycemia, gestational impaired glucose
tolerance, or gestational diabetes). For the current ana-
lyses, we collapsed “Asian” and “other” to include race/
ethnicity as a 4-category variable, and we dichotomized
educational status as college graduate vs. not a college
graduate, and parity as 0 (nulliparous) vs. 1 or more
(multiparous).

Measurement, filtering, and processing of DNA
methylation data
Trained medical personnel obtained venous umbilical
cord blood samples immediately after delivery, which
they promptly stored in a dedicated refrigerator (4 °C)

and transported for processing within 24 h, and trained
laboratory staff processed the samples on the same day.
Whole blood samples were centrifuged to separate the
buffy coat from plasma and red blood cells (RBCs), and
the buffy coat was transferred into an RBC lysis solution
to facilitate further lysis of RBCs. The solution was then
centrifuged to obtain white blood cell (WBC) pellet and
remove the lysis solution containing RBCs. A similar
protocol was followed for peripheral blood samples at
mid-childhood. DNA was extracted using the Qiagen
Puregene Kit (Valencia, CA). Aliquots were then stored
at −80 °C until analysis. DNA was sodium bisulfite con-
verted using the EZ DNA Methylation-Gold Kit (Zymo
Research, Irvine, CA). We used a two-stage algorithm to
randomly allocate samples to plates and chips in a man-
ner ensuring balance by sex, and analyzed the samples
using the Infinium Human Methylation450 BeadChip
array (Illumina, San Diego, CA). For each CpG site,
methylation =M/(M +U + ε), where M and U refer to
the average fluorescence intensity from the probe (i.e.,
oligonucleotide that hybridizes to the target CpG) corre-
sponding to the methylated and unmethylated target
CpG, respectively, and ε = 100 to protect against division
by zero. Therefore, methylation at each CpG can range
from 0 to 1, with 0 indicating no methylation and 1 indi-
cating 100% methylation.
We performed data import and pre-processing using R

and Bioconductor package methylumi [31].
In addition to dropping low-quality samples, we ex-

cluded probes that had a detection p value >0.05 for
more than 1% of the samples (i.e., a signal was not
detected from that probe). We additionally removed
non-CpG probes, sex chromosome probes, and poly-
morphic probes (defined as SNP-overlapping probes,
probes with a SNP at the target CpGs, or probes with a
SNP at the base next to the target CpG) with minor-
allele frequency (MAF) ≥5%; based on UCSC common
SNPs track for dbSNP build 137. We further removed
any remaining probes that are considered cross-
hybridizing [32]. We applied this stringent CpG-
filtering because polymorphic and cross-hybridizing
probes can interfere with accurate detection of
methylation levels [32]. The final number of probes
included in the analyses was 392,918. We then
performed background adjustment via the normal-ex-
ponential out-of-band (“noob”) background correction
method with dye-bias equalization [33], and further nor-
malized using the Beta-Mixture Quantile dilation (BMIQ)
approach [34]. We visually examined strip plots of control
probes for bisulfite conversion and specificity, and exam-
ined density plots for the β-values across samples at each
normalization step. We applied the ComBat method to
adjust the methylation data for sample plate, to reduce
potential for bias due to batch effects [35].
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Statistical analyses
For epigenome-wide analyses, we logit-transformed the
methylation values to obtain methylation data on the M-
value scale; this better satisfies assumptions of linear
regression and is more statistically valid for differential
methylation analyses [36]. We used robust linear regres-
sion models to conduct CpG-by-CpG analyses, with
logit-transformed M-values as the dependent variable
and BW/GA z-score as the continuous independent
variable. Analyses were adjusted for potential con-
founders of the BW/GA–DNA methylation association,
including maternal age (continuous), race, education,
smoking status, parity, mode of delivery, pre-pregnancy
BMI (continuous), gestational diabetes status, and child
sex. To adjust for blood cell type proportions, we used
the statistical deconvolution method of Houseman et al.
[37]. For our cord blood analyses, we used a reference
panel of nucleated cells isolated from cord blood [27].
We corrected for multiple testing by controlling the false
discovery rate at 5%, thus we considered an associations
with FDR q value <0.05 as significant.
We then conducted analyses of BW/GA z-score and

mid-childhood peripheral blood DNA Methylation, limited
to the CpGs that were significant in the cord blood ana-
lyses. Mid-childhood peripheral blood analyses were ad-
justed for all covariates that were included in the cord
blood analyses, and additionally adjusted for childhood age
at the time of blood sampling, which ranged from 6.7 to
10.5 years. We used an adult leukocyte reference panel
[38] for cell type adjustment in our mid-childhood analyses
on peripheral blood. Estimates of cell type proportion were
included as variables directly in the regression models.
While the regression analyses were conducted with DNA
methylation on the M-Value scale, effect estimates in the
result are reported on the original scale, for easier inter-
pretation. Thus, effect estimates represent difference in %
methylation for a 1-unit increase in BW/GA z-score.

Results
Among the 476 mother-infant pairs included in these
analyses, mean (SD) maternal age was 32.1 (5.4) years at
enrollment in early pregnancy. Approximately 71% of
women were non-Hispanic white, 11.8% African-
American, 7.8% Hispanic, and 9.5% as other race/ethni-
city (including Asian and those identifying as more than
one race). Additionally, 66% of women were college
graduates, 11% reported smoking during pregnancy, and
36% were overweight or obese before pregnancy. Among
infants, mean (SD) birth weight was 3561 (506) g,
mean (SD) BW/GA z-score was 0.27 (0.96); 5% were
small-for-gestational age (SGA; defined as BW/GA
<10th percentile) and 15% were large-for-gestational
age (LGA; defined as BW/GA ≥90th percentile); 48%
of infants were female.

Mothers who were overweight or obese, or were mul-
tiparous, tended to give birth to infants with higher BW/
GA (Table 1).
In epigenome-wide analyses with multi-variable adjust-

ment, BW/GA was associated (FDR q value <0.05) with
cord blood DNA methylation at 34 CpG sites (Table 2).
Descriptive characteristics of methylation levels at each of
these sites are presented in Additional file 1. Of note,
higher BW/GA was associated with higher DNA methyla-
tion at four CpGs annotated to the pre-B-cell leukemia
homeobox 1 (PBX1) gene (difference in % methylation
(95% CI) for a 1-unit increment in BW/GA z-score = 1.9
(1.2, 2.6), 1.9 (1.2, 2.6), 1.8 (1.1, 2.5), and 1.5 (0.9, 2.2) for
cg18181229, cg06750897, cg00222472, and cg20682146,
respectively; Table 2). At this PBX1 locus (located on chr
1), cg06750897, cg18181229, cg00222472, and cg20682146
are all located within the same CpG-island region, within
the same DNase1 hypersensitivity cluster (ENCODE data,
Fig. 1). The scatterplots in Fig. 2 demonstrate linear
positive associations between BW/GA and methylation
values in these four CpGs, generally with no influence
from outlying observations.
In addition, we observed that BW/GA was inversely

associated (FDR q value <0.05) with cord blood DNA
methylation at two CpG sites that were also previ-
ously reported [22] to show such an association:
cg25953130 and cg25124943 (difference in % methylation
(95% CI) = −2.0 (−2.8, −1.2) for cg25953130 and −0.9
(−1.3, −0.5) for cg25124943; Table 2).
Finally, we examined whether associations of BW/GA

with DNA methylation persisted at mid-childhood. Of the
34 CpG sites where BW/GA was associated with cord blood
DNA methylation at birth, associations of BW/GA with
blood DNA methylation at mid-childhood remained (FDR q
value <0.05, for 34 sites tested) for four CpGs: cg26663636,
cg18181229, cg00222472, and cg20682146. Notably,
cg18181229, cg00222472, and cg20682146 are all annotated
to PBX1, the locus for which we observed multiple signifi-
cant CpGs in cord blood analyses, while cg26663636 is an-
notated to NOS1AP. For each of these four CpGs,
association of BW/GA with cord blood DNA methylation at
birth was consistently in the same direction, and similar in
magnitude, as association of BW/GA with peripheral blood
DNA methylation at mid-childhood (e.g., difference in %
methylation (95% CI) in cg20682146 = 1.5 (0.9, 2.2) at birth
and 1.3 (0.5, 2.1) at mid-childhood; Fig. 3). In addition, at
each site there was strong correlation between cord blood
DNA methylation levels at birth and peripheral blood DNA
methylation levels at mid-childhood (Fig. 4).

Discussion
In this US pre-birth cohort, birth weight-for-gestational
age (BW/GA) was associated with cord blood DNA
methylation at 34 CpG sites, after adjusting for a range
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of maternal characteristics and potential biological con-
founders. Among the 34 sites, we identified four sites
where BW/GA was also associated with peripheral blood
DNA methylation at mid-childhood, in a manner similar
to associations observed at birth.

BW/GA was associated with DNA methylation at birth
in four CpG annotated to PBX1, and for three of these
sites, associations of BW/GA with DNA methylation
were also present at mid-childhood. At each of these
three sites, the direction and magnitude of the BW/GA-

Table 1 Associations of maternal and infant characteristics with birth-weight-for-gestational-age (BW/GA) z-score in project Viva
infants (n = 476)

N (%) Unadjusted effect estimate
(95% CI)

Adjusteda effect estimate
(95% CI)

Maternal age at enrollment, years

<25 46 (9.7) −0.57 (−0.88,−0.27) −0.22 (−0.56, 0.13)

25–<30 99 (20.8) −0.10 (−0.33, 0.13) −0.02 (−0.25, 0.21)

30–<35 192 (40.3) 0.0 (ref) 0.0 (ref)

35–<40 108 (22.7) −0.02 (−0.24, 0.21) −0.09 (−0.31, 0.14)

≥40 31 (6.5) −0.06 (−0.42, 0.30) −0.14 (−0.49, 0.22)

Maternal race/ethnicity

White 338 (71.0) 0.0 (ref) 0.0 (ref)

Black 56 (11.8) −0.29 (−0.56,−0.02) −0.26 (−0.55, 0.02)

Hispanic 37 (7.8) −0.16 (−0.48, 0.17) −0.15 (−0.48, 0.18)

Other 45 (9.5) −0.31 (−0.61,−0.02) −0.15 (−0.45, 0.15)

Education

Less than college
graduate

161 (33.8) −0.16 (−0.34, 0.02) −0.16 (−0.37, 0.05)

≥College graduate 315 (66.2) 0.0 (ref) 0.0 (ref)

Maternal pre-pregnancy BMI category

<18.5 18 (3.8) −0.40 (−0.85, 0.06) −0.33 (−0.78, 0.12)

18.5–<25 285 (59.9) 0.0 (ref) 0.0 (ref)

25–<30 105 (22.1) 0.26 (0.05, 0.48) 0.28 (0.06, 0.49)

≥30 68 (14.3) 0.27 (0.01, 0.52) 0.28 (0.02, 0.54)

Smoking status

Never 324 (68.1) 0.0 (ref) 0.0 (ref)

Former 100 (21.0) 0.03 (−0.18, 0.25) −0.07 (−0.28, 0.14)

During pregnancy 52 (10.9) −0.20 (−0.48, 0.08) −0.12 (−0.41, 0.17)

Maternal glucose tolerance

Normal 391 (82.1) 0.0 (ref) 0.0 (ref)

Isolated hyperglycemia 45 (9.5) 0.28 (−0.01, 0.58) 0.24 (−0.06, 0.53)

Impaired glucose tolerance or gestational diabetes 40 (8.4) 0.26 (−0.05, 0.57) 0.19 (−0.12, 0.50)

Parity

≥1 254 (53.4) 0.42 (0.25, 0.59) 0.41 (0.23, 0.59)

0 222 (46.6) 0.0 (ref) 0.0 (ref)

Mode of delivery

Vaginal 397 (83.4) 0.00 (−0.24, 0.23) 0.04 (−0.18, 0.27)

Cesarean section 79 (16.6) 0.0 (ref) 0.0 (ref)

Child sex

Male 248 (52.1) −0.07 (−0.25, 0.10) −0.07 (−0.24, 0.10)

Female 228 (47.9) 0.0 (ref) 0.0 (ref)
aEstimates of effect were simultaneously adjusted for all other characteristics in the table
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DNA methylation association at birth was similar to that
at mid-childhood. Furthermore, the correlation between
cord blood DNA methylation at birth and peripheral
blood DNA methylation at mid-childhood ranged from
0.64 to 0.71 at these three sites, suggesting that methyla-
tion patterns at these sites remain relatively stable with

time. PBX1 encodes a PBX homeobox family transcrip-
tional factor, which acts as part of an important tran-
scriptional network that regulates multiple aspects of
embryonic development. Pbx1-deficient mice exhibit an
embryonic lethal phenotype, characterized by defective
development of the spleen, pancreas, kidney, and other

Table 2 Associations of birth weight-for-gestational age (BW/GA) with DNA methylation sitesa in venous umbilical cord blood at de-
livery, among 476 participants in Project Viva

CpG sitea Difference in % methylation for 1-unit
increment in BW/GA z-score (95% CI)

Nominal
p value

Geneb Gene regionb chr

cg26663636 −0.39 (−0.52, −0.25) 4.31E−09 NOS1AP Body chr1

cg18181229 1.86 (1.16, 2.56) 1.80E−07 PBX1 Body chr1

cg06750897 1.93 (1.22, 2.64) 1.83E−07 PBX1 Body chr1

cg00222472 1.78 (1.12, 2.45) 2.03E−07 PBX1 Body chr1

cg20682146 1.54 (0.91, 2.17) 1.60E−06 PBX1 Body chr1

cg05780177 0.24 (0.14, 0.35) 2.39E−06 DENND1B TSS200 chr1

cg00325458 0.1 (0.06, 0.14) 7.27E−07 REL TSS200 chr2

cg23483765 0.22 (0.14, 0.31) 1.15E−07 NIPAL4 TSS200 chr5

cg24353833 0.42 (0.27, 0.57) 8.38E−08 NRM Body chr6

cg24641186 0.46 (0.27, 0.64) 1.41E−06 TFAP2B Body chr6

cg20392842 −1.58 (−2.24, −0.92) 2.54E−06 HLA-DMB TSS200 chr6

cg09364590 0.72 (0.42, 1.03) 3.66E−06 TIAM2 Body;TSS200 chr6

cg21809331 0.22 (0.13, 0.31) 2.28E−06 RBM28 TSS200 chr7

cg14731462 −0.92 (−1.29, −0.55) 4.20E−07 PTPRE 5′UTR chr10

cg25953130 −2.01 (−2.8, −1.22) 7.76E−07 ARID5B Body chr10

cg23890469 0.57 (0.34, 0.81) 1.55E−06 MMRN2 Body chr10

cg25124943 −0.92 (−1.31, −0.53) 2.34E−06 – – chr10

cg11606444 0.68 (0.39, 0.98) 4.28E−06 SORL1 Body chr11

cg01345517 0.15 (0.09, 0.21) 1.55E−06 DERA Body chr12

cg06648759 −1.08 (−1.52, −0.63) 2.02E−06 – – chr13

cg14276580 −0.94 (−1.33, −0.54) 2.24E−06 – – chr13

cg20549688 0.21 (0.13, 0.29) 3.20E−07 GTF2A2 TSS200 chr15

cg21842999 0.51 (0.3, 0.72) 3.20E−06 SHF Body chr15

cg09476997 1.81 (1.06, 2.57) 2.20E−06 SLC9A3R2 Body; chr16

cg27283514 1.51 (0.86, 2.16) 3.34E−06 – – chr16

cg19914554 0.73 (0.47, 0.98) 2.21E−08 CD7 1stExon;5′UTR chr17

cg20186396 0.73 (0.45, 1.02) 3.26E−07 CD7 TSS200 chr17

cg14909906 0.17 (0.1, 0.25) 2.37E−06 KDSR 1stExon;5′UTR chr18

cg23882285 0.12 (0.07, 0.17) 3.37E−06 ROCK1 TSS200 chr18

cg23026246 0.13 (0.08, 0.19) 2.23E−06 SPTBN4 Body chr19

cg23877608 0.17 (0.1, 0.24) 2.35E−06 CCDC114 TSS200 chr19

cg23344780 −0.58 (−0.83, −0.33) 4.10E−06 EMP3 5′UTR chr19

cg04803921 0.13 (0.08, 0.19) 1.68E−06 HM13 Body chr20

cg08422803 1.05 (0.69, 1.41) 8.04E−09 ITGB2 TSS200;5′UTR chr21

Chr chromosome, UTR untranslated region, TSS transcription start site
aCpGs are ordered according to chromosome number
bGene and gene region information are according to annotation information from Illumina. Dashed lines indicate that the CpG is annotated to an
intergenic region
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organs [39–41]. There is also evidence that pbx1 is
required for skeletal patterning and programming [41],
and one study found that pbx1 functions within an epi-
genetic complex that regulates osteoblast differentiation
[42]. Specifically, targeted depletion of PBX1 via short
hairpin RNA (shRNA) in bone marrow stromal cells
led to increased expression of bone marker genes, in-
creased recruitment of histone acetyltransferases, and
decreased H3K9 methylation, reflecting transcriptional
activation [42].
Among other CpG sites where BW/GA was associated

with cord blood DNA methylation, cg23882285 is
annotated to Rho associated coiled-coil containing
protein kinase 1(ROCK1), which encodes a protein
kinase that is a key regulator of cytoskeleton and cell
polarity, and other diverse cellular processes of mor-
phogenesis [43, 44]. Evidence from several studies in mice
indicate that ROCK activity is crucial for fetal develop-
ment, and that mouse spinal neurulation requires precise
regulation of ROCK signaling. ROCK1 knockout mice dis-
play an embryonic lethal phenotype, and inactivation of

ROCK1 in mice has led to morphological defects and fail-
ure of neural tube closure [45, 46].
Two other CpG sites of interest in our cord blood

findings were cg25953130 and cg25124943. Associations
of birth weight (adjusted for gestational age) and cord
blood DNA methylation at these two sites were also pre-
viously reported [22] in the MoBa cohort, and similar to
their findings, we observed that BW/GA was inversely
associated with methylation at these sites. Simpkin et al.
[23] (ALSPAC cohort) also reported a similar association
for cg25953130. This CpG maps to AT-rich interaction
domain 5B (ARID5B), which encodes a transcriptional
coactivator with a role in adipogenesis. ARID5B knock-
out mice are characterized by reduced lipid accumula-
tion, lower postnatal weight, and a high rate of neonatal
death [47].
Aside from the PBX1 CpG loci described above,

cg26663636 was the only site at which BW/GA was
associated with both cord blood and mid-childhood per-
ipheral blood DNA methylation. This CpG is annotated
to the nitric oxide synthase 1 adaptor protein (NOS1AP)

(a)

(b)

Fig. 1 a Manhattan plot for the association of birth weight-for-gestational age (BW/GA) with epigenome-wide cord blood DNA methylation
(circled orange dots indicate the PBX1 CpGs: cg18181229, cg06750897, cg00222472, cg20682146). b Magnified depiction of the PBX1 gene region
within chromosome 1, with annotated genomic tracks: CpG-island location (green box), H3K27Ac histone mark enrichment levels (rainbow-colored
peaks), Dnase-hypersensitivity areas (black and gray boxes), genomic location of PBX1 CpGs corresponding to orange dots in (a). Region plot in
(b) adapted from UCSC genome browser
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locus, which encodes an adapter and regulator of the
neuronal nitric oxide synthase (nNOS) enzyme impli-
cated in modulating physiological functions such as
learning, memory, and neurogenesis [48]. In addition to
constituting the major source of NO in neurons, nNOS
is present in skeletal muscle, cardiac muscle, and smooth

muscles, where NO controls blood flow and muscle con-
tractility. In particular, nNOS is an important cardiac
protector in the heart, ensuring regulation of functions
when the heart is under stress [48, 49].
In the ALSPAC cohort, Simpkin et al. reported that

birth weight (adjusted for gestational age) was associated

Fig. 2 Scatterplots for associations of birth weight-for-gestational-age (BW/GA) with cord blood DNA methylation at 4 CpGs mapped to
the PBX1 gene

Fig. 3 Effect size comparison, for the 4 CpG* sites where birth weight-for-gestational age (BW/GA) was associated with DNA methylation both at birth
(cord blood) and mid-childhood (peripheral blood). *CpGs presented map to the following genes: PBX1 (cg18181229, cg00222472, cg20682146),
NOS1AP (cg26663636)
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with cord blood methylation in 23 CpG sites. For these
specific CpGs, they further used serially measured DNA
methylation at birth, ages 7 and 17 to longitudinally
model methylation changes over time. They observed
that the majority of these CpGs showed marked changes
in methylation levels during childhood, and that lower
birth weight was associated with faster changes in
methylation levels, suggesting that there is erasure of
birth weight-related cord blood DNA methylation signa-
tures with time [23]. Given that our analyses involved
DNA methylation at two time points, we did not use longi-
tudinal modeling to examine BW/GA-associated changes
in methylation over time. Rather, we asked whether there
were CpG sites where BW/GA was associated with DNA
methylation both at birth and mid-childhood. We observed
this to be the case, but only for four of the 34 sites that we
tested. Thus, our results do not definitively differ from
Simpkin et al.’s; rather, they suggest that persistence of as-
sociations may be dependent on specific sites examined.
Our study has several strengths. We conducted a com-

prehensive epigenome-wide investigation of BW/GA,

the first in a relatively large sample from a US pregnancy
prospective cohort. We used a nearly continuous meas-
ure of birth weight adjusted for gestational age (created
using Nationwide US Natality datasets), which has the
advantage of not assuming a linear relationship between
birth weight and gestational age [30]. Furthermore, we
examined DNA methylation at two time points. In
addition, we used a cord blood reference panel to esti-
mate cell type proportions in cord blood, reducing the
possibility of reporting spurious DNA methylation asso-
ciations due to varying cell type proportions. Given that
contamination by nRBCs is still possible in isolated buffy
coat, using a cord blood reference panel that accounts
for presence of nRBCs further helps to reduce residual con-
founding; this is an advantage over prior cord blood epigen-
etic studies that have used the adult whole blood reference
panel to estimate and account for cell type proportions.
Although our DNA methylation analyses were on buffy
coat isolated from whole cord blood, it would be interesting
for future epigenetic studies to investigate methylation pro-
files in isolated nRBCs. Increased concentrations of nRBCs

Fig. 4 Correlation between cord blood and mid-childhood blood DNA methylation for the four CpG* sites where birth weight-for-gestational age
(BW/GA) was associated with DNA methylation both at birth (cord blood) and mid-childhood (peripheral blood). *CpGs presented map to the
following genes: PBX1 (cg18181229, cg00222472, cg20682146), NOS1AP (cg26663636)
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at birth have been observed in relation to maternal
chronic conditions [37, 50–53] and can be predictive of
child health and future neurodevelopment [54]. Thus,
examining the methylation patterns in nRBCs may pro-
vide further insight on fetal development and later health
and disease. However, isolation of DNA from nRBCs can
prove challenging [27]. A limitation of our study is that
the relatively higher socioeconomic status in Project Viva
may reduce the generalizability of our findings. Further-
more, the Illumina Infinium 450K array has until recently
been the most popular and feasible choice for epigenome-
wide analyses; however, it approximately covers only 1.5%
of genomic CpGs and is heavily geared towards coverage
of gene promoter regions and protein-encoding genes
[55]. The recently released 850K EPIC array covers an
additional 413,745 new CpG sites which are enriched in
regulatory regions such and “open” chromatin regions
[56]. Recent evidence highlights the important role of
DNA methylation in such regulatory and non-coding
genomic regions [57, 58] and its relevance to disease [59].

Conclusions
In conclusion, we observed that birth weight-for-
gestational age was associated with DNA methylation
patterns at birth at select CpG sites; for several of these
sites, birth weight-for-gestational age was also associated
with DNA methylation at mid-childhood. We were also
successful in replicating some findings from prior studies
in European cohorts. Given that cardio-metabolic abnor-
malities associated with fetal growth often do not mani-
fest early in life, identifying the underlying molecular
markers associated with fetal growth may help to better
elucidate the early development of long-term risk. Fur-
ther research will better clarify the extent to which DNA
methylation signatures of fetal growth and development
persist with time beyond childhood, and the extent to
which they are related to cardio-metabolic dysregulation.

Additional file

Additional file 1: Descriptive characteristics of methylation levels in
birth weight-for-gestational age (BW/GA)-associated DNA methylation
sites in venous umbilical cord blood at delivery, among 476 participants
in Project Viva. (XLSX 12 kb)
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