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A principal component meta-analysis on multiple
anthropometric traits identifies novel loci for body
shape
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Large consortia have revealed hundreds of genetic loci associated with anthropometric traits,

one trait at a time. We examined whether genetic variants affect body shape as a composite

phenotype that is represented by a combination of anthropometric traits. We developed an

approach that calculates averaged PCs (AvPCs) representing body shape derived from

six anthropometric traits (body mass index, height, weight, waist and hip circumference,

waist-to-hip ratio). The first four AvPCs explain 499% of the variability, are heritable, and

associate with cardiometabolic outcomes. We performed genome-wide association analyses

for each body shape composite phenotype across 65 studies and meta-analysed summary

statistics. We identify six novel loci: LEMD2 and CD47 for AvPC1, RPS6KA5/C14orf159

and GANAB for AvPC3, and ARL15 and ANP32 for AvPC4. Our findings highlight the value of

using multiple traits to define complex phenotypes for discovery, which are not captured by

single-trait analyses, and may shed light onto new pathways.
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L
arge-scale meta-analyses of genome-wide association studies
(GWAS) have identified numerous loci for anthropometric
traits, including more than 600 loci for height1–3 and over

160 loci for obesity-related outcomes, predominantly for
commonly available traits such as body mass index (BMI)2 and
waist-to-hip ratio (WHR)4,5, but also for body fat percentage6,
childhood obesity7 and extreme and early onset obesity7–9. While
GWAS-meta-analyses have successfully revealed new loci, so far,
all these studies have focused on one single anthropometric trait
at a time and may not adequately capture differences in body
shape between individuals who are similar in one trait but
different in others. For example, two individuals may have the
same BMI, but their WHR and/or height can differ substantially,
so that each has a different body shape, which may translate into
differences in disease risk10,11. Several loci identified from
previous single-trait GWAS on BMI, BMI-adjusted WHR
(WHRadjBMI) and height are associated with more than one
anthropometric trait1,2,4,12. For example, the loci near MC4R and
near POMC/ADCY3 are each associated with BMI and height.
However, the BMI-increasing allele of the near-MC4R locus is
associated with increased height, whereas the BMI-increasing
allele of the near-POMC/ADCY3 locus is associated with reduced
height1,2. Thus, these loci are likely each associated with a more
comprehensive body shape phenotype that is not captured by
current GWAS that only consider anthropometric traits
individually.

In recent years, several approaches have been developed
to examine whether single-nucleotide polymorphisms (SNPs)
influence multiple correlated traits associated with disease13,14.
However, most approaches test phenotypes separately and are

thus subject to multiple testing penalties that ultimately reduce
the statistical power to detect genotype–phenotype relationships
among correlated traits. One way forward is to apply a dimension
reduction method to the traits of interest, such as principal
component analysis (PCA) that combines multiple correlated
traits into a set of uncorrelated outcomes principal
components(principal components (PCs))15,16. This method is
very appealing to capture a composite phenotype, such as body
shape. To date, no large-scale GWAS meta-analyses have been
reported that aim to identify genetic loci associated with body
shape based on simultaneous analysis of multiple anthropometric
traits using PCA methods.

Therefore, the purpose of our study was twofold. First, we
aimed to capture body shape in its multi-dimensional structure
using PCs from several commonly available anthropometric
traits. To allow the meta-analysis of summary statistics across a
large number of cohorts, we developed an approach that
calculates averaged PCs (AvPCs) that robustly represent body
shape across a wide range of studies. Second, using this approach,
we aimed to identify genetic loci associated with body shape
based on the AvPCs in 65 studies of the GIANT Consortium,
including 4170,000 individuals.

Results
Defining composite phenotypes of body shape. As basis for our
analysis of body shape we used six anthropometric traits: BMI,
WHR, height, weight, hip and waist circumference. First, we
performed separate PCA in a subset of 20 large population-based
studies (up to 82,355 individuals, Supplementary Table 1) and
compared the loadings of the anthropometric traits in each PC
between studies. Visual inspection of PCA loadings showed high
concordance across studies (Supplementary Fig. 1) and between
men and women. Between-study variation in variance explained
by the PCs was small (Supplementary Fig. 1, Supplementary
Table 2). On average, the first four PCs explained more than 99%
of the variance (Fig. 1, Supplementary Table 2), and were
therefore pursued as body shape outcomes for our gene-discovery
effort. Given the across-study stability of PCs, we derived average
loadings that were calculated as weighted means of loadings from
all 20 population-based studies that were analysed in this step.
We used these average loadings to calculate average principal
components (AvPCs) as targets in each of the GWAS included in
the first and second stage. In other words, the phenotypes used
for genome-wide association were constructed in a consistent way
across studies, such that the summary statistics could be meta-
analysed.

Each AvPC represents a specific composition of the six
anthropometric traits and thus captures a specific aspect of body
shape (Fig. 1). The first AvPC, which explains on average 64.4%
of the variation in all traits, shows high loadings for all traits,
except for height. The loadings are in the same direction; meaning
that the AvPC captures inter-individual variation in either
increased or decreased BMI, weight, WHR, hip and waist
circumference. Therefore, variation in this PC seems to
predominantly capture overall adiposity. The second AvPC,
which explains 18.5% of the variation, is characterized by
particularly high but opposite loadings on height and WHR. In
other words, AvPC2 captures variation in a composite phenotype
that represents tall individuals with a small WHR or, vice versa,
short individuals with a large WHR. The third AvPC, explaining
13.8% of the variation, also shows predominantly high loadings
on height and WHR but in the same direction, with an opposite
loading of nearly the same size on hip circumference. Given these
loadings, AvPC3 discriminates mainly between tall individuals
with a high WHR resulting from a smaller hip circumference on
one extreme and short individuals with low WHR, and a larger
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Figure 1 | Loadings and explained variance of AvPCs for body shape.

(a) Loadings of AvPCs, and (b) explained variance of AvPCs for body shape.
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hip circumference on the other extreme. The fourth AvPC
explains on average 3% and is harder to interpret. It displays high
loadings on BMI and body weight, and opposite loadings of a
similar size on hip and waist circumference. These could be
interpreted as a phenotype ranging between high BMI and
weight, with relatively small hip and waist circumference on the
one hand and low BMI and weight but large waist and hip
circumference on the other hand.

Consistent with the individual anthropometric traits, the four
AvPCs that describe body shape are also heritable. Using data
from four isolate populations (n¼ 4,000), we estimated that
AvPC2 has the highest heritability (75–80%), consistent with the
fact that height is the main contributing trait to this AvPC with a
strong genetic component1. The heritability of AvPC1 (35–50%),
AvPC3 (50–75%) and AvPC4 (25–50%) were moderately high
and similar to the heritability for individual anthropometric
traits17 (Supplementary Fig. 2). From a clinical perspective, each
of the four AvPCs exhibit known correlations with cardio-
metabolic traits (Supplementary Fig. 3), including diastolic blood
pressure, systolic blood pressure, total cholesterol, low-density
lipoprotein cholesterol, high-density lipoprotein cholesterol and
total triglycerides levels.

Genomic discovery of body shape composite phenotypes. We
performed a two-staged meta-analysis to identify genetic loci that
are associated with the four AvPCs (Supplementary Table 3,
Supplementary Table 4). In the first stage, a meta-analysis of 43
studies with imputed genome-wide SNP data including more
than 133,000 individuals identified SNPs in 385 loci across the
four AvPCs (56 loci for AvPC1, 205 for AvPC2, 89 for AvPC3
and 35 for AvPC4) that showed promising association
(P valueo5� 10� 6) for at least one of the four AvPCs (Fig. 2,
Supplementary Fig. 4). Lead SNPs (and proxies; see ‘Methods’
section) of each locus were taken forward for validation in a
second stage, including data from more than 39,900 individuals
from 22 studies of which 12 studies had genotypes from the
Illumina CardioMetabochip and 10 studies had imputed genome-
wide SNP data. In the combined analyses, consisting of the first
and second stage studies, the association of 207 of the 385 loci
reached genome-wide significance (P value o5� 10� 8) (31 for
AvPC1, 124 for AvPC2, 45 for AvPC3 and 7 for AvPC4; Fig. 2,
Fig. 3, Supplementary Fig. 4, Supplementary Table 6), of which 16
loci were identified for two AvPCs and one showed significant
association with three AvPCs (Supplementary Fig. 7,
Supplementary Table 5) resulting in a total of 189 loci with
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Figure 2 | Manhattan and QQ-plots of association results on AvPCs of body shape. P values of the first stage meta-analysis are given in the Manhattan

and QQ-plots. All genome-wide significant loci are highlighted.
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association to at least one AvPC. To determine whether the loci
we identified were independent of the loci previously found for
BMI, WHRadjBMI and height, we performed conditional ana-
lyses on SNPs reported in previous GIANT-GWAS publications
on BMI, WHRadjBMI and height1,2,4,5,18,19. A locus was
considered independent of reported findings if the P value in
the analyses conditioned on all previously identified loci
remained suggestive (P value o5� 10� 6). In total, 183 loci
had already been established for BMI, WHRadjBMI or height
(Fig. 3, Supplementary Fig. 7), whereas six loci had not previously
been identified for association with conventional anthropometric
traits; two for AvPC1, two for AvPC3 and two for AvPC4
(Table 1, local association plots given in Supplementary Fig. 5).
For these six novel loci, the results of the lead SNPs were checked
in previously performed GWAS meta-analyses on anthropo-
metric and cardio-metabolic traits (Supplementary Table 7).

Results for AvPC1. For AvPC1, we identified 31 genome-wide
significant loci, of which two were novel (upstream of LEMD2
and CD47). Of the 29 previously established loci, 24 have been
associated with BMI only18, 3 with height only1,3, while two loci
have been reported for associations with both BMI and height3,18

(Fig. 3a). While both novel loci showed some evidence of
association with BMI in the latest GIANT–GWAS (n4339,000;
Po7.2� 10� 3; Table 1), they did not reach genome-wide
significance. The lead SNP (rs943466) 7 kb upstream of LEMD2
has been reported to be associated with expression of LEMD2 in
liver (P¼ 1.66� 10� 9) 20,21. Another variant in LEMD2
(rs2296743 at 8 kb from our lead SNP rs943466; r2¼ 0.2,
D0 ¼ 1.0) was previously reported for its promising association
(P value¼ 8� 10� 6) with energy intake at dinner in a small
GWAS of 815 Hispanic children22. The lead SNP (rs7640424) for
the second novel locus was located in an enhancer region 10 kb
upstream of CD47 (refs 23,24), which encodes a membrane

protein that might be involved in signal transduction and
membrane transport25. No genome-wide significant associations
have been reported for the lead SNP or other SNPs in the CD47
gene before23–25. However, a recent study revealed a link to diet-
induced obesity in mice and suggests CD47 as a potential drug-
target to combat obesity and metabolic complications26,27.

Results for AvPC2. For AvPC2, we identified no novel loci.
Almost all (n¼ 122) of the 124 loci associated with AvPC2 had
previously been identified for height1 (Fig. 3b), which is
consistent with AvPC2’s high loadings on height and opposite
loadings on WHR. Of these 122 loci, 103 were reported for
association to height only, whereas of the 19 remaining loci, 4
were previously associated with height, BMI and WHRadjBMI, 2
loci were reported for height and BMI and 13 loci overlapped
with height and WHR. The two AvPC2 loci that did not associate
with height were previously identified for WHRadjBMI19.

Results for AvPC3. We identified 45 loci that reached genome-
wide significance for AvPC3, of which 2 were novel. Consistent
with the loadings of AvPC3, 43 of the associated loci had been
reported before for height1 or WHR4,19 (Fig. 3c). The lead SNP of
the first novel locus rs7492628, upstream of the genes RPS6KA5
(420 kb) and C14orf159 (430 kb), failed to reach genome-wide
significance in previous WHRadjBMI GWAS (P value¼ 9.3
� 10� 8) and was nominally associated with extreme obesity risk
(P value¼ 7.26� 10� 5) 28. The lead SNP of the other novel
locus, GANAB, rs7949030, showed some evidence of association
with WHRadjBMI in the latest GIANT GWAS (P value¼ 3.3
� 10� 6) and was reported to be an eQTL for several other
genes21: In monocytes, regulation of MIR3654, EEF1G, EML3,
BSCL2, HNRNPUL2-BSCL2, LRRN4CL was found29–31. BSCL2 is
of interest, as it is a known candidate gene for the most severe
lipodystrophy phenotype32. In blood rs7949030 was found to be
an eQTL of HNRNPUL2-BSCL2, AHNAK, LRRN4CL and INTS5
(refs 33,34), while in skin and adipocytes it was found as an eQTL
for EML3 (refs 30,31,35).

Results for AvPC4. Seven loci were identified for AvPC4, of
which five had been previously reported; one for BMI and height,
one for WHR and height, one for height only and two for
WHR only1,3,4,36 (Fig. 3). The lead SNPs of the two novel loci
identified with AvPC4 were both intronic, in ARL15 and ANP32.
The allele associated with increased AvPC4 of the lead SNP
(rs4865796) in ARL15 was moderately associated with higher
BMI (P value¼ 1.6� 10� 4), increased adiponectin levels
(P value¼ 4.2� 10� 6 ADIPOGEN37) and decreased risk of
diabetes (P value¼ 1.8� 10� 5, DIAGRAM38). This SNP was
associated with fasting insulin (rs4865796, P¼ 2.1� 10� 8 and
2.2� 10� 12 after adjustment for BMI39). Other nearby SNPs in
high linkage disequilbrium (LD), have previously been reported
for associations with BMI-adjusted adiponectin levels (rs6450176/
rs4311394, r2¼ 0.087, D0 ¼ 0.87 (refs 37,40)), high density
lipoprotein C (HDL-C) levels (rs6450176 (refs 41,42)) and risk
of type 2 diabetes (rs702634, r2¼ 1.0, D0 ¼ 1.0 (ref. 38)). A
duplication in ARL15, tagged by rs16992296) was previously
found to be associated with increased risk of childhood obesity in
European and African Americans43. However, this duplication is
independent of the association we found for rs4865796-ARL15
and AvPC4, which is in low LD (r2EUR¼ 0.065) with the
duplication (represented by rs16992296), located 168 kb
upstream. The lead SNP (rs7855432) of the second locus,
ANP32B, was moderately associated with height (P
value¼ 5.5� 10� 6) 1. A SNP in high LD (rs4743150 r2¼ 0.95,
D0 ¼ 1.0) was reported to be promisingly associated with
coronary heart disease risk (P value¼ 5� 10� 6)44.
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Discussion
We developed a PCA-based approach to capture variation across
multiple traits simultaneously in a uniform way across multiple
studies. Resulting AvPCs are a robust cross-phenotype represen-
tation allowing their use in large-scale meta-analyses. We assessed
this approach to capture body shape based on six individual
anthropometric traits and identified six novel loci that were not
identified before in much larger GWAS-meta-analyses for BMI,
WHRadjBMI and height1,2,4. Our findings suggest that the body
shape composite phenotype, assessed by AvPCs, represents
information that is not fully captured by individual
(anthropometric) traits. Application of this method to other
related traits, for example, in immune disease, different types of
cancer, cardiometabolic traits, or other correlated traits might
comparably reveal new loci, and potentially new pathways, that
have not been identified in single-trait GWAS.

The AvPCs are combinations of different anthropometric traits
and therefore capture more complex body shape phenotypes than
the single traits. AvPC1, representing overall adiposity, and
AvPC2, representing height with respect to WHR, are the most
important contributors to body shape, explaining on average
more than 80% of the variation. More specific body shape types
were captured by AvPC3 and AvPC4 and were defined by impact
of height and WHR (AvPC3) or BMI, waist and hip (AvPC4).
Our initial analyses demonstrated that the loadings are stable
across studies, study designs and between men and women.
Moreover, we have shown that the AvPCs are heritable traits and
correlated with cardiometabolic traits and risk factors.

To further demonstrate the strength of this approach, we
compared total variance explained of single traits and AvPCs by
SNPs previously identified in single-trait GWAS (for BMI,
WHRadjBMI, height1,2,4). For example, the 97 loci that have
been reported for association in the latest BMI single-trait GWAS
(NB340,000) explain 8.7% of the variation in AvPC1, whereas
they explained only 2.68% of the variation in BMI2. These data
indicate that our PC-defined phenotype for overall body size
(AvPC1) captures a more composite phenotype compared with
BMI as a single-trait. Explaining more of the variance with the
same genetic variants as previous single-trait studies in our
composite phenotype shows promise to update and inform
existing methods.

So far, typical GWAS have tested for association of genetic
variants with anthropometric traits, one trait at a time. We define
‘body shape’ as a composite of multiple traits defined by PCs. We
first performed PC-analyses in representative population-based

studies and averaged PC loadings across these studies (AvPCs).
We subsequently use these AvPCs to calculate PCs in all
participating studies. This approach ensures that PCs are
calculated in a uniform manner across all studies, thus facilitating
subsequent meta-analyses. This approach could be applied to
capture genetic variation across related traits that is currently not
captured by single-traits GWAS (for example, in the context of
autoimmune disease, blood traits, lipid levels, different cancers
and so on.).

Consistent with published anthropometric traits10,11,17, the
derived AvPCs are heritable and correlated with clinically
relevant outcomes. We identified additional loci, despite a
much smaller sample size compared with the latest single-trait
GWAS analyses for BMI, height and WHRadjBMI1,2,4. This
suggests that the AvPC method captures phenotype information
that is not captured by single-trait analyses and associated loci
may highlight biological pathways that are not revealed with
single-trait associated loci only.

Even though our approach has several advantages, it is not
meant to replace single trait GWAS analyses. A number of loci
that were identified in the latest single-trait GWAS were not
identified in our body shape GWAS; that is, we identified 124 loci
(or 14.2%) of the 837 loci recently reported in the GIANT single-
trait meta-analyses (Supplementary Fig. 6). This may be due to
the fact that these recent single-trait GWAS meta-analyses were at
least twice as large as the current body shape GWAS. However,
even when we compare the number of identified loci in earlier
GWAS meta-analyses, which are of similar size as the current
body shape GWAS, we do not identify all previously reported loci
for single traits. Perhaps this is most obvious with height (largely
representative of AvPC2), where we only identified 91 (13.1%) of
697 loci identified for height. This is in part due to the fact that a
conservative definition for linkage disequilibrium was applied
(r240.8), lack of power due to sample size for SNPs of modest
effects, or perhaps the AvPCs introduces noise to purely single
traits such as height. Consistent with this finding, we also observe
that some single traits also explain more of the variance of body
shape compared with AvPCs. Our comparison of the variance
explained between previous single-traits meta-GWAS and our
AvPCs support this evidence for overlapping associated variants.
Since AvPC2 represents largely a single trait, height, with large
height loadings we were unable to explain more of the variance.
In fact we explained less of the variance, which is likely due to
noise introduced using this composite AvPCs phenotype. This
observation is also evident for variance in body shape explained

Table 1 | Association results for novel loci with avPC of body shape.

1st stage up
to 133,376

samples

2nd stage
up to

39,904
samples

1stþ 2nd stage combined
up to 173,278 samples

Conditioned
analysis on all
GIANT tophits

P value of SNPs in
GIANT analysisw

P value of SNPs in
GIANT analysisz

trait SNP (lead
SNP)

Next
gene

Effect/
other
allele

EAF* P value P value beta
(sebeta)

P value N beta
(sebeta)

P value BMI Height WHR BMI Height WHR

avPC1 rs7640424 CD47 C/T 69% 5.40E-07 0.0015 0.05
(0.008)

3.18E-09 171,544 0.05
(0.01)

5.80E-07 0.0072 0.74 0.25 2.28E-06 0.28 0.85

avPC1 rs943466
(rs2281819)

LEMD2 G/A 76% 6.39E-07 0.016 0.049
(0.009)

3.47E-08 172,174 0.049
(0.01)

7.28E-07 2.7E-04 0.045 0.54 9.34E-06 0.75 0.25

avPC3 rs7949030 GANAB G/A 38% 2.74E-08 0.11 0.024
(0.004)

5.58E-09 139,195 0.025
(0.004)

6.36E-09 0.082 0.80 1.4E-04 0.54 0.041 3.3E-06

avPC3 rs7492628 RPS6KA5 G/C 30% 8.75E-08 0.13 0.024
(0.004)

1.90E-08 139,874 0.024
(0.004)

7.93E-08 0.064 0.62 4.9E-05 0.0050 0.58 9.3E-08

avPC4 rs4865796
(rs1664781)

ARL15 G/A 32% 5.59E-07 0.011 0.008
(0.001)

2.25E-08 172,517 0.008
(0.002)

7.25E-07 5.1E-05 0.034 0.40 1.6E-04 0.020 0.84

avPC4 rs7855432 ANP32B G/T 80% 1.40E-07 0.17 0.01
(0.002)

4.06E-08 140,805 0.01
(0.002)

1.78E-07 0.33 0.046 0.49 0.32 5.5E-06 0.91

The association results for the first stage, second stage and first and second stage combined analysis is given for all six loci that were genome wide significantly associated (promising P value in the first
stage meta analysis (o5� 10�6) and genome wide significant in first and second stage combined analysis e (o5� 10�8)) with one of the avPCs and novel. Moreover, the P values of the analysis
conditioned on all tophits from the recent GIANT publications on BMI, height and WHR.
*EAF is mean of EAF of all studies in the first stage meta analysis.
wAll tophits of the GIANT analysis published before 2014 (refs 3,6).
zAll tophits of the GIANT analysis unpublished and/or published after 2014 (refs 1,2,4).
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by height compared with AvPC3 and AvPC4, but is in contrast to
BMI, a complex trait comprised of multiple anthropometric
measurements, which explains less variance in body shape
compared with AvPC3 and AvPC4. It is important to emphasize
our approach is most informative for complex traits such as BMI
that are derived from a series of other traits. We believe that using
PC space to define complex traits is useful for the detection of loci
involved in multiple pathways that might go undetected in a
single trait setting.

We have developed a new strategy that applies a PCA approach
in a meta-analysis setting to combine composite phenotypes in a
harmonized way across multiple studies. We successfully applied
this approach to anthropometric traits to capture body shape. The
derived combined anthropometric traits (AvPCs) were shown to
be heritable and correlated to cardio-metabolic traits. Large-scale
GWAS meta-analyses of the AvPCs identified six new loci that
were not identified by previous single-trait GWAS that were twice
as large in samples size. This PCA approach could maximize gene
discovery for other correlated traits, such as cancers, immune
disease, hematologic traits and so on. and may identify genes that
point towards shared physiological pathways.

Methods
Study description. In the first stage analyses, 43 studies participated (133,376
individuals) that had HapMap 2 imputed genome-wide data available. A subset of
20 studies with unrelated individuals was used for calculation of average loadings.
Second stage analyses were performed in 10 studies (7,734 individuals) with
genome-wide data that became available after the first stage and 12 studies (32,170
individuals) with Cardio-MetaboChip (by Illumina) data (number of included
studies and individuals given in Supplementary Table 3). Details on study
phenotypes, genotyping and imputation of each study are given in the
Supplementary Tables 8 and 9, respectively.

Ethics statement. All study participants gave written informed consent and ethic
committees approved all studies. The ethic statement of each study is given in the
study specific acknowledgements.

Calculation of average loadings. In 20 independent studies (Supplementary
Table 1) with unrelated participants PCAs were performed on six anthropometric
traits (BMI, height, hip, waist, weight and WHR). Each study performed a PCA on
the standardized residuals of the anthropometric traits adjusted for age and gender.
The same analyses were done for men and women separately with residuals
adjusted for age only. The result of the PCA in each study is a set of six PCs that are
orthogonal linear combinations of the six anthropometric traits. In other words
each PC is a weighted sum of the six transformed anthropometric traits and
independent of the other PCs. The weights of each trait per PC are called loadings.
Each study also calculated the explained variance per PC. The loadings and
explained variances were comparable for all studies (Supplementary Fig. 1 (1)).

With the intention to create phenotypes that are identically constructed in all
studies, the results of single study PCAs were used to deduce the average loadings.
This approach is reasonable as the loadings of the study specific PCAs were
comparable. With the use of the single study correlation matrices a combined
average correlation matrix was derived (weighted sum divided by number of
individuals). This average correlation matrix is then used as basis for a PCA. The
loadings that result from this PCA are called average loadings (Fig. 1a) and
Supplementary Table 2). This was performed for men, women and all individuals
combined, however ultimately we used combined loadings for primary results
reported in the manuscript. Sex specific results are reported in the Supplementary
Material. The average loadings and explained variance were comparable to the
study specific loadings and explained variances (Supplementary Fig. 1).

Heritability analyses. Heritability of the avPCs was calculated within four
population isolates, CROATIA-Vis (n¼ 909), CROATIA-Korcula (n¼ 842),
CROATIA-Split (n¼ 499) and ORCADES (n¼ 866) using the ‘polygenic’ function
of the GenABEL package for R 45.

Average principal components as body shape phenotype. The average loadings
were used in each study to calculate the AvPCs in a standardized way. Therefore,
the average loadings were distributed together with an R-script (http://www.r-
project.org/) that calculated the AvPCs as linear combination of residuals of the
study phenotypes with the use of the average loadings. This was done for men and
women separately and additionally for combined in studies with relatedness

structure. As the first four PCs explain on average more than 99% of the variance
(Fig. 1b) we decided to limit all analyses to these four PCs.

Stage 1 analyses. GWAS on the first four AvPCs were calculated for men and
women separately in studies of unrelated samples and combined for studies with
related samples with an adjustment for study site when necessary. All studies of the
first stage analyses used HapMap 2 imputed genome-wide data. GWAS results
underwent extensive quality control and study-wise filtering (call rate 495%,
P value (HWE)410� 6, imputation quality, minor allele count (MAC) 43).
The meta analyses of GWAS results for the first four AvPCs we combined
sex-stratified results for studies with unrelated individuals and unstratified
GWAS results for studies with relatedness individuals. Meta analyses were
performed with METAL 46 using fixed effects inverse variance-weighted method.
Single study and the meta analysis P values were corrected by the genomic
control inflation factor l (meta analysis l before correction: l(PC1)¼ 1.29,
l(PC2)¼ 1.407, l(PC3)¼ 1.236, l(PC4)¼ 1.136). Results were limited to SNPs
that are in HapMap 2 and had results for more than 30,000 individuals.
Heterogeneity analysis was performed with METAL. Each AvPC all SNPs with a
promising P value (P valueo5� 10� 6) were identified in combined analyses. To
identify promising loci clustering (LD40.01, distance o1,000 kb) with PLINK47

based on HapMap 2 genotypes was performed. All leading SNPs per clump for
AvPCs were taken forward to second stage analyses and named promising SNPs in
this manuscript.

Two SNPs that were promising for the first principal component had very low
heterogeneity P values (rs10847678 (P value(het)¼ 8.8� 10� 152), rs13296358
(P value(het)¼ 5.4� 10� 67)). For both SNPs the effect was driven only by a single
study and no other SNP in high LD had a promising P value. Therefore, these two
SNPs were removed from further analyses.

Stage 2 Analyses. As mentioned above for second stage analyses a mixture of
studies with genome-wide SNP data and MetaboChip genotypes was available.
Some of the leading SNPs of the first stage analyses were not genotyped on the
MetaboChip. To increase the power for all promising SNPs of each AvPC proxies
were defined that were all SNPs close to promising SNPs (distance o500 kb), in
high LD (LD40.9) and available in more than 70% of the individuals of the second
stage. Results of the second stage analyses underwent the same quality control as
first stage results.

Combined analyses. The combined analyses of all first and second stage GWAS
was performed with METAL35 with inverse variance based method. Results for
men and women were combined as described for the first stage meta-analyses. All
promising loci for which at least one proxy had a genome-wide significant P value
in the combined analysis were named genome-wide significant loci and the best
SNP of the combined analyses (largest absolute beta) was reported as topSNP of
this locus.

Novel loci - conditional analyses and look-ups in previous GIANT analyses.
Two analyses were performed to distinguish between genome-wide significant
body shape loci that are known from previous GWAS on BMI, height and WHR
and novel body shape loci. First, conditional analyses were performed. We used the
226 reported topSNPs (32 BMI, 180 height, 14 WHR) of published GIANT
analyses on BMI, height and WHR1,2,4 to perform conditional analyses of the first
stage meta-analyses using GCTA15,48. The results of this analysis were then
analysed conditioned on 843 topSNPs (97 BMI, 697 height, 49 WHR) of the
published GIANT analyses1,2,4. To identify the overlap of the results for AvPCs
with the single anthropometric traits, the same conditional analyses were
performed for BMI, height and WHR separately. For calculation of the
LD-structure genotype data from KORA F4 was used. Two topSNPs of the
unpublished GIANT results had to be removed before analyses as they were in high
correlation with two other topSNPs. If the body shape topSNPs were independent
loci identified by previous GIANT analyses, the P value should stay promising
(P valueo5� 10� 6) in both conditional analyses. Second, we checked by look-ups
if those genome-wide significant SNPs that are independent from the previously
reported topSNPs were not genome-wide significant (P value45� 10� 8) in
GIANT analyses1,2,4.

Genome-wide significant SNPs are named novel SNPs if they fulfil the following
conditions:

� P value of conditioned analyses on topSNPs reported by previous
GIANT analyses (on BMI, height, WHR) remained promising
(P valueo5� 10� 6).

� P value in previous GIANT analyses (on BMI, height, WHR) was not
genome-wide significant (P value45� 10� 8).

Pleiotropic effects. For identification of potential pleiotropic effects several
look-ups in various large-scale consortia on different phenotypes were performed,
including GIANT, DIAGRAM and MAGIC, all references are given in the results
table of the look-ups (Supplementary Table 7). For comparison of effect directions
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the loadings of each AvPC have to be considered. For example AvPC2 includes
height with a positive loading and BMI with a negative loading. That means an
increasing effect on AvPC2 means an increasing effect on height but a decreasing
effect on BMI.

Further Analyses. PCA, further analyses and plots were generated with R
(http://www.r-project.org/) if not stated otherwise. Apart from the GCTA analyses,
which uses LD structure of KORA F4, all LD analyses were performed in PLINK
based on HapMap 2 (CEU) genotypes. For comparison of findings between loci
from different AvPCs two loci are assumed to be identical if the topSNPs are in
high LD (LD40.8).

Data availability. Summary statistics of all analyses can be downloaded
from:https://www.broadinstitute.org/collaboration/giant/
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Tõnu Esko13,14,15,16, Mary F. Feitosa17, Anuj Goel18,19, Mathias Gorski20,21, Caroline Hayward6,

Nancy L. Heard-Costa22,23, Anne U. Jackson24, Eero Jokinen25, Stavroula Kanoni26,27, Kati Kristiansson11,28,

Zoltán Kutalik29,30,31, Jari Lahti32,33, Jian’an Luan34, Reedik Mägi15,19, Anubha Mahajan19, Massimo Mangino35,
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Andres Metspalu15, Inger Njølstad163,175, Claes Ohlsson12, Albertine J. Oldehinkel100, Lyle J. Palmer176,177,

Oluf Pedersen7, Markus Perola11,15,28, Annette Peters89,95,178, Bruce M. Psaty70,179,180,181, Hannu Puolijoki182,

Rainer Rauramaa101,183, Igor Rudan62, Veikko Salomaa11, Peter E.H. Schwarz81,184, Alan R. Shudiner132,185,

Jan H. Smit141, Thorkild I.A. Sørensen7,186,187, Timothy D. Spector35, Kari Stefansson54,188, Michael Stumvoll77,78,

Angelo Tremblay41, Jaakko Tuomilehto189,190,191, André G. Uitterlinden36,37, Matti Uusitupa192,193,
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183 Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, 70211 Kuopio, Finland. 184 Paul Langerhans Institute Dresden,
German Center for Diabetes Research (DZD), Dresden 01307, Germany. 185 Geriatric Research and Education Clinical Center, Vetrans Administration
Medical Center, Baltimore, Maryland 21042, USA. 186 MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol,
Bristol BS82BN, UK. 187 Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital, The Capital Region, 2000 Frederiksberg, Denmark. 188 Faculty
of Medicine, University of Iceland, 101 Reykjavik, Iceland. 189 Diabetes Prevention Unit, National Institute for Health and Welfare, FI-00271 Helsinki, Finland.
190 Centre for Vascular Prevention, Danube-University Krems, 3500 Krems, Austria. 191 Diabetes Research Group, King Abdulaziz University, Jeddah 21589,
Saudi Arabia. 192 Department of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland. 193 Research Unit, Kuopio University
Hospital, 70029 Kuopio, Finland. 194 DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany. 195 Princess
Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders (PACER-HD), King Abdulaziz University, Jeddah 21589, Saudi Arabia.
196 Center for Medical Systems Biology, 2300 Leiden, The Netherlands. 197 Finnish Institute for Molecular Medicine (FIMM), Helsinki University, 00014
Helsinki, Finland. 198 Institute of Genetic Epidemiology, Helmholtz Zentrum München, Neuherberg 85764, Germany. 199 Department of Epidemiology,
Harvard School of Public Health, Boston, Massachusetts 02115, USA. 200 Department of Epidemiology and Popualtion Health, Albert Einstein College of
Medicine, Bronx, New York 10461, USA. 201 Oxford NIHR Biomedical Research Centre, Oxford OX3 7LJ, UK. 202 Department of Epidemiology, Carolina Center
for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7400, USA. 203 National Institute on Aging, National
Institutes of Health, Bethesda, Maryland 20892, USA. 204 Population Health Research Institute, St George’s, University of London, London SW17 0RE, UK.
205 Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter EX1 2LU, UK. 206 Metabolism Initiative, Broad Institute,
Cambridge, Massachusetts 02142, USA. 207 Department of Medicine I, University Hospital Grosshadern, Ludwig-Maximilians-Universität, 81377 Munich,
Germany. 208 The Genetics of Obesity and Related Metabolic Traits Program, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.
209 The Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. * These authors
contributed equally to this work. ** These authors jointly supervised this work.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13357 ARTICLE

NATURE COMMUNICATIONS | 7:13357 | DOI: 10.1038/ncomms13357 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications

	title_link
	Results
	Defining composite phenotypes of body shape

	Figure™1Loadings and explained variance of AvPCs for body shape.(a) Loadings of AvPCs, and (b) explained variance of AvPCs for body shape
	Genomic discovery of body shape composite phenotypes

	Figure™2Manhattan and QQ-plots of association results on AvPCs of body shape.P values of the first stage meta-analysis are given in the Manhattan and QQ-plots. All genome-wide significant loci are highlighted
	Results for AvPC1
	Results for AvPC2
	Results for AvPC3
	Results for AvPC4

	Figure™3Number of loci associated with AvPCs and known from previous GIANT analyses on BMI, WHR or height.(a-d) corresponds to each AvgPC respectively. The Venn diagrams specify for each AvPC how many significantly associated loci (promising P value in th
	Discussion
	Table 1 
	Methods
	Study description
	Ethics statement
	Calculation of average loadings
	Heritability analyses
	Average principal components as body shape phenotype
	Stage 1 analyses
	Stage 2 Analyses
	Combined analyses
	Novel loci - conditional analyses and look-ups in previous GIANT analyses
	Pleiotropic effects
	Further Analyses
	Data availability

	WoodA. R.Defining the role of common variation in the genomic and biological architecture of adult human heightNat. Genet.46117311862014LockeA. E.Genetic studies of body mass index yield new insights for obesity biologyNature5181972062015Lango AllenH.Hund
	A complete list of acknowledgements is described in Supplementary Notes
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information




