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Gene expression network analyses in
response to air pollution exposures in the
trucking industry
Jen-hwa Chu1* , Jaime E. Hart2,3, Divya Chhabra2, Eric Garshick2,4, Benjamin A. Raby2,5 and Francine Laden2,3,6

Abstract

Background: Exposure to air pollution, including traffic-related pollutants, has been associated with a variety of
adverse health outcomes, including increased cardiopulmonary morbidity and mortality, and increased lung cancer
risk.

Methods: To better understand the cellular responses induced by air pollution exposures, we performed genome-
wide gene expression microarray analysis using whole blood RNA sampled at three time-points across the work
weeks of 63 non-smoking employees at 10 trucking terminals in the northeastern US. We defined genes and gene
networks that were differentially activated in response to PM2.5 (particulate matter ≤ 2.5 microns in diameter) and
elemental carbon (EC) and organic carbon (OC).

Results: Multiple transcripts were strongly associated (padj < 0.001) with pollutant levels (48, 260, and 49 transcripts
for EC, OC, and PM2.5, respectively), including 63 that were statistically significantly correlated with at least two out
of the three exposures. These genes included many that have been implicated in ischemic heart disease, chronic
obstructive pulmonary disease (COPD), lung cancer, and other pollution-related illnesses. Through the combination
of Gene Set Enrichment Analysis and network analysis (using GeneMANIA), we identified a core set of 25
interrelated genes that were common to all three exposure measures and were differentially expressed in two
previous studies assessing gene expression attributable to air pollution. Many of these are members of fundamental
cancer-related pathways, including those related to DNA and metal binding, and regulation of apoptosis and also
but include genes implicated in chronic heart and lung diseases.

Conclusions: These data provide a molecular link between the associations of air pollution exposures with health
effects.

Keywords: Air pollution, Trucking industry, Gene expression, Network analysis

Background
Air pollution exposures, have been associated with a
number of adverse health effects, including greater mor-
bidity and mortality risks for cardiopulmonary diseases,
and increased risk of lung cancer [1–6]. However, the
underlying biological mechanisms have not been fully
elucidated. Human studies of global changes in gene
expression following controlled exposures [7], or using
in vitro models [8, 9] have provided some insights in this

regard, yet few studies have rigorously assessed the
impact of air pollution on gene expression in real-life
settings. For example, though observational studies have
been conducted in individuals from geographic regions
with differing levels of air pollution have suggested asso-
ciations, [10] studies with more refined exposure mea-
sures have not been performed.
In this study, we characterized the cellular response

induced by traffic-related air pollution exposures in a
population of non-smoking US trucking industry em-
ployees. We performed genome-wide gene expression
microarray analysis using whole blood RNA sampled at
three time-points during the work week. We integrate
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these data with micro-environmental measures of
occupational exposure to three pollutants –particulate
matter ≤ 2.5 microns in aerodynamic diameter (PM2.5),
elemental carbon (EC), and organic carbon (OC) in
PM1.0 (particulate matter with a diameter of ≤1.0 μm).
Our objective was to identify the genes and gene
networks differentially activated in response to these
exposures.

Methods
Study population
A total of 95 subjects were recruited from 10 trucking
terminals in the northeastern US (CT, MA, MD, NJ, NY,
and PA). The participants were workers whose job duties
were characterized by different patterns of exposure:
pick-up and delivery (P&D) drivers, with regular
exposures to traffic; loading dock workers with regular
exposures to propane forklifts and episodic exposures to
diesel trucks and other vehicles in the terminal yard;
office workers with no occupational traffic related
exposures, and combination workers, who performed
the job duties of a P&D driver or a dock worker, as
needed.
The measurements took place between February 2009

and October 2010. Each subject was enrolled on the first
day of the workweek following at least two days off.
Whole blood samples were collected using PaxGene
RNA tubes, three times from each subject: (1) before the
first shift of the workweek (first day, AM draw); (2) at
the end of the first shift (8–12 h later) on the same day
(first day, PM draw); and (3) at the end of the last work
shift of the same workweek (last day, PM draw). This
design allowed us to assess the cross-shift effects after
returning from work after at least 2 days off, and the
cross-week effects (i.e., over 2–5 days). Our primary
analyses were restricted to the 63 Caucasian non-
smoking male workers with at least a single blood
sample available. The majority of participants were
excluded for being current active smokers (n = 21) given
the known effects of smoking on gene expression [11]
four participants were unable to provide a sufficient
blood sample, two reported an active illness (cold or flu)
at the time of blood draw, and one female and 7 non-
white men were excluded. The final data set includes a
total of 165 samples.

Measurement of traffic exposures
Micro-environmental samples of PM2.5, and EC and OC
in PM1.0 were collected over the full workweek (24 h/day
for 6–9 days) at each of the 10 terminals. Twelve-hour
area samples were collected indoors in office spaces and
terminal docks. Samples also were collected in the truck
cabs of participating drivers during their work shifts on
their first and last day of work. Detailed information on

the exposure assessment for each of the three pollutants is
described elsewhere [12]. Briefly, EC and OC were
measured by collecting PM1.0 on a 22-mm quartz tissue
filter, preceded by a precision machined cyclone separator
(SCC1.062 Triplex, BGI, Inc., Waltham, MA), which was
then analyzed with thermal-optical carbon analyzer using
the NIOSH 5040 method [13]. PM2.5 was collected on a
pre-weighed 37-mm Teflon filter (with a pore diameter of
0.2 μm) after passing through a precision-machined
cyclone pre-selector to remove particles greater than
2.5 μm in aerodynamic diameter. After collection, the
filter was reweighed to obtain the mass of PM2.5 collected.
The method was consistent with the EPA PQ200 Federal
Reference Method [14, 15]. For each participant on each
day, exposures to PM2.5, EC, and OC were assigned as a
weighted average of the time spent in each work location.

Gene expression data
Blood samples were stored at 4 °C on the day of collec-
tion until they were shipped overnight each day to our
blood processing laboratory in Boston, MA in an
insulated container with a cooler pack to keep samples
chilled. Upon arrival, RNA was extracted using the
Qiagen RNAEasy extraction kit, according to protocol
and then stored at −80 °C until analysis. Gene expression
profiling was conducted using the Illumina HumanHT-12
v4 Expression BeadChip, with RNA labeling and array
hybridization performed according to protocol. Image
capture was performed using the Illumina BeadArray
Reader. Standard QC and preprocessing procedures
were applied to remove failed samples (n = 2). Standard
background correction and normalization procedures
(Variance-Stabilizing Transform, [16]) were applied
using the R package lumi. The final data set included
information from 47,295 probes on 165 samples from
63 subjects.

Statistical analysis
To maximize the power of our repeated measures of
gene expression, we employed a mixed effect model that
considered gene expression measures from all three
blood draws, with the form:

Expression ¼ Exposureþ 1 subjectjð Þ þ Confounders;

where the expression measurements were treated as
repeated measures. Each exposure was considered
separately, and to estimate the impact of long-term
exposures, we used the average of the exposure mea-
sures from the first and last work shift for each par-
ticipant. Personal factors were considered as potential
confounders including age, and body mass index (BMI).
Job title and terminal were not considered as confounders
as they were assumed to be proxies for our measured
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exposures. BMI was not associated with either the expos-
ure or the outcome, therefore the only covariate included
in the final model was age. Statistical significance was
determined by estimating the False Discovery Rate (FDR)
by permutation testing, to correct for possible p-value
inflation introduced by the covariance of repeated
measures. We also tested for the cross-shift effects (blood
draw 1 vs. blood draw 2) and the cross-week effects (blood
draw 1 vs. blood draw 3) within each subject, using the
difference in the expression measurement between the
blood draws as the response variable.
Gene expression changes to environmental pertur-

bations are thought to arise through coordinated re-
sponses of specific gene networks that are often
difficult to appreciate through single gene testing. We
therefore applied Gene Set Enrichment Analysis
(GSEA) using GSEA software from the Broad Insti-
tute to identify subsets of genes with shared function
that were altered by exposure to vehicle exhaust from
the Molecular Signature database (MSigDb [17]),
which is a collection of annotated gene sets for GSEA
analysis. The gene sets are categorized into different
collections (C1-C7), and here we considered six func-
tional categories of gene sets: C2 (curated gene sets),
C3 (motif gene sets), C4 (computational gene sets),
C5 (GO gene sets), C6 (oncogenic signatures), and C7
(immunologic signatures). The gene set enrichment
analyses are based on a list of genes ranked by effect
sizes from the linear mixed effect models for all three
types of exposures were performed. Those gene sets
that were significantly enriched for all three types of
exposures (EC, OC, PM2.5) were marked for further
functional annotation. Significance was claimed at an
FDR of 25 %, as recommended for GSEA. For these
enriched gene sets, we also identified the genes that
contributed most to the enrichment (“leading edges”).
In addition, we also performed connectivity map ana-
lysis to identify additional genes connected to the
genes correlated with exposure levels. Finally, we
performed GSEA analyses on data from two other air
pollution related Gene Expression Omnibus (GEO)
datasets (GSE7462 [7] and GSE7543 [10]) to assess
the generalizability of our results.
GSE7462 [7] is from a crossover, double-blind study of

the effects of diesel exhaust inhalation compared to fresh
air exposure on peripheral blood mononuclear cells (n =
23); and GSE7543 [10] is a study of differences in
expression in peripheral blood samples collected from
two regions of the Czech Republic with markedly
different levels of pollution (n = 71).

Results
Selected characteristics of the study subjects, and the
mean exposure levels of PM2.5, EC and OC observed

over the 5-day workweek, are presented in Table 1.
The participants were 50.5 years old (SD = 8.4) on
average, 52.4 % were former smokers, and pick-up
and delivery drivers were the largest job group sampled
(46.0 %). Out of the three pollutants, EC and PM2.5 were
modestly correlated (r2 = 0.38), while EC-OC and PM2.5-
OC were not (r2 = 0.02 and 0.07, respectively). We found
no systematic difference in expression measurements or
other demographic variables between the subjects with
complete blood samples at all three collection times
and the subjects with missing data (data not shown).
For the gene-level differential expression analysis, the

tests for cross-shift and cross-week effects did not yield
any significant results. Therefore we focus on the results
from linear mixed-effect model. QQ plots contrasting
the observed with permuted p-value distributions for the
linear mixed effect model analyses are presented in
Additional file 1: Figure S1, demonstrating excessive
deviations of the observed results from expectation. We
estimated the genomic inflation factor lambda for each
analysis (EC = 1.09, OC = 1.39, and PM2.5 = 1.15), to en-
able adjustment of our results for unobserved technical
biases. Multiple transcripts were strongly correlated
(padj < 0.001) with week-long average pollutant levels
(EC n = 48, OC n = 260, PM2.5 n = 49, see Fig. 1 for
examples of most strongly correlated genes for each
exposure), including 67 that were strongly correlated
with at least two of three exposure measurements (See
Additional file 2: Table S1), though no individual genes
met our a priori threshold of statistical significance at an
FDR < 0.1.
In contrast to the gene level analysis, GSEA revealed

widespread differential responses with long-term exposures.

Table 1 Characteristics of the 63 white male trucking industry
workers

Total

Total no. 63

Age (years, mean ± SD) 50.5 ± 8.4

Past smoker (no. (%)) 33 (52.4)

Primary job title (no.(%))

Pick-up and Delivery Driver 29 (46.0)

Dockworker 12 (19.1)

Officeworker 15 (23.8)

Combination Workersa 7 (11.1)

Workweek average exposure (μg/m3, mean ± SD)

PM2.5 11.5 ± 5.1

EC 0.6 ± 0.4

OC 8.8 ± 3.0
aCombination workers perform the jobs of pick-up and delivery drivers or
dockworkers as needed
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A total of 6019 gene sets were significantly enriched
(FDR < 0.25 and nominal p-value < 0.05) for any of the
three exposure types (See Fig. 2), including 2384 gene
sets from the C2 collection, 698 sets from the C3
collection, 586 from the C4 collection, 445 from the
C5 collection, 128 from the C6 collection, and 1778
from the C7 collection. EC exposure was consistently
correlated with the greatest number of enriched gene
sets across all collections. Most notable was the great
degree of gene set enrichment overlap across exposure
types. Overall, 59.5 % (3580 of 6019) of gene sets were

implicated in more than one exposure response, including
82.2 % of C7 collection sets, 64.5 % of C4 sets,
53.1 % of C6 sets, 49.4 % of C2 sets, 49.4 % of C3
sets, and 33.9 % of C5 sets (Fig. 2). Further inspection
revealed that 20 % (1207) of gene sets were enriched
across all three pollutants (p < 10−16 for any sharing
between pollutants, p < 10−16 for sharing across all three
pollutants).
From the regression and GSEA analyses, we defined a

core set of 262 genes whose expression was modified by
occupational exposure to vehicle exhaust and that were
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Fig. 1 Dot plots of most important expression profiles from core gene set. Left: Dot plots for genes most correlated with PM2.5 (APLP2 and
USP34); Middle: Dot plots for genes most correlated with EC (CTR9 and HSP90AA1); Right: Dot plots for genes most correlated with OC
(CTR9 and MDC1)
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most frequently represented in enriched gene sets that
emerged from the GSEA (Additional file 2: Table S1).
This core gene set included the 20 genes most differen-
tially expressed for each pollution measure (OC, EC, and
PM), those that were differentially expressed by two or
more measures, genes that were enriched in at least 10
gene sets per MSigDb collection, and genes that were
enriched in at least 20 sets common to all three
exposure measures. To assess whether members of this
core set were specific to our study, or have been
implicated by others, we formally tested whether this
core gene set was overrepresented in two previously
published, independent air pollution gene expression
datasets available through GEO.. We observed statisti-
cally significant enrichment of our selected gene set in
both datasets (p < 10−16 for each). Of the 262 genes, 114
were within the leading edge for the GSE7462 dataset,
and 64 for GSE7543, with 25 genes common to both
(Table 2). This common set of leading edge genes
included multiple genes implicated in the interrelated
processes of DNA binding (LEF1, MLH1, RBM5, STAT1,
CITED2, APLP2, DDX3Y, ZNF589), metal binding
(MAN1A1, PRIM1, RBM5, STAT1, ZFP161, and
ZNF589), apoptosis regulation (CITED2, MLH1, RBM5,
STAT1), and cancer pathways (HSP90AA1, LEF1, MLH1,
STAT1).
These 25 genes, which were derived from our

expression analyses of three exposure measures and
were also enriched in the two independent GEO

datasets, represent the most highly reproducible (i.e.
most robust) gene set to emerge from our analysis.
To determine the interrelationship among this core
set of genes, we applied GeneMANIA network ana-
lysis [18], the results of which are displayed in Fig. 3.
The derived network consisted of 24 of the 25 core
genes (the sole core gene not incorporated into the
network, CTAGE5, is a known pseudogene) and 20
additional genes that were pulled in by GeneMANIA.
Though these 44 genes have been implicated in numerous
biological and cellular processes, several processes
were statistically significantly overrepresented among
these lists, including those of DNA binding (13 of 44
genes, p = 0.01), cell surface receptor linked signal
transduction (11 genes, p = 0.01), and cancer (8, p =
1.1 × 10−4). The derived network demonstrated sub-
stantial evidence of interconnectivity: a total of 131
gene-gene interactions were observed, with each of the 25
core genes interacting on average with 6.95 other genes
(range 1–15). Genes (nodes) with the highest number of
interactions included GNAQ (15 connections), CTR9
(13), HSP90AA1 (12), MLH1, FNBP4, ACP1, MDC1
(each with 10 connections), and LEF1, LPIN1, and
RBM5 (9 connections each). Together, these ten hub
genes linked to all but two of the other genes in the
network, and five (ACP1, HSP90AA1, LEF1, MLH1,
and RBM5) are common to the major cancer-related
pathways identified above (DNA, metal binding, and
apoptosis regulation).

Fig. 2 Venn Diagrams for gene sets. The numbers of the gene sets that were significantly enriched with FDR < 0.25 and nominal p-values < 0.05.
Note: C2 = curated gene sets (excluding CGP gene sets, see below), C3 =motif gene sets, C4 = computational gene sets, C5 = GO gene sets,
C6 = oncogenic signatures, C7 = immunologic signatures, CGP = Chemical and genetic perturbations
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Discussion
This study represents the first attempt to characterize
the molecular impact of air pollution using micro-envir-
onmental measures of exposure. Four primary obser-
vations were made. First, GSEA demonstrated
widespread evidence of pathway-specific changes in
gene expression, with 6019 gene sets demonstrating
enrichment for traffic-related air-pollution correlated
genes. The enriched gene sets implicated a range of cellu-
lar responses and pathways. Several – including oxidative

stress responses [19], interferon-mediated in amatory
responses to viral infection [20], and hypoxemia-induced
responses [21] – are known response mechanisms for
dealing with the likely biological consequences of air
pollutant exposures. Second, we found that despite the
relatively low within-subject correlation of the measures
of exposure, there was a striking degree of shared gene set
enrichment across pollutants (59.5 % for any sharing,
20 % for sharing across all three exposures). The degree
of overlap across the exposures, while far more than

Table 2 List of 25 genes in the core gene set that were differentially expressed in two independent GEO data sets

Gene
symbol

Gene name Number of
interactions

Number of
pathways

Mean (SD) log2 expression p-value

Trucker Dock Office ANOVA PM2.5 EC OC

GNAQ Guanine nucleotide binding
protein, q polypeptide

15 18 5.96 (1.17) 7.04 (0.91) 6.15 (1.74) 0.0004 0.1535 0.0116 0.0017

CTR9 Ctr9, Paf1/RNA polymerase II
complex component

13 7 7.01 (0.64) 7.44 (0.49) 7.10 (0.61) 0.0037 0.5095 6.11E-06 5.59E-06

HSP90AA1 Heat shock protein 90 kDa
alpha, class A member 1

12 0 10.24 (0.66) 10.43 (0.35) 10.13 (0.74) 0.1687 0.8814 1.36E-08 0.0353

MLH1 mutL homolog 1 10 19 8.66 (0.29) 8.83 (0.21) 8.65 (0.39) 0.0184 0.0037 0.0025 0.0547

FNBP4 Formin binding protein 4 10 23 10.36 (0.49) 10.86 (0.29) 10.44 (0.62) 1.10E-05 0.1515 0.0063 0.0004

ACP1 Acid phosphatase 1 10 13 8.71 (0.52) 9.22 (0.28) 8.69 (0.56) 3.53E-06 0.0107 1.95E-06 0.0003

MDC1 Mediator of DNA-damage
checkpoint 1

10 17 8.93 (0.49) 9.32 (0.35) 8.93 (0.54) 0.0004 0.1663 0.0530 5.75E-05

LEF1 Lymphoid enhancer-binding
factor 1

9 42 11.17 (0.45) 11.41 (0.32) 11.00 (0.46) 0.0006 0.0291 0.0096 0.0001

LPIN1 Lipin 1 9 28 9.69 (0.52) 10.17 (0.36) 9.78 (0.65) 9.96E-05 0.1880 0.0006 0.0005

RBM5 RNA binding motif protein 5 9 15 11.73 (0.30) 12.02 (0.22) 11.77 (0.39) 4.36E-05 0.0333 0.0101 0.0008

MAN1A1 Mannosidase, alpha, class 1A,
Member 1

8 4 5.26 (0.97) 5.85 (0.75) 5.46 (1.06) 0.0138 0.2408 2.35E-05 2.06E-06

ZFP161 Zinc finger protein 161 8 17 8.08 (0.51) 8.28 (0.26) 8.05 (0.60) 0.1081 0.1419 0.0046 0.0030

HSPA8 Heat shock 70 kDa protein 8 7 21 12.49 (0.24) 12.66 (0.17) 12.47 (0.32) 0.0031 0.0096 1.81E-05 0.0081

PRIM1 Primase 1 6 39 7.70 (0.40) 7.88 (0.24) 7.56 (0.44) 0.0045 0.0632 3.47E-05 0.1771

STAT1 Signal transducer and activator
of transcription 1

6 0 11.86 (0.60) 11.49 (0.34) 11.79 (0.51) 0.0066 0.6718 0.0821 2.14E-06

CITED2 Cbp/p300-interacting
transactivator 2

4 19 9.62 (0.48) 9.84 (0.38) 9.70 (0.42) 0.0728 0.0201 0.0069 0.0112

APLP2 Amyloid beta precursor-like
protein 2

4 0 6.01 (0.98) 5.84 (0.65) 6.21 (0.77) 0.2322 5.65E-08 0.3388 0.8264

DDX3Y DEAD box polypeptide 3,
Y-linked

4 16 2.48 (1.72) 2.84 (1.48) 2.70 (1.77) 0.5375 0.0574 0.0386 0.0191

HLA-DMA Major histocompatibility
complex, class II, DM alpha

4 0 12.50 (0.46) 12.18 (0.44) 12.45 (0.54) 0.0069 0.7922 7.36E-06 9.93E-06

DOCK9 Dedicator of cytokinesis 9 2 18 2.95 (1.48) 4.37 (1.19) 3.25 (1.82) 7.74E-05 0.1116 0.0001 0.0002

EML3 Echinoderm microtubule
associated protein like 3

2 17 11.70 (0.39) 11.56 (0.33) 11.57 (0.34) 0.0787 0.0175 0.0133 0.0006

GPBAR1 G protein-coupled bile
acid receptor 1

2 0 10.24 (0.60) 9.91 (0.48) 10.31 (0.81) 0.0227 0.9312 0.0002 7.27E-07

USP34 Ubiquitin specific peptidase 34 2 22 8.49 (0.39) 8.89 (0.31) 8.55 (0.58) 5.32E-05 0.0366 0.0095 0.0077

ZNF589 Zinc finger protein 589 1 0 9.00 (0.49) 9.02 (0.36) 8.66 (0.40) 0.0004 3.60E-08 0.2132 0.5830

CTAGE5 CTAGE family, member 5
pseudogene

0 0 3.26 (1.05) 4.10 (0.99) 3.68 (1.27) 0.0008 0.5163 0.5885 0.0008
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would be expected by chance, was not surprising be-
cause the three exposure metrics (EC, OC and PM2.5) are
representing different properties of the same source.
These overlapping gene sets implicated a core set of
genes and pathways, suggesting a set of common
molecular responses to such exposure. In addition,
inspection of the gene memberships within the leading
edges of these overlapping gene sets suggested evidence
of overlap of critical genes, both across pathways and
across pollutants. However, the 80 % of non-overlapping
gene sets also suggest independent mechanisms may
be more related to individual exposures. Third, our
connectivity analysis defined a sub-network of intercon-
nected genes at the heart of this shared response.
Though several individual components of the network
have been previously implicated in anti-oxidative and
other protective cellular responses to pollution [22], our
findings focused greater attention on these genes and
their neighbors as central role players underlying these
responses. Finally, we demonstrated the generalizability
of our results beyond the trucking industry to the
general population by demonstrating that the core set of

overlapping genes that emerge from our analyses were
also overrepresented in two independent air pollution
expression datasets.
The major finding of our analysis is the characterization

of a core network of interconnected genes common to all
three air pollution measures (Fig. 3) that also form a com-
mon gene set that is enriched in two previously published
air pollution-expression datasets. This core network con-
sists of genes that are members of fundamental cancer-
related pathways, including those related to DNA and
metal binding, apoptosis regulation, and cell surface
receptor linked signal transduction. Of potential greatest
significance was the observation that 10 of the core genes
formed connections with all but 2 of the 44 genes making
up the network. Among these 10 hubs are 5 – ACP1,
HSP90AA1, LEF1, MLH1, and RBM5 - common to the
major identified cancer-related pathways. Though these
genes have promiscuous function, they are all implicated
in tumor pathobiology, providing a potential etiological
link between the known associations of chronic air pollu-
tion exposure and lung cancer mortality [2, 4], including
studies assessing diesel exhaust exposure in the trucking

Fig. 3 Interconnectivity of particulate induced genes
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industry and other populations [6, 23, 24]. For example,
acid phosphatase 1 (ACP1), whose expression was
strongly correlated with PM2.5 exposure in our cohort and
was a leading edge member of 13 gene sets enriched
across all three exposure types, is a low-molecular-weight
protein tyrosine phosphatase (LMW-PTP) with both
pro- and anti-oncogenic functions (reviewed in [25]). Two
common isoforms have been described, both were corre-
lated with PM2.5 exposure in our dataset (p = 4.7 × 10−4

and 9.8 × 10−3) despite the fact that they have differing
patterns of cellular localization - one isoform localizes to
the cytoskeleton, the other to the cytoplasm. ACP1 inter-
acts with many proteins implicated in tumor progression,
including janus kinase [26], 31 β-catenin [27], and the
ephrin A2 receptor (EPHA2, also implicated in our core
network, [28]), among others, and ACP1 was one of eight
genes whose combined expression in peripheral blood has
been suggested as a predictive signature of stage I lung
adenocarcinoma [29]. The oncogenic relevance of the
other four hub genes – including the heat shock protein
HSP90AA1 [30–32], the lymphoid-enhancer binding
factor LEF1 [21, 33–35], the DNA mismatch repair gene
MLH1 [36–38], and the tumor suppressor RNA-binding
motif protein RBM5 [39–41] - have been reviewed else-
where [30–32, 36–41], further supporting this network as
a molecular link between air pollution exposure and lung
cancer risk.
Though the most prominent and consistent findings

emerging from our analysis delineate network submodules
implicated in cancer pathogenesis, the expression signa-
tures that emerged also included a large collection of genes
implicated in other diseases, including myocardial and cere-
bral ischemic injury, sudden cardiac death, and chronic
obstructive pulmonary disease, particularly STAT1 [42–44],
FZD2 [45, 46], GCLM [47], CD63 [48], and SP4 [49]. Given
that all of these genes were members of the core gene
expression set (Additional file 2: Table S1), and many were
among the most highly connected hub genes, they repre-
sent important biological targets in the pathogenesis of
these most common pollution-related diseases. Although
the study was not designed to assess relationships with clin-
ical disease, we applied a disease connectivity analysis using
the “set analyzer” tool in the Comparative Toxicogenomic
Database (http://ctdbase.org) and the list of 248 genes
identified from our study (Additional file 3: Table S2). Of
20 diseases with Bonferoni-corrected p-values < 0.01, 12 of
the were in the categories of cancer, lymphatic disease, and
immune system diseases, consistent with our analysis using
a gene-expression based network analysis.
Evaluation of strengths of our findings and their

contribution to our current understanding of the adverse
consequences of air pollution must consider several
important strength and limitations relative to prior
work. Unlike prior studies, measures of exposure were

collected for all study subjects in real-life work settings
over a workweek, providing more accurate estimates for
analysis. Importantly, the exposure levels experienced by
these workers (such as the truck drivers) overlap with
ambient exposures experienced by the general public
who would be likely to experience similar on-road expo-
sures during such activities as commuting, making our
results applicable to a wider population. Our repeated
measures design provides for more accurate estimates of
gene expression compared to single time-point studies,
and is more robust to outliers. In addition, our sampling
was performed at 10 sites within the Northeastern United
States, providing good representation across the range of
pollutant exposures. Lastly, we note the strong evidence
of enrichment of our core gene sets in two previously
published studies, providing strong evidence of the
reproducibility and generalizability of our findings to
other populations.
Several limitations, however, must be recognized. First,

there are some limitations in the study design. Due to
the demographics of employment of the trucking indus-
try in the Northeast, our analysis was restricted to white
men. The levels of physical activity during work, which
differ between job titles, was not available. Heterogeneity
in cell compositions, such as white blood cell counts,
could not be addressed due to lack of data. We did
examine the white blood cell marker genes based on the
cellmix R package [50], and found no associations with
exposures, either at gene level or gene set (pathway)
level. Therefore, we do not believe that cell composition
would bias our results. Second, the number of individual
involved (63) was small, and the study might be under-
powered, even with the repeated design. Third, although
we examined the impacts of pollution in an occupational
setting, the levels of pollution were low, likely due to
decreasing pollution emissions in the trucking industry
in recent years [51], and these low levels may explain
the relatively modest number of observed changes in
gene expression in our study. Therefore, we may not
have detected additional genes of importance. Our reli-
ance on GSEA mitigates this concern somewhat, but not
completely. Lastly, our analysis relies on a one-week
sampling of both exposures and expression measures,
with the assumption that these observations are repre-
sentative of more long-term processes. Though longer,
more repeated sampling designs might provide more
representative findings, two lines of evidence suggest
that the efforts to collect such data would add only
incrementally. First we have previously demonstrated in
this industry that short windows (one week) of exposure
sampling are representative of exposures measured at
other time periods [52]. On average, our study subjects
have been employed in the same position for 19 years. It
is thus likely that the exposure estimates generated from
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this study are similar to what would be observed over
longer periods of time (months to years). Additionally,
we found no evidence of cross-week differential expres-
sion, providing some reassurance that the gene expres-
sion measures reflect the individual global patterns of
gene expression measured over longer time periods.
Finally, our finding that our core set of pollution-
correlated genes was also prominent in two independent
(albeit limited) datasets, suggests that our results may be
generalizable and relevant to other exposed populations.

Conclusions
In summary, we have characterized the molecular
impact of traffic-related air pollution, and have identified
a sub-network of interconnected genes implicated in
cancer pathogenesis and related processes that are con-
sistently perturbed in response to air pollution exposure.
These data provide greater insights into the adverse
health consequences of traffic-related air pollution.
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