
A Cost-Space Approach to Distributed Query
Optimization in Stream Based Overlays

Citation
Shneidman, Jeffrey, Peter Pietzuch, Matt Welsh, Margo Seltzer, and Mema Roussopoulos.
2005. A cost-space approach to distributed query optimization in stream based overlays. In
Proceedings of the 21st International Conference on Data Engineering: ICDE 2005, 5-8 April
2005, National Center of Science, Tokyo, Japan, 1182 - 1188. Los Alamitos, Calif.: IEEE Computer
Society.

Published Version
http://dx.doi.org/10.1109/ICDE.2005.161

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2962639

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:2962639
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=A%20Cost-Space%20Approach%20to%20Distributed%20Query%20Optimization%20in%20Stream%20Based%20Overlays&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=f27bd4c8041ec6ae031b735bad6beda0&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility

A Cost-Space Approach to
Distributed Query Optimization in Stream Based Overlays

Jeffrey Shneidman, Peter Pietzuch, Matt Welsh, Margo Seltzer and Mema Roussopoulos
Division of Engineering and Applied Sciences

Harvard University, Cambridge, MA, USA
hourglass@eecs.harvard.edu

Abstract

Distributed stream-based applications, such as contin-
uous query systems, have network scale and time charac-
teristics that challenge traditional distributed query opti-
mization. The optimization sub-problems of plan generation
and service placement should be integrated to meet these
challenges. These tasks have typically been treated as in-
dependent sub-problems because of the complexity of their
integration. We suggest cost spaces as one way to mitigate
this complexity. We further consider how cost spaces can be
used to allow tractable multi-query optimization.

1. Introduction

In the beginning, Codd created the relation and the ta-
ble [1]. And query optimization was without form, and void.
But researchers moved to address this void, and said, let
there be a query optimizer. And then (when networking
came into its own), there were distributed query optimiz-
ers [2, 3]. And then followed a long period of relative rest.

This stable equilibrium of distributed query optimization
research has been punctuated by recent work in peer to peer
databases [4], continuous query systems [5, 6], and other
stream-based overlay networks [7]. This paper describes
the changes that must occur for distributed query optimiza-
tion to work well in a general stream-based overlay network
(SBON).

An SBON describes an environment where data is
streamed from one or more producers to one or more con-
sumers, possibly via a set of services running in-network
on additional capable overlay nodes. This general definition
is agnostic to data model (relational, semi-structured, etc.)
and service model (database operator, application-injected
code, etc.). The distributed optimization problem is sim-
ilar in every case: the end-goal is to satisfy user queries,
and when given the choice, to do so in a good way with re-
spect to some optimization metric.

The SBON environment presents two challenges: The
first challenge is network scale. Unlike the old database

assumption where operator services run at network end-
points, overlay networks permit services to be placed on
capable in-network nodes. The second challenge is time.
This challenge has two components. First, whereas a typical
database query is finite and short-lived, queries in an SBON
can run continuously. Second, node and network character-
istics (such as load and latency) are dynamic.

These challenges have significant implications for dis-
tributed query optimization. In Section 2, we describe how
the two sub-problems of plan generation and service place-
ment are affected. While the traditional database approach
separates these problems to reduce each problem’s com-
plexity, it is known that this separation can yield sub-
optimal decisions [8]. This tradeoff is unwarranted in the
SBON setting. In Section 3, we introduce cost spaces as
a way to reduce the complexity of the optimization sub-
problems to a point where integrated plan generation and
service placement is possible. Cost spaces are metric spaces
that allow nodes to express their state by choosing appropri-
ate coordinates. These spaces make the service placement
problem tractable and allow plan generation to consider a
specific set of nodes. We conclude with open research prob-
lems that follow from this integration and call for new re-
search efforts into large scale query optimization.

2. Query Optimization in SBONs

Classic distributed database query optimization has fo-
cused on achieving good solutions to three problems:

Data placement considers where to place data so that it
may be efficiently queried in the future.

Plan generation creates a logical plan that contains the
identity and order of services that must be used to answer a
query.

Operator (service) placement considers how to place op-
erators efficiently on a set of physical nodes. We refer to
operator placement in an SBON as service placement since
this processing code may go beyond the confines of a tradi-
tional database operator.

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Harvard University SEAS. Downloaded on May 21, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

Some aspects of distributed query optimization are sim-
plified in the SBON setting. Often an SBON is used to re-
lay real-time data from a particular data source to a series of
consumers, and no other source can provide this particular
data. For instance, live sensor readings from a volcano [9]
originate at a particular volcano; one cannot move moun-
tains. Often there is no data placement problem, and we
disregard this issue for the remainder of this paper. A sec-
ond observation is that there is no transaction processing in
some stream-based overlay networks. This paper considers
systems where data is never changed and re-published.

2.1. Plan Generation

Plan generation takes as input a user query and outputs
a logical plan to satisfy that query. The logical plan con-
sists of one or more data endpoints, possibly connected via
services, to a consumer. In relational databases, the data
may be stored in tables, and example services are JOIN
and SELECT. In these systems, table summary informa-
tion is used to estimate costs for performing different ser-
vice orderings. A plan generator selects the least cost plan,
which often has the effect of minimizing application re-
sponse time. Many distributed optimizers use dynamic pro-
gramming with pruning or some other enumeration algo-
rithm to perform plan selection [8].

The SBON model challenges traditional plan genera-
tion in three ways. First, because of long-running stream-
based queries, a bad decision in plan generation means that
bad plans will cause long-term damage to system capac-
ity and performance. Second, the variable node and net-
work dynamics mean that over the course of a long-running
query, an initial plan may become invalid (or suboptimal)
and require regeneration1. Third, long-running queries in-
crease the likelihood of encountering concurrent plans that
can re-use parts of each others’ plan trees. This is a double-
edged sword: the long-lived nature of queries introduces
an optimization opportunity; however, concurrent plans in-
crease the complexity of the optimizer as it must process
the union of several plans. This challenge has not been ex-
plored in older distributed query optimizers, which “exam-
ine one query at a time in isolation and form a plan as if it
were the only work running in the system.” [11] The long-
lived nature of SBON queries, combined with ways of limit-
ing the complexity of this problem (as in Section 3.4), make
this challenge more compelling.

1 There has been previous work on regenerating plans due to changing
node conditions [10], but our impression is that this has been viewed
as an optimization research niche. This niche view is probably correct
in a short-lived query, since there is little time to recoup the cost of
re-optimization. In a long-running query, recouping costs is less of an
issue.

2.2. Service Placement

Service placement takes as input a logical plan and out-
puts a mapping of each logical service to a physical node
in the network. Traditional optimizers vary in how they as-
sign a cost to candidate placement decisions and select the
least-cost plan. Kossman gives a good overview of how dif-
ferent models are used in the placement decision [8]. Again,
dynamic programming with pruning is often used for place-
ment.

Current service placement algorithms are dramatically
affected by the SBON assumptions. The scale challenge is
the most obvious change. Distributed databases have pre-
viously treated the network as an opaque transport. With
the advent of the overlay (e.g., PlanetLab [12]), optimizers
are now able to insert application logic into the networking
infrastructure. Whereas previous optimizers had a place-
ment choice ranging in the tens of nodes, the next gener-
ation overlay-aware optimizers have hundreds or thousands
of physical node choices. This is the nail in the coffin for
traditional service placement techniques unless there is sub-
stantial guidance on where to focus the search.

The next two SBON challenges are similar to those ob-
served in plan generation. First, the changing system dy-
namics over the course of a long-running query mean that
the initial placement may become invalid (or suboptimal)
and require regeneration. Second, long-running queries in-
crease the likelihood of being able to merge identical ser-
vices (serving different queries) into one physical service
instance. As in plan generation, there has been little work
on dynamic query optimization in databases that takes these
changes into account.

2.3. Why Integrate Query Optimization?

Many distributed databases perform plan generation and
service placement as a two-step optimization [8, page 443].
The idea is to perform plan generation without considering
node or network state. Then, immediately before the plan
is executed, perform the service placement decision taking
into account current network characteristics.

Figure 1 shows an example of an inefficiency that can
be caused by separate plan generation and service place-
ment steps, even when optimizing a single query. In this ex-
ample, the distance between physical nodes corresponds to
communication latency. A four-way join operator is decom-
posed into three two-way joins (Services S1...3) and then
placed in the SBON. The plan generation phase picks Query
Plan 1 for the decomposition, which turns out to be a poorer
choice due to the distribution of Producers P1...4. Assum-
ing the selectivities of the two plans were roughly the same,
Query Plan 2 would have resulted in a more efficient query
placement, in that the total data latency is lower. However,
this only becomes apparent after examining the network.

Some work in dynamic database query optimization has
attempted to blend the two optimization sub-problems. One

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Harvard University SEAS. Downloaded on May 21, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

Query Plan 1

Service Physical Node

Query Plan 2

P

C

S S

S

P P P1

1

2 3

2 3 4

Figure 1. Example of inefficient two-step opti-
mization. The decomposition of Query Plan 1
is less efficient than Plan 2 but this becomes
apparent only after service placement.

idea for common queries is to pre-calculate and store plans
and sub-plans in the database [13]. At compile time, each
plan is generated with a different set of network assump-
tions. Then, when an expected query is issued, the optimizer
examines current network state and tries to find the pre-
computed plan that best matches current conditions. This
approach is limited in that the optimizer must guess which
future node and network states are relevant and worth pre-
calculation. Furthermore, it is only applicable to “common”
anticipated queries where a plan generation pre-calculation
can be performed.

Integration of the two optimization sub-problems would
be ideal. Yet, earlier in this section, we observed how dy-
namic programming in plan generation can be overwhelmed
by concurrent queries, and how service placement may be
inundated both by concurrent queries and with new choices
brought about by increased network scale. We must address
these problems in order to proceed with an integration ef-
fort.

3. A Cost-Space Approach to Integrated
Query Optimization

In this section, we propose a novel approach for an in-
tegrated query optimizer, which considers the interdepen-
dency of query plan generation and service placement. Our
approach is based on the idea of a cost space, which cap-
tures service placement costs in an efficient way (Sec-
tion 3.2). The cost of service placement can then be used
to guide query plan generation, avoiding consideration of

an intractable number of possible query plans (Section 3.3).
Finally, pruning within the cost space reduces the complex-
ity of multi-query optimization with a large number of con-
currently running queries (Section 3.4).

In the following, we will refer to the instantiation of a
query in an SBON as a circuit. A circuit can contain un-
pinned services, which are services that can be placed, and
pinned services, which have a pre-defined network location.

3.1. Cost Spaces

A cost space is a multi-dimensional metric space that ex-
presses cost information for service placement decisions. A
point in this space corresponds to a physical node, where
each coordinate component represents an aspect of the cost
of using this node. Costs are either scalars or vectors. CPU
load, memory consumption, and disk capacity are examples
of scalar costs because they are properties of a single node,
and can be represented in one dimension. Communication
latency, communication jitter, and available bandwidth are
represented as vector costs because they capture the rela-
tionship between this node and other nodes in the network.
Vector costs usually require multiple dimensions for accu-
racy.

A sample cost space (using only vector costs) would be
a pure latency space [14, 15], where the distance between
coordinates is an estimate of communication latency. Even
though communication latency on the Internet violates the
triangulation inequality, it can be shown that such a met-
ric space can be constructed with only a slight error [16]
while using a small number of dimensions. Vector costs
be calculated in a distributed and iterative nature by con-
stantly refining the coordinates and correcting for network
dynamism [17]. A node calculates its scalar component us-
ing a weighting function supplied by the deployer of the
cost space. The function is constructed to always be non-
negative, where zero represents an ideal value. As a sim-
ple example that could be used to capture a node’s load, the
weighting function could be the squared function as in Fig-
ure 2; a node uses the square of its current value as its coor-
dinate in the appropriate dimension.

Cost spaces can be used to express trade-offs between
different basic costs. For example, an application may want
to create circuits that minimize latency, subject to a CPU
load constraint. This example is shown in Figure 2. This
graph captures communication latency (x- and y-axes) and
CPU load (z-axis). The points in the space are physical
nodes in an SBON that is run on top of a simulated transit-
stub network topology with 600 nodes. The distance in the
x-y plane between two nodes gives an estimate of the com-
munication latency of the two nodes. The height on the z-
axis is proportional to the squared CPU load on a node.

The semantics (dimensions, units, and weighting func-
tions) of a particular cost-space must be known by all nodes
in the SBON. The SBON can support multiple independent
cost spaces, each to suit different classes of applications.

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Harvard University SEAS. Downloaded on May 21, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

(N
o

d
e

C
P

U
 L

o
ad

)2

Latency
Latency

Node a
(overloaded)

Figure 2. Example of 600 nodes in a 3-
dimensional cost space. Communication
cost is measured along the x- and y-axes and
CPU load along the z-axis. The CPU load di-
mension uses a squared weighting function
to discourage the use of overloaded nodes,
such as node a.

In the remainder of this section, we will show how the cir-
cuit optimizer can use this cost space for query plan gener-
ation and service placement.

3.2. Service Placement

A cost space can be used to efficiently implement ser-
vice placement in an SBON. Each node in the SBON calcu-
lates its own coordinate in the cost space.

The computation is done iteratively to adapt to changes
in the system. The goal of circuit optimization is to find a
placement of services that minimizes the overall cost of the
circuit in the SBON. This physical placement of services is
proceeded by two decision phases:

Virtual Placement. A service placement algorithm is used
to compute the coordinates of the ideal placement locations
for unpinned services in the cost space. Such virtual place-
ment decisions are computationally inexpensive as they do
not instantiate services.

An algorithm for scalable, decentralized virtual place-
ment of services in a cost space is Relaxation placement [7].
Relaxation placement uses a spring relaxation technique to
minimize the costs and approximate optimal placement lo-
cations in a latency cost space with respect to global net-
work utilization. It models circuits as springs, such that the
spring constant equals the data rate transfered over the link
and the spring extension derives from the latency. Services
are modeled as massless bodies between springs: Pinned
services have a fixed location, whereas unpinned services
can move freely. As a result, the function minimized by Re-
laxation placement is network utilization, expressed as the
amount of data in transit in the network. The iterative na-
ture of Relaxation placement allows it to adapt to chang-

(N
o

d
e

 C
P

U
 L

o
ad

)2

Latency
Latency

C
N2

N1

P1

P2

Virtual Placement
Circuit after Physical Mapping

Figure 3. Example of service placement in
a cost space. Virtual placement of a single
unpinned service is performed in the vec-
tor dimensions, and the coordinate marked
with the star is chosen. Physical mapping at-
tempts to find the node closest to this starred
coordinate, and finds node N2. Note that
while N1 is closer in latency space, its high
load makes N1 seem far away when the en-
tire cost space coordinate is considered.

ing network and circuit conditions. The details of Relax-
ation placement are described in previous work [7] and are
outside the scope of this paper. Other virtual placement al-
gorithms could be based on a centroid calculation or a gra-
dient descent [18] within the cost space.

The virtual placement algorithm operates only over the
vector cost dimensions, since the ideal scalar components
will all be zero. This is illustrated in Figure 3, which shows
placement using the same type of cost space as in Figure 2.
Virtual placement is performed in the x-y plane since node
load does not affect the placement decision. Scalar dimen-
sions are used in the next phase that performs the physical
mapping.

Physical Mapping. Any algorithm that uses a cost space
to obtain a good service placement location is faced with
a mapping problem. The basic problem solved in physical
mapping is to find a physical node that is close to the coordi-
nate calculated in the virtual placement. This is a pragmatic
interpretation of the idealistic virtual placement; a place-
ment coordinate from the cost space must be mapped back
to a physical node before the actual placement of the ser-
vice can be carried out.

One way to implement a mapping from cost space co-
ordinates to physical nodes is to use a decentralized cata-
log, such as a distributed hash table (DHT) [19], that re-
turns nodes that are closest to a given coordinate. This re-
quires each node to stores its coordinates in the DHT af-
ter transforming its multi-dimensional coordinate to a one-
dimensional hash key with a Hilbert curve [20, 21]. Due to
the properties of DHT routing [22], a look-up of a coordi-
nate in the DHT then returns the node with the closest ex-

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Harvard University SEAS. Downloaded on May 21, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

isting coordinate in the system.
The mapping from cost space coordinates to physical

nodes introduces a mapping error if there are no physical
nodes close to a desired coordinate. For example, in Fig-
ure 3, the virtual placement chooses the star as the best co-
ordinate for the single unpinned service. Ideally, a physi-
cal node with zero load would be present at the star’s co-
ordinate. However, the physical mapping finds the closest
node to be N2, introducing some error. The magnitude of
the mapping error depends on the dimensionality of the
cost space and the distribution of physical nodes within that
cost space. However, experiments have shown that for re-
alistic topologies and latency cost spaces this error remains
small [7].

3.3. Plan Generation with Service Placement

As explained in Section 2.3, integrating plan generation
and service placement improves the efficiency of query op-
timization in an SBON. Plan generation and service place-
ment can be integrated in the following manner: When a
query is introduced into the system by an application, any
node in the network performs a full circuit optimization. As
in traditional database optimization, a set of candidate plans
is created. But in the integrated approach, each plan is vir-
tually placed and physically mapped using the desired cost
space. This yields exactly one candidate circuit per plan,
with the cost of the circuit representing the current node and
network state. The cheapest of these candidate circuits is se-
lected as the circuit and physically placed.

Over time, as network dynamics change, each node that
hosts part of a circuit is capable of re-optimization. This is
a local procedure, where a node can re-run placement and
mapping for any service that it hosts. The result may be to
migrate the service to a cooperating node so that the best
nodes to host a service are consistently used. As part of re-
optimization, a node can perform limited plan re-writing as
long as it is running all affected services. This could in-
volve the reordering of services, the decomposition of ex-
isting services into sub-services to reduce load, or the re-
composition of services to reduce network communication.

But it is also possible that a stronger form of re-
optimization is required. For instance, the selectivity es-
timates used to favor one plan over another may change
as a circuit matures. In this scenario, a node can trig-
ger the full circuit optimization while the original circuit
is still running. If warranted, a new parallel circuit is de-
ployed, cancelling the original less ideal circuit.

Service placement using a cost space provides a tech-
nique to reduce the complexity of service placement. By re-
ducing this complexity, a query optimizer can consider the
combined cost of a query plan and the best service place-
ment for this plan, selecting the plan and placement that
have the smallest total cost.

r

Existing Query Plans
Final Query Plan

Service Physical Node

New Query Plan

P

S

S

P P P1

C1 C2 C3

3

C

2 3 4

Figure 4. Example of multi-query optimiza-
tion in a cost space. The example shows a
multi-query optimizer only considering ser-
vices within a radius r of a new service in a
2-dimensional latency cost space.

3.4. Multi-Query Optimization

To perform multi-query optimization, the state space that
an integrated query optimizer has to consider is much larger.
If there are many concurrent queries in the SBON, a new
query can potentially affect any of the existing queries by
reusing or transforming existing services. One way to deal
with this enlarged search space of an integrated optimiza-
tion approach is to use the cost space to prune the search.
Standard distributed query optimization techniques can then
rewrite the query plans of individual queries and perform
multi-query optimization. This idea is based on the observa-
tion that query plans that involve operators hosted on physi-
cal nodes that are far away in the cost space are less likely to
be useful and thus can be ignored by the optimizer. For ex-
ample, if a circuit only has pinned services in the US, it is
unlikely that reusing existing services in Japan will mini-
mize overall cost for the circuit.

When a new circuit is added to the SBON, the cost space
can be used for pruning multi-query optimization decisions
in different ways. A simple idea is to consider a small re-
gion in the cost space. The optimizer will then process cir-
cuits that fall within this region. For instance, for each un-
pinned service in a circuit, one implementation could use
the Hilbert DHT to look up the closest n nodes that may al-
ready be running the same service. This effectively searches
around the hyper-sphere surrounding each unpinned ser-
vice. Other implementations should be possible; this seems
like an interesting area for future research.

Figure 4 is an example of an integrated optimizer that
performs multi-query optimization for all circuits that fall

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Harvard University SEAS. Downloaded on May 21, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

within a radius r of a new service S in a 2-dimensional
cost space. In this figure, a new circuit with Consumer C
is added to the SBON in a 2-dimensional cost space. First,
the query optimizer chooses a query plan for the new circuit
and calculates the desired placement coordinate for the new
Service S in the cost space. Next, it considers multi-query
plans involving all circuits that fall within a circle with ra-
dius r, namely the circuit with Consumer C3. Note that the
circuits with Consumers C1 and C2 are outside of this re-
gion of the cost space and are therefore ignored, reducing
the complexity of the multi-query optimization decisions.
A cheaper query plan and service placement is found by
reusing service S3, which leads to the final query plan that
is created in the SBON.

4. Research Challenges

Stream-based overlay networks require the integration
of query plan generation and service placement in order to
avoid inefficient circuit instantiation. We believe that the ab-
straction of cost spaces has the potential to enhance large-
scale query optimization with new scalable plan generation
and service placement techniques. Such techniques are nec-
essary for SBONs because enumeration-based query op-
timization performs poorly in a large-scale system. Cost
spaces help perform targeted pruning in such a way that
placement decisions with a high cost are discarded auto-
matically. Multi-query plan optimization can then focus on
regions in the cost space that are attractive from a service
placement perspective.

However, there are open research challenges that must be
addressed. While we have experimented with latency cost
spaces and relaxation-based placement in simulation in pre-
vious work [7], there is a need to investigate how the dy-
namic behavior of the network and the data streams will
affect circuit optimization in practice. In addition, differ-
ent, higher-dimensional cost spaces will require the design
of novel decentralized implementations of cost spaces and
scalable query optimization algorithms that operate within
these spaces.

References

[1] E. F. Codd, “A Relational Model of Data for Large Shared
Data Banks,” in Commun. ACM, vol. 13, no. 6, 1970.

[2] J. B. Rothnie et al., “Introduction to a System for Distributed
DBs (SDD-1),” in ACM Trans. Database Syst., vol. 5, no. 1,
1980.

[3] R. Williams et al., “R*: An Overview of the Architecture,”
IBM Research Lab, San Jose, Tech. Rep. RJ3325, December
1981.

[4] R. Huebsch, J. M. Hellerstein, N. Lanham, et al., “Querying
the Internet with PIER,” in Proc. of VLDB’03, Berlin, Ger-
many, Sept. 2003.

[5] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: A
Scalable Continuous Query System for Internet Databases,”
in Proc. of SIGMOD’00, Dallas, TX, 2000.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin,
et al., “TelegraphCQ: Continuous Dataflow Processing for
an Uncertain World,” in Proc. of the 1st Biennial Conf. on In-
novative Data Systems Research (CIDR’03), Asilomar, CA,
Jan. 2003.

[7] P. Pietzuch, J. Shneidman, M. Roussopoulos, M. Seltzer,
and M. Welsh, “Path Optimization in Stream-Based Overlay
Networks,” Harvard University, Tech. Rep. TR-26-04, Sept.
2004.

[8] D. Kossmann, “The State of the Art in Distributed Query
Processing,” ACM Computing Surveys, vol. 32, no. 4, Dec.
2000.

[9] G. Werner-Allen, J. Johnson, M. Ruiz, J. Lees, and M. Welsh,
“Monitoring Volcanic Eruptions with a Wireless Sensor Net-
work,” Harvard University, Tech. Rep. TR–27–04, 2004.

[10] T. Urhan, M. J. Franklin, and L. Amsaleg, “Cost-based
Query Scrambling for Initial Delays,” in Proc. of SIGMOD,
June 1998.

[11] M. Stonebraker and J. M. Hellerstein, Eds., Readings in
Database Systems. Morgan Kaufman, 1998, ch. 4, p. 325.

[12] The Planetlab Consortium, http://www.planetlab.org, 2004.
[13] G. Graefe and K. Ward, “Dynamic Query Evaluation Plans,”

in Proc. of ACM SIGMOD’89. ACM Press, 1989, pp. 358–
366.

[14] R. Cox, F. Dabek, F. Kaashoek, et al., “Practical, Distributed
Network Coordinates,” in Proc. of the 2nd Workshop on
Hot Topics in Networks (HotNets-II), Cambridge, MA, Nov.
2003.

[15] M. Pias, J. Crowcroft, S. Wilbur, S. Bhatti, and T. Harris,
“Lighthouses for Scalable Distributed Location,” in Proc. of
the 2nd Int. Workshop on P2P Systems (IPTPS’03), Berke-
ley, CA, Feb. 2003.

[16] T. E. Ng and H. Zhan, “Predicting Internet Network Dis-
tance with Coordinates-Based Approaches,” in Proc. of IN-
FOCOM’02, June 2002.

[17] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A
Decentralized Network Coordinate System,” in Proc. of the
ACM SIGCOMM’04 Conference, Portland, OR, Aug. 2004.

[18] B. J. Bonfils and P. Bonnet, “Adaptive and Decentralized
Operator Placement for In-Network Query Processing,” in
Proc. of 2nd Int. Workshop on Info. Proc. in Sensor Networks
(IPSN), 2003.

[19] I. Stoica, R. Morris, D. Karger, et al., “Chord: A Scalable
Peer-to-peer Lookup Service for Internet Applications,” in
Proc. of ACM SIGCOMM’01, San Diego, CA, Aug. 2001.

[20] H. Sagan, Space-Filling Curves. Springer-Verlag, 1994.
[21] A. Andrzejak and Z. Xu, “Scalable, Efficient Range Queries

for Grid Information Services,” in Proc. of P2P’02, 2002.
[22] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentral-

ized Object Location and Routing for Large-Scale Peer-to-
Peer Systems,” in Proc. of Middleware’01, Heidelberg, Ger-
many, Nov. 2001.

Proceedings of the 21st International Conference on Data Engineering (ICDE ’05)
1084-4627/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: Harvard University SEAS. Downloaded on May 21, 2009 at 09:21 from IEEE Xplore. Restrictions apply.

