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Abstract

Novel data streams (NDS), such as web search data or social media updates, hold promise for 

enhancing the capabilities of public health surveillance. In this paper, we outline a conceptual 

framework for integrating NDS into current public health surveillance. Our approach focuses on 

two key questions: What are the opportunities for using NDS and what are the minimal tests of 

validity and utility that must be applied when using NDS? Identifying these opportunities will 

necessitate the involvement of public health authorities and an appreciation of the diversity of 

objectives and scales across agencies at different levels (local, state, national, international). We 

present the case that clearly articulating surveillance objectives and systematically evaluating NDS 

and comparing the performance of NDS to existing surveillance data and alternative NDS data is 

Althouse et al. Page 2

EPJ Data Sci. Author manuscript; available in PMC 2016 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



critical and has not sufficiently been addressed in many applications of NDS currently in the 

literature.

Keywords

disease surveillance; novel data streams; digital surveillance

1 What are novel data streams?

We define NDS as those data streams whose content is initiated directly by the user (patient) 

themselves. This would exclude data sources such as electronic health records, disease 

registries, vital statistics, electronic lab reporting, emergency department visits, ambulance 

call data, school absenteeism, prescription pharmacy sales, serology, amongst others. 

Although ready access to aggregated information from these excluded sources is novel in 

many health settings, our focus here is on those streams which are both directly initiated by 

the user and also not already maintained by public health departments or other health 

professionals. Despite this more narrow definition our suggestions for improving NDS 

surveillance may also be applicable to more established surveillance systems, participatory 

systems (e.g., Flu Near You, influenzaNet) [1, 2], and new data streams aggregated from 

established systems, such as Biosense 2.0 and ISDS DiSTRIBuTE network [3, 4].

While much of the recent focus on using NDS for disease surveillance has centered on 

Internet search queries [5, 6] and Twitter posts [7, 8], there are many NDS outside of these 

two sources. Our aim therefore is to provide a general framework for enhancing and 

developing NDS surveillance systems, which applies to more than just search data and 

Tweets. At a minimum, our definition of NDS would include Internet search data and social 

media, such as Google searches, Google Plus, Facebook, and Twitter posts, as well as 

Wikipedia access logs [9, 10], restaurant reservation and review logs [11, 12], non-

prescription pharmacy sales [13, 14], news source scraping [15], and prediction markets 

[16].

2 How does NDS integrate into the surveillance ecosystem?

Using NDS for surveillance or in supporting public health decision making necessitates an 

understanding of the complex link between the time-varying public health problems (i.e., 

disease incidence) and the time-varying NDS signal. As illustrated in Figure 1, this link is 

modified by user behavior (i.e., propensity to search, what terms are chosen to search, etc.), 

user demographics, external forces on user behavior (i.e., changing disease severity, 

changing press coverage, etc.), and finally by public health interventions, which by design 

aim to modify the public health problem creating feedback loops on the link to NDS. As a 

result, developing NDS-based surveillance systems presents a number of challenges, many 

of which are comparable to those faced by systems comprised of more established data 

sources such as physician visits or laboratory test results.

NDS could add value to existing surveillance in several ways. NDS can increase the time-

liness of surveillance information, improve temporal or spatial resolution of surveillance, 

Althouse et al. Page 3

EPJ Data Sci. Author manuscript; available in PMC 2016 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



add surveillance to places with no existing systems, improve dissemination of data, measure 

unanticipated outcomes of interest (i.e. a syndrome associated with a new pathogen that is 

not currently under surveillance in an established system), measure aspects of a 

transmission/disease process not captured by traditional surveillance (i.e. behavior, 

perception), and increase the population size under surveillance.

The most studied example of the potential benefits and unique challenges associated with 

NDS comes from Google Flu Trends. In 2008, Google developed an algorithm which 

translates search queries into an estimate of the number of individuals with influenza-like 

illness that visit primary healthcare providers [17]. The original goal of Google Flu Trends 

(GFT) was to provide accessible data on influenza-like illness in order to reduce reporting 

delays, increase the spatial resolution of data, and provide information on countries outside 

the United States of America [17]. GFT has added value to existing surveillance for 

influenza. However, although there has been some benefit both to academic researchers and 

public health practitioners, GFT has also received criticism [18, 19].

Much of the recent criticism of GFT seems to stem from two issues: the first is the effect of 

changing user behavior during anomalous events [19, 20] and the second is whether real-

time, nowcasting of influenza using GFT adds value to the existing systems available to 

public health authorities. The first criticism, changing behavior during anomalous events, is 

an issue for both existing systems and proposed systems based on NDS. The key difference 

is that existing systems may be both better understood and easier to validate in real-time. 

While such criticisms may not undermine the case for use of NDS, they do emphasize that 

the validation of any NDS approach is an ongoing process, and even a perfectly validated 

system in one period or location may become uncalibrated as behaviors change. It is 

therefore not meaningful to say that a particular NDS system is or is not informative; that 

statement must be qualified in space and time. Moreover, the fact that decalibration to “gold 

standard” systems cannot be detected immediately but only in retrospect is another reason 

why NDS can only supplement and never fully replace such systems. The second criticism, 

the need for nowcasting, may depend on the user's access to different data sources. For 

public health authorities with access to high-resolution data on reported cases of influenza, 

simple autoregressive models can be used to nowcast with high accuracy [19]. However, 

access to these high resolution data-sets varies by public health level (local, state, federal, 

and international) as well as by user group: researchers, public health authorities, and the 

private sector. As a result, the utility of GFT varies by user, but for those without access to 

high-resolution data, it remains an important source of information.

Since the release of GFT, similar NDS-based systems have been developed to extend 

surveillance to places where resource or other constraints limit the availability of direct 

clinical or laboratory surveillance data and improve the timeliness of detection and 

forecasting of disease incidence. For example, NDS have facilitated expansion of dengue 

and influenza surveillance to countries without infrastructure capable of real time surveil-

lance [5, 17, 21, 22]. This has also been done in the context of hospitalizations in Texas [23], 

mental illness, psychological manifestations of physical morbidities [24, 25], and search 

queries from clinical decision support sites, such as UpToDate [26]. In these cases, although 
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NDS-based systems are being asked to estimate data that is actually being collected, those 

data are not available quickly enough for use in public health decision making.

As stated earlier, in some cases NDS can be used to assess behavior - something that 

remains a challenge for traditional case-based surveillance. Although this is a challenge for 

translating NDS signals into estimates of disease incidence, it presents a unique opportunity 

to study health seeking behavior. For example, NDS has facilitated an exploration of 

population-level changes in health-related behaviors following changes in tobacco related 

policy [27, 28] or after unpredictable events such as celebrity deaths or cancer diagnoses 

[29, 30]. NDS can help us understand and monitor health-related behavior, but little recent 

work has focused on this area. How does vaccination sentiment respond to changes in 

disease prevalence? How is health-seeking behavior discussed in social networks? Does that 

information dissemination manifest in action? Answering these questions accurately may 

require integration of Twitter, Facebook, Wikipedia access logs, web searches or web search 

logs, hospitalization records, and EMR with existing measures of behavior such as the 

Behavioral Risk Factor Surveillance System. As a result, it is critically important to 

understand the user's intent; for example, what are the behavioral, biological, and/or 

epidemiological underpinnings of information-seeking online? A Google or Wikipedia 

search for the keyword “ulcer”, for instance, is likely a response to having symptoms of an 

ulcer while a search for “h pylori” is more likely a response to something more specific, 

such as a lab confirmed test for an ulcer-causative agent. Similarly, posting a Tweet about a 

“healthy recipe” is likely a different action than searching for a “healthy recipe”; where the 

former is an act of broadcasting information, while the latter is an act of searching for 

information. This suggests that large-scale experiments combining NDS could explore these 

behaviors.

Therefore, in order to address the challenges associated with NDS-based surveillance and 

properly integrate NDS into existing systems, we advocate for a three-step system: (1) 

Quantitatively define the surveillance objective(s); (2) build the surveillance systems and 

model(s) by adding data (existing and novel) in until there is no additional improvement in 

model performance to achieve stated objectives, assessed by (3) performing rigorous 

validation and testing. These steps are comparable to those prescribed for evaluating more 

established systems [31].

3 How do we ensure the robustness of NDS surveillance systems?

NDS, by their very definition, do not have a long track record of use. As a result, rigorous 

standards for validating NDS and systems constructed using NDS must be adopted. These 

validation procedures should include both best practices in machine learning and also best 

practices from surveillance system design such as the proportion of persons identified that 

are true positives for the disease under surveillance [31]. Building on previous work [10], we 

have systematically evaluated the existing published NDS surveillance papers using the 

following criteria: was validation used and if so what type, are the data open and if not why 

not, and is the code open source. While we understand that it's not always possible, due to 

privacy concerns and data use agreements, to make data open access, it's essential that the 

community be able to externally validate methods and NDS. Therefore, a component of 
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validation must be the use of data that is publicly available (or at least available to 

researchers) for training and testing of NDS. Of 66 papers identified, only 27 (41%) 

performed any validation, only one [5] stated that the source code was available, and while 

some used publicly available data, no papers publicly shared the data used in their analyses. 

(see Table 1 and Table S1 in Additional file 1).

While the lack of validation is troubling, there is a deeper issue: it may be the case that many 

existing standards for validation are inadequate for use on disease surveillance systems using 

NDS [32, 33]. For example, there are well-documented cases of failure when the training set 

does not contain important dynamics of the system [34–36]. For that reason we advocate for 

model development by repeated training and testing on subsets of the data and that a final, 

validation set be held back entirely during model construction [35]. This final validation set 

should be used only once, at the conclusion of the study. Ideally, this final set will be 

completely blind to the developer. Lastly, after these development and validation steps, 

models should be openly evaluated prospectively to further support their validity. Put simply, 

this approach could be summarized as internal validation, external validation, and continued 

prospective evaluation. While these steps help to ensure the validity of models, it may be 

that given the volatile nature of disease processes and human behavior (non-linear and non-

stationary dynamics), it may be technically impossible to design robust surveillance systems 

using proxy data and regression models alone.

Validation must also be conducted by other researchers. First, transparency of methods and 

reproducibility of forecasts is essential to both the scientific process and in examining the 

utility of models/NDS. Second, new methods or NDS must demonstrate improvements upon 

existing methods or data sources. Performance can be over-stated by comparing 

performance of NDS systems with trivial instances of traditional models. Clear definition of 

appropriate baseline models and their definition is critical to assessing the improvement of 

new models utilizing novel streams. Without open access to data and code, these crucial 

steps are not possible. Ideally, manuscripts would report, in detail, the methods employed, 

provide open-source code implementing those methods, and make the data used to generate 

the prediction available. Despite legitimate concerns about privacy, data use agreements 

between agencies, and the often substantial effort required to gather data, we must work 

towards ensuring our scientific publications are replicable and useful for evaluating the next 

generation of surveillance tools.

Validation can also be conducted by complementary studies. For example, researchers could 

conduct studies on how users interact with NDS sources, such as Google or Twitter. These 

detailed studies would provide valuable information on potential biases and suggest 

mechanisms for improving the robustness of surveillance systems constructed from these 

NDS. The need for these focused studies again highlights the utility of collaboration of 

private sector companies, such as Google and Twitter, with researchers and public health 

practitioners. Recent efforts by Google and Twitter to better engage with the research 

community represents an important first step.
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4 What is the future of NDS surveillance?

NDS should provide robust, long-term surveillance solutions. Even after EMR are at the 

fingertips of public health decision-makers and researchers, NDS will provide a snapshot of 

activity, which is unrelated to the medical encounter. Therefore, a critical first step when 

evaluating NDS for surveillance is determining what problems are likely to be short term 

and what problems are likely to be longer term. Again, clearly defined quantitative surveil-

lance goals must be the most important components of NDS-driven systems.

A second important distinction is that surveillance needs, potential benefits, and general 

utility vary by country, region, and locality. For example, many state and local health 

agencies in the U.S. already have access to high-resolution, near real-time data for infectious 

diseases. In this case, local utility may be limited to understanding behavioral responses. 

These data are also useful, however, for validating these systems more generally. In regions 

where less data is available, the utility of models may be high but comprehensive evaluation 

may not be possible. Finally, both Internet and website (or app) penetration vary by 

geographic region.

Clearly, NDS cannot replace physician and laboratory data, though it can be used to 

augment the surveillance coming out of systems collecting that type of data. Furthermore, 

the need for model validation highlights the often-overlooked importance of maintaining 

traditional/existing systems in the existing NDS literature. Without these systems, it would 

be impossible to validate and update NDS-enabled systems.

As a community of researchers and public health decision makers, we must decide on how 

to proceed. Specifically, we must ensure stability and robustness of these NDS-based 

systems. Pure research is important, but if our goal is to design systems to support public 

health decisions, they must achieve a higher level of stability. Peer review of systems must 

carefully evaluate validation relative to established surveillance systems. This of course 

gives rise to the open question of who should be responsible for funding and maintaining 

these new systems. The future success of these efforts hinges on building and maintaining 

collaborations between private-sector, public health agencies, and academics. Finally, while 

the field has been critical of Google and GFT, it is because we are able to criticize: No other 

NDS-based system had continuously provided public health predictions for as long as GFT, 

many NDS surveillance systems had not been as carefully evaluated [6, 18–20], and fewer 

still had been implemented prospectively. Despite the recent cessation of GFT, Google 

provided a living system for NDS surveillance. Next generation surveillance systems using 

NDS hold great promise for improving the health of our global society. Realizing their 

potential will require more rigorous standards of validation and improved collaboration 

between researchers in academia, the private sector, and public health.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The link between public health problems and NDS is modified by user behavior (i.e., 

propensity to search, what terms are chosen to search, etc.), user demographics, external 

forces on user behavior (i.e., changing disease severity, changing press coverage, etc.), and 

finally by public health interventions, which by design aim to modify the public health 

problem creating feedback loops on the link to NDS.
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Table 1

The use of open source code and validation across papers using NDS for surveillance

Validation No validation

Open source code 1/66 (1.50%) 0/66 (0%)

No open source code 26/66 (39.4%) 39/66 (59.1%)
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