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Since the discovery of the first extrasolar giant planets around Sun-like stars1,2, 

evolving observational capabilities have brought us closer to the detection of true 

Earth analogues. The size of an exoplanet can be determined when it periodically 

passes in front of (transits) its parent star, causing a decrease in starlight 

proportional to its radius. The smallest exoplanet hitherto discovered3 has a radius 

1.42 times that of the Earth’s radius (R⊕), and hence has 2.9 times its volume. Here 

we report the discovery of two planets, one Earth-sized (1.03R⊕) and the other 

smaller than the Earth (0.87R⊕), orbiting the star Kepler-20, which is already 
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known to host three other, larger, transiting planets4. The gravitational pull of the 

new planets on the parent star is too small to measure with current 

instrumentation. We apply a statistical method to show that the likelihood of the 

planetary interpretation of the transit signals is more than three orders of 

magnitude larger than that of the alternative hypothesis that the signals result 

from an eclipsing binary star. Theoretical considerations imply that these planets 

are rocky, with a composition of iron and silicate. The outer planet could have 

developed a thick water vapour atmosphere. 

Precise photometric time series gathered by the Kepler spacecraft5 over eight 

observation quarters (670 days) have revealed five periodic transit-like signals in the G8 

star Kepler-20, of which three have been previously reported as arising from planetary 

companions4 (Kepler-20 b, Kepler-20 c and Kepler-20 d, with radii of 1.91R⊕, 3.07R⊕ 

and 2.75R⊕, and orbital periods of 3.7 days, 10.9 days and 77.6 days, respectively). The 

two, much smaller, signals described here recur with periods of 6.1 days (Kepler-20 e) 

and 19.6 days (Kepler-20 f) and exhibit flux decrements of 82 parts per million (p.p.m.) 

and 101 p.p.m. (Fig. 1), corresponding to planet sizes of 0.074
0.0960.868+

− R⊕ (potentially 

smaller than the radius of Venus, RVenus = 0.95R⊕) and 0.10
0.131.03+

− R⊕. The properties of the 

star are listed in Table 1. 

A background star falling within the same photometric aperture as the target and 

eclipsed by another star or by a planet produces a signal that, when diluted by the light 

of the target, may appear similar to the observed transits in both depth and shape. The 

Kepler-20 e and Kepler-20 f signals have undergone careful vetting to rule out certain 

false positives that might manifest themselves through different depths of odd- and 

even-numbered transit events, or displacements in the centre of light correlated with the 

flux variations6. High-spatial-resolution imaging shows no neighbouring stars capable 

of causing the signals4. Radial-velocity measurements based on spectroscopic 

observations with the Keck I telescope rule out stars or brown dwarfs orbiting the 

primary star, but they are not sensitive enough to detect the acceleration of the star due 

to these putative planetary companions4. 

To establish the planetary nature of these signals with confidence we must 

establish that the planet hypothesis is much more likely than that of a false positive. For 
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this we used the BLENDER procedure7–9, a technique used previously to validate the 

three smallest known exoplanets, Kepler-9 d (ref. 8), Kepler-10 b (ref. 3), and CoRoT-

7 b (ref. 10). The latter two were also independently confirmed with Doppler studies3,11. 

We used BLENDER to identify the allowed range of properties of blends that yield 

transit light curves matching the photometry of Kepler-20 e and Kepler-20 f. We varied 

as free parameters the brightness and spectral type (of the stars) or the size (for the 

planetary companions), the impact parameter, the eccentricity and the longitude of 

periastron. We simulated large numbers of these scenarios and compared the resulting 

light curves with the observations. We ruled out fits significantly worse (at the 3σ level, 

or greater) than that of a true transiting planet around the target, and we tabulated all 

remaining scenarios that were consistent with the Kepler light curves. 

We assessed the frequency of blend scenarios through a Monte Carlo experiment 

in which we randomly drew 8 × 105 background main-sequence stars from a Galactic 

structure model12 in a one-square-degree area around the target, and assigned them each 

a stellar or planetary transiting companion based on the known properties of eclipsing 

binaries13 and the size distribution of planet candidates as determined from the Kepler 

mission itself14. We counted how many satisfy the constraints from BLENDER as well 

as observational constraints from our high-resolution imaging observations and centroid 

motion analysis4, and made use of estimates of the frequencies of larger transiting 

planets and eclipsing binaries (see Fig. 2). In this way we estimated a blend frequency 

of background stars transited by larger planets of 2.1 × 10−7 and a blend frequency of 

background eclipsing binaries of 3.1 × 10−8, yielding a total of 2.4 × 10−7 for Kepler-

20 e. Similarly, 4.5 × 10−7 + 1.26 × 10−6 yields a total blend frequency of 1.7 × 10−6 for 

Kepler-20 f. 

Another type of false positive consists of a planet transiting another star 

physically associated with the target star. To assess their frequency we simulated 106 

such companions in randomly oriented orbits around the target, based on known 

distributions of periods, masses and eccentricities of binary stars13. We excluded those 

that would have been detected in our high-resolution imaging or that would have an 

overall colour inconsistent with the observed colour of the target, measured between the 

Sloan r band (12.423 ± 0.017; ref. 14) and the Warm Spitzer 4.5-µm band 
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(10.85 ± 0.02; ref. 4). We used BLENDER to determine the range of permitted sizes for 

the planets as a function of stellar mass, and to each we assigned an eccentricity drawn 

from the known distribution for close-in exoplanets15. The frequency of blends of this 

kind is 5.0 × 10−7 for Kepler-20 e, and 3.5 × 10−6 for Kepler-20 f. Summing the 

contributions of background stars and physically bound stars, we find a total blend 

frequency of 7.4 × 10−7 for Kepler-20 e and 5.2 × 10−6 for Kepler-20 f. 

We estimated the a priori chance that Kepler-20 has a planet of a similar size as 

implied by the signal using a 3σ  criterion as in Blender, by calculating the fraction of 

Kepler objects of interest in the appropriate size range. We counted 102 planet 

candidates in the radius range allowed by the photometry of Kepler-20 e, and 228 for 

Kepler-20 f. We made the assumption that only 10% of them are planets (which is 

conservative in comparison to other estimates of the false positive rate that are an order 

of magnitude larger16). From numerical simulations, we determined the fraction of the 

190,186 Kepler targets for which planets of the size of Kepler-20 e and Kepler-20 f 

could have been detected (17.4% and 16.0%, respectively), using actual noise levels. 

We then calculated the planet priors (a priori chance of a planet) to be 

(102 × 10%)/(190,186 × 17.4%) = 3.1 × 10−4 for Kepler-20 e, and 

(228 × 10%)/(190,186 × 16.0%) = 7.5 × 10−4 for Kepler-20 f. These priors ignore the 

fact that Kepler-20 is more likely to have a transiting planet at the periods of Kepler-

20 e and Kepler-20 f than a random Kepler target, because the star is already known to 

have three other transiting planets, and multi-planet systems tend to be coplanar17. 

When accounting for this using the procedure described for the validation of Kepler-

18 d (ref. 18), we find that the flatness of the system increases the transit probability 

from 7.7% to 63% for Kepler-20 e, and from 3.7% to 35% for Kepler-20 f. With this co-

planarity boost, the planet priors increase to 2.5 × 10−3 for Kepler-20 e and 7.1 × 10−3 

for Kepler-20 f. Comparing this with the total blend frequencies, we find that the 

hypothesis of an Earth-size planet for Kepler-20 e is 3,400 times more likely than that 

of a false positive, and 1,370 times for Kepler-20 f. Both of these odds ratios are 

sufficiently large to validate these objects with very high confidence as Earth-size 

exoplanets. 
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With measured radii close to that of the Earth, Kepler-20 e and Kepler-20 f 

could have bulk compositions similar to Earth’s (approximately 32% iron core, 68% 

silicate mantle by mass; see Fig. 3), although in the absence of a measured mass the 

composition cannot be determined unambiguously. We infer that the two planets almost 

certainly do not have a hydrogen-dominated gas layer, because this would readily be 

lost to atmospheric escape owing to their small sizes and high equilibrium temperatures. 

A planet with several per cent water content by mass surrounding a rocky interior is a 

possibility for Kepler-20 f, but not for Kepler-20 e. If the planets formed beyond the 

snowline from a comet-like mix of primordial material and then migrated closer to the 

star, Kepler-20 f could retain its water reservoir for several billion years in its current 

orbit, but the more highly irradiated Kepler-20 e would probably lose its water reservoir 

to extreme-ultraviolet-driven escape within a few hundred million years19. In this 

scenario, Kepler-20 f could develop a thick vapour atmosphere with a mass of 0.05M⊕ 

that would protect the planet surface from further vaporization20. From the theoretical 

mass estimates in Table 1, we infer the semi-amplitude of the stellar radial velocity to 

be between 15 cm s−1 and 62 cm s−1 for Kepler-20 e and between 17 cm s−1 and 

77 cm s−1 for Kepler-20 f. Such signals could potentially be detectable in the next few 

years, and would constrain the composition of the two planets. 

Received 8 November; accepted 13 December 2011; doi:10.1038/nature10780. 
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Figure 1 Transit light curves. Kepler-20 (also designated as KOI 070, KIC 6850504 

and 2MASS J19104752+4220194) is a G8V star of Kepler magnitude 12.497 and 

celestial coordinates right ascension α = 19 h 10 min 47.5 s and declination 

δ = +42° 20′ 19.38′′. The stellar properties are listed in Table 1. The photometric data 
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used for this work were gathered between 13 May 2009 and 14 March 2011 (quarter 1 

to quarter 8), and comprise 29,595 measurements at a cadence of 29.426 min (black 

dots). The Kepler photometry phase-binned in 30-min intervals (blue dots with 1σ 

standard error of the mean (s.e.m.) error bars) for Kepler-20 e (a) and Kepler-20 f (b) is 

displayed as a function of time, with the data detrended4 and phase-folded at the period 

of the two transits. Transit models (red curves) smoothed to the 29.426-min cadence are 

overplotted. These two signals are unambiguously detected in each of the eight quarters 

of Kepler data, and have respective signal-to-noise ratios of 23.6 and 18.5, which cannot 

be due to stellar variability, data treatment or aliases from the other transit signals4. 

 

Figure 2 Density map of stars in the background of Kepler-20. The blue-shaded 

contours correspond to main-sequence star counts from the Besancon model in the 

vicinity of Kepler-20, as a function of stellar mass and magnitude difference in the 

Kepler passband compared to Kepler-20. The red-shaded contours represent the 

fractions of those stars orbited by another smaller star (a and c) or by a planet (b and d) 
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with sizes such that the resulting light curves mimic the transit signals for Kepler-20 e 

and Kepler-20 f. The displacement of the blue and red contours in magnitude and 

spectral type results in very small fractions of the simulated background stars being 

viable false positives for Kepler-20 e (1.6% when transited by a planet, and 0.1% when 

transited by a smaller star). We obtained similar results for Kepler-20 f (2.1% when 

transited by a planet, and 3.1% when transited by a smaller star). Most of these 

background stars have masses (spectral types) near that of the target, and are two to 

seven magnitudes fainter. The above fractions are further reduced because background 

stars able to match the signals but that are bright enough and at large enough angular 

separation from the target would have been detected in our imaging observations and/or 

centroid motion analysis. Finally, to obtain the blend frequencies we scaled these 

estimates to account for the fraction of background stars expected to have transiting 

planets (1.29%, the ratio between the number of Kepler objects of interest and the total 

number of Kepler targets25) or stellar companions (0.79% based on the statistics of 

detached eclipsing binaries in the Kepler field26). We examined non-main-sequence 

stars as alternatives to either object of the blend eclipsing pair, but found that they either 

do not reproduce the observed transit shape well enough, or are much less common 

(<1%) than main-sequence blends. 
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Figure 3 Mass versus radius relation for small planets. Kepler-20 e and Kepler-20 f 

theoretical mass and observed radius ranges (1σ) are plotted as orange- and green-

shaded areas, while the other transiting planets with dynamically determined masses are 

plotted in black, with 1σ error bars. The curves are theoretical constant-temperature 

mass–radius relations27. The solid lines are homogeneous compositions: water ice (solid 

blue), MgSiO3 perovskite (solid red), and iron (magenta). The non-solid lines are mass–

radius relations for differentiated planets: 75% water ice, 22% silicate shell and 3% iron 

core (dashed blue); Ganymede-like with 45% water ice, 48.5% silicate shell and 6.5% 

iron core (dot-dashed blue); 25% water ice, 52.5% silicate shell and 22.5% iron core 

(dotted blue); approximately Earth-like with 67.5% silicate mantle and 32.5% iron core 

(dashed red); and Mercury-like with 30% silicate mantle and 70% iron core (dotted red). 

The dashed magenta curve corresponds to the density limit from a formation model24. 
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The minimum density for Kepler-20 e corresponds to a 100% silicate composition, 

because this highly irradiated small planet could not keep a water reservoir. The 

minimum density for Kepler-20 f follows the 75% water-ice composition, representative 

of the maximum water content of comet-like mix of primordial material in the solar 

system28. 
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Table 1.  Stellar and planetary parameters for Kepler-20. 

Stellar properties 

Effective temperature, Teff 5,466 ± 93 K 

Surface gravity log g (cm s-2) 4.443 ± 0.075 

Metallicity [Fe/H] 0.02 ± 0.04  

Projected rotational velocity, v sin i 0.4 ± 0.5 km s-1 

Stellar mass, Ms 0.912 ± 0.035 M

 

Stellar radius, Rs 0.944 +0.060,-0.095  R

 

Stellar density, ρs 1.51 ± 0.39 g cm-3  

Luminosity, Ls 0.853 ± 0.093 L

 

Distance, D 290 ± 30 pc 

Transit parameters and physical properties: Kepler-20e (KOI-070.04) 

Orbital period, P 6.098493 ± 0.000065 days 

Time of centre of transit, Tc 

Eccentricity, e 

2,454,968.9336 ± 0.0039 BJD 

< 0.28 

Planet/star radius ratio, Rp/Rs 0.00841 +0.00035,-0.00054  

Scaled semi-major axis, a/Rs 11.56 +0.21,-0.29  

Impact parameter, b 0.630 +0.070,-0.053  

Orbital inclination, i 87.50 +0.33,-0.34 degrees 

Planetary radius, Rp 0.868 +0.074,-0.096  R⊕ 
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Planetary mass, Mp 
< 3.08 M⊕ (spectroscopic limit) 

0.39 M⊕ < Mp <1.67 M⊕ (theoretical 
considerations) 

Planetary equilibrium temperature, Teq 1040 ± 22 K 

Transit parameters and physical properties: Kepler-20f (KOI-070.05) 

Orbital period, P 19.57706 ± 0.00052 days 

Time of centre of transit, Tc 2,454,968.219 ± 0.011  BJD 

Eccentricity < 0.32 

Planet/star radius ratio, Rp/Rs 0.01002 +0.00063,-0.00077  

Scaled semi-major axis, a/Rs 25.15 +0.47,-0.63   

Impact parameter, b 0.727 +0.054,-0.053  

Orbital inclination, i 88.68 +0.14,-0.17  degrees 

Planetary radius, Rp 1.03 +0.10,-0.13  R⊕ 

Planetary mass, Mp 
< 14.3 M⊕ (spectroscopic limit) 

0.66 M⊕ < Mp < 3.04 M⊕ (theoretical 
considerations) 

Planetary equilibrium temperature, Teq 705 ± 16 K 

 
M

, mass of the Sun; R


, radius of the Sun. The effective temperature, surface gravity, 

metallicity and projected rotational velocity of the star were spectroscopically 
determined21 from our Keck/HIRES spectrum. With these values and the use of stellar 
evolution models22, we derived the stellar mass, radius, luminosity, distance and mean 
density. The transit and orbital parameters (period, time of centre of transit, radius ratio, 
scaled semi-major axis, impact parameter and orbital inclination) for the five planets in 
the Kepler-20 system were derived jointly based on the Kepler photometry using a 
Markov-chain Monte Carlo procedure with the mean stellar density as a prior4. The 
parameters above are based on an eccentricity constraint: that the orbits do not cross 
each other. After calculating the above parameters, we performed a suite of N-body 
integrations to estimate the maximum eccentricity for each planet consistent with 
dynamical stability4. The N-body simulations provide similar constraints on the 
maximum eccentricity and justify the assumption of non-crossing orbits. The planetary 
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spectroscopic mass limits are the 2σ upper limits determined from the radial velocity 
analysis based on the Keck radial velocity measurements. Planet interior models 
provide further useful constraints on mass and inferences on composition23. Assuming 
Kepler-20 e and Kepler-20 f are rocky bodies comprised of iron and silicates, and 
considering the uncertainty on their radii, the planet masses are constrained to be 
0.39M < Mp < 1.67M⊕ for Kepler-20 e, and 0.66M⊕ < Mp < 3.04M⊕ for Kepler-20 f. 
The lower and upper mass bounds are set by a homogeneous silicate composition and 
by the densest composition from a model of planet formation with collisional mantle 
stripping24. The planet equilibrium temperatures assume an Earth-like Bond albedo of 
0.3, isotropic redistribution of heat for reradiation, and a circular orbit. The errors in 
these quantities reflect only the uncertainty due to the stellar luminosity. 
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