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Abstract. Elastomeric seals are essential to two great technological advances in oilfields:  

horizontal drilling and hydraulic fracturing.  This paper describes a method to study elastomeric 

seals by using the pressure-extrusion curve (i.e., the relation between the drop of pressure across 

a seal and the volume of extrusion of the elastomer).  Emphasis is placed on a common mode of 

failure found in oilfields:  leak caused by a crack across the length of a long seal.  We obtain an 

analytical solution of large elastic deformation, which is analogous to the Poiseuille flow of viscous 

liquids.  We further obtain analytical expressions for the energy release rate of a crack and the 

critical pressure for the onset of its propagation.  The theory predicts the pressure-extrusion curve 

using material parameters (elastic modulus, sliding stress, and fracture energy) and geometric 

parameters (thickness, length, and precompression).  We fabricate seals of various parameters in 

transparent chambers on a desktop, and watch the seals extrude, slide, rupture and leak.  The 

experimentally measured pressure-extrusion curves agree with theoretical predictions 

remarkably well.   

 

Keywords: Seal; Large deformation; Friction; Fracture; Leak.  
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1. Introduction 

 Seals—along with tires, bearings, and medical gloves—are among the most significant 

applications of elastomers (Gent, 2012).  In daily life, elastomeric seals are ubiquitous in plumbing 

joints, bottle caps, and pressure cookers.  In engines and hydraulics, elastomeric seals enable 

fluid-tight, reciprocating motion of pistons in cylinders (Nau, 1999). Attributes of elastomeric 

seals include high sealing pressure, light weight, and low cost.   Elastomeric seals are inexpensive, 

but their failure can be costly. The explosion of the space shuttle Challenger, for example, was 

traced to the failure of an O-ring (Rogers et al., 1986). 

 Our own interest focuses on elastomeric seals used in the oil and gas industry.  These seals 

are commonly known as packers, and are used to isolate fluids in gaps between pipes and 

boreholes (Al Douseri et al., 2009; Ezeukwu et al., 2007; Kleverlaan et al., 2005). The packers 

achieve sealing either by mechanical mechanisms (mechanical packers) (Coronado et al., 2002), 

or by imbibing fluids (swellable packers) (Cai et al., 2010; Druecke et al., 2015; Lou and Chester, 

2014).  Seals are essential to the two great technological advances in oilfields: horizontal drilling 

and hydraulic fracturing (Davis and McCrady, 2008; Gavioli and Vicario, 2012; Miller et al., 2015; 

Yakeley et al., 2007).   

  Elastomers can sustain essentially arbitrarily high pressure, so long as the pressure has 

the same magnitude in all directions and in all places (i.e., hydrostatic and homogeneous 

pressure).  The function of a seal, however, is to sustain a drop of pressure.  The inhomogeneous 

pressure inevitably leads to shear and tensile stress, which causes the elastomer to deform and 

possibly rupture.  When a seal is used to enable hydraulic fracturing, the pressure at one end of 

the seal must be high enough to fracture rocks, and the pressure at the other end of the seal can 

be as low as that in the ambient.  These requirements correspond to a drop of pressure up to 70 

MPa (Nijhof et al., 2010).  Such a large drop of pressure is remarkable, considering that the elastic 

modulus of an elastomer is on the order of 1 MPa.  Fracture mechanics has not been systematically 

applied to study the rupture of seals, although cracks are commonly observed in postmortem 
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examinations.  In practice, seals are tested in assembled parts, which are opaque and make the 

processes leading to leak unobservable. 

 Here we describe a method to study an elastomeric seal using its pressure-extrusion curves 

(i.e., the relation between the drop of pressure p and the volume of extrusion of the elastomer Q). 

We introduce a model sealing system that enables theoretical analysis and experimental 

observation. The theory calculates the finite elastic deformation of the seal and the energy release 

rate of the crack.  The theoretical results are in analytical forms, and relate the pressure-extrusion 

curve to material and geometric parameters.  We fabricate seals of various parameters in 

transparent chambers on a desktop, watch the seals extrude, slide, rupture and leak, and measure 

their pressure-extrusion curves.  We then use independent experiments to determine elastic 

moduli, fracture energies, and sliding stresses (Appendix A, B, C), and use them to calculate the 

theoretical pressure-extrusion curves. The pressure-extrusion curves recorded in the experiment 

agree well with those calculated using the theory.    

 

2.  Modes of failure  

 The deformation of the elastomer is essential to both the function and failure of a seal. 

When the elastomer seals the fluid in a gap between stiff mating parts, the deformation of the 

elastomer enables it to adapt to unpredictable variations, such as the height of the gap, the 

misalignment of the mating parts, the roughness of their surfaces, and the change in temperature.  

Consequently, neither the seal nor the mating parts need be designed with high precision, which 

could be costly or impractical.  However, the deformation of the elastomer may also lead to failure.  

The fluid pressure can cause the elastomer to extrude, which may lead to rupture, loss of contact, 

or even escape from the sealing site.  

 Incidentally, deformation of soft materials under constraint is also important in biology 

and medicine.   For example, to measure the elastic properties of cells and other soft particles at 
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the microscale, one can squeeze them through microfluidic channels (Guido and Tomaiuolo, 2009; 

Hou et al., 2009; Li et al., 2013; Li et al., 2015; She et al., 2012; Wyss et al., 2010). 

 The deformation of elastomers under constraint can be calculated by solving boundary-

value problems. Due to the complexity of the problems, finite element methods are commonly 

adopted (George et al., 1987; Karaszkiewicz, 1990; Nikas, 2003).  These calculations are 

challenging.  The friction between the elastomer and mating parts is usually not well characterized 

in practice. The elastomers are nonlinear in their stress-strain behavior, and the conditions of 

rupture at sharp geometric features are not well understood.  The boundary conditions are 

complex due to various sealing environments and contact conditions. Despite numerous efforts 

to calculate the deformation of seals, the relation between such calculations and the leaking 

pressure is still lacking.  

 On the basis of reports in the literature and our own preliminary experimental 

observations, we classify several modes of failure.  Prior to the injection of fluid, an elastomeric 

seal is in a state of precompression between two rigid walls, and a step in the bottom wall defines 

the sealing site (Fig. 1a). As a pressurized fluid is injected into the space in front of the seal, the 

seal deforms, and extrudes at the other end at lower pressure.  When the fluid pressure is high, a 

crack may initiate from the front of the seal and cross the length of the seal (Fig. 1b). Alternatively, 

a crack may form at the end of the seal and cut the extruded material (Fig. 1c).  Both modes of 

damage have been widely observed (Flitney, 2007; Parker, 2007).  Moreover, a seal may leak 

without any damage.  Fluid can leak through the interface between the elastomer and the wall 

(Fig. 1d), a mode of failure which we call elastic leak (Liu et al., 2014; Wang et al., 2015).  A seal 

can even squeeze into the tight space above the step, and escape from the sealing site (Fig. 1e).  

Each mode of failure requires a certain level of fluid pressure. The lowest one defines the sealing 

capability.   
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Fig. 1. Modes of failure of an elastomeric seal. (a) Prior to the injection of the fluid, a seal is in a 
state of precompression between two rigid walls, and a step in the bottom wall defines the sealing 
site. (b) A crack initiates from the front of the seal and propagates through the length of the seal. 
(c) A crack forms at the end of the seal and cuts the extruded elastomer. (d) Elastic leak without 
damage.  Fluid penetrates into the interface between the elastomer and rigid wall. (e) Seal escapes 
from the sealing site. 
 

 To leak, or to rupture?  This question deserves great attention.  We have described elastic 

leak in previous papers (Liu et al., 2014; Wang et al., 2015).  If a seal leaks before damage, one can 

lower the pressure to recover sealing. The elastic leak can serve as a design principle of a safety 

valve.  Furthermore, elastic leak can improve sealing in certain designs, and can even be essential 

for the function of swellable seals.  This paper will not discuss elastic leak any further, but will 

focus on the mode of failure caused by a crack across the length of the seal (Fig. 1b) 

 

3. Extrusion and sliding 
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 We now introduce a model sealing system.  The model sealing system captures essential 

processes of a seal subject to a drop of pressure, such as extrusion of the elastomer, frictional 

sliding of the elastomer relative to a rigid wall, and the initiation and propagation of a crack.   

Consider a rectangular block of elastomer with the dimensions ´ ´L H B  in the undeformed state 

(Fig. 2a). The elastomer is then placed between two rigid walls, in a state of precompression, with 

height h and length l (Fig. 2b).  We assume that the precompression is homogeneous for simplicity.  

This assumption enables us to obtain an explicit analytical solution, which we will compare with 

experimental measurement. The elastomer is taken to be incompressible and deform under the 

plane strain conditions, so that  LH = lh .  The stretch   λ = h H = L / l  is a dimensionless measure 

of the precompression. After the precompression, the seal is bonded to the bottom wall, but not 

to the top wall.  The bonding defines the sealing site, and no rigid step is introduced at the end of 

the seal.  Because the elastomer is taken to be incompressible, its behavior is unaffected by any 

state of homogeneous hydrostatic pressure.  The seal sustains a drop of pressure over its length. 

We apply this drop of pressure by injecting a fluid at the front of the seal at pressure p relative to 

the ambient pressure, and keeping the ambient pressure at the end of the seal. When the fluid 

pressure is low, the static friction between the seal and the top wall prevents seal from sliding (Fig. 

2c). When the fluid pressure is high, the seal slides against friction (Fig. 2d).  

 Subject to the fluid pressure p, the seal deforms, and a volume Q of the elastomer crosses 

a vertical plane fixed in space. Because the elastomer is taken to be incompressible, Q is the same 

no matter where we fix the vertical plane.  We call p the fluid pressure or the drop of pressure, Q 

the volume of extrusion, and the p-Q relation the pressure-extrusion curve.  This curve 

characterizes the mechanical behavior of a seal, and can be readily measured in experiment. We 

have introduced the pressure-extrusion curve in our previous study of elastic leak (Liu et al., 2014).  

Here we highlight the importance of the pressure-extrusion curve in the study of sliding and 

rupture of a seal.   
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Fig. 2. The cross section of a seal under the plane strain conditions. (a) In the undeformed state, 
a material particle is specified by its coordinates (X1, X2). (b) The seal is uniformly pre-compressed 
by the rigid walls. (c) The seal is then bonded to the bottom wall, but not to the top wall. When a 
fluid pressure p is applied at the front of the seal, the seal deforms, and the material particle (X1, 
X2) moves to a place of coordinates (x1, x2). In the steady region, away from the two ends of the 
seal, the displacement profile is independent of x1. When p is low, the elastomer does not slide 
relative to the top wall. (d) When p reaches to a critical value, the elastomer slides relative to the 
top wall.  
 

 Friction resists the sliding of the elastomer relative to the walls, and contributes to the 

sealing capacity of the seal.  When the static friction prevents the elastomer from sliding, the 

displacement vanishes at the top surface of the elastomer.  Our analytical solution predicts that 

the shear stress (i.e., the static frictional stress) acting on the top surface of the elastomer is 

everywhere the same along the length of the seal.  When the elastomer slides relative to the top 

wall, the sliding stress depends on the model of kinetic friction.  To simplify the analysis, we adopt 

an idealized model of kinetic friction: the elastomer bears a constant sliding stress τ .  This 
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constant-shear approximation has been commonly adopted in the shear-lag models of composites 

(e.g., (Hutchinson and Jensen, 1990)).  We will compare the prediction of the theory based on this 

assumption to experiment.  It is also known that friction between a hydrogel and a rigid wall is 

determined by the stretch and relaxation of polymer chains, and is less sensitive to the normal 

force (Gong et al., 1999; Liu et al., 2016).  We will describe our own frictional sliding experiment 

to assess this assumption (Appendix C).   

 We develop a nonlinear elastic theory of the seal, and obtain an analytical solution of 

elastic deformation reminiscent of the Poiseuille flow in a viscous fluid.  A material particle, 

labeled by the coordinates 
  

X1 , X2( )  in the undeformed state, moves to a place of coordinates 

  
x1 ,x2( )  in the deformed state.  Imagine that we mark a set of horizontal lines on the cross section 

of the seal in the state of precompression (Fig. 2b).  Under the three assumptions—the plane strain 

conditions, incompressibility, and constant sliding stress—we expect that the fluid pressure will 

cause each horizontal line to translate horizontally, neither changing its length nor changing its 

height. Thus, we seek the deformation of the form 

 
  

x
1
= λ−1 X

1
+u X

2( ),
x

2
= λX

2
.

  (1) 

The part 
  

x
1
= λ−1 X

1
, x

2
= λX

2( )  corresponds to a state of homogeneous precompression, and 

  
u X2( )  is the horizontal displacement caused by the fluid pressure.  We call the deformation (1) 

the steady field, and expect it to be valid in the seal away from the two ends, for the seal of a large 

aspect ratio, >>L H .  As we will confirm, when the seal slides, the deformation (1) is consistent 

with the assumption of constant sliding stress. 

 Recall that a field of deformation 
  
x

i
X( )  gives deformation gradient 

   
F

iK
= ∂x

i
X( )/∂X

K .  

Associated with the deformation (1), the deformation gradient is  
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F =
λ−1 λdu x

2( )/dx
2

0

0 λ 0
0 0 1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

.  (2) 

Note that we have changed the independent variable from   X2
 to   x2

, so that 

  
du X

2( )/dX
2
= λdu x

2( )/dx
2 .  As expected, the deformation gradient is independent of   x1

.  One 

can readily confirm that the deformation gradient is incompressible,   detF = 1 . 

 Let the in-plane components of the true stress be  σ 11 ,  σ 22 , and  σ 12 , and the out-or-plane 

components be  σ 13 ,  σ 23 , and  σ 33 . Under the plane strain conditions, components  σ 13 and  σ 23

vanish, while other components of the true stress in general vary with both   x1
and   x2

.  But the 

deformation (1) considerably simplifies the field of stress.  For any incompressible elastic material, 

the material model requires that  σ 11 −σ 22  ,  σ 33 −σ 22  and  σ 12
 be functions of the deformation 

gradient.  Because the deformation gradient varies with   x2
 but not with   x1

, we write 

  

  

σ 12 =σ 12 x2( ),
σ 11 −σ 22 = f x2( ),
σ 33 −σ 22 = g x2( ).

  (3) 

The functions 
  
σ

12
x

2( ) , 
  
f x

2( ) , and 
  
g x2( )  

are to be determined by solving the boundary value 

problem. 

 Recall that the balance of forces requires that  

 

  

∂σ 11

∂x1

+
∂σ 12

∂x2

= 0,

∂σ 12

∂x1

+
∂σ 22

∂x2

= 0.
 (4) 

Equations (3) and (4) together require the field of stress take the following form: 
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σ 12 = ax2 +b,
σ 11 = −ax1 + c + f x2( ),
σ 22 = −ax1 + c,
σ 33 = −ax1 + c +g x2( ).

  (5) 

The constants of integration, a, b, and c, are to be determined by the boundary conditions.  Like 

the Poiseuille flow, the shear stress  σ 12
 is linear in   x2

 and is independent of   x1
.  Also like the 

Poiseuille flow, the normal stresses are linear in   x1
, and  σ 22  is independent of   x2 . Unlike the 

Poiseuille flow, however,  σ 11
 and  σ 33  vary with both   x1

 and   x2
.  Because of this dependence on 

  x2
, the field of 

  
σ

11
x

1
,x

2( )  cannot satisfy the boundary conditions at the two ends of the seal point 

by point.  Instead, we balance the resultant forces.   

 To determine a, use the entire seal as a free-body diagram.  On the left side of the seal, the 

fluid pressure exerts a horizontal force  hp .  On the right side of the seal, the pressure is set to be 

zero, and no horizontal force is exerted on the seal.  On the top surface of the seal, the shear stress 

exerts a horizontal force   lσ 12 h( ) .  Equation (5) relates the shear stress on the bottom of the seal 

to that on the top surface of the seal,   σ 12 0( ) = −ah+σ 12 h( ) .  Thus, on the bottom surface of the 

seal, the shear stress exerts a horizontal force 
  
l ah−σ 12 h( )( ) .  The balance of the forces acting on 

the seal in the horizontal direction gives that 

    a = −λp / L .  (6) 

 To determine c, cut the seal vertically at any position   x1 , and use the part on the right side 

as a free-body diagram.  Equation (5) gives that    σ 11 = −ax1 + c + f x2( ) , resulting in a horizontal 

force 
  
ax1h− ch− f x2( )dx20

h

∫ .  The shear stress on the top surface exerts a horizontal force 

  
l − x1 +u h( )( )σ 12 h( ) .  The shear stress on the bottom surface exerts a horizontal force 
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  − l − x1( )σ 12 0( ) , where we have assumed that the bottom surface does not slide,   u 0( ) = 0 .  There 

is no force acting on the right end of the seal.  The balance of the forces acting on the seal in the 

horizontal direction gives that  

  
  
c = 1

h
σ 12 h( )u h( )− f x2( )dx2

0

h

∫
⎛

⎝
⎜

⎞

⎠
⎟ − p.   (7) 

 We write the field of stress in the seal as 

  

  

σ 12 = − λp
L

x2 − λH( )+σ 12 h( ),

σ 11 = p
λx1

L
−1

⎛

⎝⎜
⎞

⎠⎟
+ 1

h
σ 12 h( )u h( )− f x2( )dx2

0

h

∫
⎛

⎝
⎜

⎞

⎠
⎟ + f x2( ),

σ 22 = p
λx1

L
−1

⎛

⎝⎜
⎞

⎠⎟
+ 1

h
σ 12 h( )u h( )− f x2( )dx2

0

h

∫
⎛

⎝
⎜

⎞

⎠
⎟ ,

σ 33 = p
λx1

L
−1

⎛

⎝⎜
⎞

⎠⎟
+ 1

h
σ 12 h( )u h( )− f x2( )dx2

0

h

∫
⎛

⎝
⎜

⎞

⎠
⎟ +g x2( ).

   (8) 

This distribution is applicable to any incompressible elastic material. 

 We consider a neo-Hookean material characterized by the energy density function 

  µ
= -( ) ( 3)
2 iK iKW F FF , (9) 

where µ  is the shear modulus. Recall that, for an incompressible and elastic material, the true 

stress relates to the deformation gradient by  

 
 
σ

ij
= ∂W
∂F

iK

F
jK
−Πδ

ij
, (10) 

where P  is the Lagrange multiplier to enforce incompressibility.  Consequently, (3) specializes 

to 
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σ 12 x2( ) = µλ2 du x2( )
dx2

,

σ 11 −σ 22 = µ λ
du x2( )

dx2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

2

+ 1
λ2 − λ

2
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
,

σ 33 −σ 22 = µ 1− λ2( ).

 (11) 

 The seal is taken to be bonded to the bottom wall, 
  
u 0( ) = 0 .  A comparison of the two 

expressions for the shear stress in (8) and (11) gives the field of displacement: 

 
  
u x2( ) = p

µL
Hx2 −

x2
2

2λ
⎛

⎝
⎜

⎞

⎠
⎟ +

σ 12 h( )
µλ2 x2  . (12) 

The displacement in the seal is independent of   x1
, and is parabolic in   x2

.  This field of 

displacement in the elastic seal is analogous to that of velocity in the Poiseuille flow.   

The field of stress can be obtained by substituting (12) and (2) into (10): 

 

  

σ 12 = p λ2H
L

−
λx2

L
⎛

⎝⎜
⎞

⎠⎟
+σ 12 h( ),

σ 11 = p
λx1

L
+
σ 12 h( )H

2µL
−1

⎛

⎝
⎜

⎞

⎠
⎟ +

p2

µ
x2 − λH

L
⎛

⎝⎜
⎞

⎠⎟

2

− 1
3

λH
L

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
+
σ 12

2 h( )
µλ2 ,

σ 22 = p
λx1

L
+
σ 12 h( )H

2µL
−1

⎛

⎝
⎜

⎞

⎠
⎟ −

1
3µ

λpH
L

⎛
⎝⎜

⎞
⎠⎟

2

− µ 1
λ2 − λ

2⎛
⎝⎜

⎞
⎠⎟
+
σ 12

2 h( )
µλ2 ,

σ 33 = p
λx1

L
+
σ 12 h( )H

2µL
−1

⎛

⎝
⎜

⎞

⎠
⎟ −

1
3µ

λpH
L

⎛
⎝⎜

⎞
⎠⎟

2

− µ 1
λ2 −1

⎛
⎝⎜

⎞
⎠⎟
+
σ 12

2 h( )
µλ2 .

  (13) 

The stresses are nonlinear in precompression, indicating that the linear elastic assumption used 

in many soft particle studies (Li et al., 2013; Wyss et al., 2010) is only valid when compression is 

small. s 11  , s 22  and  σ 33  drop linearly along x1, but s 12  is independent of x1, confirming the 

assumption of constant shear stress along x1.  σ 22  and  σ 33  are independent of x2, s 12  is linear in 

x2, and  σ 11  is parabolic in x2. Stresses concentrate at the front corner at the bottom. 
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In the non-sliding stage (Fig. 2c), the displacement of the upper surface of the seal 

vanishes, ( ) =0u h , and (12) determines the static frictional stress 
  
σ 12 h( ) = −pHλ2 / 2L( ) .  We 

require that the static frictional stress be below the sliding stress, 
  
pHλ2 / 2L( ) < τ  .  In the sliding 

stage (Fig. 2d), our assumption dictates that the shear stress be the constant sliding stress, 

  
σ 12 h( ) = −τ .  The transition between these two stages occurs at the pressure 

  
p = 2Lτ / Hλ2( ) .   

We look into the stress state of the bottom corner where stresses concentrate most. The 

normal stresses are always compressive, which does not allow mode I fracture. As will be 

described in the next section, our experiment shows that the crack initiates at the front-bottom of 

the seal, but propagates into the gel. 

We rewrite (12) as  

 

  

u(x2 ) =

p
µL

Hx2

2
−

x2
2

2λ
⎛

⎝
⎜

⎞

⎠
⎟ ,  when p < 2Lτ

Hλ2 ,

p
µL

Hx2 −
x2

2

2λ
⎛

⎝
⎜

⎞

⎠
⎟ −

τ
µλ2 x2 , when p ≥ 2Lτ

Hλ2 .

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

  (14) 

The integration of the displacement profile gives the volume of extrusion:  

    
Q = B udx20

h

∫ . (15) 

The pressure-extrusion relation takes the form: 

 

  

p =
12 µQL

BH3λ2 , when p < 2Lτ
Hλ2 ,

3 µQL
BH3λ2 +

3
2

Lτ
Hλ2 , when p ≥ 2Lτ

Hλ2 .

⎧

⎨
⎪
⎪

⎩
⎪
⎪

  (16) 

The pressure-extrusion relation is bilinear, with a change in slope when the seal starts to slide 

relative to the top wall (Fig. 3). The intercept of the line for the sliding stage is given by 

  
p = 3Lτ( )/ 2Hλ2( ) .  The shear modulus µ  affects the slopes of both lines, and the sliding stress 

τ  affects the intercept of the line for the sliding stage.  
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Fig. 3. Theoretical relation between the fluid pressure p and the volume of extrusion Q, plotted 
in a dimensionless form. The non-sliding stage corresponds to a straight line with slope 12. The 
sliding stage corresponds to a straight line with slope 3, and the level depends on the normalized 
sliding stress 

  
Lτ Hλ 2µ( ) .   

 

4. Rupture 

 This section applies fracture mechanics to the mode of failure due to a crack that runs 

across the length of a seal (Fig. 1b).  The critical pressure for the onset of the propagation will 

depend on the initial crack. This section will analyze an idealized model, and the next section will 

compare the model to the experiment.   

 Our model assumes an initial debonded part of length cl , located at the front-bottom of 

the seal (Fig. 4).  The model further assumes that both the top surface of the seal and the debonded 

part bear the same sliding stress τ . The model calculates the energy release rate for the extension 

of the debond. Except for small regions near the tip of the debond and the two ends of the seal, 

the displacement fields in the debonded and bonded regions are independent of x1, and are 

denoted as ( )2cu x  and ( )2bu x , respectively. These two steady fields can be obtained using the 

work in the previous section.  
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Fig. 4. An idealized model of rupture. The model assumes a debonded part of length cl  located 
at the front-bottom of the seal. The debonded part of the seal slides against the bottom wall with 
a constant frictional stress, which we assume identical to the frictional stress at the top interface 
τ . Except for the regions near the tip of the debond and the two ends of the seal, the seal is 
modeled by two steady states, with displacement profiles ( )2cu x  and ( )2bu x .    
 

The fluid pressure p drops over the entire length of the seal—that is, over the debonded 

and the bonded parts in series.  The drop of pressure over the debonded part, cp , is balanced by 

the sliding stress on the top and bottom surface of the seal, so that  

 
  
pc =

2τLc

λ2H
 .  (17) 

Here  Lc  is the length of the crack when the seal is in the undeformed state,  Lc
= λl

c
.  The drop of 

pressure over the bonded part,  pb , is given by  pb
= p− p

c
, namely, 

 
  
pb = p−

2τLc

λ2H
 . (18) 

The displacement field in the debonded region is identical to that in the non-sliding stage, 

but with an additional rigid-body translation 0u  due to the extrusion of the elastomer (Fig. 2c). 

The displacement field in the bonded region is identical to that in the sliding stage (Fig. 2d).   

Therefore, ( )2cu x  and ( )2bu x  can be obtained by substituting (17) and (18) into (12):  

  

  

uc x2( ) = u0 −
τ

Hµλ3 x2 −
λH
2

⎛
⎝⎜

⎞
⎠⎟

2

,

ub(x2 ) =
p− 2τLc /λ2H( )

2µLc

2Hx2 −
x2

2

λ
⎛

⎝⎜
⎞

⎠⎟
− τ
µλ2 x2.

 (19) 
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The value of 0u  can be determined by the condition of incompressibility:   

 
  

u
c

x
2( )dx

20

h

∫ = u
b

x
2( )dx

20

h

∫ . (20) 

Substituting (19) into (20) gives that  

    
u0 =

pH2λ
3µLb

− 5
12

+
2Lc

3Lb

⎛

⎝⎜
⎞

⎠⎟
τH
λµ

. (21) 

The displacements at the sliding surfaces of the debonded region are 

  
  

u
c

0( ) = u
c

h( ) = pH2λ
3µL

b

− 2
3

1+
L

c

L
b

⎛

⎝⎜
⎞

⎠⎟
τH
λµ

. (22) 

The displacement at the sliding surface of the bonded region is 

 
  

u
b

h( ) = pλH2

2µL
b

− τH
µλ

1+
L

c

L
b

⎛

⎝⎜
⎞

⎠⎟
.  (23) 

The volume of extrusion Q is given by 
  
Q = B u

c
x

2( )dx
20

h

∫ = B u
b

x
2( )dx

20

h

∫ .  A direct calculation 

gives that 

 tl
µ µ

æ ö
= - +ç ÷

è ø

3 2
2 21

3 2 3
c

b b

LpH B H BQ
L L

. (24) 

We next calculate the energy release rate of the crack.  The deformation gradients in the 

debonded and bonded regions,   Fc  and   Fb , are functions of   x2 . The elastic energy in the debonded 

region is 
   
U

c
= Bl

c
W F

c( )dx
20

h

∫ , giving 

  
  
Uc =

τ 2LcHB
6µλ2 + µ

2
λ2 + λ−2 −2( )BHLc . (25) 

The elastic energy in the bonded region is 
   
U

b
= Bl

b
W F

b( )dx
20

h

∫ , giving 

  
  

U
b
= p2H3B

6µL
b

λ2 − pτH2B
µ

2L
c

3L
b

+ 1
2

⎛

⎝⎜
⎞

⎠⎟
+ τ

2HB

µλ2

2L
c
2

3L
b

+
L

b

2
+ L

c

⎛

⎝
⎜

⎞

⎠
⎟ +

µ
2

λ2 + λ−2 −2( )BHL
b
.  (26) 
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The potential energy of the seal is a function 
  
Φ p,τ ,Lc( ) , including the elastic energy in the seal 

and the potential energy of all fixed loads: 

 
  
Φ p,τ ,Lc( ) =Uc +Ub − pQ +2Blcτuc 0( )+ Blbτub h( ) . (27) 

Here we regard the fluid pressure p and the sliding stress τ  as fixed loads.  The above calculation 

gives that 

 

  

Φ p,τ ,Lc( ) = − p2H3λ2B
6µLb

−
τ 2HLbB
µλ2

1
2
+ 7

6
Lc

Lb

+ 2
3

Lc

Lb

⎛

⎝⎜
⎞

⎠⎟

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ pτH2B

µ
1
2
+

2Lc

3Lb

⎛

⎝⎜
⎞

⎠⎟
. (28) 

Recall that the energy release rate is defined as the reduction of the potential energy associated 

with the crack advancing per unit area: 

  
  
G = −

∂Φ p,τ ,Lc( )
B∂Lc

. (29) 

A direct calculation gives the energy release rate:  

  
  
G = H

6µLb
2 pHλ − 2τL

λ
⎛
⎝⎜

⎞
⎠⎟

2

. (30) 

The energy release rate increases with the fluid pressure p and decreases with the sliding stress 

τ .  In the non-sliding stage,   pHλ <2τLλ−1 , the energy release rate is zero and the crack remains 

stationary regardless of the crack size and the fluid pressure.  This result is consistent with the 

assumption that crack propagates after the seal slides. In addition, the energy release rate 

increases with the crack length  Lc  (equivalent to the decrease of  Lb ).  We assume that the length 

of the initial crack is small compared to the total length of the seal,  Lc
<< L .  Setting =0cL , we 

obtain that 

  
  
G = H

6µL2 pHλ − 2τL
λ

⎛
⎝⎜

⎞
⎠⎟

2

. (31) 

We will use this expression to compare with experimental measurements. 
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 When the energy release rate G reaches the fracture energy G , the initial crack propagates.  

Inserting (31) into  G = Γ , we obtain the critical fluid pressure for the onset of the propagation of 

the crack:  

  
  
pf =

6
λ

Γµ
H

L
H

+ 2τL
Hλ2 . (32) 

This critical pressure defines the sealing capacity of a seal. The above equation relates the critical 

fluid pressure to six parameters. The sealing capability can be increased by choosing stiffer and 

tougher material, by extending the length and reducing the thickness, by increasing the sliding 

stress, and by increasing precompression.  Everything else being fixed, the critical fluid pressure 

is linear in the length of the seal. 

 

5. Experimental measurement and discussion 

 We set up a transparent device to watch seals extrude, slide, rupture, and leak in situ 

(Supplementary Movies 1 and 2).  We use a block of hydrogel as the sealing element.  The hydrogel 

has much lower values of elastic modulus, sliding stress, and fracture energy, compared to those 

of elastomers used in the oil and gas industry. This is so that we can perform the experiments at 

low fluid pressure on a desktop. The object of the experiment is to assess the assumptions of the 

idealized theoretical model.  To study the effect of material parameters on the leaking pressure, 

we synthesize polyacrylamide hydrogels with different water contents and crosslink densities, and 

measure the shear moduli, fracture energies, and sliding stresses (Table 1, Appendix A-C).  We do 

not attempt to vary the shear modulus, fracture energy, and sliding stress independently.  

 In the setup for the sealing test, a block of the hydrogel, of the dimensions L, B and H in 

the undeformed state, is glued to a transparent acrylic sheet and spacer (Fig. 5a). The spacer has 

the same height H as the undeformed hydrogel. The acrylic sheet is glued to a base glass sheet. 

Another acrylic sheet of thickness DH  and width B is glued to the cover glass sheet. When the 

cover glass sheet is glued on the top of the spacer, the hydrogel is compressed with a stretch 
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( )l = -D /H H H  (Fig. 5b). No adhesive is applied between the cover acrylic sheet and hydrogel.  

The base and cover glass sheets serve as the rigid walls to confine the hydrogel, while keeping the 

device transparent. The acrylic sheets, spacer, and hydrogel form a chamber, which connects to a 

syringe pump and a pressure gauge by plastic tubes via two drilled holes on the two sides of the 

spacer.  The syringe pump injects water into the chamber at a constant rate 2ml/min. The volume 

of injected fluid, denoted as iQ , is recorded as a function of the fluid pressure p. A digital camera 

monitors the movement of the hydrogel (colored red) and water (colored blue).   

 

Table 1. Composition of polyacrylamide hydrogels and measured shear modulus, fracture energy, 

and sliding stress. 

 Material 

designation 

Water 

(wt%) 

MBAA/AAM 

(wt%) 

Shear modulus, µ  (kPa) Fracture energy, G  (J/m2) Sliding stress, t  (kPa) 

1 2 3 Mean STD 1 2 3 Mean STD 1 2 Mean STD 

M-92-06 92.00 0.60 2.20 1.79 1.75 1.91 0.25 13.57 10.89 13.76 12.74 1.61 3.00 3.18 3.09 0.13 

M-92-12 92.00 1.20 3.23  2.99  2.76  2.99  0.24  8.85  6.78  6.44  7.36  1.30  3.47 3.70 3.58 0.16 

M-92-24 92.00 2.40 3.96  3.84  4.04  3.95  0.10  4.18  3.52  4.60  4.10  0.55  3.85 4.45 4.15 0.42 

M-88-06 88.00 0.60 7.06  6.40  6.53  6.66  0.35  13.88  11.98  11.61  12.49  1.21  7.54 7.53 7.54 0.01 

 

 Ideally, the volume of injected fluid iQ  is identical to the volume of extrusion Q of the 

elastomer.  However, the syringe pump and plastic tubes expand under pressure.  To calibrate 

this effect, we directly connect the plastic tubes of the syringe pump and pressure gauge, and 

record the volume of injected fluid, Qs , as a function of p (Fig. 5c).  We then calibrate the volume 

of extrusion as  Q = Qi – Qs  (Fig. 5d). 
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Fig. 5. Schematics of the sealing test. (a) A block of  hydrogel, of dimensions H, L and B in the 
undeformed state, is glued to an acrylic sheet and a spacer with same height H. The acrylic sheet 
is attached to a sheet of glass (base glass sheet). An acrylic sheet of thickness DH  is attached to 
another sheet of glass (cover glass sheet).  (b) When the cover sheet is glued to the spacer, the 
hydrogel is precompressed with a displacement DH . The acrylic sheets, spacer and hydrogel form 
a chamber, which connects to a syringe pump and a pressure gauge. As the syringe pump injects 
fluid at a constant rate into the chamber, the pressure gauge measures the fluid pressure in the 
chamber, p. (c) Conntect the plastic tubes directly, and measure the volume of injected fluid, Qs, 
as a function of p.  (d) Measure the total volume of injected fluid Qi and determine the volume of 
extrusion as Q = Qi – Qs for a given p.  
 

 Figure 6 shows the results of a representative experiment.  The volumes of injected fluid 

with or without sealing elements, Qi and Qs, are measured as functions of pressure (Fig. 6a).  Note 

that Qs is indeed non-negligible compared with Qi.  At any given fluid pressure p, we determine 

the volume of extrusion by  Q = Q
i
−Q

s
, and then plot the p-Q relation.  The normalized p-Q 

relation is nearly bilinear and a change in slope is evident (Fig. 6b). 
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Fig. 6. Results of a sealing test. A hydrogel (M-88-06), of dimensions H = 6.00 mm, L = 20.00 
mm, and B = 120.00 mm, is compressed with a stretch of  λ = 0.83 . The syringe pump injects 
water at a constant rate of 2ml/min until the seal leaks. (a) The fluid pressure, p, is recorded as 
functions of the volume of injection, with or without the seal, Qi and Qs. (b) The normalized 
relation between the fluid pressure, p, and the volume of extrusion, Q. (c) Six snapshots of the 
seal in the states marked in (a).  
 

 The transparent setup enables us to watch a seal extrude, slide, and rupture, while the 

fluid pressure is increased (Fig. 6c).  Snapshot 1 shows the precompressed seal without the fluid 

pressure.  When the fluid pressure is low, the hydrogel does not slide against the top wall and the 

deformation of the seal is small (snapshot 2).  As the fluid pressure increases beyond a certain 

value,  The hydrogel slides against the top wall (snapshot 3). When the fluid pressure reaches its 

maximum, 
 
pf , a crack initiates at the front-bottom of the seal and propagates parallel and close 

to the bottom wall (snapshot 4).  Subsequently, the crack turns into a centered crack 

perpendicular to the bottom wall and propagates through the length of the seal (snapshot 5). After 



12/8/2016 22 

the seal ruptures, water leaks through the crack.  Snapshot 6 shows the residual deformation after 

the fluid is removed. A thin layer of hydrogel remains on the acrylic sheet in the bottom.  This 

observation indicates that the crack initiates and propagates in the hydrogel rather than along the 

interface between the hydrogel and the acrylic.   

 Thus, the process of rupture may be divided into two stages:  initiation and propagation 

of a crack.  At the first stage, the crack just initiates in the gel, at the front-bottom of the seal, and 

the crack path is almost the same as that in the analytical model. At the second stage, the crack 

becomes perpendicular to the rigid walls, and is different from that in the model.  

 The initiation of the crack corresponds to the peak of the recorded pressure-extrusion 

curve (Fig. 6a). The model in Section 4 is used to calculate the energy release rate for the growth 

of the crack in this initial stage.  The fracture energy of the bulk hydrogel, rather than that of the 

hydrogel/acrylic interface, is used in the rupture criterion.  The model gives a prediction of the 

critical pressure (32).  After the crack initiates in the gel, its subsequent propagation is unstable, 

corresponding to a rapid drop of pressure.  The subsequent crack propagation is a complex process, 

but is beyond our goal to predict the critical pressure.  In this paper we do not model the subsequent 

propagation of crack. 

 We conduct the experiment for sixteen seals of different values of material and geometric 

parameters (Table 2), and record the pressure-extrusion curves (Fig. 7).  For each seal, the 

pressure-extrusion curve includes both the non-sliding stage and the sliding stage, and is 

terminated at the critical fluid pressure at the onset of crack propagation.  The change in slope 

from non-sliding to sliding stages is sharp in some cases, but smooth in others.  One possibility is 

that the sliding stress is nonuniform, and the contact surface does not slide simultaneously.   

 We next compare the results of the sealing test to our theory.  Our theory identifies six 

parameters that affect sealing capacity: the shear modulus µ , fracture energy G , sliding stress τ , 

length L, thickness H, and precompression λ .  As described above, we measure all the six 
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parameters by experiments independent of the sealing test, and list their values in Tables 1 and 2. 

Our theory gives two principal results:  the pressure-extrusion curve during the non-sliding and 

the sliding stages (16), and the critical fluid pressure at the onset of crack propagation (32).     

Included in Fig. 7 are the plots of equations (16) and (32) using the six parameters (Table 1 and 2) 

determined in the independent experiments (Appendix A, B, C). The agreement between the 

experiment and theory is remarkable.   

 

Table 2. Experimentally measured leaking pressure for seals of different values of parameters.  

Material L (mm) H (mm) λ  pf (kPa) 

M-92-06 15.00 6.00  0.74  40.60  

M-92-12 15.00 6.00  0.74 53.50  

M-92-24 15.00 6.00  0.74 51.40  

M-88-06 15.00 6.00  0.74 100.60  

     M-88-06 15.00  6.00  0.83  72.10  

M-88-06 20.00  6.00  0.83 85.70  

M-88-06 25.00  6.00  0.83 133.60  

M-88-06 30.00  6.00  0.83 175.10  

     M-92-24 30.00  4.50  0.93  91.20  

M-92-24 30.00  6.00  0.93  80.40  

M-92-24 30.00  9.00  0.93  36.90  

M-92-24 30.00  12.00  0.93  27.10  

     M-92-12 15.00  6.00  0.96  29.60  

M-92-12 15.00  6.00  0.86  39.60  

M-92-12 15.00 6.00  0.74 53.50  

M-92-12 15.00  6.00  0.61  57.30  
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Fig. 7. The dimensionless pressure-extrusion curves for seals of different values of parameters. 
The black lines are experimental results. The orange lines are theoretical predictions. The sixteen 
seals correspond to those listed in Table 2. 

 

 Figure 8 plots the variation of the leaking pressure with respect to different geometrical 

variables. The leaking pressure increases with L, and decreases with H and l .  The experimentally 

measured leaking pressures agree well with the theoretical predictions.  The latter are obtained 

by plotting (32) using the materials properties (fracture energy, elastic modulus, and sliding stress) 

measured in independent experiments (Table 1). 

 The critical fluid pressures measured in the sealing test also agree well with those 

predicted theoretically (Fig. 9).  The theoretical predictions of the critical fluid pressure are 

calculated from equation (32) using the six parameters determined in the independent 

experiments (Tables 1 and 2, Appendices A-C). 
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 Inspecting the two equations (16) and (32) again, we observe that elastic modulus µ , 

sliding stress τ , and fracture energy G  correspond to three distinct features of the pressure-

extrusion relation.  The elastic modulus µ  affects the two slopes of the bilinear relation, the 

sliding stress τ  sets the intercept of the sliding part of the relation, and the fracture energy G  

appears in the expression for the critical fluid pressure. The good agreement between the theory 

and experiment, of course, suggests that the pressure-extrusion curve of a seal may be used to 

measure the shear modulus, sliding stress, and fracture energy in-situ. 

 

 
Fig. 8. Relations between the leaking pressure 

 
pf  and different geometrical parameters. The 

dots are experimental results, and the curves are theoretical predictions. (a)  µ = 6.66  kPa (M-88-
06), H = 6.00 mm,  λ = 0.83 , L varies from 15.00 mm to 30.oo mm. (b)  µ = 3.95 kPa (M-92-24), 
L = 30.00 mm,  λ = 0.93 , H varies from 4.50 mm to 12.00 mm. (c)  µ = 2.99  kPa (M-92-12), L = 
15.00 mm, H = 6.00 mm, λ  varies from 0.96 to 0.61. 
 

 

Fig. 9. Comparison between experimental results and theoretical predictions of the leaking 
pressure 

 
pf . 
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6. Conclusion 

 We show that the pressure-extrusion curve is an effective tool to study the behavior of a seal. 

We introduce an idealized model that enables theoretical analysis and experimental observation.  

The theory calculates the pressure-extrusion curves for various material and geometric 

parameters.  We fabricate seals of different values of the parameters, install them in transparent 

chambers on a desktop, and watch them extrude, slide, rupture, and leak. The experimental 

measured and theoretical predicted pressure-extrusion curves are in good agreement. The 

principal factors—elastic modulus, sliding stress, and fracture energy—correspond to distinct 

features on the pressure-extrusion curve.  The good agreement between the theory and 

experiment suggests that the pressure-extrusion curve provides a method for the in situ 

measurement of elastic modulus, sliding stress, and fracture energy of soft materials under 

constraints. We hope that this work will guide the future development and field test of elastomeric 

seals. 
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Appendix A 

Synthesis of hydrogels. We synthesize polyacrylamide hydrogels by free-radical 

polymerization. Acrylamide (AAM), N,N’-methylenebis(acrylamide) (MBAA), ammonium 

persulfate (APS) and N,N,N’,N’-tetramethylethylenediamine (TEMED) are purchased from 

Sigma Aldrich. All materials are used as received. We dissolve powder of AAM in deionized water 

and add MBAA as the crosslinker in quantities specified in Table 1. We add TEMED as the 

accelerator and APS as the initiator in quantities of 0.0025 and 0.0085 times the weight of AAM.  

We color the hydrogel in red using a food dye (Shank’s Extracts, purchased from VWR 
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International LLC.) in quantity of 0.002 times the volume of the aqueous solution. We pour the 

solution into acrylic molds to form rectangular samples. The samples are stored at room 

temperature for 1 day to complete polymerization.  

 

Appendix B 

Measurement of shear modulus and fracture energy.  We measure the shear moduli and 

fracture energies of hydrogels by the pure shear test (Rivlin and Thomas, 1953; Sun et al., 2012). 

For a hydrogel of the same composition, we prepare three groups of samples to get the mean value 

and scatter of measured properties. Each group has two samples of the same dimensions. One 

sample is unnotched, and the other one is notched (Fig. B1). The samples are glued between two 

plastic gripers by using All Purpose Crazy Glue (purchased from VWR International LLC). In the 

undeformed state, each sample is of width   a0 = 50  mm, thickness   t0 = 2  mm, the length between 

two gripers is   L0 = 10 mm. The unnotched sample is used to measure the stress-stretch curve. The 

initial slope of the curve is the plane-strain modulus of the gel,  E . Compare to the modulus 

obtained from uniaxial tension, E, 

 
  
E = E

1−ν 2 ,   (B1) 

where ν  is the Poisson’s ratio.  For incompressible material,  ν = 0.5 , so that the shear modulus 

is related to the initial slope of the stress-strain curve as 

 
  
µ = E

3
= E

4
=

ds λ = 1( )
4dλ

.   (B2) 

 When the sample is pulled to stretch λ , the area beneath the stress-stretch curve is the 

elastic energy density in the gel, 
 
W λ( ) . The notched sample is prepared by cutting a crack with 



12/8/2016 30 

  c0 = 20  mm by a razor blade. The notched sample is used to measure the critical rupture stretch, 

 λc , when the notch turns into a running crack. The fracture energy of the gel is given by 

 
  
Γ =W λc( )L0   (B3) 

All the test results are summarized in Table 2. It should be pointed out that the fracture energy 

measured in experiments is for mode I cracks.  However, it is unclear if the seals rupture exactly 

in mode I.  Here we neglect possible mixed mode fracture and the dependence of the fracture 

energy on the mode mix.  In comparing the theory and the experiment, we simply use the 

fracture energy for mode I cracks. 

 
Fig. B1.  Experimental determination of the shear modulus and fracture energy of a hydrogel. 
Two samples are pulled in tension. One sample is unnotched, and the other one is notched. (a) 
The unnotched sample is used to obtain the stress-stretch curve. The initial slope of the curve is 
the plane-strain modulus of the gel,   E = 4µ . The area beneath the stress-stretch curve is the 
elastic energy density in the gel, 

 
W λ( ) . (b) The notched sample is used to measure the critical 

rupture stretch,  λc  , when the notch turns into a running crack. 
 

Appendix C 
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Measurement of sliding stress.  We conduct an independent test on the sliding stress t  using 

a home-made setup (Fig. C1a). An acrylic plate is supported by four legs made of threaded studs 

and nuts. A bubble level is placed on the surface of acrylic plate to keep it horizontal by adjusting 

the location of the nuts. A hydrogel with dimensions  40× 40×6  mm is fully constrained by a stiff 

frame except the bottom surface is in contact with an acrylic sheet. There is a small gap about 1 

mm between the frame and the surface of acrylic sheet to avoid their direct contact.   Instead of 

precompression, here we place a weight on the frame to provide normal force on hydrogel. The 

hydrogel, the frame, and the weight are dragged horizontally by an Instron machine at a constant 

speed of 0.5mm/s and at a distance of 50mm.  

 The frictional stress is recorded as a function of the displacement measured at the moving 

part of the Instron machine (Fig. C1b). At small displacement, the string stretches and the 

hydrogel deforms, and the recorded stress increases.  After the displacement is sufficiently large, 

the hydrogel slides steadily, and the recorded stress becomes nearly constant. We identify this 

constant stress as the sliding stress.  When the weight is small (0.5 kg), The sliding stress 

fluctuates around the constant level. When the weight increases, the sliding stress increases 

slightly and then becomes nearly independent of the weight. The range of weights we put here is 

equivalent to the precompression (l ) around 0.5 to 0.9, which is comparable to what we used in 

sealing test. We determine the sliding stress for hydrogels of several values of elastic modulus (Fig. 

C1c).  

 



12/8/2016 32 

 

Fig. C1. Friction measurement by a customer-built set-up. (a) Experimental set-up. (b) 
frictional stress – displacement curve under different weights. The shear modulus is µ =6.6 kPa 
(M-88-06). (c) The relation between the frictional stress τ  and the shear modulus µ .  
 
 
 
Supplementary Information 

Movie 1. As we inject water (colored blue) into the sealed chamber at a constant rate 2 ml/min. 

the pressure inside the chamber increases with time. When the fluid pressure is small, no obvious 

deformation of the seal (colored red) can be observed. When the pressure is high (beyond 40 kPa, 

i.e. 0.4 bar in the movie), the seal is pushed forward and the seal slides against the cover acrylic 

sheet.  

 

Movie 2. As the fluid pressure reaches a critical value (85.7 kPa, i.e. 0.857 bar in the movie), a 

crack initiates at the front-bottom of the seal. Initially the crack grows slowly, then propagates 

across the length of the seal quickly. The fluid leaks through the crack, and the fluid pressure 

decreases to zero. 


