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 Interest in stretchable electronics has grown significantly in recent years, driving a need 

for soft and stretchable materials that can sustain high strains and still fulfill their function in 

applications such as human wearable sensors for biomechanics studies and health monitoring[1–4], 

or feedback sensors in soft robotics.[5–8] Although many stretchable conductors exist, including 

liquid metals,[9,10] nanowires,[11,12] nanoribbons[13], pre-stretched elastomer fibers with conductive 

coatings,[14] and micro-cracked metals,[15,16] these materials have generally been unable to achieve 

high levels of optical transparency while maintaining high conductivities and stretchability; a 

feature that would enable their use in optogenetics[17] or allow optical imaging of the underlying 

substrate. Conventional strategies of incorporating metallic components with elastomers to attain 

stretchability also yield non-trivial failure modes such as liquid metal leakage[8] and hard-soft 

material interfacial failure[18]. The use of gels as conductors, where ions are the charge carriers 

instead of electrons, represents an entirely different approach that has gained popularity recently. 

Their high stretchability and transparency, when combined with recent improvements in 

toughness and stiffness,[19,20] have already enabled their use as stretchable electrical 

conductors,[21,22] capacitive strain sensors,[23–25] and chemical/pH sensors[26]. Gel-based ionic 

circuits thus represent a unique class of devices within stretchable electronics. Conductive gels 

can be generally divided into those where the ions are provided by solvated salts[25,27] (hydrogels) 

or by ionic liquids[24,28,29] (ionogels). Although immune to dehydration, ionogels have 

comparatively lower conductivities than hydrogels. Ionic liquids also interfere with some gel 

polymerization reactions, limiting the range of polymers that can be used to synthesize 

ionogels.[30] By contrast, hydrogels are generally easier to synthesize, but they are susceptible to 

dehydration. Solvated hygroscopic salts may serve the dual purpose of increasing both their ionic 
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conductivity and water-retention properties,[27] though a balance must be struck between 

maximizing water-retention and ionic conductivity due to non-idealities of the electrolyte solution 

that reduce molar conductivity at high salt concentrations.[31] 

Fabrication of stretchable electronics using hydrogels requires integrating hydrogels with 

stretchable dielectrics such as dielectric elastomers; a process thus far primarily achieved via 

manual assembly of cast segments. If the field is to progress, advanced manufacturing techniques 

that integrate dielectric elastomers and hydrogels need to be developed.[7] Fabrication techniques 

specific to hydrogels have already been developed, including extrusion three-dimensional (3D) 

printing,[24,32–35] digital projection based techniques,[36] and screen printing[37,38]. Extrusion 

printing techniques in particular are most easily capable of multi-material printing at high 

resolution and low costs.[33,34] Recently, Robinson et al. fabricated a soft sensor with an ionic-

liquid based gel and a silicone elastomer by combining soft lithography with extrusion printing.[24] 

Although recent studies have successfully fabricated stretchable electronics consisting entirely of 

soft materials, conductive hydrogels and dielectric elastomers, thus far these fabrication 

techniques have relied on casting or a combination of extrusion printing with other methods.[21–25] 

Here, we describe a simple approach to 3D extrusion printing of soft, stretchable electrical 

devices integrating a conductive hydrogel and a dielectric elastomer with sub-millimeter 

resolution. We show that both types of materials can be integrated into a single device using a 

single fabrication process. We characterize the mechanical and electrical performance of the 

printed hydrogel and demonstrate the technique by printing a soft strain sensor. The device was 

fabricated using poly(acrylamide) (PAAm) hydrogel and poly(dimethylsiloxane) (PDMS) 

because of their widespread use, as well as their favorable electrical and optical properties. The 



   Submitted to  

4 
 
 
 
 

hydrogel precursor consisted of a concentrated aqueous solution of a hygroscopic salt, a 

compatible rheological modifier, and UV-initiated polymerization/cross-linking compounds. 

Lithium chloride (LiCl) was selected as the hygroscopic salt in a compromise between vapor 

pressure and ionic conductivity, and its concentration (7 mol L-1) was set above peak conductivity, 

but below saturation in an aqueous solution.[39] The PDMS was a UV curing formulation to allow 

for rapid setting during the printing process (KER-4690, courtesy of Shin-Etsu Silicones).  

Printing was performed using an extrusion 3D printer comprised of a precision positioning 

system, an ink extrusion system, and a hardware/software interface to control location and rate of 

material extrusion relative to the sample stage (Figure 1a).[33] The entire system was housed 

inside a nitrogen environment. The relative humidity (RH) of the environment was fixed at 43% 

by bubbling nitrogen through a saturated solution of potassium carbonate.[40] Significant 

variations in RH during the fabrication process can lead to elastic instabilities in the hydrogel 

surface as a result of hydrogel swelling,[41] which can happen very quickly because of the high 

surface area to volume ratio of sub-millimeter features. Oxygen displacement was needed to 

prevent inhibition of the free-radical polymerization in the hydrogel precursor. In situ UV curing 

was used to partially set the extruded ink and prevent extensive spreading. This process is further 

elaborated during the discussion of rheological characteristics of the hydrogel precursor. Figure 

1b demonstrates our printing capabilities of complex hydrogel-elastomer designs by comparing 

the final printing shape to its printing trace and Figure 1c highlights the optical transparency of 

the printed devices. 

Selecting materials for extrusion printing requires the consideration of their rheological 

properties, since these properties dictate extrusion pressure, post-extrusion shape retention, and 
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printing resolution. A shear-thinning characteristic is particularly desirable for extrusion, allowing 

for lowered viscosity under the high shear rates involved in extrusion and a higher viscosity post-

extrusion for shape retention. Shear thinning is usually achieved through the addition of a 

rheological modifier, of which many are commercially available.[42] For this particular application, 

where the elastomer serves as a bulk dielectric as opposed to finer features, the resolution 

requirements for the extrusion printing of the PDMS are not as stringent as for the hydrogel. 

Consequently, the UV-curing PDMS formulation could be used without modification, despite its 

almost Newtonian behavior with viscosities of 4.8 Pa s at 0.1 s-1 and 4.5 Pa s at 102 s-1. For 

applications where a higher resolution is required, many techniques and products are available to 

adjust the rheological behavior of the PDMS precursor.[5,24,43–47]
  

The development of the hydrogel precursor for our extrusion printing was more 

demanding and required a balance between conductivity, stability, and rheological characteristics. 

A significant proportion of rheological modifiers used in extrusion printing are sensitive to the 

ionic strength of the precursor,[33,34,48,49] and may lead to precipitation[50–52] or flocculation[53] of 

the rheological modifiers at the high salt concentrations necessary for good electrical conductivity 

and water retention. This requirement excludes many of the modifiers that are routinely used for 

hydrogel printing. High-molecular weight polymers, however, are insensitive to the ionic strength 

of the precursor and have been used successfully in hydrogel extrusion printing.[24,35] In this study, 

we use high-molecular weight PAAm as a rheological modifier, because of its transparency and 

compatibility with the precursor formulation. 

The rheology of the PAAm / LiCl solution used to modify the flow characteristics of the 

precursor was characterized by measuring its viscosity (η), yield stress (σy), and viscoelastic 
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moduli (G’, G”). The precursor rheology is dominated by the PAAm; all other components in 

solution do not affect the viscosity significantly at their respective concentrations. We performed 

both viscometry and oscillatory rheology (Figure 2) at 25 °C. The storage modulus (G’) plateaus 

at a modulus of 558.5 ± 4.6  Pa  and exceeds the loss modulus (G”) at shear stresses below 570 Pa, 

indicating solid-like behavior up to this stress level (Figure 2a); at stresses greater than 570 Pa, G” 

exceeds G’ and the precursor behaves more like a viscous liquid. Thus, the precursor has an 

apparent oscillatory yield stress of 570 Pa. Figure 2b depicts the stress and viscosity as a function 

of shear rate obtained from viscometry measurements. The viscosity shows clear shear-thinning 

behavior with η ~ 15000 Pa s at low shear rates (10-2 s-1) and η ~ 5 Pa s at high shear rate (102 s-1). 

Extrapolating the linear portion of the stress-shear rate curve back to zero shear rates provides a 

Bingham yield stress of 458 Pa, which agrees well with the cross-over between G’ and G”.  

We estimate the shear-rate during extrusion using the generalized form of the 

Rabinowitsch-Mooney equation (Equation 1) for a power-law fluid flowing through a cylindrical 

tube of radius r,[54] 

=ሶߛ ቀ
ଷ௡ାଵ

ସ௡
ቁ

ସொ

గ௥య       (1) 

where Q is the volumetric flow rate and n is the exponent of the power-law describing the shear 

stress as a function of shear-rate, ߬ = ሶߛܭ ௡ , where K is the consistency index. By performing a 

power-law fit of the data in Figure 2b, we obtain a value of 0.148 for the shear-thinning exponent 

n in the high-strain rate region (ߛሶ >  ଵ). For a volumetric extrusion rate of 1 mm3 s-1 and aିݏ 1

0.337 mm syringe tip diameter, the shear rate ߛሶ  of the hydrogel precursor is ~ 81 s-1, with a 

corresponding viscosity of ~7 Pa s. Immediately after extrusion, the viscosity increases to 

approximately 1300 Pa s, assuming a shear rate of 0.1 s-1. Other studies have achieved extrusion 
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printing with viscosities of 10 Pa s at 102 s-1 and 102–103 Pa s at 0.1 s-1 strain rates[24,33,35,49]. 

Typical values for oscillatory rheological parameters in hydrogel extrusion printed inks place G’ 

~ 350–3000 Pa and σy ~ 500-3000 Pa.[24,35] Our precursor hydrogel compares favorably with these 

other systems in terms of rheological performance. However, the precursor viscosity/G’ values 

are insufficient to ensure printed shape retention over long periods of time. Since the hydrogel is 

UV curable, the simplest solution is to implement in situ UV curing during the extrusion printing 

process to partially cure the inks as they are extruded from the syringe tip (Figure 1a). Various 

hydrogel line geometries were generated by printing line stacks in both the lateral and vertical 

directions (Figure 3a), specified as the x and z-directions respectively, at constant extrusion rate, 

stage velocity, and lateral/vertical center-to-center spacing (6.0 mm3 s-1, 7.5 mm s-1, Sx = 0.3 mm 

and Sz = 0.15 mm respectively). To precisely design 3D structures of hydrogel printed directly on 

PDMS, we characterized the geometry of the printed hydrogel structures in terms of the number 

of lines (Nx and Nz) in the x and z-directions, respectively (Figure 3 b-c). We note that the degree 

of spreading in the x-direction increases with Nz, but that the spreading saturates once three layers 

have been printed, indicating that building up stable 3D structures is possible. The spreading of 

the hydrogel precursor post-extrusion is governed by a balance between capillary, viscous, and 

inertial forces acting on the extruded geometries. We may determine the dominant force using the 

Ohnesorge number,[55] )/( LOh  , where, γ is the surface energy, ρ is the mass density, and 

L the characteristic length scale. Using conservative values, η ~ 103 Pa s, γ ~ 0.1 J·m-2, ρ ~ 104 kg 

m-3, and L ~ 10-3 m, we observe that 110~ 3 Oh , indicating dominance of the viscous forces, 

as expected by the rheological design of the hydrogel precursor. The minimum level of lateral 

spreading was 0.8 mm, which can be observed by extrapolating Figure 3c to the y-intercept. This 
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value can be decreased further by tuning the precursor rheology, increasing the in situ UV curing 

intensity, lowering the extrusion rates (Figure S1), increasing the stage speed, or by utilizing a 

smaller size of syringe tip. Optical micrographs of multi-layer gel patterns showed smoothly 

merged surfaces (Figure 3 d-f) and the formation of what are believed to be residual wetting 

layers on the hydrogel edges. Optical profilometry was used to obtain cross-sectional profiles of 

the printed hydrogel lines (Figure 3 g-h), which demonstrate that these profiles are nearly 

identical, indicating the reproducibility necessary for us to design and build 3D hydrogel 

structures. 

 Electrical testing of bulk cast hydrogel samples was conducted using a four-point probe 

configuration to establish the baseline electrical conductivity of the hydrogel. As shown in Figure 

4a, we observed Ohmic conduction with a conductivity of 10.39 ± 0.31 S m-1, which is 

comparable to the conductivity of the corresponding aqueous salt solution.[39] By contrast, the 

conductivity of the printed lines, measured under conditions of controlled humidity at RH 43%, 

was found to be 2.90 ± 0.40 S m-1. This value is markedly lower than the bulk conductivity, but is 

most likely due to water loss post-extrusion. Although hydrogel water loss in open air will not be 

entirely avoided without the use of a sealant, such as by coating the hydrogel in an elastomer, the 

LiCl will allow the hydrogel to remain stable at a RH determined by the salt species and 

concentration. An aqueous LiCl solution increasing in mass percentage from 20% to 30% suffers 

a conductivity loss of 14%[39] and the volumetric change from water loss alone would cause a 62% 

decrease in cross-sectional area, which together approximates conductivity loss to be at least 48%. 

We characterized the resistance change of printed hydrogel lines printed on PDMS upon 

application of uniaxial tensile strain. The ideal case can be reasoned as follows: we let R and L, 
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respectively be the resistance and length of a hydrogel line, and indicate their initial values with a 

subscript zero. We assume that the hydrogel is incompressible and the resistivity is independent 

of stretch. These assumptions predict that the ratio of resistance of the stretched hydrogel over the 

initial, unstretched resistance is given by R/Ro = (L/Lo)
2. When the printed hydrogel lines are 

stretched by mechanically loading the PDMS, their resistance values obey this relationship up to 

rupture of the samples at 50% strain (Figure 4b). This result suggests that the hydrogel lines are 

intact up to this strain, since damage in the hydrogel would cause a deviation from this expression. 

Tensile tests on freestanding hydrogel samples show that the printed gel is capable of stretching 

up to 150% strain before rupture, further supporting the notion that the PDMS is the mechanically 

limiting component in this case. One could feasibly substitute PDMS with an alternative 

commercially available silicone elastomer for greater stretchability; silicone elastomers are 

generally compatible with the surface and rheological modification techniques used in this study. 

We also performed a fatigue test on a PDMS-hydrogel sample over the strain range from 0% to 

20% for one thousand cycles, and measured the resistance of the hydrogel at logarithmic time 

intervals. Remarkably, there were no observable changes to the resistance of the device, nor were 

there visible signs of delamination (Figure 4c). We believe that the adhesion is primarily physical 

in nature; no chemical bonding between the two networks is possible given the lack of active sites. 

While PDMS surface oxidation treatments are known to degrade over time, this hydrophobic 

recovery is significantly inhibited by contact with water.[56–58] Given the high water content of 

hydrogels, their direct contact with PDMS should impart a similar protection of the surface 

treatment. 



   Submitted to  

10 
 
 
 
 

To demonstrate transmission of AC electrical signals, we fabricated a simple analog to the 

ionic cable:[22] two parallel ionically conductive hydrogel wires were extruded onto a printed 

PDMS substrate, with the two terminals at either end serving as either an electrical input or output. 

The transfer function of the device was measured and fitted to a simple RC circuit model. Yang et 

al. demonstrated that the transmission of signals through an ionic conductor can be described 

using a special case of a transmission line model.[22] According to the theory of ionic cables, the 

condition for negligible decay of the signal is (ωαεl2)/(bd)<<1, where ω is the signal frequency, l 

is the cable length, b and α are the thickness and resistivity of the ionic conductor, and d and ε are 

the thickness and permittivity of the dielectric, respectively. Using representative values, ε = 

2×10-11 F m-1, α = 10-2 Ω m, l = 10 mm, b = 50 μm, d = 50 μm and let ω = 105 s-1 ~ 15 kHz, we 

evaluate the expression to be 0.08, indicating negligible signal decay. Using a printed ionic cable 

with similar dimensions, we have successfully demonstrated signal transmission of AC signals up 

to 15 kHz in frequency (Figure 4d). 

 To demonstrate the capabilities of the printing process, we have extrusion printed a single-

loop resistive strain gauge of hydrogel embedded within PDMS (Figure 5a). The sensor has a 

gauge factor of 0.84, and remains linear up to 40% strain (Figure S2). The strain sensor was 

attached to the index finger of a nitrile glove using a thin layer of VHB adhesive tape (3M) and 

connected to a multi-meter to measure the resistance of the sensor as it underwent varying degrees 

of strain as a result of the bending/flexing of the digits of the glove (Figure S3). This sensing 

capability was extended to all five digits of a human hand (Figure 5). It can be observed that the 

strain gauge is sensitive enough to detect inadvertent finger motions of the ring finger in position 

two (Figure 5c), as well as intermediate positions between being fully bent and fully straightened 
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(Figure S3b). We observed changes up to 30% in the strain gauge resistance at maximum finger 

bending, corresponding to an average strain of 36%. No delamination or fracture was observed 

during the experiment, verifying our previous results on the durability and stretchability of the 

printed laminates. 

In conclusion, we have described a method for the 3D extrusion printing of an ionically 

conductive PAAm hydrogel and a PDMS dielectric elastomer to fabricate soft ionic devices. By 

tuning the rheological behavior of the hydrogel precursor and performing oxygen plasma 

treatments of PDMS surfaces, it is possible to print and integrate hydrogels directly with PDMS at 

sub-millimeter resolution. This capability was demonstrated by the fabrication and functional 

verification of an ionic cable and resistance-based strain sensor. More complex geometries are 

readily designed and printed. The flexibility of the process allows one to replicate the design in an 

array or to print stacked devices for multi-axial strains. The strategies employed here to obtain the 

desirable printing resolution can be used for any hydrogel-PDMS material system. The PDMS 

may also be substituted with other commercially available silicone elastomers, since silicone 

elastomers are compatible with both the surface treatment and the rheological modification 

strategy used in this work. This study provides a simple pathway to the fabrication of hydrogels 

and dielectric elastomers in an integrated fashion for stretchable electrical devices and soft 

robotics applications. 

 

Experimental Section  

Preparation of Polydimethylsiloxane (PDMS): A UV curable formulation of 

polydimethylsiloxane elastomer (Shin-Etsu Silicones, KER-4690 A/B) was provided by the 
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manufacturer as a two-part precursor and was used in the recommended 1:1 ratio. After a 2 

minute mixing cycle in a planetary centrifugal mixer (Thinky, ThinkyMixer ARE-300) at 

2000 RPM, the precursor was used without further preparation and was cured via 365 nm UV 

light at a dose of 10 mW cm-2 for a period of 30 minutes, followed by an overnight bake at 65 °C. 

Prior to further printing, the PDMS was treated with an oxygen plasma (SPI Supplies, Plasma 

Prep II) at an O2 pressure of 18 psi, vacuum pressure of 275 mTorr, and RF power of 80 W for 60 

sec. 

 

Preparation of the hydrogel precursor: The precursor used in the printing process consisted of 

two components: the rheological modifier and the hydrogel component. The rheological modifier 

consisted of an un-crosslinked PAAm solution made by UV exposing an acrylamide (AAm, 

Sigma-Aldrich, A8887) solution containing α-ketoglutaric acid (α-keto, Sigma-Aldrich, ) and 

N,N,N’,N’-tetramethylethylenediamine (TEMED, Sigma-Aldrich, T7024) at 25°C with the 

following ratios (w/w): 92.17% deionized water (resistivity = 18.2 MΩ cm), 7.37 % AAm, 

0.00044% α-keto, 0.00021% TEMED. The hydrogel component consisted of AAm, α-keto, 

TEMED, lithium chloride (LiCl, Sigma-Aldrich, 746460), and N,N’-methylenebis(acrylamide) 

(MBAA, Sigma-Aldrich, 146072). This component was added to the un-crosslinked PAAm 

solution and mixed using a planetary centrifugal mixer (Thinky, ThinkyMixer ARE-300) at 

2000 RPM. Final precursor composition ratios (w/w) were: 63.15% deionized water, 3.86% 

PAAm, 9.05% AAm, 18.43% LiCl, 0.072% MBAA, 4.95% α-Keto, 0.479% TEMED. 
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Rheological Characterization: All rheological measurements were made using a TA Instruments 

Discovery HR-3 Hybrid Rheometer with a cone and plate geometry at a reference temperature of 

25°C. Oscillatory rheometry was performed on the PAAm/LiCl portion of the hydrogel precursor 

using a frequency of 1 Hz and sweeping shear stresses from 1–500 Pa. Viscometry was also 

performed with shear rates ranging from 0.01–100 s-1. 

 

Device Fabrication: PDMS and hydrogel precursors were directly printed onto a UV-resistant 

acrylic substrate (6.35mm thickness, McMaster-Carr) rinsed with DI water followed by 

isopropanol and blown dry with nitrogen. A CNC milling machine (Sherline Products, 5400) was 

used as a positioning stage, upon which independent linear actuators (Zaber Technologies, T-

LA60A) were mounted onto the z-axis of the stage as syringe pumps. Syringes (5 ml, Hapool 

Medical Technology Co) contained the precursors and were extruded through a 23 gauge blunted 

syringe tip (0.337mm ID, SAI Infusion Technologies). A displacement rate was prescribed to the 

actuators and the requisite extrusion force was applied to the syringe end. A steady flow of dry 

nitrogen piped through a saturated potassium carbonate (Sigma Aldrich) solution was used to 

purge the printing area of oxygen during the printing process and simultaneously fix the relative 

humidity. A 6 W UV LED (Instun, SK66) was used to initiate curing of the ink as it is extruded 

from the syringe at a dose rate of ~3 mW cm-2. Printed samples were then flood exposed to UV 

using an 8 W 365 nm UV Lamp (UVP, UVLS-28 EL) in a nitrogen environment at an effective 

dose rate of ~ 6 mW cm-2. 

Devices began with a printed PDMS layer that was fully cured and baked, as previously described. 

Prior to additional printing, the PDMS was treated with O2 plasma and stored in DI water until 
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immediately prior to the printing in order to preserve the hydroxyl groups on the PDMS surface. 

While this plasma treatment process is incompatible with hydrogels already present on the PDMS 

due to vacuum requirements, a UV-Ozone treatment may be substituted to achieve the same effect 

at a slower rate while maintaining hydrogel integrity[59]. After subsequent hydrogel and PDMS 

layers were printed, the device was exposed to the flood UV lamp. Since the curing of PDMS has 

been observed to be inhibited by contact with the hydrogel precursor, the printed device was 

baked at 65°C for 6 hours to drive the PDMS curing process to completion, followed by a DI 

water soak of 1 hour to rehydrate the hydrogel from the oven bake. 

 

Sample Characterization: Cross-sectional images and measurements were made using a 

Coherence Correlation Interferometry (CCI) optical profiler (Taylor Hobson, CCI HD) with 5x 

and 20x objective lenses. DC electrical measurements were made using multimeters (Fluke, 

models 8846A and 175). A DC power supply (Dr.Meter, PS-305DM) was used to generate the 

current used in the four-point probe measurement. For the AC characterization, a waveform 

generator (Keysight, 33500B) and oscilloscope (Keysight, DSO-1004A) with passive probes 

(Keysight, N2862B) were used. Uniaxial tensile testing, for both stress-strain and fatigue 

experiments, was performed on a uniaxial tensile tester (Instron, 3342 Single Column UTS) using 

a strain rate of 50 mm min-1. For the fatigue experiments, a maximum strain of 20% was used. All 

PDMS-hydrogel samples were gripped using rubber-coated tensile grips in a region containing 

only PDMS. Stretch was calculated from the crosshead displacement rate and the initial gauge 

length of the samples 
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Figure 1. a) Overall schematic of the 3D printing extrusion system used in this study. b) A side-
by-side comparison of a patterned design and the final printed hydrogel-on-PDMS sample. c) The 
same printed sample placed over an image to demonstrate its complete optical transparency. 
 

 
Figure 2. Rheological analyses of the rheological modifier for the hydrogel precursor. a) Typical 
oscillatory rheology results showing shear storage (G’) and shear loss (G”) moduli evolution of 
inks used over increasing shear stress. b) Typical viscometry results showing stress and viscosity 
against shear rate. Tests were begun at low shear rates and swept up, then back down to 
demonstrate a mild thixotropic effect.  
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Figure 3. a) Schematic illustration of the extrusion trace and the resulting geometry of multiple 
lines separated both laterally, by Sx in the x direction, and vertically, by Sz in the z direction. The 
number of lines in x and z is (Nx ,Nz) = (3, 3), respectively. b) Height of gel lines as a function of 
Nz. c) Width of gel lines as a function of Nx. Optical micrographs of stacked layers of gel lines 
with. d) (Nx , Nz) = (1, 1), e) (3, 1) and f) (3,3). Optical profilometry images and the cross-
sectional profiles of gel lines with multiple hydrogel layers of g) (1, 1) and h) (3,1).  
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Figure 4. Electrical characterizations of the hydrogel in either bulk or printed state. a) I-V curves 
obtained from 4-point probe measurements performed on bulk hydrogel samples. Sample 
dimensions were on average 30 cm long, 4.2 mm wide, and 3.5 mm in height, with an average 
measured resistance of 67.3 ± 2.4 Ω; this corresponds to a conductivity of 10.39 ± 0.31 S m-1. b) 
The normalized resistance of printed hydrogels on a PDMS substrate is measured as a function of 
stretch, plotted against the ideal geometric behavior. Photos illustrate the sample in the initial 
(strain = 0%) state and the fully stretched (strain = 50%) state with the mechanical load applied 
only to the PDMS. c) The normalized resistance of printed hydrogels on a PDMS substrate as a 
function of fatigue cycle number. Uniaxial tensile strain cycles of 20% strain were performed for 
up to 1000 cycles. No significant change to the resistance vs. strain behavior was observed during 
our tests. Comparing images both before and after fatigue tests illustrate the lack of visible 
damage or delamination d) The transfer function of an ionic cable design is plotted against 
frequency. We perform a theoretical fitting of our results using a simple RC circuit model for the 
ionic cable and can observe a reasonable level of agreement between experimental results and 
theory. 
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Figure 5. An example of a printed hydrogel-elastomeric type device, where fairly arbitrary shapes 
and designs can be easily integrated into the system by virtue of the printing process. In this case 
a) a simple resistance-based strain gauge is replicated using the hydrogel as the conductor and 
PDMS as the encapsulating substrate. b) By attaching the sensor to a flexible glove and flexing 
the digit we are able to observe a change in resistance up to 30% of its initial value at maximum 
finger bending and c) illustrate this process for a variety of hand gestures for each digit’s strain 
sensor resistance change over time.  
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A hydrogel-dielectric elastomer system, Poly-acrylamide and Polydimethylsiloxane, is adapted 
for extrusion printing for integrated device fabrication. A LiCl containing hydrogel printing ink is 
developed and printed onto treated PDMS with no visible signs of delamination and geometrically 
scaling resistance under moderate uniaxial tension and fatigue. We demonstrate a variety of 
designs including resistive strain gauge and ionic cable. 
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Figure S1. Variations in hydrogel geometry by only nominal extrusion rate variation, keeping 
stage velocity (450 mm/min), extrusion height (300 μm) and extrusion tip diameter (337 μm) 
constant. We illustrate gel geometry with optical micrographs of the printed hydrogel on top of 
PDMS substrate at (a) 1, (b) 3, and (c) 5 mm min-1 extrusion rates. (d) shows a plot of the 
relationship between extrusion rate and final line width, with what appears to be a linear 
correlation. (e) A similar plot for final gel height versus extrusion rate. 
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Figure S2. Resistance change of a stretched strain gauge sample, demonstrating a linearity of the 
resistance change response for this design up to 40% strain.  
 
 

 
Figure S3. A single strain gauge is mounted onto the index finger and held in various positions 
while the resistance is recorded. (a) Illustrates the mounting of the strain gauge using VHB tape 
and leads connecting the gauge. (b) Illustrates the various positions alongside the time-trace of the 
gauge’s resistance. The mildly bent position (green diamond) is gradually straightened to the 
default position, whereas others were more rapidly transitioned from straight to bent positions. 
 
 
 


