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Abstract. We show that intrinsic (not lensing-induced) correlations between galaxy shapes
offer a new probe of primordial non-Gaussianity and inflationary physics which is complemen-
tary to galaxy number counts. Specifically, intrinsic alignment correlations are sensitive to an
anisotropic squeezed limit bispectrum of the primordial perturbations. Such a feature arises
in solid inflation, as well as more broadly in the presence of light higher spin fields during
inflation (as pointed out recently by Arkani-Hamed and Maldacena). We present a derivation
of the all-sky two-point correlations of intrinsic shapes and number counts in the presence
of non-Gaussianity with general angular dependence, and show that a quadrupolar (spin-2)
anisotropy leads to the analog in galaxy shapes of the well-known scale-dependent bias in-
duced in number counts by isotropic (spin-0) non-Gaussianity. Moreover, in the presence of
non-zero anisotropic non-Gaussianity, the quadrupole of galaxy shapes becomes sensitive to
far superhorizon modes. These effects come about because long-wavelength modes induce a
local anisotropy in the initial power spectrum, with which galaxies will correlate. We forecast
that future imaging surveys could provide constraints on the amplitude of anisotropic non-
Gaussianity that are comparable to those from the Cosmic Microwave Background (CMB).
These are complementary as they probe different physical scales. The constraints, however,
depend on the sensitivity of galaxy shapes to the initial conditions which we only roughly
estimate from observed tidal alignments.

http://arxiv.org/abs/1506.02671v3
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1 Introduction

The intrinsic alignments of red galaxies are thought to have their origin in the interaction of
galaxy shapes with the tidal field of the large-scale structure [1]. These alignments remain a
relatively unexplored cosmological probe, complementary to weak gravitational lensing and
the statistics of the galaxy distribution. Upcoming imaging surveys, such as Euclid1 and the
Large Synoptic Survey Telescope (LSST2), will measure the shapes of billions of galaxies over
half of the sky, providing a unique opportunity to exploit alignments as a cosmological probe.

Alignments can contribute to the correlations between shapes and positions of galaxies
with a strength larger than weak lensing at low redshifts, and sub-dominant at larger redshifts
[2, 3]. Much of the effort in the study of alignments has been focused on measuring, modeling
and removing intrinsic alignment contamination to weak gravitational lensing observables [4–
7]. The tidal alignment model [1] has been shown to reproduce the scale-dependence of the
observed alignment signal for red galaxies in the linear regime [8, 9] with an amplitude that
depends on luminosity [10], while blue galaxies have no measured alignments and only upper
limits for their intrinsic shape correlations are available [11, 12]. In this work, we use “red”

1http://sci.esa.int/euclid/
2http://www.lsst.org/lsst/
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as a synonym of early-type and “blue”, of late-type galaxies. In the low-redshift Universe,
a very small fraction of early-types have blue colors [13], but this assumption has not been
tested at the high redshifts to be probed by upcoming imaging surveys. On the other hand,
recent results from numerical hydrodynamical simulations suggest that indeed color is well
correlated with galaxy dynamics as tracers of the intrinsic alignment signal [14]. Alignments
are typically regarded as a contaminant to ‘cosmic shear’ (the two-point correlation of lensing-
induced ellipticities), and they can contribute significantly to the correlation of galaxy shapes
with the weak lensing of the Cosmic Microwave Background (CMB) [15, 16].

The exploration of alignments as a cosmological probe has only started recently. The
wealth of shape information expected from upcoming imaging surveys, and the availability
of a model that reproduces the observed alignment correlations of red galaxies, has triggered
the exploration of the use of intrinsic alignments for cosmology. For example, the correlation
between galaxy shapes and CMB B-mode polarization induced by primordial gravitational
waves could be detected from future surveys, albeit with limitations in confirming its primor-
dial origin [17]. While the CMB B-mode polarization is a purely linear effect induced by the
gravitational redshift of tensor metric perturbations, the latter also induce an effective tidal
field which modifies the local growth of structure and acts to align galaxies [18, 19]. Another
example of the use of intrinsic alignments for cosmology is the possible detection of baryon
acoustic oscillations in the cross-correlation of galaxy positions and shapes from future sur-
veys [20]. While intrinsic alignments are weaker in amplitude than galaxy clustering, they
do have some advantages such as the absence of redshift-space distortions (RSD) [21].

In this work, we show that intrinsic alignments can probe inflationary models where the
squeezed-limit bispectrum of the primordial curvature perturbations, usually denoted R or
ζ, is anisotropic. Phrased in terms of the primordial potential perturbation φ during matter
domination, which is related to the curvature perturbation by R = (5/3)φ, the squeezed-limit
bispectrum can be expressed as

Bφ(k1,k2,k3 = kL) =
∑

ℓ=0,2,...

AℓPℓ(k̂L · k̂S)
(

kL
kS

)∆

Pφ(kL)Pφ(kS)

[

1 +O
(

k2L
k2S

)]

, (1.1)

where k3 = kL ≪ k1, k2 while kS = k1 − kL/2, Pℓ are the Legendre polynomials, and
Aℓ are dimensionless amplitudes. Note that the angular dependence has to be even; see
Section 2. In general, there can be several contributions with different power indices ∆.
In this paper, we will focus on the “local” scaling with ∆ = 0. However, our results are
easily generalized to other scalings. In Eq. (1.1), the coefficient A0 of the isotropic term is
related to the usual local non-Gaussianity parameter f locNL via A0 = 4f locNL. We are interested
in constraining the parameter that governs the leading anisotropic contribution, namely the
quadrupolar dependence of the bispectrum, A2. As we will show, A2 does not lead to a
significant large-scale effect in galaxy clustering, specifically the two-point function. It does
however lead to the analog of the well-known scale-dependent bias for galaxy counts, which
scales as f locNL(k/aH)−2, in the two-point statistics of galaxy shapes, adding a contribution ∝
A2(k/aH)−2. Combining galaxy clustering with shapes, we can then constrain both isotropic
and anisotropic non-Gaussianity simultaneously.

Thus, alignments offer a golden opportunity to explore a new dimension in the parameter
space of inflationary models. Anisotropic non-Gaussianity can arise in several early-Universe
scenarios. In solid inflation [22], inflation is driven by the exponential stretching of an
unusual solid. A feature of solid inflation is that it produces large anisotropic non-Gaussianity
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while f locNL is small (A2 ≫ A0) [22]. Both isotropic and anisotropic non-Gaussianity are
produced by primordial curvature perturbations generated by large-scale magnetic fields
[23, 24]. Anisotropic non-Gaussianity can also be produced in inflationary models with a
generalized bispectrum from excited Bunch-Davies vacuum [25]. Recently, Arkani-Hamed
and Maldacena [26] pointed out (see also [27–29]) that the squeezed-limit bispectrum of
primordial perturbations offers a clean probe of the spectrum of particles with masses of
order the Hubble scale and smaller during inflation (see [30] for a corresponding study of
the tensor-scalar-scalar three-point function). The index ∆ is related to the mass of the
particle, with ∆ → 0 for degrees of freedom much lighter than the Hubble scale. The order
of the angular dependence L encodes the spin of the particles, as the leading contribution of
a spin-s particle yields a contribution of order L = s in Eq. (1.1). Thus, our results show
that the combination of galaxy clustering and shapes can probe the presence of scalar (spin
0) and tensor (spin 2) degrees of freedom with m . H during inflation.

Of course, this type of primordial non-Gaussianity can also be constrained using the
CMB, which yields the currently tightest constraints of A2 = 13 ± 93 (1σ) [31]. We stress,
however, that galaxy clustering and shapes probe the three-point function in Eq. (1.1) for
small-scale modes that are on significantly smaller scales than the CMB. Given that the
amplitude of non-Gaussianity can well be scale-dependent, the constraints we forecast are to
be seen as complementary to the CMB.

Our work is organized as follows. Section 2 presents the non-Gaussian matter den-
sity field and our conventions for parametrizing anisotropic non-Gaussianity through the
squeezed-limit bispectrum. The impact of tidal fields and primordial non-Gaussianity on
the shapes and clustering of galaxies is described in Section 3. In Section 4, we derive full
sky observables of intrinsic alignments. Section 5 summarizes the adopted model for the red
galaxy population, based on [3], while we outline the Fisher forecast in Section 6. In Section
7, we present a forecast of the detectability of anisotropic non-Gaussianity in an LSST-like
weak lensing survey. Finally, we discuss our results in Section 8.

Throughout this paper, we assume the following Planck [32] fiducial flat ΛCDM cos-
mology: Ωbh

2 = 0.022, ΩCDMh
2 = 0.12, h = 0.67, ΩK = 0, As = 2.2 × 10−9, ns = 0.9645,

kp = 0.05 Mpc−1 and we define Ωm = Ωb +ΩCDM.

2 Large-scale non-Gaussianity

When computing two-point correlations of large-scale structure in the large-scale limit, the
leading relevant non-Gaussian statistic is the squeezed-limit potential bispectrumBφ(k1,k2,kL),
where kL ≪ k1, k2. While bispectra are in general non-separable functions of the momenta,
they can usually be well approximated by a sum of separable terms [33]. For simplicity, we
will only consider one of those terms, which in the squeezed limit can be written in general
as

Bφ(kL,kS ,kS) = f(kL,kS)Pφ(kL)Pφ(kS) , (2.1)

with “beyond-squeezed limit” terms suppressed by (kL/kS)
2. These are negligible when

considering large-scale correlations, and we will not consider them here. If the bispectrum is
scale-invariant, which we will assume in the following, then f(kL,kS) = f(k̂L · k̂S , kL/kS).
Further, one can parametrize the dependence on kL/kS as a power law (kL/kS)

∆, so that
f(kL,kS) → f(k̂L · k̂S) (kL/kS)∆. In the following sections, we will restrict to bispectra of
the local-type for simplicity (∆ = 0). The generalization beyond the simplifying assumptions
made here is straightforward and will be pointed out below where relevant.
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Finally we can decompose the angular dependence f(µ) into multipole moments, where
µ = k̂L · k̂S :

f(µ) =
∑

ℓ=0, 2, 4,···

AℓPℓ(µ) . (2.2)

It will become clear below why we neglect odd multipole moments. This then leads to
Eq. (1.1). Standard local non-Gaussianity corresponds to L = 0 and A0 = 4f locNL. We are
interested in the two lowest order contributions: a monopole A0, and a quadrupole A2, which
corresponds to the anisotropic shape generated, for example, by solid inflation [34] or spin-2
particles [26]. Thus, f locNL = 0 or “no local non-Gaussianity” will correspond to the statement
that A0 = 0 in Eq. (2.2), while A2 = 0 corresponds to a vanishing quadrupole.

To interpret the effect of the bispectrum defined in Eq. (2.1), consider a single long-
wavelength plane wave potential perturbation φ(kL). According to Eq. (2.1), the local small-
scale power spectrum at position x is given by

Pφ (kS ,x|φ(kL)) =



1 +
∑

ℓ=0, 2, 4,···

AℓPℓ(µ)
(

kL
kS

)∆

φ(kL)e
ikLx



Pφ(kS) , (2.3)

where P (kS) is the Gaussian power spectrum. This can be easily verified by multiplying
by φ(k′

L), integrating over d3x, and taking the expectation value. Since φ is a real field,
Pφ(−kS) = Pφ(kS) has to hold, and Eq. (2.3) implies that only even multipoles can contribute
to the leading squeezed-limit bispectrum Eq. (2.1).

3 Intrinsic alignments and non-Gaussianity

In this section, we derive the linear relation between intrinsic galaxy shapes and the under-
lying matter distribution in the presence of primordial non-Gaussianity, including the effect
of the anisotropic bispectrum. Intrinsic alignments can be treated in exactly the same way as
galaxy biasing, the only difference is that projected shapes are a spin-2 quantity on the sky,
as opposed to the scalar galaxy density. Thus, our discussion parallels that of [35–38] who
studied the impact of primordial non-Gaussianity on galaxy clustering. We describe galaxy
shape statistics in two stages. First, we provide a description of the statistics of the physical,
intrinsic three-dimensional shapes of galaxies, denoted as gij . We will assume that gij is
related to the trace-free part of the second moment tensor Iij of, for example, the intrinsic
emissivity of a given galaxy:

gij = [Tr Ikl]
−1

(

Iij −
1

3
δijTr Ikl

)

, (3.1)

so that gij is dimensionless. Second, we project the shapes onto the sky plane, thus providing
the connection to the observed two-dimensional shapes, and add the contribution due to
gravitational lensing. Since the processes that determine galaxy shapes are intrinsically
three-dimensional, we argue that a physical treatment of alignments should proceed in this
way, rather than starting with an expansion on the projected galaxy shapes.

The precise location and shape of a given galaxy is determined by the nonlinear distribu-
tion of matter within some finite spatial region around the galaxy (along its past trajectory)
described by a typical scale R∗. For example, if the dominant mechanism for determining
position and shape is gravitational collapse, R∗ will be of the order of the Lagrangian ra-
dius of the parent halo of the galaxy. Since we are interested in the large-scale statistics of
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galaxies, let us coarse-grain the galaxy distribution on some scale much larger than R∗ (but
smaller than the scale of correlations we are interested in). Then, the only properties of the
matter distribution that are relevant to galaxy formation are the matter density δ = ρ/ρ̄− 1
and tidal field Kij , coarse-grained over a scale R∗ (e.g., [39, 40]).3 We define the tidal field
via

Kij =
1

4πG ρ̄ a2

[

∂i∂j −
1

3
δij∇2

]

Φ = Dijδ, (3.2)

where Φ is the gravitational potential and

Dij ≡
∂i∂j
∇2

− 1

3
δij . (3.3)

The quantity Kij is trace-free, so that the six degrees of freedom contained in {δ, Kij} fully
describe the second derivative tensor ∂i∂jΦ. Due to the equivalence principle, an observable
such as galaxy shapes cannot depend on ∂iΦ or Φ itself.

Thus, on large scales, r ≫ R∗, the statistics of galaxy shapes and number, quantified
by the fractional overdensity δn, can be effectively described through local functions of the
coarse-grained δ and Kij :

δn(x, τ) = F [δ(x, τ),Kkl(x, τ), τ ]

gij(x, τ) =Gij [δ(x, τ),Kkl(x, τ), τ ] , (3.4)

where τ denotes conformal time. The leading correction to Eq. (3.4) due to the non-locality
of galaxy formation is given by terms of order R2

∗∇2δ and R2
∗∇2Kkl, which we will neglect

throughout this work. In Fourier space, they lead to a scale-dependent bias ∝ k2R2
∗ which

becomes relevant on small scales.
In Eq. (3.4), we have ignored the small-scale perturbations which are also present in

the real universe. This is fine in the case of Gaussian initial conditions, since the small-scale
perturbations are not correlated with the long-wavelength perturbations [apart from terms
that already appear in Eq. (3.4)]. As we will see, this will not be the case for non-Gaussian
initial conditions.

A Taylor expansion of Eq. (3.4) then leads to the usual local bias expansion for the
galaxy number density perturbation δn, i.e.

δn(x, τ) = bn1 (τ) δ(x, τ) +
1

2
bn2 (τ) δ

2(x, τ) +
1

2
bnt (τ) (Kij)

2(x, τ) + · · · . (3.5)

The analogous expansion for gij , up to quadratic order, leads to

gij(x, τ) = bI1(τ)Kij(x, τ) +
1

2
bI2(τ)Kij(x, τ)δ(x, τ) +

1

2
bIt (τ)

[

KikK
k
j −

1

3
δij(Klm)

2

]

(x, τ)

+ · · · . (3.6)

Note that we have allowed for all possible terms consistent with the symmetries of δn and
gij , and in the absence of preferred directions in the galaxy frame. The coefficient bni cor-
responds to the i-th order response of the mean number density of galaxies to a change in

3More accurately, the relevant properties are the coarse-grained density and tidal field along the entire
past trajectory of the fluid elements. However, this is not relevant at the order up to which we work here.
See [41, 42] for a discussion in the context of galaxy bias.
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the background density, i.e. bni = (ρ̄i/n̄g)∂
in̄g/∂ρ̄

i. Similarly, bI1 corresponds to the linear
response of the mean shape of galaxies to an external tidal field Kij . Due to a lack of pre-
ferred directions in the frame of the galaxy, this response must have the simple form given
in Eq. (3.6). That is, bI1 is simply a number rather than a tensor. Similarly, bI2 corresponds
to the response of galaxy shapes to an external tidal field and a simultaneous change in
the background density. Such a term is expected to be present intrinsically, however it is
also induced by the weighting by the galaxy number density [43]. Finally, bIt quantifies the
quadratic tidal alignment. We emphasise that Eqs. (3.5)–(3.6) are effective relations describ-
ing galaxy statistics on large scales rather than deterministic relations valid at a given scale.
We have also neglected stochastic terms in the bias relations, which have to be included in
general. The cubic and higher order terms neglected in Eqs. (3.5)–(3.6), while important on
small scales, are not relevant for the discussion here as they do not lead to scale-dependent
signatures of primordial non-Gaussianity on large scales.

Let us now consider the cross-correlation of galaxy shapes with the matter density field
on large scales. Eq. (3.6) yields

〈δ(x)gij(y)〉 = bI1〈δ(x)Kij(y)〉 +
1

2
bI2 〈δ(x)δ(y)Kij (y)〉

+
1

2
bIt (τ)

〈

δ(x)

[

KikK
k
j −

1

3
δij(Klm)

2

]

(y)

〉

+ · · · , (3.7)

where the ellipsis stands for higher order correlators which are not relevant on the large scales
we are interested in. The first term in Eq. (3.7) is the leading term in the case of Gaussian
initial conditions. It is given, in terms of the matter correlation function ξ(r), by

〈δ(x)Kij(y)〉 = Dijξ(|x− y|) . (3.8)

The second and third terms in Eq. (3.7) involving three-point functions are exclusively in-
duced by non-linear evolution in the case of Gaussian initial conditions, in which case they
are only relevant on small scales. Hence, the large-scale limit of the matter-shape cross-
correlation becomes

〈δ(x)gij(y)〉 Gaussian IC
= bI1Dijξ(|x− y|) , (3.9)

or equivalently in Fourier space,

〈δ(k)gij(k′)〉 = bI1

(

kikj
k2

− 1

3
δij

)

Pm(k) (2π)
3δD(k+ k′) , (3.10)

where Pm(k) is the matter power spectrum. This implies that bI1 is the analog of the usual
linear bias for galaxy density correlations. Eq. (3.10) corresponds to the prediction of the
so-called linear alignment model [1]. This is generically the leading contribution to galaxy
shape correlations on large scales, unless bI1 happens to be very small for a given galaxy
sample.

We now consider the case of non-Gaussian initial conditions of the local type, quantified
by Eq. (1.1). The three-point terms in Eq. (3.7) are sensitive to the bispectrum in the
squeezed limit, since two fields are evaluated at the same point. In the following, for simplicity
of the presentation we will only focus on the first term ∝ bI2; the term ∝ bIt behaves in
essentially the same way (see App. A), so including it here would add nothing new. As
shown in App. A, for a squeezed-limit bispectrum of the form Eq. (1.1) we have

〈δ(x)δ(y)Kij (y)〉 =
2

5
A2Dijξδφ(|x− y|)〈δ2〉 , (3.11)
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where ξδφ(r) is the linear matter-primordial potential cross-correlation. Equivalently, in
Fourier space,

〈

δ(k)[δ Kij ](k
′)
〉

=
2

5
A2

(

kikj
k2

− 1

3
δij

)

M−1(k)Pm(k)〈δ2〉 (2π)3δD(k+ k′) , (3.12)

where Pm(k) is the matter power spectrum in synchronous-comoving gauge, and

M(k, z) =
2

3

k2T (k)D(z)

ΩmH
2
0

(3.13)

is the linear relation between primordial potential and density, δ(k, z) = M(k, z)φ(k), with
T (k) denoting the transfer function and D(z) denoting the growth factor normalized to
D(z) = 1/(1 + z) during matter domination. Thus, there is a non-Gaussian contribution to
the large-scale shape correlation if the squeezed-limit bispectrum is anisotropic, A2 6= 0.

However, Eqs. (3.11)–(3.12) involve the variance of the matter density field 〈δ2〉, which is
formally divergent if we let the smoothing scale go to zero, and hence needs to be regularized
by introducing a counter-term. Equivalently, it corresponds to an unphysical dependence of
our observable on the arbitrary smoothing scale. We see that the counter-term we need to add
to the bias expansion of galaxy shapes, Eq. (3.6), is Dijφ. This term is not due to gravitational
evolution, since it involves the potential itself and does not obey the equivalence principle,
but is due to the initial conditions. Note that in Eq. (3.4) we have implicitly assumed that
the statistics of the initial small-scale modes which influence local galaxy formation are the
same everywhere. The squeezed-limit bispectrum of Eq. (1.1), however, precisely describes
a modulation of the power spectrum of small-scale density fluctuations by long-wavelength
potential perturbations. This exactly parallels the case of galaxy density correlations in the
case of local-type primordial non-Gaussianity [35]. The key difference for the generalized
squeezed limit of Eq. (1.1) is that now the local power spectrum becomes anisotropic. Thus,
in the case of primordial non-Gaussianity with A2 6= 0 we have to explicitly take into account
the dependence of galaxy shapes on the amplitude and anisotropy of small-scale fluctuations.

Consider the following transformation of the initial matter power spectrum,

P ini
m,α(k) =

(

1 + 2αlmk̂
lk̂m

)

P ini
m,iso(k) (3.14)

where αlm is trace-free and P ini
m,iso is the fiducial isotropic power spectrum. We can define

the mean response of galaxy shapes to such an anisotropic initial power spectrum,

bING ≡ ∂〈gij〉α
∂αij

∣

∣

∣

α=0
, (3.15)

where no summation is to be taken (the absence of other preferred directions requires bING to
be a number rather than a tensor). As we show in App. B, allowing for this dependence of
galaxy shapes on the anisotropy of the initial power spectrum in Eq. (3.4) provides the correct
counter-term 3bINGA2Dijφ to cancel the divergence appearing in Eqs. (3.11)–(3.12) (the same
holds for the divergence appearing in the other three-point term ∝ bIt ). This is not surprising,
since according to Eq. (2.3) (with ∆ = 0) a long-wavelength potential perturbation yields a
modulation of the type Eq. (3.14) with

2αlm = A2

(

k̂lLk̂
m
L − 1

3
δlm

)

φ(kL)e
ikLx = A2DlmφL(x) . (3.16)

– 7 –



The end result is that the large-scale matter-shape cross-correlation becomes

〈δ(x)gij(y)〉 = bI1Dijξ(|x− y|) + 3bINGA2Dijξδφ(|x− y|) , (3.17)

and equivalently in Fourier space

〈δ(k′)gij(k)〉 =
(

kikj
k2

− 1

3
δij

){

bI1 + 3bINGA2 M−1(k)

}

Pm(k) (2π)
3δD(k+ k′) . (3.18)

This result is very similar to the well-known scale-dependent bias induced by local
primordial non-Gaussianity in the two-point function of the galaxy density. Specifically, the
galaxy density-matter cross-correlation is given by [37]

〈δ(k′)δn(k)〉 =
{

bn1 +
1

2
bnNGA0 M−1(k)

}

Pm(k) (2π)
3δD(k+ k′) , (3.19)

where bnNG = n̄−1
g ∂n̄g/∂ lnσ8 is defined as the response of the galaxy abundance to a change

in the (isotropic) initial power spectrum amplitude quantified by σ8. For dark matter halos
and assuming a universal mass function, we can relate this to the linear density bias via
bnNG = (bn1 − 1)δc.

Two facts are noteworthy about Eqs. (3.18)–(3.19). First, isotropic local type non-
Gaussianity (A0 6= 0;A2 = 0) does not generate any large-scale correlations of galaxy shapes
at linear order in the non-Gaussianity. The reason is that, due to symmetry, an isotropic
rescaling of the small-scale fluctuations cannot affect galaxy shapes. Second, there is no
impact of anisotropic non-Gaussianity (A0 = 0;A2 6= 0) on large-scale galaxy density cor-
relations. The number density of tracers depends on the amplitude of small scale fluctua-
tions. It can be shown (App. A) that this is not modified by anisotropic non-Gaussianity.
Thus, at the level of two-point functions, only galaxy shapes are affected by anisotropic
non-Gaussianity, while the same is true for the galaxy density and isotropic non-Gaussianity.
By comparing shape correlations with density correlations we can thus disentangle isotropic
from anisotropic shapes of the local type.

Finally, it is straightforward to generalize Eq. (3.19) to different squeezed-limit power
scalings ∆. Specifically,

〈δ(k′)gij(k)〉 =
(

kikj
k2

− 1

3
δij

){

bI1 + 3bI01,∆A2

(

k

kp

)∆

M−1(k)

}

Pm(k) (2π)
3δD(k+ k′),

(3.20)

where kp is a pivot scale and we have indicated that now bI01,∆ depends on ∆ (and kp). For
∆ ≈ 2, the non-Gaussian contribution is only weakly scale-dependent and thus becomes more
difficult to constrain.

To summarize, the large-scale correlation between matter and galaxy shapes has a Gaus-
sian piece ∝ bI1, where b

I
1 represent the linear response of galaxy shapes to a long-wavelength

tidal field; and a non-Gaussian piece, which is proportional to the quadrupolar part of the
squeezed-limit bispectrum. The coefficient of the non-Gaussian term, bING, quantifies the
linear response of galaxy shapes to an anisotropic power spectrum of initial fluctuations
[Eq. (3.14)]. Our derivations in this section represent the generalization to a spin-2 field of
the well-known non-Gaussian halo bias [35, 37, 44].

While it is clear that the scale-dependent bias of galaxy shapes has to be present in
general, it is difficult to predict a precise number of bING for dark matter halos, let alone
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Figure 1. The tidal bias induced by anisotropic non-Gaussianity, Eq. (3.21), for bI1 =
−0.1ΩmD(0)/D(z), bI

NG
= −0.1Ωm and A2 = −10 (see Section 5). The increasing thickness of

the curves represents different redshifts from z = 0 to z = 1.5. At k > 10−2 h Mpc−1, the effect of
non-Gaussianity is negligible and all curves asymptote to −bI1. Anisotropic non-Gaussianity changes
the tidal bias on large scales and the effect is larger at high redshift at a given scale.

galaxies. If it is very small, then this effect becomes less interesting observationally. The
value of bING could be measured by running N-body simulations with anisotropic initial power
spectrum and measuring the mean shapes of halos along the anisotropy axes. This is beyond
the scope of this paper. In the context of the excursion set [45] however, one would expect
that bING is comparable to the linear tidal alignment coefficient bI1. In both cases the collapse
threshold ν = δc/σ becomes direction-dependent, i.e. different along different axes. In the
tidal case, this is due to the faster infall along the steeper potential gradient (e.g., [46]), while
an anisotropic power spectrum of small-scale fluctuations will lead to a similar anisotropic
ν. For our forecasts, we will thus assume that bING ∼ bI1. This should only be understood as
an estimate at the order-of-magnitude level however. That is, while we expect the strongest
signature of anisotropic primordial non-Gaussianity to appear for those galaxies which show
the strongest linear tidal alignment (i.e. massive elliptical galaxies), the amplitude of the
two coefficients could certainly differ by a factor of several.

Figure 1 shows the total effective bias of intrinsic alignments,

bI1 + 3bINGA2M−1(k, z) , (3.21)

i.e. the term in curly brackets multiplying Pm(k) in Eq. (3.18), as a function of scale. In
the Gaussian case, it is a constant, while for A2 6= 0 it is strongly scale-dependent. Here,
we assume a fiducial value of bI1 = −0.1ΩmD(0)/D(z) (consistent with LRG measurements
at low redshift [8]), and bING = −0.1Ωm (see Section 5). The impact of non-Gaussianity
increases with redshift. Depending on the sign of A2, the anisotropic tidal bias can have the
same sign as the isotropic linear alignment model (if A2 > 0) or the opposite sign (if A2 < 0).
In the latter case, the effect of the anisotropic tidal bias is to generate tangential alignments
on large scales. This transition scale can be estimated by simply setting Eq. (3.21) to zero,
and it is k ≃ 1.5 × 10−3 h/Mpc for A2 = −10. The impact of this bias on angular shape
correlations will be shown in the next section.
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4 Observed shape and number count correlations

In this section we derive the implications of the scale-dependent bias in galaxy alignments for
observed angular correlations of galaxy shapes and number counts. We will also include the
contributions from gravitational lensing to shapes, which are comparable to or larger than
alignments at cosmological redshifts. However, we will neglect the impact of primordial non-
Gaussianity on the lensing correlations, since they are highly suppressed by the projection
along the lightcone [47]. This is discussed in detail in App. C.

4.1 Projection

In imaging surveys, one does not have access to the 3D shape of galaxies which we have
written in Eq. (3.17). Instead, one only measures (in the absence of lensing) the intrinsic
shape projected onto the sky:

γI,ij ≡
(

P k
i P l

j − 1

2
PijPkl

)

gkl , (4.1)

where

Pij = δij − n̂in̂j (4.2)

is the projection operator and n̂ is the unit vector along the line of sight. Note that PijPjk =
P k
i , and any term ∝ δkl in gkl drops out in the projection Eq. (4.1). In Eq. (4.1) we have

introduced the notation γI,ij for the intrinsic shape, as we will also encounter the lensing
contribution γG,ij below. The observed shape γij is the sum of both contributions.

Further, in imaging surveys galaxies follow a redshift distribution, dN/dz. Thus, fol-
lowing Eq. (3.17), the intrinsic alignment contribution to observed shapes of galaxies in the
direction n̂ are related to the density field and gravitational potential through

γI,ij(n̂) =

∫

dz
dN

dz

[

bI1D⊥
ijδm(χ(z)n̂; τ(z)) + 3bINGA2D⊥

ijφ(χ(z)n̂; τ(z))
]

, (4.3)

where χ(z) is the comoving distance out to redshift z, τ(z) is the conformal time at that
redshift, and we have defined the projection onto the sky of the derivative operator Dij

through

D⊥
ij =

(

P k
i P l

j − 1

2
PijPkl

)

Dkl . (4.4)

Given the discussion of the renormalization approach in Section 3, Eq. (4.3) is not to be seen
as a truly local relation, but merely as formal relation in order to derive angular correlations.

Eq. (3.18) shows that the effects of primordial non-Gaussianity on alignment correlations
are relevant on large scales. For this reason, we calculate proper full-sky angular correlations.
We begin by reviewing the formalism employed in the following to obtain full-sky correlations
efficiently. γij(n̂) is a traceless 2-tensor on the sky, with two degrees of freedom. Following
the literature developed for CMB polarization [48–50], we decompose γij into components
that transform with a spin s = ±2. Consider an orthonormal coordinate system (e1, e2, n̂).
If we rotate the coordinate system around n̂ by an angle ψ, so that ei → e′i, the linear
combinations m± ≡ (e1 ∓ i e2)/

√
2 transform as

m± → m′
± = e±iψm±. (4.5)
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A general function f(n̂) is spin-s if it transforms under the same transformation as

f(n̂) → f(n̂)′ = eisψf(n̂). (4.6)

An ordinary scalar function on the sphere is clearly spin-0, while the unit vectors m± defined
above are spin±1 fields. This decomposition is particularly useful for deriving multipole
coefficients and angular power spectra. For a summary of useful results, see App. A of [51].
We also define

k± ≡mi
∓ki

E± ≡mi
∓m

j
∓Eij (4.7)

for any 3-vector ki and 3-tensor Eij. We then decompose γij (this equally applies to the
individual I and G contributions) as

γij = 2γ m
i
+m

j
+ + −2γ m

i
−m

j
−

±2γ =mi
∓m

j
∓γij , (4.8)

where ±2γ are spin ±2 functions on the sphere (in analogy to Stokes parameters Q ± iU).
Consider the contribution of a single Fourier mode k of the density and potential, which we
choose along the z axis, to ±2γI(n̂):

±2γI(n̂, kẑ) =

∫

dz
dN

dz

(

k±
k

)2
[

bI1δm(k; τ(z)) + 3bINGA2φ(k; τ(z))
]

eik·n̂χ(z)

= − 1

2
(1− µ2)

∫

dz
dN

dz

[

bI1δm(k; τ(z)) + 3bINGA2φ(k; τ(z))
]

eixµ , (4.9)

where µ is the cosine between k̂ and n̂, and we have defined x ≡ kχ(z). We have also used
that Pijmi

±m
j
± = 0. Since ±2γ are not scalar quantities on the sky, they do not transform

trivially under rotations. Instead, we apply spin-raising ð2 and lowering ð̄2 operators to
obtain a scalar on the sky (see App. A of [51] for details). Specifically, for a spin-2 quantity
such as +2γ, the spin-lowering operator is given by [see Eq. (A8) of [51] for m = 0]

ð̄
2
+2γI =

∂2

∂µ2
[

(1− µ2)+2γI(n̂, ẑ)
]

=
1

2

∫

dz
dN

dz

[

bI1δm(k; τ(z)) + 3bINGA2φ(k; τ(z))
]

(1 + ∂2x)
2
[

x2eixµ
]

. (4.10)

In the last line, we have used

∂2

∂µ2
[

(1− µ2)2eixµ
]

=
∂2

∂µ2
[

(1 + ∂2x)
2eixµ

]

= −(1 + ∂2x)
2
[

x2eixµ
]

. (4.11)

This derivative operator is real, which reflects the fact that the linear alignments from scalar
perturbations considered here do not produce B-mode shape correlations even in the presence
of anisotropic non-Gaussianity. B-modes will be generated on small scales by the nonlinear
alignment terms written in Eq. (3.6), however. Applying the spin-raising operator ð2 to −2γI
yields exactly the same result. Crucially, ð̄2 +2γI as well as ð2−2γI transform as scalars on
the sky, which allows us to evaluate their two-point function (angular power spectrum) in a
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straightforward way. The angular power spectrum of ð̄2 +2γI is then directly proportional to
that of γI , which is our final goal (see Section 4.2).

We emphasize that Eq. (4.10) is the exact, proper relativistic expression of intrinsic
shapes on linear scales. This is because, as shown in [40], the tidal field defined in conformal-
Newtonian gauge corresponds to the physical, locally observable tidal field at linear order.
The lensing contribution discussed in Section 4.4 below then corresponds to the mapping
of the intrinsic locally observable shape to our observations from Earth. Note also that
redshift-space distortions do not affect alignments at linear order, since at that order they
only modify the physical volume which does not affect shapes (see also [21]).

Correspondingly, we can also write down the observed galaxy overdensity at linear order:

δn(n̂, kẑ) =

∫

dz
dN

dz

[

bn1δm(k; τ(z)) +
1

2
bnNGA0φ(k; τ(z))

]

eixµ . (4.12)

While the expression for the intrinsic shapes Eq. (4.10) is exact in the linear regime, we have
neglected several linear-order contributions in the galaxy overdensity:

• Redshift-space distortions: We will consider photometric galaxy samples throughout,
for which RSD are a subdominant effect. Further, at l = 2 it is inconsistent to only
include the linear RSD term without further relativistic corrections (see below).

• Magnification bias: This contribution, while straightforward to include, is typically sub-
dominant and furthermore affected negligibly by primordial non-Gaussianity as shown
in [47] (see also App. C).

• Relativistic corrections: There are corrections to the galaxy clustering kernels (e.g.,
[52] and App. B in [53]) that scale as (aH/k) and (aH/k)2. The latter terms are of the
same form as local-type non-Gaussianity with A0 . 1 for typical sample parameters.

These simplifications are justifiable, since the focus of this paper is shape correlations rather
than clustering, and since these approximations are not expected to have a significant impact
on the forecasted constraints for A2.

4.2 Intrinsic shape correlations

We can now apply the results of App. A1 of [51] to obtain the angular power spectra of galaxy
overdensity and shapes, and their cross-spectrum. In the following, we will consider three
different redshift distributions of galaxies in order to keep the treatment general: dNG/dz
denotes the redshift distribution of all galaxies with measured shapes; dNred/dz denotes
the subset of these galaxies that are early-type and known to show linear alignment of the
type considered here (a linear alignment has so far not been detected for late-type galaxies).
Finally, dNn/dz denotes the galaxy sample used in the measurement of the clustering. For
our main results, we will assume that Nn, Nred and NG are the same population of red
galaxies. We summarize our model for this population in Section 5.

Eq. (4.10) is a special case, r = 0, of Eq. (A19) in [51], and Eq. (A24) there (for |s| = 2
and NP = 1, where NP denotes the number of polarization states) immediately yields the
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Figure 2. The angular auto-power spectrum of intrinsic shapes (without accounting for weak grav-
itational lensing) for our fiducial choice of bI

NG
and A2 = +10 (left) and for A2 = −10 (right). The

Gaussian case is shown in solid black for three redshifts, z = {0.5, 1, 1.5} from top to bottom. We
show the case with anisotropic non-Gaussianity at the same redshifts (dashed).

auto-power spectrum of the intrinsic component of the shapes:

CI(l) =
2

π

(l − 2)!

(l + 2)!

∫

k2dk Pm(k)|F Il (k)|2 (4.13)

F Il (k) =

∫

dz
dNred

dz

[

bI1 + 3bINGA2M−1(k, z)
] D(z)

D(0)

[

(1 + ∂2x)
2 x2jl(x)

]

x=kχ(z)

=
(l + 2)!

(l − 2)!

∫

dz
dNred

dz

[

bI1 + 3bINGA2M−1(k, z)
] D(z)

D(0)

[

jl(x)

x2

]

x=kχ(z)

. (4.14)

Here, Pm(k) is the matter power spectrum at z = 0, and M(k, z) is defined in Eq. (3.13).
jl denotes the spherical Bessel function of order l. Note that no B-modes are generated
by linear scalar contributions. Also, by symmetry the lowest non-zero multipole of shape
correlations is the quadrupole l = 2.

Similarly, we can write down the cross-correlation between galaxy overdensity and shape
E-modes (again, only the intrinsic part). This is the multipole space version of the density-
tangential shape correlation function in real space, and reads

CnI(l) =
2

π

√

(l − 2)!

(l + 2)!

∫

k2dk Pm(k)F
I
l (k)F

n
l (k) (4.15)

Fnl (k) =

∫

dz
dNn

dz

D(z)

D(0)

[

bn1 +
1

2
bnNGA0M−1(k, z)

]

jl(x)
∣

∣

∣

x=kχ(z)
. (4.16)

The clustering auto-power spectrum, on the other hand, is simply given by

Cnn(l) =
2

π

∫

k2dk Pm(k)|Fnl (k)|2 . (4.17)

Eqs. (4.13)–(4.17) are valid on the full sky.
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4.3 Signatures of non-Gaussianity

We now illustrate the effect of isotropic and anisotropic non-Gaussianity on the angular power
spectra of galaxy counts and the intrinsic contribution to shapes (the lensing contribution
will be considered in the next section). Depending on the sign of A0 and A2, we obtain an
enhancement or suppression of the angular correlations at low multipoles (as expected from
Figure 1). In this section, we will assume the same values for the bias parameters as for
Figure 1, i.e. bI1 = −0.1ΩmD(0)/D(z) and bING = −0.1Ωm.

By definition, the intrinsic shape auto-power spectrum (Figure 2) is positive regardless
of anisotropic non-Gaussianity. This power spectrum decreases with redshift, as expected
from Eq. (4.20), from z = 0.5 (top) to z = 1.5 (bottom). Anisotropic non-Gaussianity
changes the power spectrum for small multipoles (l ≤ 20) and asymptotes to the Gaussian
case on small angular scales. The fractional effect increases towards higher redshifts.

An interesting and novel effect of primordial non-Gaussianity appears in the quadrupole
of shape correlations for A2 6= 0: consider the term ∝ (A2)

2 in CI(l). Focusing just on the
k-dependence at an effective source redshift zs, this contribution to CI(l) is proportional to

CI(l) ∝
∫

k2dk Pφ(k)(b
I
NGA2)

2

[

jl(x)

x2

]

x=kχ(zs)

. (4.18)

Now consider the quadrupole l = 2. We see that the factor in brackets asymptotes to a
constant for kχ(zs) ≪ 1, and this term becomes, for k ≪ 1/χ(zs),

CI(l)
kχ≪1∝ (bINGA2)

2

∫

k2dk Pφ(k) . (4.19)

This quantity diverges logarithmically in the IR for a near scale-invariant spectrum of primor-
dial fluctuations. Thus, the quadrupole of galaxy shapes depends on the lowest wavenumber
kmin at which non-zero anisotropic primordial non-Gaussianity is present, no matter how
small. In principle, a measurement of CI(l = 2), together with the higher l which con-
strain A2, would thus allow us to measure this low k cut-off, which is presumably related
to the beginning of inflation (kmin ∼ 1/τinf where τinf is the conformal time at the begin-
ning of inflation). Quantitatively, the contribution of such super-survey modes is roughly
of order (A2)

2As ln[τinf/χ(zs)], where we have neglected the contribution from the small tilt
ns − 1. Given the smallness of the amplitude of fluctuations As ∼ 10−10, this is probably
only observable for an extremely long period of inflation with correspondingly large τinf (or,
alternatively, if the fluctuations near the begining of inflation happened to be much larger
than the extrapolation of the near scale-invariant spectrum). For definiteness, we choose
kmin = 2 × 10−8 hMpc−1 for our numerical results; for A2 = 10, CI(l = 2) decreases by
roughly a factor of 3 when increasing kmin to 10−5 hMpc−1.

It might be surprising that modes that are far outside our current horizon affect observ-
ables. Physically, this is because for A2 6= 0, the matter power spectrum in our observable
universe is anisotropic and has a spatially constant quadrupole with an expectation value
proportional to (A2)

2
∫

k2dk Pφ(k). Galaxy shapes respond to this anisotropy, as quantified
by bING, and the spatially constant power spectrum quadrupole will lead to a correspond-
ing quadrupole of galaxy shapes. Related effects of superhorizon modes have been found in
[54, 55]. Note that a similar effect also exists for isotropic non-Gaussianity A0 6= 0, where the
monopole of the galaxy overdensity similarly receives a contribution ∝ (A0)

2
∫

k2dk Pφ(k).
However, this effect is unobservable, since the amplitude of scalar fluctuations themselves
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Figure 3. Fractional change in the angular cross-spectrum of galaxy positions and intrinsic shapes
at z = 1 for different levels of non-Gaussianity and our fiducial choice of bI

NG
. We assume bn1 = 2 and

bn
NG

= (bn1 − 1)δc. The left panel shows results for A2 = +10, while the right panel shows A2 = −10.
In addition, we show results for isotropic non-Gaussianity, A2 = 0, A0 = +10 in both panels.

receives the same correction, which is thus absorbed in the normalization As. In this regard,
anisotropic PNG and galaxy shapes in principle offer qualitatively new information over the
well-known isotropic case.

When the cross-spectrum of galaxy positions and intrinsic shear is considered, both
A2 and A0 have an impact on the large-scale correlations. Figure 3 shows the effect of the
different types of non-Gaussianity on this cross-spectrum and assuming bn1 = 2. For A2 < 0
(right panel), the correlation between galaxy positions and shapes changes sign on large
scales, corresponding to a transition from radial to tangential alignment. That is, intrinsic
shapes in this case have the same sign as the lensing signal, which is also tangential behind
overdensities. If A2 > 0, non-Gaussianity strengthens the effect of the tidal field, enhancing
the radial alignment of red galaxies. In this case, there is no sign change. We emphasize that
both A2 and A0 are theoretically allowed to have either positive or negative signs.

4.4 Lensing shear

Correlations in galaxy shapes are not only present intrinsically through tidal alignments,
but are also induced by gravitational lensing (in particular, the shear; see [56] for a review).
In general, these two effects are difficult to separate, making it necessary to model them
jointly [4]. We thus include the effect of gravitational lensing in the shape correlations in
our quantitative forecasts of Section 7. At linear order, the alignment (I) and lensing (G)
contributions are simply additive, so that the full shape auto-power spectrum becomes

Cγγ(l) =
2

π

(l − 2)!

(l + 2)!

∫

dk k2 Pm(k)|F Il (k) + FGl (k)|2 , (4.20)

where the lensing shear kernel for a distribution of source redshifts dNG/dz is given by (e.g.,
App. F of [51])

FGl (k) =
1

2

(l + 2)!

(l − 2)!

∫ χmax

0
dχ k2DΦ(k, z(χ))

jl(x)

x2
χ

∫ χmax

χ
dχ̃H(χ̃)

dNG

dz

(χ̃− χ)

χ̃
, (4.21)
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and DΦ is given by

DΦ(k, z) =
3H2

0Ωm,0
k2

(1 + z)D(z)

D(0)
. (4.22)

The expression in Eq. (4.20) includes the intrinsic alignment auto-power spectrum, cross-
correlations between weak lensing shear and intrinsic shapes, and cosmic shear. The cor-
relation between intrinsic shapes and alignments occur when a galaxy in the background is
being lensed by the same matter density field that tends to align the second galaxy [2, 57].
Similarly, the density-observed shape cross-correlation becomes

Cnγ(l) =
2

π

√

(l − 2)!

(l + 2)!

∫

k2dk Pm(k)
[

F Il (k) + FGl (k)
]

Fnl (k) . (4.23)

As this is an important point, we reiterate that the result in Eq. (4.20), with Eq. (4.14)
and Eq. (4.21), is exact on linear scales, i.e. it does not receive further relativistic corrections.4

For the intrinsic contribution, we have argued this in Section 4.1. For the lensing contribution,
Ref. [51] showed that the seemingly “Newtonian” expression for the shear in conformal-
Newtonian gauge [Eq. (4.21)] is the proper relativistic expression for the observable shear
at linear order. Note that this does not hold for the convergence κ, where the observable
magnification in fact receives several relativistic corrections. As discussed above, Eq. (4.23)
assumes several simplifications in the number count kernel Fnl (k).

For the numerical implementation, we use the Limber approximation for l ≥ 60 for
all angular power spectra, following [58]. At these multipoles, the Limber approximation
provides an estimation of the angular power spectra with sufficient accuracy for our purposes,
and yields better numerical convergence. We have verified that using the full integrals up to
l = 400 does not change our results. For the quadrupole (l = 2), we use a value of kmin =
2× 10−8 hMpc−1 as minimum wavenumber, which matters for the shape auto-correlation as
discussed above. For all other multipoles the value of kmin is chosen small enough to ensure
a converged result.

5 Modeling the red galaxy population and alignments

Red galaxies have been observed to be subject to intrinsic alignments with a scale dependence
that is well approximated by the linear alignment model (Eq. 3.10) on scales above ∼
10 Mpc/h [3, 8–10, 57]. On the other hand, late-type galaxies do not exhibit detectable
alignment on large scales [11, 12]. Thus, in order to estimate the intrinsic alignment power
spectrum as a function of redshift, it is necessary to model the red galaxy fraction.

The fraction of red sources,

fred(z) =
dNred/dz

dNG/dz
, (5.1)

depends on the intrinsic properties of red galaxies (their spectral energy distribution and
luminosity function) and on the properties of the survey (filter, magnitude limit, source
redshift distrubution). We use the model constructed by Ref. [3] and applied by Ref. [59]
to obtain the fraction of red galaxies and their mean i-band luminosity as a function of
redshift for an LSST-like survey. The source redshift distribution expected for LSST, which

4This assumes that certain potential gauge artefacts have been removed from A2 [40].
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Figure 4. The expected fraction of red galaxies observed by LSST as a function of redshift for a
limiting magnitude of ilim = 25.3 (AB). The gray dashed curve shows dNred/dz with an arbitrary
normalization.

extends from z = 0.1 to z = 3, is given in [60]; there are 26 galaxies per arcmin2 and
we assume an i-band limiting magnitude of 25.3 (AB), consistent with the so called ‘gold
sample’ of galaxies with signal-to-noise ratio > 20 and measured shears in LSST [61]. We
assume a red galaxy luminosity function as observed by Ref. [62] from a combination of
galaxy surveys between 0.2 < z < 1.2. In our model, the paucity of red galaxies at z > 1.5
implies that intrinsic alignments have no contribution to the total shear above those redshifts.
The redshift distribution of red galaxies in LSST using this model is shown in Figure 4.
Throughout, we assume a survey with an area coverage of 18, 000 square degrees, since the
effect of masking is accounted for in the effective number density of galaxies. When projected
over the range z = [0, 1.5], LSST should observe 3 red galaxies per arcmin2. Notice that this
is optimistic because we are not modeling any additional selection cuts on galaxy shapes that
could potentially affect the red population. In our model, blue galaxies are assumed to have
no alignments.

We can relate the linear shape bias bI1 to the convention commonly used in papers
reporting on measurements of intrinsic alignment as follows:

bI1 = −AI(Lr)ΩmC1ρcrit
D(0)

D(z)
, (5.2)

where Ωm is the matter density parameter today and C1ρcrit = 0.0134 is fixed by convention
to the SuperCOSMOS intrinsic alignment amplitude [63]. Later on, we will treat C1ρcrit as a
free parameter when making predictions of non-Gaussianity constraints from future surveys.
AI is a luminosity-dependent amplitude measured by Ref. [3] from a sample of Luminous
Red Galaxies (LRGs) in the Sloan Digital Sky Survey [64],

AI(Lr) = (5.76+0.60
−0.62)

(

Lr
L0

)1.13+0.25
−0.2

, (5.3)

where Lr is the average r-band luminosity at a given redshift and L0 is a pivot luminosity
corresponding to an absolute magnitude of M0(z) = −22 − 1.2z − 5 log10 h. We emphasize
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that ongoing imaging surveys, such as the Kilo-Degree Survey5, the Dark Energy Survey6,
the PAU survey7 and Hyper-Suprime Cam8 will be able to test the assumptions on the
dependence of bI1 with redshift and luminosity we have made here.

Unlike in the case of the scale-dependent bias in galaxy number counts, bnNG ≈ (bn1−1)δc,
for which a fairly accurate estimate is known, no such estimate exists for the response of
shapes to the power spectrum anisotropy quantified by bING. We will thus assume that bING

is comparable to bI1 at any given redshift, specifically

bING = b̃ING × bI1(z)
D(z)

D(0)
(5.4)

where we assume throughout b̃ING = 1 but keep it explicit in order to illustrate the residual
modeling uncertainty.

Note that the effect of the luminosity dependence of the intrinsic alignment bias was
not taken into account in Section 4.3 above, but will be included in the quantitative forecast.
Its most important consequence is the existence of a Malmquist-like bias for the population
of intrinsically aligned galaxies in a magnitude-limited survey. As a result, the red galaxy
population at higher redshifts has a larger bI1, which results in a larger contribution from
anisotropic non-Gaussianity compared to the case presented in Section 4.3, where bI1 was set
to a constant.

6 Fisher matrix analysis

In order to estimate the ability of future surveys to set joint constraints on isotropic and
anisotropic non-Gaussianity, we perform a Fisher matrix analysis over the parameter set
{bn1 , A0, A2, C1ρcrit, σ8}. The remainder of the cosmological parameters are fixed to their
values given at the end of Section 1. Further, we include a prior in σ8 = 0.831 ± 0.013 from
Planck [32, Table 3, column 4].

The predictions for the angular auto- and cross-power spectra were given in Section 4.
All auto-power spectra also contain noise terms, which we assume to be white,

Nγ =
σ2γ
n̄G

and Nn =
1

n̄n
, (6.1)

where σ2γ is the dispersion of the intrinsic shape including measurement noise per component,
and n̄G is the projected surface density of galaxies with shapes per steradian. Similarly, n̄n
is the surface density of galaxies used to compute the clustering signal.

Since all perturbations are Gaussian at the order we work in, the covariance between
two power spectra is given by

Cov[Cαβ(l), Cγδ(l
′)] = δll

′

K

1

(2l + 1)fsky
[Cαγ(l)Cβδ(l) + Cαδ(l)Cβγ(l)] (6.2)

where the indices {α, β, γ, δ} run over {n,G}, i.e. number densities and shapes.

The Fisher matrix is given by [65, 66]

5http://kids.strw.leidenuniv.nl
6http://www.darkenergysurvey.org
7“Physics of the Accelerating Universe”, http://www.pausurvey.org/home-PAU.html
8http://www.naoj.org/Projects/HSC/
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Fµν =
∑

l

∂D(l)

∂pµ
Cov−1(l)

∂D(l)

∂pν
(6.3)

where Cov is the covariance matrix of the data vector D = {Cnn, Cnγ , Cγγ} and ∂µ indicates
the partial derivative with respect to the parameters of interest. We perform these derivatives
analytically on the expressions for Cαβ(l), and evaluate the results numerically. In practice,
A2 cannot be constrained independently of b̃ING. While we assume b̃ING = 1, this means that
the power spectra are effectively constraining the product b̃INGA2. The 1σ uncertainty in
each parameter, after marginalizing over all other parameters, are given by σµ,full−margin =
√

(F−1)µµ. We also consider forecasted errors after marginalizing only over {bn1 , C1ρcrit, σ8},
which allows us to determine whether degeneracies between A0 and A2 exist. If A0 and A2

correspond to coordinates 1 and 2 of the Fisher matrix, we obtain the partially-marginalized
bounds from defining the following sub-matrix,

(G−1)i,j = [F−1]i=[1,2],j=[1,2] (6.4)

and then the partially-marginalized uncertainties are given by

σi,part−margin = G
−1/2
ii . (6.5)

7 Constraining non-Gaussianity with clustering and shapes

In this section, we forecast the ability of galaxy imaging surveys to detect anisotropic non-
Gaussianity using galaxy shapes, in particular those of red galaxies. We consider an LSST-like
survey with 26 galaxies per arcmin2 [60] and we model the red galaxy population as described
in Section 5. We assume that the dispersion in the intrinsic ellipticities per component is
σγ = 0.3 [67]. We do not account for dispersion due to photometric redshift scatter in the red
galaxy population in this section, since we are integrating over the full redshift range of the
red galaxy population. Figure 5 shows the position-shape and shape-shape angular power
spectra and their expected uncertainties as a function of multipole number for the cases with
b̃INGA2 = 0 and b̃INGA2 = 100. Clearly, the shape correlations are dominated by the lensing
contribution, and the fractional effect of anisotropic non-Gaussianity is significantly smaller
than in the intrinsic-only correlations shown in Figures 2 and 3.

We combine the clustering, galaxy-lensing and cosmic shear information for the red
galaxy population to obtain constraints on {C1ρcrit, b

n
1 , A0, (b̃

I
NGA2), σ8}. Notice that we

assume that the luminosity and redshift dependence of the intrinsic alignment model is
fixed by current observational data, but we allow the overall amplitude of alignments to be
constrained through changing the normalization given by C1ρcrit (no priors are considered).
Analogously, we assume a fiducial constant, redshift-independent bias for red galaxies, bn1 = 2,
that is allowed to vary in the Fisher analysis. We obtain the following fully marginalized 1σ
bounds on the uncertainties in the parameter set from the multipole range 2 ≤ l ≤ 600:

∆(C1ρcrit) = 8.6 × 10−4,

∆bn1 = 2.6 × 10−2,

∆A0 = 44, and

∆(b̃INGA2) = 150. (7.1)
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Figure 5. Position-shape correlations and shape-shape correlations of red galaxies expected to be
observed in LSST between 0.1 < z < 1.5. The case of Gaussian initial conditons is shown in solid
black, and the case with A2 = 100 is shown as dashed gray lines. The error bars show the expected
uncertainties for a Gaussian fiducial cosmology.

Our forecast for the uncertainty in A2 (assuming b̃ING = 1) is somewhat worse than the current
CMB constraints, ∆ACMB

2 ∼ 90 [31, 68, at 68% confidence level]. We emphasize however that
galaxy alignments probe different scales than the CMB, and thus these constraints should
be seen as complementary to the CMB in view of a possible scale-dependence of the non-
Gaussianity. This applies in particular to the small-scale modes, where the modes relevant for
galaxy formation are kS & 1hMpc−1, while the CMB probes modes with kS . 0.1hMpc−1.

Note further that the constraints depend on the fiducial value of A2 chosen, where
our choice of fiducial A2 = 0 is conservative. This is because the terms ∝ (A2)

2 do not
contribute to the constraints in this case. In particular, this applies to the quadrupole of
the shape auto-power spectrum, which diverges as kmin → 0 as discussed in Section 4.3, and
is the most prominent non-Gaussian feature in Figure 5. Thus, the true log-likelihood is
steeper than the quadratic approximation around A2 = 0 suggests, so that even in case of a
non-detection the actual constraints obtained for a survey with these specifications could be
tighter. Further, in case of a detection of non-zero A2 with shape correlations, the amplitude
of Cγγ(l = 2) could be used to constrain kmin via its logarithmic dependence on it.

For the well-known isotropic non-Gaussianity on the other hand, our results indicate an
uncertainty of ∆f locNL = 11. This latter constraint is significantly worse than what is expected
for Stage IV spectroscopic surveys, since we consider only a single redshift bin which loses
information on all line of sight modes. We will return to this issue at the end of this section.

Figure 6 shows likelihood contours in the A0 − b̃INGA2 plane, obtained by marginalizing
over C1ρcrit, σ8 and bn1 . They correspond to {1, 2, 3}σ confidence intervals. We find that in-
cluding all auto- and cross-correlations of number counts and shapes almost entirely removes
any degeneracy between the two non-Gaussianity parameters.

Given our linear treatment of the matter power spectrum, we consider the effect of
restricting the forecasts to lower multipoles (note however that nonlinear corrections to the
lensing contribution are straightforward to incorporate). Figure 7 shows the forecasted un-
certainty in the anisotropic non-Gaussianity parameter as the maximum l is increased. This
figure shows that although the effect of non-Gaussianity is most significant on large scales,
the small scales still contain significant information in particular on bn1 and C1ρcrit which are
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Figure 6. {1, 2, 3}σ uncertainties in A0 and b̃I
NG
A2 (thick to thin black, blue and red solid lines,

respectively) marginalizing over C1ρcrit, σ8 and bn1 . These constraints are obtained from considering
the combination of clustering, position-shape correlations and shape-shape correlations and using the
redshift distribution of red galaxies expected to be observed in LSST between 0 < z < 1.5.

helpful in improving the constraints on the non-Gaussianity parameters. While extending
the modeling of the power spectra to nonlinear scales is beyond the scope of this work, there
is thus potential for better constraints on the non-Gaussianity parameters from l > 600.
However, the effects of baryonic physics on the nonlinear lensing and alignment power spec-
trum on those scales are still a matter of debate (see, for example, [69]). On the other hand,
removing scales below l < 10 while keeping lmax = 600 fixed increases the uncertainty in
the marginalized ∆(b̃INGA2) by a factor of 1.6. Not surprisingly, the very low multipoles
are important for constraining primordial non-Gaussianity, requiring careful control of the
systematics in imaging surveys.

In our constraints we have included the full redshift distribution of galaxies, thus sup-
pressing any information contained in modes along the line of sight. This is the reason why
our forecasted constraint on f locNL is roughly an order of magnitude worse than what is obtained
from spectroscopic surveys of similar volume. Given that, unlike the lensing field, the tidal
alignment is an intrinsically three-dimensional effect, we thus expect a potential significant
improvement over the constraints quoted here by using a full tomographic analysis rather
than a single redshift bin, which would restore information on the line-of-sight modes. This
has been found to hold for the scale-dependent bias in the galaxy density induced by f locNL

[70, 71], and for IA in the case of Gaussian initial conditions [7, 72]. Further, tomography
should help break any degeneracy between the alignment strength and cosmological param-
eters such as σ8, which we have not considered here. In fact, a much smaller spectroscopic
sample of red galaxies with well-measured shapes could deliver interesting constraints as well.
We defer the forecast for the full tomographic and spectroscopic cases to future work.

8 Discussion and conclusions

We have shown that the intrinsic alignment of red (elliptical) galaxies will become an inter-
esting probe of inflationary physics in the future. Through their sensitivity to a quadrupolar
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NG
A2) after marginalizing over all other parameters and as a function of

the maximum multipole considered (holding the minimum l fixed at 2).

anisotropic mode coupling, galaxy shapes expand the parameter space of inflationary models
that can be probed using large-scale structure observables. The anisotropic squeezed-limit
bispectrum translates into a local anisotropy in the matter power spectrum, which imprints
itself in the shapes of halos and galaxies forming at that location. This non-Gaussian bias
produces a tendency towards radial or tangential alignments, depending on the sign of the
non-Gaussianity, which increases rapidly towards large scales. This is the analog in galaxy
shapes of the familiar scale-dependent bias in galaxy clustering induced by isotropic primor-
dial non-Gaussianity.

As a specific example, models such as solid inflation, the realization of inflation through
the symmetries of a solid [22], could be probed through this method. More generally, as
was recently pointed out by Ref. [26], the angular dependence of the bispectrum encodes
information about the spin of light particles during inflation. Therefore, constraints on
the quadrupolar part of the bispectrum, analyzed in this work, provide information about
tensor degrees of freedom during inflation. Moreover, we have shown that should anisotropic
non-Gaussianity be detected, the quadrupole of galaxy shapes can be used to constrain the
maximum scale at which this mode coupling persists, which is presumably related to the
beginning of or some other special event during inflation. This is a unique possibility of
probing physics outside of our horizon, which is not possible with isotropic non-Gaussianity.

We have modeled the red fraction of galaxies in the LSST survey following the approach
suggested by [3], and conservatively assumed that late-type (blue) galaxies do not align,
which is consistent with currently available constraints [11, 12]. We have shown that the
constraints on A2 for future surveys are comparable to, though slightly worse than, current
CMB constraints. Specifically, we find ∆A2 = 150(b̃ING)

−1 for LSST, while current constraints
on A2 from Planck require −80 < A2 < 110 at the 68% confidence level. Note that this
constraint was derived for a fiducial A2 = 0, which neglects any terms scaling as (A2)

2. To
achieve these constraints, imaging surveys will need to access scales below l < 10, otherwise
the constraint worsens by a factor of 1.6. However, a three-dimensional reconstruction of the
auto and cross-spectra of positions and shapes could potentially yield significantly tighter
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constraints on both A2 and A0, as the alignment process is intrinsically three-dimensional,
in contrast to lensing. Just as importantly, the constraints on A2 from galaxy shapes are to
be considered complementary to those from the CMB, as they come from different physical
scales (k & 1hMpc−1 vs k . 0.1hMpc−1).

One key caveat to these forecasts is the unknown value of the parameter bING, which
quantifies the response of galaxy shapes to an anisotropic initial power spectrum. In this
work, we have assumed that bING is of the same order as the tidal alignment strength bI1 which
has been measured observationally. Ideally, bING should be estimated from hydrodynamic
simulations of galaxy formation, by running a simulation with an anisotropic initial power
spectrum and measuring the response of halos and galaxies to this preferred direction (also
as a function of luminosity or mass). For the purpose of this work, we chose to simply phrase
our constraints in terms of the combination b̃INGA2, where b̃

I
NG ∼ 1 if our assumption is valid.
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A Derivation of Eq. (3.11)

The left-hand side of Eq. (3.11) is given in terms of the potential three-point function by

〈δ(x)δ(y)Kij (y)〉 =
∫

d3k

(2π)3
eik·rM(k)

∫

d3k1
(2π)3

∫

d3k2
(2π)3

[

k1ik1j
k21

− 1

3
δij

]

×M(k1)M(k2)〈φkφk1
φk2

〉 ,

where r = x− y, and M is defined in Eq. (3.13). Using the definition of the bispectrum,

〈φkφk1
φk2

〉 = (2π)3δD(k+ k1 + k2)Bφ(k,k1,k2), (A.1)

we have

〈δ(x)δ(y)Kij (y)〉 =
∫

d3k

(2π)3
eik·rM(k)

∫

d3k1
(2π)3

[

k1ik1j
k21

− 1

3
δij

]

×M(k1)M(|k+ k1|)Bφ(k, k1, |k+ k1|) . (A.2)

We now expand the integrand in powers of q = k/k1. Further, we define µ = k̂ · k̂1. As
shown in App. C of [35], but generalized to the anisotropic case Eq. (1.1), the bispectrum is
given by

Bφ(k, k1, |k+ k1|) =
∑

ℓ

AℓPℓ(µ)Pφ(k)Pφ(k1)
[

2 + (2qµ+ [1− 2µ2]q2)nφ
]

+O(q3),

where nφ = ns − 4 and we have assumed a pure power-law Pφ(k) for simplicity. Further,

M(|k+ k1|) =M(k1)

[

1 + qµ nM(k1) +O(q2)

]

; nM(k1) ≡
∂ lnM(k1)

∂ ln k1
. (A.3)
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Inserting these expressions into Eq. (A.2), we obtain

〈δ(x)δ(y)Kij (y)〉 =
∫

d3k

(2π)3
eik·rM(k)Pφ(k)

∫

k21dk1
(2π)2

M2(k1)Pφ(k1)

×
∫ 1

−1
dµ

∫ 2π

0

dφ

2π

[

k1ik1j
k21

− 1

3
δij

]

∑

ℓ

AℓPℓ(µ)
[

2 + 2qµ {nφ + nM(k1)}+O(q2)
]

.

In the following we will neglect any O(q2) corrections; in terms of observed correlations, these
would lead to a small scale-independent correction which is degenerate with the Gaussian
part. We now choose k to lie along the z axis. We can then write

k1ik1j
k21

=







cos2 φ(1− µ2) cosφ sinφ(1− µ2) cosφ µ
√

1− µ2

cosφ sinφ(1 − µ2) sin2 φ(1− µ2) sinφ µ
√

1− µ2

cosφ µ
√

1− µ2 sinφ µ
√

1− µ2 µ2






. (A.4)

Performing the φ integral only leaves the diagonal terms (as expected by symmetry):

∫ 2π

0

dφ

2π

k1ik1j
k21

=
1

2





1− µ2 0 0
0 1− µ2 0
0 0 2µ2



 . (A.5)

In order to obtain an expression for general directions of k, we notice that by symmetry,
the final expression can only involve the tensors k̂ik̂j and δij . Straightforward algebra then
yields

∫ 2π

0

dφ

2π

[

k1ik1j
k21

− 1

3
δij

]

= P2(µ)

[

kikj
k2

− 1

3
δij

]

. (A.6)

We thus have

〈δ(x)δ(y)Kij (y)〉 =
∫

d3k

(2π)3
eik·rM(k)Pφ(k)

[

kikj
k2

− 1

3
δij

]
∫

k21dk1
(2π)2

M2(k1)Pφ(k1)

×
∫ 1

−1
dµ P2(µ)

∑

ℓ

AℓPℓ(µ)
[

2 + 2qµ {nφ + nM(k1)}+O(q2)
]

=
2

5
A2

∫

d3k

(2π)3
eik·rM(k)Pφ(k)

[

kikj
k2

− 1

3
δij

] ∫

k21dk1
2π2

M2(k1)Pφ(k1) .

In the last line, we have used the orthonormality of the Legendre polynomials. Note that
since L is even, the qµ term does not contribute and corrections are order q2. The k1 integral
now simply gives the (formally divergent) variance of the density field 〈δ2〉. By defining

ξφδ(r) =

∫

d3k

(2π)3
eik·rM(k)Pφ(k) (A.7)

we then obtain

〈δ(x)δ(y)Kij (y)〉 =
2

5
A2Dijξφδ(r)〈δ2〉 . (A.8)

This is Eq. (3.11). It is easy to see that the corresponding result for the quadratic tidal term
simply becomes

〈

δ(x)

[

KikK
k
j −

1

3
δij(Klm)

2

]

(y)

〉

=
2

15
A2Dijξφδ(r)〈δ2〉 . (A.9)
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This is because the analog of Eq. (A.2) for this term differs by factors constructed out of
k1i (k+ k1)j/(k1|k+ k1|), which at leading order are simply k1ik1j/k

2
1 .

Also, let us show that anisotropic non-Gaussianity does not lead to a scale-dependent
bias in the number density of tracers. The tracer density locally depends on the variance
of the density field smoothed on some scale, as well as the square of the tidal tensor K2

ij

[Eq. (3.2)]. Let us calculate these local quantities given the power spectrum Eq. (2.3):

〈δ2〉x =

∫

d3kS
(2π)3

[

1 + f(k̂L · k̂S)φ(kL)eikLx

]

P (kS)

〈(Kij)
2〉x =

∫

d3kS
(2π)3

(

k̂iS k̂
j
S − 1

3
δij

)2 [

1 + f(k̂L · k̂S)φ(kL)eikLx

]

P (kS) . (A.10)

Aligning kL with the z axis, we see that both terms involve the integral

∫ 1

−1
dµ f(µ) = 2A0 , (A.11)

i.e. these quantities pick out the monopole of f . Thus, non-Gaussianity of the quadrupolar
type does not affect the local averages Eq. (A.10) at leading order in the non-Gaussianity.

B Renormalized shape biases

In this section, we provide a rigorous derivation of the reasoning outlined in Section 3. For
this purpose, we introduce a fictitious coarse-graining scale RL which we assume to be much
smaller than the scale on which we measure correlations. We denote coarse-grained fields by
a subscript L. Since we will be dealing exclusively with galaxy shapes and not with number
counts, we will drop the superscript I for the remainder of the appendix.

Let us consider the case of Gaussian initial conditions first. Since RL ≫ R∗, the shape
of galaxies at position x becomes a local function of the coarse-grained density δL and tidal
field Kij

L . In addition, the shapes are in general a functional of the small-scale fluctuations
within a region of size ∼ R∗ around x. Hence,

gij(x) = FLij (δL(x);K
kl
L (x); δs) , (B.1)

where δs = δ − δL are the small-scale fluctuations. The superscript L denotes the fact that
FLij depends on RL. We can now perform a formal Taylor expansion of FLij in δL and Kij

L ,

taking into account that FLij has the same symmetries as gij . The first few terms of the
expansion are

gij(x) = c1K
ij
L (x) +

1

2
c2δL(x)K

ij
L (x) +

1

2
ct

[

Kik
L K

kj
L − 1

3
δij(K lm

L )2
]

+O(δ3L, ∇2δL) . (B.2)

The coefficients ci depend on RL and on the small-scale modes δs. In the Gaussian case,
the small-scale modes are uncorrelated with the long-wavelength perturbations, so that they
merely lead to stochastic terms which do not correlate over large scales. Then, the ci can
be regarded as effective constants. We have not written the most general leading order term
here, which would be cijklK

kl
L , and instead reduced cijkl to a scalar c1. The reason is that
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in order to construct anything more general we would need some preferred direction which
is absent in 3D space.9

The expectation value of gij has to vanish by symmetry. Note that this is achieved
at second order without having to add any counter term in Eq. (B.2). Now consider the
transformation

Kij
L (x, τ) → Kij

L (x, τ) +D(τ)βij ; δL(x, τ) → δL(x, τ) , (B.3)

where D(τ) is the matter growth factor, βij is constant and β i
i = 0. This corresponds to

adding a uniform tidal field to the Newtonian potential,

ΦN (x) → ΦN (x) +
3

4
Ωm0H

2
0 (1 + z)D(z)βijx

ixj . (B.4)

Under this transformation, the expectation value of g changes to

〈gij(x, τ)〉β = c1(τ)βij +O(δ3L, ∇2δL) . (B.5)

In the following, we will assume we are evaluating the correlations at some fixed time t, and
drop this argument for clarity. We now introduce the renormalized bias parameters through

b1 ≡
∂〈gij〉β
∂βij

∣

∣

∣

β=0
= c1 +O([δL, K

ij
L ]

2) . (B.6)

Note that the definition of b1 is explicitly independent of RL. The RL-dependent quadratic
corrections in Eq. (B.6) come from cubic order terms in Eq. (B.2), hence we have not written
them here. Similarly, the renormalized quadratic tidal bias is defined via

bt ≡
∂2〈gij〉β
∂(βij)2

∣

∣

∣

β=0
= ct +O([δL, K

ij
L ]

2) , (B.7)

where now the quadratic corrections come from fourth-order terms in Eq. (B.2).
In order to derive the renormalized bias corresponding to c2, we generalize Eq. (B.3) to

Kij
L (x, τ) → Kij

L (x, τ) +D(τ)βij ; δL(x, τ) → δL(x, τ) +D(τ) c , (B.8)

where the transformation of δL is the same as the one used to define renormalized local bias
parameters in [35]. Specifically, it corresponds to adding a uniform matter density component
cρ̄. We then define

b2 ≡
∂2〈gij〉β,c
∂βij∂c

∣

∣

∣

β=0,c=0
= c2 +O([δL, K

ij
L ]

2) . (B.9)

Again, b2 is independent of RL by construction.
We now turn to correlations of gij on large scales. For simplicity, let us consider the

cross-correlation with matter here, i.e. 〈δ(x)gij(y)〉. After renormalizing the cn into bn we
obtain

〈δ(x)gij(y)〉 = b1〈δ(x)Kij
L (y)〉 + 1

2
b2

〈

δ(x)δL(y)K
ij
L (y)

〉

+
1

2
bt

〈

δ(x)

[

Kik
L K

kj
L − 1

3
δij(K lm

L )2
]

(y)

〉

+ · · · , (B.10)

9In reality, the line of sight n̂ provides such a preferred direction. Thus, in principle a linear term like
n̂in̂jn̂kn̂lt

kl
L could be present due to redshift space effects. However such a term will not be relevant for

photometric galaxy catalogues.
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where the ellipsis stands for higher order no-zero-lag correlators, i.e. correlators that do not
contain any zero-lag terms such as 〈δ2L〉, 〈KijK

ij〉 when expanded into connected correlators.
If |x− y| ≫ RL (and the correlation function does not have sharp features), then

〈δ(x)Kij
L (y)〉 = 〈δ(x)Kij(y)〉 = Dijξ(|x− y|) (B.11)

where ξ(r) is the matter correlation function. This renormalized bias quantifies the linear
response of galaxy shapes to a long-wavelength tidal field as described above. For Gaussian
initial conditions, the three-point function in Eq. (B.10) is only due to non-linear evolution
and relevant on smaller scales.

B.1 Non-Gaussian initial conditions

We now turn to the case of non-Gaussian initial conditions, quantified by Eq. (1.1). Note
that the three-point term in Eq. (B.10) is sensitive to the bispectrum in the squeezed limit if
|x − y| ≫ RL, the coarse-graining scale adopted. As shown in App. A, for a squeezed-limit
bispectrum of the form Eq. (1.1) we have

〈

δ(x)δL(y)K
ij
L (y)

〉

=
2

5
A2Dijξδφ(|x− y|)σ2L , (B.12)

where ξδφ(r) is the matter-potential cross-correlation and σ2L is the variance of the coarse-
grained density field, σ2L ≡ 〈δ2L〉. A similar result (with prefactor 2/15 instead of 2/5) holds
for the term ∝ bt. The fact that this term scales as σ2L, i.e. that it strongly depends on the
arbitrary coarse-graining scale indicates that the bias expansion Eq. (B.2) is not sufficient in
the presence of primordial non-Gaussianity. This exactly parallels the case of galaxy density
correlations, where the corresponding three-point term also scales as σ2L [35].

In order to remedy this unsatisfying situation, we explicitly include the dependence of
gij on the small scale fluctuations indicated in Eq. (B.1). Of course, this dependence has
to be consistent with the symmetries of gij . Physically, we expect that the lowest order
dependence on δs in Eq. (B.1) will be through a quadrupolar asymmetry in the statistics
of the local small-scale density field; an isotropic change cannot produce an effect at linear
order because we are expanding a spin-2 function. Note that it is sufficient to phrase the
dependence on the small-scale modes in terms of δs, since the small-scale tidal field is related
to δs through the Poisson equation. Let us define the parameter yijs as the anisotropy of the
local small-scale correlation function within a region of size RL:

ykls (x) =
1

σ2y

∫

d3rWL(|r|)δs(x)Dkl
r δs(x+ r)

σ2y =

∫

d3k1
(2π)3

W̃L(k1)W̃
2
s (k1)Pm(k1) , (B.13)

where WL is an arbitrary isotropic filter function on the scale RL (e.g., Gaussian or tophat),
and W̃L is its Fourier transform. Dij

r denotes the derivative operator Eq. (3.3) acting with
respect to r. While this definition is convenient, other definitions are certainly possible and
do not change the results. Note that since by definition δs = δ − δL, the statistics of δs also
depend on RL. We now let gij depend locally on ykls :

gij(x) = FLij (δL(x);K
kl
L (x); ykls (x)) . (B.14)
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We expand Fij to linear order in ykls , which adds a term

cNGy
ij
s (x) (B.15)

to the expansion on the r.h.s. of Eq. (B.2). At linear order in the non-Gaussianity parameters
Aℓ, we do not need to consider higher order terms involving yijs . The same symmetry argu-
ment as for Kij

L dictates a simple scalar coefficient cNG. Correspondingly, we have another
contribution to the matter-shape correlation:

〈δ(x)gij(y)〉 = b1〈δ(x)Kij
L (y)〉 + 1

2
b2

〈

δ(x)δL(y)K
ij
L (y)

〉

+
1

2
bt

〈

δ(x)

[

Kik
L K

kj
L − 1

3
δij(K lm

L )2
]

(y)

〉

+ cNG〈δ(x)yijs (y)〉 + · · · . (B.16)

The last term can be calculated along the same lines as the calculation in App. A. The
Fourier transform of Eq. (B.13) is given by

yijs (k) =
1

σ2y

∫

d3k1

(2π)3

[

ki1k
j
1

k21
− 1

3
δij

]

W̃L(k1)δs(k1)δs(k− k1) (B.17)

We then obtain

〈δ(x)yijs (y)〉 =
1

σ2y

∫

d3k

(2π)3
eik·rM(k)

∫

d3k1
(2π)3

W̃L(k1)

[

ki1k
j
1 −

1

3
δijk21

]

×Ms(k1)Ms(|k+ k1|)Bφ(k, k1, |k+ k1|) (B.18)

where Ms(k) = M(k)W̃s(k). The derivation now exactly parallels that of Eq. (A.8), where
the k1 integral now yields

∫

k21dk1
2π2

W̃L(k1)M2
s(k1)Pφ(k1) = σ2y , (B.19)

cancelling the prefactor. We obtain

〈

δ(y)yijs (x)
〉

=
2

5
A2Dijξφδ(r) . (B.20)

There are thus three non-Gaussian terms that are proportional to A2Dijξδφ, two of which
are strongly dependent on RL. Intuition tells us that these contributions should combine
to an RL-independent term involving a renormalized bias parameter bNG. As before, bNG

should be given as the response of the mean shape of galaxies to a specific (RL-independent)
transformation of the density field. Consider the transformation

δ(x) → δα(x) =
[

1 + αlmDlm
]

δ(x) (B.21)

or equivalently in Fourier space

δα(k) =

[

1 + αlm

(

klkm

k2
− 1

3
δlm

)]

δ(k) . (B.22)
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This corresponds to an anisotropic, scale-independent rescaling of the density field. In the
following we will assume without loss of generality that αlm is trace-free. The expectation
value of the shape after this transformation is

〈gij〉α =
1

2
b2〈δLKij

L 〉α +
1

2
bt

〈

Kik
L K

kj
L − 1

3
δij(K lm

L )2
〉

α

+ cNG〈yijs 〉α . (B.23)

where

〈δLKij
L 〉α = 3

〈

Kik
L K

kj
L − 1

3
δij(K lm

L )2
〉

α

=

∫

d3k

(2π)3

(

kikj

k2
− 1

3
δij

)(

1 + αlm
klkm

k2

)

W̃ 2
L(k)P (k)

〈yijs 〉α =
1

σ2y

∫

d3k

(2π)3

(

kikj

k2
− 1

3
δij

)(

1 + αlm
klkm

k2

)

W̃L(k)W̃
2
s (k)P (k) . (B.24)

After some algebra, this yields

〈gij〉α =

(

1

15
b2σ

2
L +

1

45
btσ

2
L +

2

15
cNG

)

αij . (B.25)

The linear response of the mean shape of galaxies, which shall define our bias bNG, is thus
given by

bNG ≡ ∂〈gij〉α
∂αij

∣

∣

∣

α=0
=

1

15
b2σ

2
L +

1

45
btσ

2
L +

2

15
cNG . (B.26)

Solving this for cNG yields

cNG =
15

2
bNG − 1

2
b2σ

2
L − 1

6
btσ

2
L , (B.27)

which we insert into Eq. (B.16) to obtain

〈δ(x)gij(y)〉 = b1Dijξδδ(|x− y|) + 3bNGA2Dijξδφ(|x− y|) . (B.28)

Our intuition is thus confirmed: by adding the bias bNG, which quantifies the linear response
of galaxy shapes to an anisotropic power spectrum of initial fluctuations, we have absorbed
the unphysical dependence on σ2L present in the local quadratic bias expression.

C Non-Gaussian contributions to weak lensing shear

In Section 4 and following, we have neglected any modification of the lensing contribution to
galaxy shapes due to primordial non-Gaussianity. We now show that there is a modification,
but it is negligible compared to the scale-dependent signature in the intrinsic alignments.
The observed shear is not exactly given by its linear expression γ introduced in Section 4,
but rather there are nonlinear corrections,

γobs(θ) = γ(θ) + cγκ(θ)γ(θ) + · · · , (C.1)

where cγ is a constant of order unity. The nonlinear corrections are due to reduced shear [56]
as well as lensing bias corrections induced by source density weighting [74]. This leads to a
three-point contribution to shear two-point functions of the form

〈γobs(θ)γobs(θ′)〉 = 〈γ(θ)γ(θ′)〉+ 2cγ〈κ(θ)γ(θ)γ(θ′)〉+ · · · . (C.2)
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Primordial non-Gaussianity in general contributes to this three-point function. This was
studied in detail by Ref. [47], who showed that

Cγobs(l) = Cγ(l) + 2cγ

∫

d2l1
(2π)2

cos 2φl1Bκ(l1, |l− l1|, l) . (C.3)

Here, Bκ is the convergence bispectrum, and we have aligned l1 so that φl = 0. Further, we
have used that in Fourier space γ(l) = γ1(l) + iγ2(l) = exp(2iφl)κ(l). Assuming the Limber
approximation, the convergence bispectrum is related to the matter bispectrum by

Bκ(l1, l2, l3) =

(

3

2
ΩmH

2
0

)3 ∫ χs

0

dχ

χ

W3
L(χs, χ)

χ3 a3(χ)
Bm

(

l1
χ
,
l2
χ
,
l3
χ
;χ

)

, (C.4)

whereWL(χs, χ) ≡ χ/χs(χs−χ) denotes the lensing kernel. Ref. [47] only considered isotropic
local non-Gaussianity, however their results are easily generalized to the anisotropic case by
making use of the squeezed limit. While in the isotropic case, the low-l contribution to
Eq. (C.3) is canceled by the cos 2φl1 modulation, this factor will lead to a non-zero contribu-
tion in the anisotropic case, which will be of the same order as the isotropic contribution to
Cκobs(l) discussed in [47].

For our purposes, an order of magnitude estimate suffices. By using the squeezed limit
for the bispectrum and approximating the projection kernels, we can derive in analogy with
Sec. II in [47]

Cγobs(l)

Cγ(l)
− 1 ∼ 10−5

(

A2

100

)(

l

100

)−2

. (C.5)

Thus, at the values for A2 relevant for detectable alignment signatures, the fractional modi-
fication to the shear is much less than one even at the lowest multipoles.
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Knapp, R. H. Lupton, V. Narayanan, M. Postman, D. E. Reichart, M. Richmond, D. P.
Schneider, D. J. Schlegel, M. A. Strauss, M. SubbaRao, D. L. Tucker, D. Vanden Berk, M. S.
Vogeley, D. H. Weinberg, and B. Yanny. Spectroscopic Target Selection for the Sloan Digital
Sky Survey: The Luminous Red Galaxy Sample. Astron. J., 122:2267–2280, November 2001.

[65] C. A. J. Duncan, B. Joachimi, A. F. Heavens, C. Heymans, and H. Hildebrandt. On the
complementarity of galaxy clustering with cosmic shear and flux magnification. MNRAS,
437:2471–2487, January 2014.

[66] M. Tegmark, A. N. Taylor, and A. F. Heavens. Karhunen-Loève Eigenvalue Problems in
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