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Abstract
We establish size limitations for assembling structures of controlled size and shape out of colloidal particles with short ranged
interactions. Through simulations we show that structures with highly variable shapes made out of dozens of particles can form
with high yield, as long as each particle in the structure binds only to the particles in their local environment. To understand
this, we identify the excited states that compete with the ground state structure, and demonstrate that these excited states
have a completely topological characterization, valid when the interparticle interactions are short ranged. This allows complete
enumeration of the energy landscape, and gives bounds on how large a colloidal structure can assemble with high yield. For
large structures, the yield can be significant even with hundreds of particles.

Significance Statement
Nature uses hierarchical assembly to make complex structures, such as biomolecules, virus shells and microtubules, with high
fidelity. Today a key challenge is to translate this process to artificial systems, which hinges on understanding the fundamental
questions of efficiency and scalability of self-assembly. Although self-assembly has been studied for decades, the principles
behind it and its fundamental and practical limits are still largely unknown. In this paper we establish size limitations for
assembling structures of controlled size and shape out of colloidal particles with specific interactions. Inspired by simulations
of structures with highly variable shapes and sizes, we develop an understanding of yield through a general theory of excited
states that compete with the desired structure in assembly.
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We establish size limitations for assembling structures of controlled
size and shape out of colloidal particles with short ranged inter-
actions. Through simulations we show that structures with highly
variable shapes made out of dozens of particles can form with high
yield, as long as each particle binds only to the particles in their lo-
cal environment. To understand this, we identify the excited states
that compete with the ground state structure, and demonstrate that
these excited states have a completely topological characterization,
valid when the interparticle interactions are short ranged. This allows
complete enumeration of the energy landscape, and gives bounds on
how large a colloidal structure can assemble with high yield. The
yield can be significant even with hundreds of particles.

inverse problem | scalability | local minima

Introduction

Nature uses hierarchical assembly of complicated build-
ing blocks to make highly functional structures like

biomolecules, virus shells and microtubules, without any ex-
ternal influence and with high fidelity. Mimicking this would
not only give more insight into biological mechanisms but
would also help realize the dream of “bottom-up” assembly
that has been a central theme of nanotechnology for many
decades [1].

Like in biology, the information needed for assembling ar-
bitrary macroscopic structures can be stored in the building
blocks through the design of their interactions and interac-
tion rules. Over the years great advances have been made by
synthesizing new building blocks differing in geometry, com-
position and interactions [2, 3, 4, 5, 6, 7, 8, 9, 10], allowing
for study of more complex objects. However, basic rules nec-
essary for robust and efficient assembly of a desired struc-
ture in a scalable fashion and reasonable time scales are still
not understood. A number of schemes for approaching this
“inverse” statistical mechanics problem have been proposed
[11, 12, 13], but a general framework and systematic studies
are still missing. One of the essential underlying questions,
having both practical and conceptual impact, is whether any
desired macroscopic structure can be assembled with a high
yield, out of a given set of building blocks. Or are there fun-
damental constraints limiting the structures that can be ef-
fectively built?

In this paper we address these general questions using the
model system of DNA-coated particles, itself of considerable
recent interest. We consider an isolated system of N spher-
ical colloidal particles each of which is isotropically coated
with DNA strands to control interparticle interactions. At
the colloidal scale, such interactions have a range that is much
shorter than the size of the particles. The use of DNA label-
ing to control binding specificity was originally pioneered for
assembling nanoparticles [14, 15, 16, 17] into infinite crystals
[18, 19, 20, 21, 22, 23, 24], where recently it was demonstrated
that with two species with differing particle radii and DNA
linker length a zoo of different crystal morphologies can be
created [25]. Work at the colloidal scale has begun to bear
fruit [26, 27, 17, 28, 29, 30, 13]. However the set of possible

structures that could be coded is far more general, including
structures of any shape and size, both rigid and flexible. For
example, the number of clusters that can be assembled out of
spherical particles with fixed size increases dramatically with
particle number N , so that with only 10 particles there are
223 topologically distinct structures with at least 3N−6 = 24
contacts [31, 32, 33].

Designing arbitrary complex structures requires using the
specificity of interactions to make the desired target the en-
ergetic ground state. The most robust way of doing this is
to make every particle in the target structure different, with
interparticle interactions chosen to favor the desired local con-
figuration in its target structure. The interactions between

different particles are coded into an interaction matrix Î, spec-
ifying the interaction energy between every pair of particles.

We begin by asking how high the equilibrium yield can

be when Î is coded for an arbitrary large structure, using the
simplest prescription in which every contact of the desired
structure binds specifically, and every undesired contact does
not bind. In this paper, the yield represents the probabil-
ity of successful complete assembly of exactly N particles, in
contrast to a common definition of yield as the percentage
of particles from the bulk that assemble into copies of a de-
sired structure. Numerical simulations using dissipative parti-
cle dynamics demonstrate that there is a temperature regime
where high yield (> 50%) assembly is possible, for a range of
complex structures consisting of dozens of particles. This is
striking, because as the number of particles grows, the number
of competing states grows rapidly with N ; such a high yield
implies that these states are less competitive than naively ex-
pected. To understand why this is the case, we study the
yield of an entire family of structures, the set of rigid clus-

ters with N ≤ 9 particles. We design Î so each structure is
the ground state, and numerically calculate the correspond-
ing yield curves. For clusters, the yield degrades quickly with
increasing N . However, we use the obtained insights to de-
velop a complete description of the low-energy excited states
that compete with the ground state, valid for asymptotically
large structures. This description explains the high observed
yield for large structures and points to the limits of equilib-
rium self-assembly with colloidal particles with short ranged
interactions. Finally, we comment on the role and importance
of kinetic effects.

Reserved for Publication Footnotes
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Results
Designing Interactions.We study the assembly yield of arbi-
trary structures by choosing the interaction energy so that
the desired structure is the ground state. This can be done
uniquely for an isolated system of N spherical particles with
isotropic interactions as follows: start with the adjacency ma-

trix Â, which is the N ×N matrix having an element Aij = 1
if particles i and j are in contact and Aij = 0 otherwise. We

choose Î directly from Â, by mapping non-zero elements of

Â to favorable interactions in Î and zero elements to unfa-
vorable interactions. Every contact in the desired structure
has a bond energy −ε (favorable), while every other interac-
tion has a higher energy ε (unfavorable). Setting all favorable
interactions to have the same strength and setting all unfavor-
able interactions to have the same strength has been shown
to optimize the equilibrium yield [34]. With this interaction
matrix the different interactions between different particles
are maximally specific. If some particles have identical sets
of neighbors, their interactions are indistinguishable, so these
particles are effectively of the same type. When the interac-
tion matrix is reduced to show the interactions between the
different particle types, it is called an alphabet [34], with the
maximally specific interactions defining the maximal alphabet.

When a structure has a unique adjacency matrix, this pro-
cedure guarantees that the desired structure has the maximal
number of contacts, and is therefore the unique ground state.
But if a structure has no mirror symmetries, then its “chiral
partner”, obtained as the object’s mirror reflection through
an arbitrary mirror plane, cannot be made to coincide with
the original object through proper rotations or translations.
The chiral partners are therefore distinct assemblies of parti-
cles, though each particle shares the same neighbors in both

(and therefore the chiral partners have the same Â). When a
structure is built out of different types of particles, it generi-
cally has no mirror symmetries, even if the geometrical shape
of the structure does.

Consequently, both chiral partners are ground states, and
in this paper we identify both as being the desired structure.
For equilibrium yield, this difference is not consequential, but
we will see at the end of the paper that the simultaneous
assembly of both chiral partners can lead to kinetic effects
relevant for the yield.

The Assembly of Large Structures.To discover whether it is
possible to assemble large structures with high yield, we use
dissipative particle dynamics (DPD) [35, 36], and measure
the equilibrium yield as a function of temperature. Our sim-
ulation contains N colloidal spheres of diameter D, with an
interaction range of 1.05D (this range corresponds roughly to
that of a DNA-coated 1μm particles [37]). The colloids are
immersed into a DPD solvent of smaller particles. Colloids
are modeled as 48−96 Lennard-Jones spheres if they interact
favorably, and with the repulsive part of the Lennard-Jones
potential if they interact unfavorably. Simulations are run
for a range of temperatures with a volume fraction of col-
loids φcoll = 1/30, and a larger volume fraction of solvent
φsol ≈ 0.2. More details are given in the SI Text.

The complex structures include (i) a bipyramid with 44
particles; (ii) a bipyramid of 19 particles; (iii) a 19-particle
chiral chain structure, and (iv) a 69-particle replica of Big
Ben, with a crystalline base and a pyramidal top. Fig. 1a
shows snapshots in the time evolution of the Big Ben assembly,
starting with randomly distributed and thermalized particles.
Assembly into the desired structure occurs with high yield,
and this result prevails in most of the complex structures we
have studied. Fig. 1b plots yield as a function of temperature

T/ε for the four previously mentioned structures. Each data
point is an ensemble average over ∼ 100 different initial real-
izations, run at a fixed temperature T for a fixed time trun.
The yield is defined as the fraction of runs in the ensemble for
which all of the bonds in the complete structure are observed
at least once within a short time window ending at time trun.
This is still a conservative definition of yield, since if the struc-
ture with all the bonds is not observed in the time window,
even due to a single particle bond missing, the structure is
regarded as a failed assembly. (See SI Text for more details.)
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Fig. 1. (a) Snapshots in time of DPD simulation of the Big Ben assembly. (b)

Absolute yield as a function of temperature T/ε for four larger structures described

in the main text. Each data point is an ensemble average over 100 different initial

condition simulations.

Our simulations exhibit several regimes as a function of
temperature T , with a glassy regime at low T and an equilib-
rium regime at high T (see SI Text). At the highest temper-
atures (at T/ε � 0.16) the system is in equilibrium, but the
bonds between the colloids are short lived, leading to small
absolute yields of the ground states. The most striking fea-
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Fig. 2. Absolute yield as a function of temperature T/ε for maximal alphabet vs.

identical particles, for all the clusters with N = 6 (panels A-B) andN = 7 particles

(panels C-G). Matrices next to the panels are the maximal alphabet interaction ma-

trices. When particles in a cluster have identical sets of neighbors, they are effectively

of the same type, making the alphabet smaller than N (panels A, B, C and F). In

general, the yield curves of the clusters with designed interactions outperform the ones

with identical interactions. The only exception is the N = 6 polytetrahedral cluster

shown in A. When all the particles are identical, this cluster appears ∼ 96% of the

times, competing with the highly symmetric octahedron (panel B), and without any

kinetic traps. Although introduction of specific interactions eliminates competition

with the second ground state, it also introduces multiple kinetic traps that impact

the yield in most of the temperature range.
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ture of the yield curves in Fig. 1b is that the maximum yield
is so high, despite the large number of particles in the de-
sired state; this implies that the number of equilibria that are
competing with the ground state is relatively small.

Clusters.To uncover the landscape of equilibria that compete
with the ground state, we examine a simpler problem, the
assembly of small clusters of particles with at least 3N − 6
contacts. Here the complete set of structures is known for
N ≤ 11 particles [32, 33]. Clusters of identical particles have
a degenerate ground state when 6 ≤ N ≤ 9 [38, 31], with
yields predominantly determined by the rotational entropy,
suppressing highly symmetric clusters. Using the prescription

for particle interactions (Î) described above, we simulate the
yield as a function of temperature for each cluster with N ≤ 9.
Fig. plots yield as a function of temperature T/ε for all the
ground state clusters with N = 6 and 7 particles. As above,
each data point is an ensemble average over different initial
condition realizations, run at a fixed temperature T for a fixed
time trun (see SI Text). Using the positions of particles we
form an adjacency matrix and use its eigenvalues to uniquely
identify the assembled structure at trun.

The panels of Fig. compare yield curves of given clusters
for identical particles, with those when interactions are deter-

mined by Î. The yield improvements are dramatic, with the
most enhancement occurring for symmetrical clusters, where
the rotational entropy penalty is lifted (see panels B, F and G
of Fig. ). The yield curves from the clusters simulation exhibit
the same phenomenology as those in Fig. 1. By comparing
time and ensemble averages, we show that the equilibrium
regime extends down to T/ε ∼ 0.1. Below T/ε ∼ 0.1, the re-
laxation time of clusters becomes comparable to trun and the
results are strongly influenced by kinetic effects. See SI Text
and SI Figs. S1 and S2 for more details.

Fig. a shows how the maximum equilibrium yield Ymax

(SI Text) depends on N , for maximal alphabets of clusters
with 6 ≤ N ≤ 9 and 26 out of 223 rigid clusters with N = 10.
Fig. a also includes all non-maximal alphabets (SI Text) for
N = 6, 7, 8. These are alphabets that uniquely encode for a
given cluster as the ground state, but have a smaller num-
ber of different particle types. The maximal alphabets give
the highest yield, as previously predicted [34]. The maximum
yield monotonically decreases with growing N . For each N ,
the yield is determined by the geometry of the clusters: Fig. b
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Fig. 3. A) Maximal equilibrium yield Ymax extracted from simulations (see SI

Text) vs. the cluster size N , for all the alphabets of all the N = 6, 7 and 8 clus-

ters, for maximal alphabets of all the N = 9 clusters, and for maximal alphabets

of a subset of the N = 10 clusters. Big data points correspond to maximal alpha-

bets, and small to all the other alphabet sizes. In general, maximal alphabets give the

biggest yield. B) Maximal equilibrium yield Ymax extracted from simulations vs. the

anisotropy of the cluster measured by the second moment M2 of the corresponding

cluster. M2 =
∑N

i=1 |ri|2, where ri is the position of i-th particle with respect

to center of mass. Only maximal alphabets are included. Color corresponds to the

number of particles in a cluster (purple — N = 6, orange — N = 7, blue —

N = 8, green — N = 9 and red — N = 10).
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shows that the yield of clusters increases with decreasing sec-
ond moment, i.e., with increasing symmetry.

What determines the equilibrium yield?.Consider N particles
with a fixed alphabet that determines the ground state cluster
C. Vibrationally and rotationally excited states of C preserve
the cluster’s structure, without breaking interparticle bonds.
This means that our simulations would identify these states
as C too. Hence, the partition function that describes the
ground state is ZC = 1

σC
Z0

CZ
vib
C Zrot

C ≡ 1
σC

Z0
Ce

S0/kB , where

σ is the symmetry number and Z
(0)
C the partition function

given by the potential energy of the geometrical configuration
C. Zvib

C and Zrot
C are the vibrational and rotational partition

functions, respectively; these are both entropic, with S0 the
corresponding total entropy.

The states that compete for yield with the cluster C are
the low-energy excited states. In particular, a local minimum
(LM) state is a stable configuration of N particles and must
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Fig. 5. Maximal equilibrium yield Ymax extracted from simulations (see SI Text)

vs. the theoretical detrimental contribution of low-energy local minima (LMs), which

depends on the number (#LM ) and energy (BLM ) of the LMs, see Eq. [1 ].
The factor #GS accounts for the chirality of ground states by taking values 1 (non-

chiral designed cluster) or 2 (chiral pair). All alphabets of all N = 6, 7, 8 clusters

are shown, with large symbols denoting maximal alphabets. Lines present the upper

bound on yield from Eq. [1 ], which has the LM entropy, assumed equal for all LMs,

as single variable parameter f chosen freely here, and we set βε ≡ 1 to represent the

relevant equilibrium regime. (a) Only the lowest LMs are retained in the calculation

of the detrimental contribution, having minimal number of broken bonds BLM that

takes values 1 or 2 depending on the cluster and alphabet. Inset is a zoom-in of the

main panel. (b) All low lying LMs up to BLM = 2 are retained. Inset is a zoom-in

of the main panel.
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have at least one particle bond less than C. Each LM is
characterized by the number of broken bonds compared to C,
BLM , each bond costing an energy ε. As an example, Fig.
shows the energy landscape with the two lowest energy lo-
cal minima that arise for the maximal alphabet of one of the
N = 7 clusters. Each of these local minima have BLM = 1.
Kinetic landscapes of this type for a few of clusters with N = 6
and 7 show that both the number of LM and BLM is quite
variable between different cluster geometries (SI Figs. S3-S5).

The partition function of the jth local minimum is given
by Zj

LM = 1
σLM

Z0,j
LMeSj/kB , consisting of energetic and en-

tropic parts, Sj being the entropy. For floppy structures, the
entropy includes the freedom to explore the entire set of mo-
tions consistent with the imposed bond constraints. These
entropies can be calculated asymptotically in the limit of van-
ishing interaction range and identical particles: In this limit
they are roughly proportional to the number of missing bonds
and depend on the geometry [39].

With a complete enumeration of the set of local minima,
the equilibrium yield of the ground state cluster is given by
Y eq
C = ZC

ZC+
∑

j Z
j
LM

. To go further, we make the simplify-

ing approximation that each of the local minima with the
same number of bonds broken has the same entropy, so that
Zj

LM/ZC ≈ σC
σLM

·e−Bjβε ·f(Bj), with β = (kBT )
−1 and where

f(m) ≡ exp [(Sm − S0)/kB ] accounts for the entropic free en-
ergy lost from breaking m bonds. The partition function then
becomes

Y eq
C =

1

1 +
∑

m f(m)Nme−βmε
, [1]

where Nm is the number of local minima with the number of
broken bonds Bj = m, and we set the σ factors to one tem-
porarily for simplicity of presentation. The maximum yield is
determined by the balance between Nm and the exponential
penalty of higher m. The dependence of Nm on m is a purely
geometrical problem, since the landscape of local minima de-
pends only on the geometry of the structure being assembled.

Note that when a designed cluster C has two chiralities,
we identify both as desired ground states, thereby doubling
ZC , i.e., introducing factor 1/2 in the sum over m.

Clusters. For the clusters, we determineNm by completely
enumerating the local minima for any given alphabet and clus-
ter: We consider all possible arrangements of the particle la-
bels of the given alphabet on a complete list of clusters having
the same number of particles as the given cluster, and care-
fully remove any duplicates. With these local minima we can
check the correlation between the maximum yield measured
in simulations (see SI for the definition) and the number and
type of local minima. Fig. a plots the maximum yield of all
alphabets of all N = 6, 7, 8 clusters, as a function of the num-
ber of lowest lying local minima; for the clusters the minimum
number of bonds broken equals 1 or 2. The yield correlates
strongly with the number of lowest energy LMs. Fig. b also
considers the LMs with one additional broken bond; the corre-
lation improves only slightly, implying that the yield of these
small clusters is determined by the competition between the
ground state and the lowest lying local minima.

In these plots we also show the prediction from Eq.[1],
with the symmetry number factors reinstated. We used the
entropic free energy loss f(m) ≡ const (see SI Text) as the
only free parameter, obtaining a good agreement with data.
The value of βε in the curves is set to one, representing the
regime of equilibrium with fluctuating bonds, appropriate for
the simulation temperatures which gave the maximum yields.

Large structures. Superficially, the observations of high
yields for large structures (Fig. 1) are even more curious in

light of the cluster results, since the extrapolated yield from
Fig. a would correspond to a negligible yield for Fig. 1b. This
discrepancy suggests that the dominant low-energy local min-
ima change as N increases. To understand this, we enumerate
the local minima for large structures, and determine which
local minima are competing with the ground state. Within

our prescription for specifying Î, the low-energy local minima
have a simple mathematical structure. They are obtained by
permuting particles in the structure that share at least one
neighbor. Using such permutations, we enumerate the LMs
for each of the three structures shown in Fig. 1b (see SI).
Fig. shows the rapid increase of number of LMs with grow-
ing number of broken bonds m in the large structures. We
then compute the predicted yield from Eq. [1] by including
only LMs with m ≤ M , and see that the yield quickly con-
verges as M is increased (we fix βε ≡ 1, while f(m) ≡ 1, see
SI Text). This shows that yield is dominated by low lying
LMs, including some with more than the minimal number of
broken bonds. A special case is the chiral chain, which only
has m = 1, 2 LMs due to its quasi-one-dimensional shape.

Local Defects and asymptotic yield.For each of the large
structure examples above, the relevant low lying LMs feature
permutations of only nearest neighbor particles. We note that
in case of small clusters, all LMs are obtained by permutations
of two particles (see SI Text and SI Fig. S6). Considering an

arbitrary structure, the interactions given by Î imply that the
permutation of far away particles i and j would break all their
bonds with the rest of structure.

With these observations, we define a local defect as a per-
mutation of two particles i, j that are in contact or share at
least one neighbor. The energy of such a defect is determined
by the local environment of particles i, j: The number of bro-
ken bonds is

blocal defect = #NN(i) + #NN(j)− 2 ·#NN(i, j) , [2]

where #NN(i) is number of nearest neighbors to particle i,
and #NN(i, j) the number of nearest neighbors shared by i
and j, including the bond between i and j.

When both i, j are positioned deeply inside the bulk of the
structure, we will call it a bulk defect. Bulk defects tend to
have high energies as there are many nearest neighbors in the
bulk. Surface defects correspond to either or both of i, j on
the surface of the structure; these typically have fewer broken
bonds and lower energy (see SI Fig. S7). Continuing the clas-
sification, the structure might have ridges and sharp apexes,
leading to line and point defects, respectively. Any low-energy
local minimum is obtained as a configuration of a particular
set of local defects. We neglect configurations where defects
overlap, because as N grows the number of such configura-
tions is negligible compared to the number of configurations
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Fig. 6. Equilibrium yield and number of local minima for three large structures.

The number of local minima (blue) for a fixed LM energy (which equals the number

of broken bonds) is calculated by enumerating all possible LMs obtained by permuting

nearby particles in the designed structure and counting the number of broken bonds.

The equilibrium yield (red) is calculated using Eq. [1 ], where we include all LMs

up to a fixed LM energy on the horizontal axis. In the equation we put for simplicity

the entropy factors f(m) ≡ 1 (see SI Text), and choose βε ≡ 1 to represent the

equilibrium regime relevant for the simulations throughout this paper.
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with well-separated defect locations. In this limit, the energy
of a configuration of defects is just the sum of the defects’
individual energies.

We can now use these ideas to understand how the yield
depends on the size of a structure. As illustrations, we con-
sider two particular examples, a cube structure, and a chain
structure.

Cube. We consider a cube with face-centered-cubic ar-
rangement of particles, and with sides of L = 10 particles. A
bulk local defect costs b3 = 16 bonds according to Eq. [2].
There are N3 � L3 = 1000 positions in the cube where such
a defect can be located. Analogously, a surface, line and
point defects cost b2 = 10, b1 = 6, b0 = 3 bonds, having
N2 � 6L2 = 600, N1 � 12L = 120, N0 � 8 positions avail-
able in the cube structure, respectively. (We simplify by as-
suming there is only a single version of every defect type, e.g.,
all possible surface defects have the same value b2, etc.) Us-
ing this input we can find the number of LMs contributing
to each term in Eq. [1]: for example LMs with BLM = 9
can be created out of three point defects, each with b0 = 3.
There are

(
N0
3

)
= 56 such LMs, since the point defects can

occur at any three out of eight corners of the cube; also, such
a BLM = 9 LM could consist of one point and one line defect,
and there are

(
N0
1

)(
N1
1

)
= 960 such LMs. In total there are

1016 LMs, giving a contribution to the denominator of Eq [1]
of 1016 · e−9 = 0.13 (as explained above, we fix f(m) ≡ 1 and
βε ≡ 1). This lowers the yield to 72%. Simple counting shows
that LMs with one or two point or line defects dominate and
the total yield is about 50%. This is a surprisingly large yield
for a 1000 particle structure.

As structure size increases, the yield decreases. The same
argument as above implies that if we consider a much larger
cube, e.g., with L = 90 and ∼ 106 particles, we find a yield of
∼ 1%, dominated by surface and line defects. Although both
cube examples have large N � 1, the yield varies between a
high value and negligible value.

Linear Chain. For the example of a linear chain with
length L = 20, we would typically have b0 = 1, N0 = 2
for (end-)point defect, and b1 = 2 for a line defect having
N1 � L = 20 available positions. Two line defects give the
biggest contribution

(
N1
2

)
e−2·b1 which lowers yield to 22%,

while adding contributions from LMs with one or three line
defects, with or without one point defect, is enough to con-
verge close to the final, relatively low yield of 5%. This is in
accord with our above simulation results showing low chain
yield.

Arbitrary structure. Finally we consider an arbitrary
large structure that has a large volume-to-surface, surface-
to-edge and edge-to-corner ratios, and abundant contacts so
that it is rigid. We call this a ‘bulky’ three-dimensional struc-
ture. Then we can roughly estimate the input data and use
the theory to qualitatively distinguish outcomes of consider-
able yield and negligible yield. Consider a structure of linear
dimension L (measured in particles), which has point, line,
surface, bulk defects labeled by the corresponding dimension-
ality d = 0, 1, 2, 3 respectively, each defect type costing bd
broken bonds and, according to spatial dimensionality, hav-
ing Nd � Ld possible locations.

Consider contributions to the yield from LMs consisting
of xd defects of type d. For simplicity we do not consider LMs
that contain different types of defects at the same time. First
we demand that the yield stays considerable, i.e., the LM con-
tribution to denominator of Eq. [1] stays much smaller than

unity, i.e.,
(
Nd
xd

) · exp (−bd) � 1. This demand leads to

exp (bd) � Ld, [3]

where we assumed that the defects are dilute, xd � Ld, while
system is large Ld � 1; with these assumptions the value of
xd drops out. Intuitively, the inequality says that yield stays
considerable if the defect cost bd is high compared to avail-
able system size Ld, for every defect type d. The high cost of
defects is consistent with our assumption of their diluteness
in the dominant LMs.

If however the defects are energetically cheap compared to
system size, i.e., the condition in Eq. [3] is violated, the yield
is significantly diminished due to LM contributions. In this
case of energetically cheap defects, it can also happen that
the defect number in relevant LMs becomes large, violating
the diluteness assumption. (Notice that this regime can never
happen with point defects d = 0.) Due to high density of
defects our basic approximation of LMs as configurations of
non-interacting defects fails, but clearly we can conclude that
the yield is negligible.

It is clear that this analysis can be applied to ‘non-bulky’
structures too, since we focused on each defect type separately.
For instance, the above example of a chain is representative of
quasi-one-dimensional structures and is a special case of the
arbitrary structure where surface and bulk defects are absent.
Additionally, one can consider structures for which the scaling
of defect numbers with structure dimension is not trivial; for
example, in a planar fractal-like structure the edge-length and
the number of line-defects would scale as a non-integer power
of linear system size. Overall our analysis gives a rough but
general and simple understanding of equilibrium yield limita-
tions based on local defects.

Chirality and Kinetic Effects.Our above theoretical estimates
give yields in reasonable quantitative agreement with simu-
lations, in which we indeed observe that LM configurations
occur in the assembly process. However, simulations also re-
veal that some suppression of yield is due to chirality.

In accordance to our analysis of chirality, when separate
parts of the assembling structure nucleate independently, they
randomly acquire one of the two chiralities, leading to an
inherent kinetic effect: Formed pieces with opposite chiral-
ity can never properly join into the structure. Instead, the
pieces can weakly connect, e.g., along one of their edges (see
SI Fig. S8). The detrimental contribution to yield from these
effects could dominate the contribution from low lying LMs,
and further analysis of such kinetic effects should be valuable.

Discussion
To summarize, we have demonstrated through numerical sim-
ulations that high yield aggregates of coated colloidal spheres
can be created with specific, short ranged, interactions. Strik-
ingly, our simulations indicate that high yield structures form
with dozens of particles. We developed a theoretical frame-
work for understanding this result, based on the fact that the
low-energy local minima competing with the designed ground
state consist of configurations in which particles in the ground
state structure swap places. For example, in ‘bulky’ (as de-
fined above) structures of hundreds of particles it is the sur-
face defects which are most detrimental to yield. The scalings
implied by these calculations indicate that high yield bulky
structures can form from N ∼ 1000 particles with specific in-
teractions. This represents a fundamental limit for the com-
plexity of structures that can be robustly built out of purely
equilibrium interparticle interactions.

Our focus on maximally specific interactions not only en-
ables the local defect analysis, but also prevents transition-
ing between different structures without breaking any bonds.
Still, in non-rigid structures, global floppy modes (which do
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not change the bond network) could influence the yield, and
we leave this question for future study.

We note that there are technological challenges with im-
plementing the high yield DNA coated colloid schemes out-
lined here: Our maximal interaction specificity construction
requires a different DNA strand to mediate the interaction for
every contact, e.g. since a particle in a bulk crystal has of or-
der 6 nearest neighbors, that many different types of strands
per particle are required. Although the practical limit of how
many different types of strands per particle can be used is
much higher than what we require [40], the density of strands
is not high enough yet to avoid kinetic effects [40]. Nonethe-
less, it is possible to implement the basic schemes outlined
here with non-maximal alphabets, in which the number of dif-
ferent strands on each particle is less than the number of con-
tacts. If carefully chosen, a non-maximal alphabet uniquely
identifies a target structure — though having more low-energy
excited states, leading to a smaller yield. We have included
such non-maximal alphabets in our simulations of clusters
(Fig. ), and the yields can still be significantly higher than
with non-specific interactions.

There are other opportunities to further increase yield by
removing the assumption of equilibrium interactions, which
was the basis of our analysis. For example, recent work [41]
has shown that in a system with a fixed number of building
blocks, kinetic effects can be critical for achieving success-

ful assembly. One example of non-equilibrium design that is
natural for colloidal assembly is to allow some of the bonds
to be irreversible. Any irreversible bond that does not limit
pathways out of local minima will increase the yield of the
ground state. The assembly of complex systems in biology
suggests other ways of beating the equilibrium threshold, in-
cluding (i) the possibility of using error correction, by allow-
ing energy consuming reactions to bias toward the correctly
formed structure; and (ii) including allosteric interactions, in
which the binding energy of a particle depends on the set of
particles that it binds to. Determining how best to implement
these schemes with colloid mediated DNA interactions is an
important topic for future research.

Materials and Methods
A detailed description of our simulations together with one simulation movie (Movies

S1) is included in the supplementary information.
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Simulation details
We use Dissipative Particle Dynamics (DPD) techniques [1, 2] to
simulate self-assembly of structures show in Figs. 1 and 2, and all
clusters discussed in Figs. 3 and 5 of the main text. Our specific
simulation setup was first introduced in [3]. Similar to [4, 5], our
system consists of two types of particles: 1) Solvent particles, mod-
eled as standard DPD beads with soft repulsion, dissipative and ran-
dom interaction; 2) Colloidal particles, which are larger DPD beads,
that have the conservative force between two colloids replaced with
48− 96 Lennard-Jones interaction.

The dynamics of each particle in our simulation is governed by
Newton’s equations of motion:

dri
dt

= vi, mi
dvi

dt
= fi. [1]

where ri is the position vector of particle i, vi is its velocity and
mi is its mass. All the particles in our simulation have equal mass
m = 1 (unit of mass in our simulation). The force acting on particle
i is composed out of three parts:

fi =
∑
j 6=i

FD
ij + FR

ij + FC
ij , [2]

where FD is the dissipative force, FR is the random force, and FC

is the conservative force. The dissipative force is:

FD
ij = −γωD(rij)(r̂ij · vij)r̂ij , [3]

where γ is the viscosity coefficient, vij = vi − vj is the relative
velocity of particles i and j, rij = |ri − rj | is the distance between
the centers of particles i and j, r̂ij = rij/rij is a unit vector and ωD

is a distance dependent weight function. The random force is:

FR
ij = (1/

√
∆t)σωR(rij)θij r̂ij , [4]

where σ is the noise strength, ωR is a distance dependent weight
function, ∆t is the simulation time step and θij is a random variable.
Instead of taking θij to be a variable with a Gaussian distribution and
unit variance, as is standard in DPD simulations, in this work we use
θij =

√
3(2·ζ−1) where ζ is a uniformly distributed random number

ζ ∈ U(0, 1) [6]. This choice makes the simulation very efficient and
the results are basically indistinguishable from those calculated us-
ing Gaussian numbers. To ensure momentum conservation, in DPD
algorithms θij = θji.

One of the two weight functions ωD and ωR can be chosen arbi-
trarily, therefore fixing the other weight function [1, 2, 7]. To ensure
that the system has Gibbsian equilibrium the viscosity and noise have
to be related by a fluctuation dissipation theorem; this leads to the fol-
lowing relations:

ωD(rij) = (ωR(rij))
2, σ2 = 2γkBT/m, [5]

where kB is the Boltzman constant and T the temperature. In our
simulations we use γ = 10. As is practiced in DPD simulations

ωR
ij = ωij , where ωij is a simple (soft) weighting function that van-

ishes at some interaction range rcut:

ωij =

{
(1− rij/rcut) if rij ≤ rcut
0 otherwise.

[6]

Since we simulate two types of particles, the interaction range will
depend on which pair is interacting. The range of interaction rcut
equals: 1) rCC

cut = 1.5D for two colloidal particles, where D is the
diameter of colloids, 2) rSS

cut = 0.5D for two solvent particles and
3) rCS

cut = 1.0D for the interaction between a colloidal and a solvent
particle. For the same reason, the conservative forces will differ de-
pending on which particles are interacting. The colloid-colloid con-
servative force is modeled by interaction of 48 − 96 Lennard-Jones
spheres with a unit diameter D = 1 and a short interaction range of
rCC = 1.05D:

FCcc
ij =

96ε

(
1

r96ij
− 1

r48ij

)
r̂ij
rij

if rij ≤ rCC

0 otherwise,
[7]

where ε is the bond strength (energy scale in our simulations). The
conservative force between two solvent (DPD) particles and between
a solvent particle and a colloid is a soft repulsion:

FC
ij = aijω

C
ij r̂ij , [8]

where ωC
ij = ωij but with rCS

cut = 0.75D, and aij is the repul-
sion parameter between particles i and j. Following [2], we use
aij = 25kBT for both solvent-solvent and solvent-colloid interac-
tions and ρsol = Nsol/V = 3 for the solvent number density, where
the volume of the simulation box V follows from the colloid volume
fraction φcoll as V = (NcollπD

3)/(6 φcoll). Our simulation box has
periodic boundaries in all 3 dimensions, and we use the linked-cell
algorithm to speed up the calculations [8].

To integrate equations of motion we use the standard velocity-
Verlet algorithm [9]. One of the advantages of DPD simulations is
the use of large time steps in the integration. However, compared
to soft DPD forces, the Lennard-Jones forces require significantly
shorter time step for accurate integration. Therefore to exploit the
advantageous efficiency of DPD in our simulation, we use the mul-
tiple time step algorithm [8] with ∆t = 0.035 for DPD forces and
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∆tLJ = 0.0005 for Lennard-Jones forces, where time is measured
in the units of (D/2)

√
m/ε.

Calibration of simulation. The values for interaction ranges we use
are a result of calibration of our simulation based on the experimen-
tal results of [10]. In that work, the authors experimentally study
spontaneous self-assembly of identical colloidal particles into small
clusters and measure their yields. With the use of calibrated inter-
action ranges (values quoted above), our simulation reproduces the
experimentally observed yields for all clusters of N = 6, 7 and 8
identical particles.

To explain the calibration procedure, we start by considering our
simulation results for N = 7 identical particles. In [10] the authors
showed that there are 6 rigid structures that can be assembled out of
N = 7 particles (having 15 contacts), two of which are chiral enan-
tiomers (see cluster images in Figure S1(b-f). Experimentally mea-
sured relative yields of the five ground states in equilibrium are shown
to be consistent with the statistical mechanics calculations of their
partition functions (dashed and solid horizontal lines in Figure S1(b-
f).

In Figure S1 we show (a) absolute and (b) relative yields as a
function of temperature T (in units of bond strength ε) for N = 7
particles, obtained from our calibrated simulations. Each data point
is an ensemble average of 1000 different initial condition realizations,
run at a fixed temperature T for trun = 15000 time steps ∆t. For
these simulations, we use φcoll = 1/30 andNcoll = 7. At the end of
a simulation run, we identify if a formed structure is one of the rigid
clusters: Using the positions of colloids we form an adjacency matrix
Â (aNcoll×Ncoll matrix, with an elementAij = 1 if particles i and
j are in contact andAij = 0 otherwise), calculate its eigenvalues and
compare them with the referent values for polytetrahedron and octa-
hedron. The eigenvalues of an adjacency matrix uniquely determine
the cluster which is formed by the particles.

It is important to note that the colloid-colloid conservative inter-
action range rCC must not be too large, because that would allow
bonds between particles comprising a cluster that are geometrically
impossible when particles are hard spheres. This interaction range is
experimentally measured to be rCC ∼ 1.05D, and we use this value
in all our simulations.

Designing the structures. To ensure that the desired cluster (or
structure) is the only ground state that can be assembled out of Ncoll

particles, we need to introduce specific interactions between par-
ticles. In the example of clusters, following [11], we find maxi-
mal alphabets by choosing n ≤ Ncoll particle types such that: i)
Within the same type particles interact unfavourably and ii) with
other types particles interact favorably. Generally all particles are
different n ≡ Ncoll except in very special cases when multiple par-
ticles have the exact same set of neighbors, which effectively makes
their interaction rules, and thus types, indistinguishable, see clusters
in Figure S2(a) and (d).

For Figures 3(a) and 5 of the main text we also used non-maximal
alphabets for Ncoll = 6, 7 and 8, which were constructed using a
straightforward and exhaustive enumeration procedure: All possi-
ble Ncoll × Ncoll interaction matrices are compared to all the adja-
cency matrices of Ncoll clusters to find which ones encode a cluster
uniquely. Such interaction matrices are the sought alphabets where
identical rows and columns represent particles of the same type.

Temperature regimes. In the main text we emphasized that in gen-
eral our simulations exhibit several regimes as a function of temper-
ature T with a glassy regime at low T and an equilibrium melting
regime at high T .

In the calibration simulations of identical particles explained in
the previous section, above T/ε & 0.16 the relative yields match
the equilibrium calculations (Figure S1(b-f). However the bonds be-

tween the colloids are short lived, leading to small absolute yields of
the ground states, Figure S1(a). With a given ensemble size, this also
leads to statistical noise in relative yields. The equilibrium regime
extends down to T/ε ∼ 0.1, where the noise in the relative yields
is small. Below T/ε ∼ 0.1, the relaxation time of clusters becomes
comparable to trun and the results are strongly influenced by kinetic
effects.

In our cluster simulations with designed interactions, we observe
the same temperature behavior. The equilibrium regime is confirmed
by comparing the time and ensemble averages of the absolute yields
(Figure S2).

The simulations of large structures exhibit similar temperature
behavior; however, the melting of structures occurs rapidly at tem-
peratures that vary with structure size and geometry. By comparing
ensemble averages with different trun we observe that the extent of
kinetic regime depends on structure size and geometry as well, but
always covers the whole range T/ε < 0.1.

Finally we note that in our simulation setup, a dimer completely
dissolves for T/ε > 0.25. Although one might naively expect for
this to occur at T/ε & 1, the stability of bonds is also influenced by
the vibrational frequency in the Lennard-Jones potential well.

Maximum yield in simulations. Here we give the definition of the
maximum yield Ymax in simulations.

For comparison with theoretical prediction, we are interested in
maximal equilibrium yield. In the case of clusters (Figures 2 and 3
in the main text), we can identify the temperature range of the equi-
librium regime, Section above, starting roughly at T/ε ∼ 0.1. The
highest yield in this regime occurs at the lowest temperature; as the
temperature grows we observe increasing bond fluctuations which
are detrimental to the yield. We note that for clusters, entering the
glassy regime below T/ε < 0.1 the yield roughly levels off, so the
extracted maximal equilibrium yield can be identified as maximal for
all temperatures within the yield error.

For large structures, Figure 1 in the main text, the absolute yield
curves have a pronounced peak that occurs roughly in the range of
temperatures T/ε ∈ {0.10, 0.16}. Although we cannot quantita-
tively precisely identify the equilibrium regime (see Section xx), we
observe that for all structures at temperature T ' 0.1 the bonds
switch from mostly frozen to fluctuating. Therefore we consider the
peak yield as being in equilibrium regime.

Simulation details for Figures 2, 3 and 5. Figure 2 of the main
text shows yield curves as a result of simulations of self-assembly of
small clusters with N ∈ {6, . . . , 10} particles having designed inter-
actions. Each data point in a yield curve is an ensemble average of
1000 different initial condition realizations, run with φcoll = 1/30
at a fixed temperature T ∈ {0.001, . . . , 0.200} for: trun = 13000
for Ncoll = 6, trun = 15000 for Ncoll = 7, trun = 17000 for
Ncoll = 8, and trun = 19000 for Ncoll = 9 and Ncoll = 10 time
steps ∆t. At the end of trun a cluster is identified using the eigen-
values of the adjacency matrix that is constructed from the relative
positions of the particles. Section below describes how the maxi-
mal equilibrium yield, used for Figures 3 and 5 of the main text, is
extracted from the yield curves.

Simulation details for Figure 1. Figure 1b of the main text shows
yield curves as a result of simulations of self-assembly of large ar-
bitrary structures with N ∈ {19, 44, 69} particles having interac-
tions designed to assemble: a square bipiramid (two sizes), a chiral
chain and a replica of Big Ben (see main text). Each data point in a
yield curve is the fraction of successful assemblies in the ensemble
of 100 different initial condition realizations, run with φcoll = 1/30
at a fixed temperature T ∈ {0.001, . . . , 0.200} for: trun = 105

for Ncoll = 19 and trun = 2 · 106 for other structures. To de-
fine a successful assembly we consider the time window of duration
∼ 5% · trun ending at trun. Within this time window we check the

2 www.pnas.org — — Footline Author



formed bonds in∼ 10 regularly spaced time frames. If at least in one
of the frames we observe the completely formed structure, the run
is considered a successful assembly. For temperatures T/ε & 0.1
bonds fluctuate on time scale much shorter than the time window.
On the other hand, the time scale to transition between local minima
and ground states is longer than the time window. The case of the
chiral chain Ncoll = 19 is special, because the quasi one dimension-
ality allows transitions to local minima by breaking only two bonds.
The chain is therefore more similar to the small clusters, so we only
consider one timeframe, i.e., the state observed at trun.

Entropic free energy loss due to broken bonds
Here we discuss our approximations of the function f(m), which
represents the entropic free energy loss exp [(Sm − S0)/kB ] in an
LM with m broken bonds (see Eqn.[3] of main text). The focus of
this paper is not on such entropic effects, however, we do need to as-
sign a value to f(m) in the prediction of yield for the clusters (e.g.,
Figs.5 and 6 of main text) and for the illustrative examples of large
structures (e.g., section on local defects in main text).

In analysis of cluster yields (Fig.5), the function f(m) appears
in the definition of horizontal axis variable which is common for all
clusters. The precise value of f can vary slightly from cluster to
cluster since their LMs vary in geometry and therefore in entropy. In
lack of any such detailed knowledge, we use the zero-th order ap-
proximation f(m) = const, with const a free parameter, which is
in the end validated by the overall match of the observed data and the
theoretically predicted trend for the yields.

As explained in the main text, Ref. [12] found that in the limit of
vanishing interaction range and identical particles, the entropy loss
is proportional to the number of missing bonds; in other words, the

approximation f(m) = exp(s ·m), with s a constant, could be ap-
propriate in that limit.

We have tested this exponential approximation for a range of s
values, but in the case of clusters the limited range m = 1, 2 and the
inherent noise in the data precluded any significant departures from
the match of data and theory we present in Fig.5 using the zero-th
order approximation. We can therefore conclude that the latter ap-
proximation is suitable for the presented analysis.

In the yield predictions for big structures (Fig.6) there is a wider
range of broken bonds m so one might expect larger significance of
f(m). For instance, if we assume the exponential approximation, the
s effectively raises the temperature (see Eqn.[3] of main text), and
we have found that our predictions of yield and of the type of defects
which dominate in the relevant LMs are both somewhat sensitive to
temperature values in the arbitrarily chosen range 0.1 to 2 (the appro-
priate value for temperature without the s correction is 1), although
the qualitative picture does not change. However, since calculating
the entropic loss in the LMs or estimating the appropriate value for s
in the exponential approximation are complicated challenges on their
own, our zero-th order approximation is in the end validated only by
the fact that the Big Ben replica and chiral chain simulations are con-
sistent with the theoretical predictions for bulky and linear structures.

An important point is that a local defect and its entropic con-
tribution, i.e., the vibrational and rotational motions allowed by the
missing bonds in the defect, depend only on the local particle neigh-
borhood. This means that an LM of an arbitrary large structure will
have similar entropic contribution as an LM of the Big Ben replica,
chiral chain, etc., having the same number and types of local defects.
We therefore have no reason to assume that the approximation for
f(m) will fail for structures having more particles or more compli-
cated shapes than the Big Ben replica and other structures simulated
in this paper.
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Figure S1: (a) Absolute yield as a function of temperature T/ε measured from simulations as explained in
the text above. (b-f) Relative yield of the five rigid clusters as a function of temperature T/ε. Horizontal
lines are referent values obtained from the experiments and partition function calculations. The onset of the
equilibrium regime is at T/ε ' 0.1.
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Figure S2: (a-e) Absolute yield as a function of rescaled temperature T/ε measured from simulations as
explained in the text above. Data points are ensemble average results and solid lines are time average
results. Comparison of the two averages for each cluster reveals that the equilibrium regime extends above
T/ε ' 0.1.
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Figure S3: Energy landscape for a N = 6 cluster designed using maximal alphabet. Only the lowest energy
LM is shown. It is missing one bond compared to the ground state and it can be obtained by permuting
two particles in the ground state (see Fig. S6 cluster C1). #BB is the minimal number of bonds that need
to be broken for transition between different states. #PW is the number of distinct pathways by which
the transition can be achieved. For example, to transition from the ground state to the local minimum one
needs to break at least two bonds. One of the eight pathways is to break bonds between particle pairs red
— cyan and front-purple — cyan, and then smoothly exchange positions of cyan and green particles before
reconnecting the cyan with the front-purple.



Figure S4: Energy landscape for a N = 7 cluster designed using maximal alphabet. Only the lowest energy
LMs are shown, all missing two bonds compared to the ground state. All five minima can be obtained by
permuting two particles in the ground state (see Fig. S6 cluster C4). #BB is the minimal number of bonds
that need to be broken for transition between different states. #PW is the number of distinct pathways
by which the transition can be achieved. For example, to transition from the ground state to the top local
minimum one needs to break at least three bonds. One of the four pathways is to break bonds between
particle pairs red — cyan, blue — purple and front-yellow — red, and then smoothly exchange positions of
red and blue particles before reconnecting the red with the front-yellow.



Figure S5: Energy landscape for a N = 7 cluster designed using maximal alphabet. Only the lowest energy
LMs are shown, all missing two bonds compared to the ground state. All six minima can be obtained by
permuting two particles in the ground state (see Fig. S6 cluster C5). #BB is the minimal number of bonds
that need to be broken for transition between different states. #PW is the number of distinct pathways
by which the transition can be achieved. For example, to transition from the ground state to the top local
minimum one needs to break at least three bonds. One of the three pathways is to break bonds between
particle pairs red — cyan, green — purple and gray — green, and then smoothly exchange positions of green
and cyan particles before reconnecting the green with the gray. This cluster has a mirror (chiral) pair, that
also has six lowest energy LMs (mirror images of the ones shown in this figure). We note that out of the
total number of pathways written next to each of the transitions from bottom three local minima to the
ground state, three pathways can lead to the chiral partner of the ground state.
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Figure S6: All low energy local minima of clusters designed using maximal alphabets can be obtained by
permuting two neighboring particles — here we present all the clusters for Ncoll = 6, 7 with their unique
maximal alphabets. Thick bonds (red or blue) mark the particle pair whose permutation gives a local
minimum having n broken bonds (red = 1 and blue = 2 bonds). The note “2×mirror” means additional
LMs can be obtained by the same permutation from the mirrored (chiral) pair of the ground state. The
background colors identify particular types of zero energy motion in the floppy local minimum. These persist
in different clusters because the clusters share substructures.
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Figure S7: An example of a local minimum state obtained by creating a single surface defect in the Big Ben
replica. The Big Ben is designed using maximal alphabet with all the particles being of different types, but
we do not distinguish them by color. (Left) Full Big Ben structure with all the bonds. (Right) A single
surface defect. The defect is created by permuting two nearest neighbor particles on the surface (particles
29 and 30 colored yellow). The total number of broken bonds is 6 (Eqn. 4 of the main text). Particles that
have lost a bond are colored in cyan.
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Figure S8: Kinetic effects due to chirality mismatch in the example of square bipyramid made out of
Ncoll = 44 particles. Although all the particles are of different types we do not distinguish them by color.
(Left) Completely assembled square bipyramid. (Right) State from a simulation in which two parts of the
structure with opposite chiralities are in contact. Particles colored yellow have missing bonds, and these two
yellow layers should be adjacent in the bypiramid, however, due to chirality mismatch this is impossible. To
see this, consider the four-particle substructures shown. The arbitrarily chosen ordering (4 — 8 — 19 and
12 — 16 — 25) defines a direction (blue arrow) that can be away from (“+”) or towards (“−”) the fourth
particle (33 and 37). All signs ± are reversed by any mirror operation, specifically, they are opposite for any
four-particle substructure in the two chiral versions of the bypiramid. The relative sign of the two chosen
substructures (4 — 8 — 19 — 33 and 12 — 16 — 25 — 37) is changed (compare Left and Right) so the two
bypiramid halves (Right) have opposite chirality; the yellow layers cannot bond due to all the mismatched
triangles in them.



Video S1: Visualization of a self-assembly simulation of the Big Ben replica with Ncoll = 69 particles that
are all of different type.







