

Source Attribution of Poly- and Perfluoroalkyl Substances (PFASs) in Surface Waters from Rhode Island and the New York Metropolitan Area

Citation

Zhang, Xianming, Rainer Lohmann, Clifton Dassuncao, Xindi C. Hu, Andrea K. Weber, Chad D. Vecitis, and Elsie M. Sunderland. 2016. "Source Attribution of Poly- and Perfluoroalkyl Substances (PFASs) in Surface Waters from Rhode Island and the New York Metropolitan Area." Environmental Science & Technology Letters 3 (9) (September 13): 316–321. doi:10.1021/ acs.estlett.6b00255.

Published Version

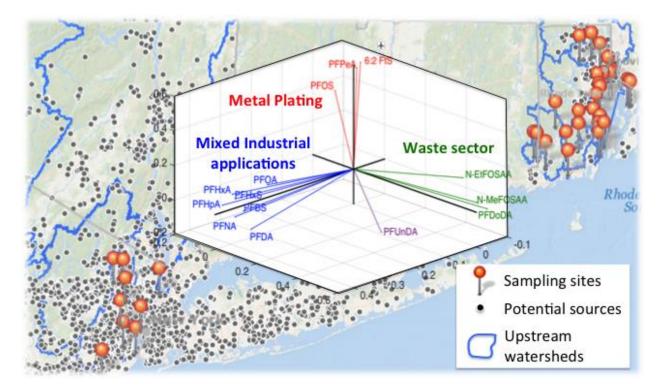
doi:10.1021/acs.estlett.6b00255

Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:30168293

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP


Share Your Story

The Harvard community has made this article openly available. Please share how this access benefits you. <u>Submit a story</u>.

Accessibility

- 1 Source attribution of poly- and perfluoroalkyl substances (PFASs) in surface
- 2 waters from Rhode Island and the New York Metropolitan Area
- 3 Xianming Zhang^{$\dagger \ddagger \dagger \ddagger}$; Rainer Lohmann[§]; Clifton Dassuncao^{$\dagger \ddagger \ddagger}$ </sup>; Xindi C. Hu^{$\dagger \ddagger \ddagger}$ </sup>; Andrea K. Weber^{$\dagger \ddagger$};</sup>
- 4 *Chad D. Vecitis*^{\dagger}; *Elsie M. Sunderland*^{\dagger ‡}
- ⁵ [†] Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University,
- 6 Cambridge MA USA 02138
- 7 [‡] Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard
- 8 University, Boston MA USA 02115
- 9 [§] Graduate School of Oceanography, University of Rhode Island
- 10 *Corresponding author:
- 11 Xianming Zhang, E-mail: xmzhang@seas.harvard.edu; Tel: 617-495-2893

12 TOC Art

14 Abstract

15 Exposure to poly and perfluoroalkyl substances (PFASs) has been associated with adverse health 16 effects in humans and wildlife. Understanding pollution sources is essential for environmental 17 regulation but source attribution for PFASs has been confounded by limited information on 18 industrial releases and rapid changes in chemical production. Here we use principal component 19 analysis (PCA), hierarchical clustering, and geospatial analysis to understand source 20 contributions to 14 PFASs measured across 37 sites in the Northeastern United States in 2014. 21 PFASs are significantly elevated in urban areas compared to rural sites except for 22 perfluorobutane sulfonate (PFBS), N-methyl perfluorooctanesulfonamidoacetic acid (N-23 MeFOSAA), perfluoroundecanate (PFUnDA) and perfluorododecanate (PFDoDA). The highest PFAS concentrations across sites were for perfluorooctanate (PFOA, 56 ng L^{-1}) and 24 perfluorohexane sulfonate (PFOS, 43 ng L^{-1}) and PFOS levels are lower than earlier 25 26 measurements of U.S. surface waters. PCA and cluster analysis indicates three main statistical 27 groupings of PFASs. Geospatial analysis of watersheds reveals the first component/cluster 28 originates from a mixture of contemporary point sources such as airports and textile mills. 29 Atmospheric sources from the waste sector are consistent with the second component, and the 30 metal smelting industry plausibly explains the third component. We find this source-attribution 31 technique is effective for better understanding PFAS sources in urban areas.

32 Introduction

33 Exposure to poly- and perfluoroalkyl substances (PFASs) has been associated with many 34 negative health outcomes including compromised immune function, metabolic disruption, obesity, and altered liver function.¹ PFASs in surface waters are an emerging concern for U.S. 35 36 public water supplies and long-chain compounds bioaccumulate in aquatic food webs, posing health risks to seafood consumers.²⁻⁶ Production of PFASs and their precursors has shifted 37 dramatically over the last two decades toward shorter-chain and polyfluorinated species.⁷ 38 39 Diverse point sources and atmospheric deposition of some PFASs confounds understanding of 40 the dominant contributors to contamination in the aquatic environment. Regulatory databases such as the U.S. EPA's Facility Registry Survey (FRS)⁸ and the Toxic Release Inventory⁹ 41 42 presently contain limited to no information on magnitudes of PFASs released to the environment. 43 Multivariate statistical analyses based on chemical composition profiles can be a 44 powerful tool for diagnosing contamination sources, as illustrated for many other organic contaminants.¹⁰ Principal components analysis (PCA) provides information on 45 46 interrelationships among various chemicals and is useful for deriving common source 47 profiles. Two-way hierarchical clustering can be used as a confirmatory analysis of PCA by 48 generating a flexible number of subgroups of similar sites (those affected by a common 49 source type) without dictating the number of clusters *a priori*. Clustering of compounds 50 identifies chemicals that co-occur to form a unique signature. These techniques have not 51 been routinely applied to interpret PFAS contamination and show potential for interpreting sources in surface water and seawater.^{4,11} 52

Here we combine PCA and hierarchical clustering of PFAS profiles measured in surface
 waters from 37 rivers, streams and estuaries in the Northeastern United States with geospatial

55 analysis of potential sources. Few measurements are available for PFASs in U.S. surface waters 56 over the past five years and the importance of different sources is poorly understood. Source regions for air pollution are commonly identified using back trajectories.^{12,13} We apply an 57 58 analogous approach for identifying sources of aquatic pollution based on hydrological 59 distances within a watershed. The main objective of this study is to identify major sources of 60 surface water PFAS contamination in diverse watersheds using information on chemical 61 composition and geospatial analytical tools that consider surface hydrology. 62 Methods 63 Sample collection and analysis 64 We collected surface water samples from rivers/creeks and estuaries at approximately 1 65 m depth at 28 sites in the state of Rhode Island (RI) in June, 2014 and 9 sites the New York 66 Metropolitan Area (NY/NJ) in October, 2014 (Figure 1). A complete description of sampling 67 sites is provided in the Supporting Information (SI Table S1). Precipitation and flow rates in 68 rivers tend to be higher in June, potentially resulting in enhanced dilution and a low bias for 69 some PFASs measured in RI rivers compared to NY/NJ. 70 Samples were stored in one-liter pre-rinsed polypropylene bottles at -20 °C and thawed at 71 room temperature. Each sample was shaken vigorously for homogenization before subsampling 500 ml for the analysis of 21 PFASs. Each unfiltered sample was spiked with 20 µL of a 0.1 ng 72 μ L⁻¹ mass labeled PFAS mixture (Wellington; Guelph, Canada; individual compounds are listed 73 74 in Table S2) as internal standards for quantification. PFASs were extracted using an Oasis Wax

solid phase extraction (SPE) cartridge (6 mL, 150 mg sorbent) following the method of Taniyasu

76 et. al.¹⁴ (see SI Section S1 for details). A nitrogen evaporator (ZIPVAP) was used to concentrate

77 the extract to 1 mL (methanol: water; v:v = 1:1).

78	Sample detection for 21 native PFASs (Tables S2, S3) was performed using an Agilent
79	6460 LC-MS/MS equipped with an online-SPE system (Agilent 1290 Infinity Flex Cube) in
80	dynamic multiple reaction mode (sample chromatogram in Figure S1). At least one negative
81	control (field or procedural blank) and one positive control (spiked with 2 ng of the 21 PFASs in
82	500 ml water) were included in every extraction batch. Whole method recovery tested using the
83	positive controls was 70-120% for all but 4 PFASs that ranged from 60-70%, which is
84	comparable to recoveries reported by previous studies. ^{3,14,15} . The 4 PFASs are perfluoropentanate
85	(PFPeA), perfluoroheptanate (PFHpA), N-methyl perfluorooctanesulfonamidoacetic acid
86	(MeFOSAA) and N-ethyl perfluorooctanesulfon-amidoacetic acid (EtFOSAA). Potential analyte
87	loss during sample preparation was corrected using internal standards spiked prior to sample
88	extraction. The limit of detection (LOD, Figure S2) was defined as equivalent to the blank plus
89	the concentration corresponding to a signal-to-noise ratio of three. Variability between duplicates
90	obtained at two sites was <20%. PFASs in five field blanks (HPLC grade water) prepared
91	following the sample preparation procedure were all below the LOD.
92	We quantified branched isomers for perfluorooctanate (PFOA), perfluorohexane
93	sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), N-MeFOSAA and N-EtFOSAA using
94	calibration standards for the linear isomers, assuming the same instrumental response factor
95	(Table S3). Seven compounds namely perfluorododecane sulfonate (PFDS), 8:2 fluorotelomer
96	sulfonate (8:2 FTS), perfluorooctane sulfonamide (FOSA), and PFCAs with more than 12 carbon
97	atoms) were detected in less than half of samples and were excluded from additional statistical
98	analysis (see Table S2 for details). For the 14 PFASs that had detection frequencies of greater
99	than 60% (Table S2), we used the Robust Regression on Order Statistics approach for censored

log-normally distributed environmental data described by Helsel¹⁶ to assign values to samples
with concentrations below the LOD.

102 Statistical and spatial analysis

We used principal components analysis (PCA) and hierarchical clustering to group sites with statistically distinct PFAS composition profiles. PCA was performed using MATLAB's Statistics Toolbox (MathWorks, Inc.) on normalized (z-score to remove the effect of concentration difference at different sites) PFAS concentration data. The inverse of variances of the data were used as variable weights and varimax rotation was applied to interpret the meaning of extracted principal components. Hierarchical Cluster analysis was conducted using the hclust function in the R statistical computing package (version 3.1.3).

110 We characterized the watershed for each freshwater sampling site using the U.S. 111 Geological Survey's (USGS) National Elevation Dataset (3 arc-second for site 15 and 16 and 1 112 arc-second for others) and the Hydrologic Tool in ArcGIS Pro 1.2 and ArcGIS online. Estuarine 113 sampling sites were excluded from the geospatial analysis due to the confounding influence of 114 tidal waters diluting potential source profiles. Population within each watershed was based on ESRI's U.S. Demographic Database.¹⁷ We used the USGS's StreamStats database (version 4)¹⁸ 115 116 to characterize water flow rates for each location and to compute mass flow (kg/yr) of PFASs at 117 each site and per-capita mass flows (kg/person/yr).

For all inland sites (non-estuarine), we acquired a list and geospatial data for plausible PFAS sources from the US EPA Facility Registry Service (FRS) database on facilities and sites subject to environmental regulation (see SI for the search criteria).⁸ These include airports, facilities for metal plating/coating, printing, sewage treatment, waste management (including landfills), and manufacturers of semiconductor, textile, paint/coating/adhesive, ink, paper, and

petroleum products. A caveat of this analysis is that not all facilities included in the FRS
database necessarily release PFASs and the database may not comprehensively include all
possible sources.

126 Hydrological distances of point sources from each sampling site were computed using the 127 ArcGIS Trace Downstream tool. Within each watershed, we defined an indicator for the impact 128 of potential point sources as a function of distance from sampling locations by assuming 129 exponential decay in the source signature¹⁹ (i.e., *impact* = $1/e^d$, where d = hydrological distance, 130 km). This approach provides additional information on plausible sources that complements 131 multivariate statistical analysis but cannot be considered a quantitative estimate of contributions 132 to sampling locations since magnitudes of PFAS discharges are not available.

133 **Results and Discussion**

134 Concentrations and spatial patterns

135 Figure 1 shows the compound specific composition and concentrations of PFASs 136 measured in surface water samples as part of this work. Sampling sites in NY/NJ had much 137 greater population density in upstream watersheds (10-43x) compared to RI but the highest 138 concentrations of most PFASs were measured near the city of Providence, RI (Figure 1, Figure 139 S2). The range of measured PFAS concentrations reported here are comparable or lower than U.S. surface waters from other regions collected between 2000-2009 (Table S4).^{2,20-24} 140 141 All sites had detectable PFOA and PFNA and over 90% contained detectable PFHxS, 142 PFOS, PFDA, and 6:2 FtS (Table S2, S3, Figure S2). The highest individual PFAS concentration across sites was PFOA (56 ng L⁻¹) at Site 31 (Passaic River, NJ). Highest 143 concentrations of PFHxS (43 ng L⁻¹) and PFNA (14 ng L⁻¹) were measured at Site 5 (Mill Cove, 144 RI). The maximum PFOS concentration (27 ng L⁻¹) was measured at Site 2 (Woonasquatucket 145

River, RI) within the City of Providence, RI. This is much lower than maximum levels reported
in earlier studies of US surface waters that range between 43-244 ng L⁻¹ (Table S4) and reflects
the continued decline in environmental PFOS burdens in North America following elimination of
production in 2002.^{25,26}

150

151 Measured PFAS concentrations in urban regions were significantly higher (Wilcoxin rank 152 sum test, p<0.017) than rural sites for all compounds except PFBS, N-MeFOSAA, PFUnDA and 153 PFDoDA (Figure S3). Sites 1-9 in RI and Sites 29-37 in NY/NJ are all urban areas, defined by population densities of greater than 1000 individuals per square mile (2590 km²), and population 154 densities of greater than 500 individuals per square mile in surrounding census blocks.²⁷ We did 155 156 not find a statistically significant correlation between total population in each upstream 157 watershed and PFAS concentrations measured at each sampling site (p=0.12 to 0.95 across 158 compounds). We derived per-capita discharges (Figure S4) using a similar approach as Pistocchi and Loos.²⁸ Highest median per-capita discharges (µg person⁻¹ day⁻¹) across compounds, in 159 decreasing order, were for PFOA (27), PFHxA (14), PFHpA (10), PFOS (9), PFHxS (7), and 160 161 PFNA (5) (Figure S4). These are lower than previously reported in Europe ca. 2007 (e.g., PFOA: 82 μ g person⁻¹ day⁻¹, PFOS: 57 μ g person⁻¹ day⁻¹).²⁸ 162

163 Source identification

Both hierarchical clustering and PCA identified three distinct groupings of PFASs (Figure 2a, b). The first component/cluster explains 46% of variability in the PCA and includes two major end products of the fluorochemical manufacturing industry (PFOA, PFNA), and a mix of other compounds: PFBS, PFHxS, PFHxA, PFDA. Site 5 (Mill Cove, RI) contains the highest summed PFASs across all sites and is dominated by this mixture of PFASs. PCA results suggest Site 5 is statistically similar to the Pawcatuck River, RI sampling locations (Sites 20, 19) and the

170	Passaic River, NJ (Site 31). However, these sites are grouped separately in the hierarchical
171	clustering analysis (Figure 2b), suggesting some differences in source contributions.
172	Geospatial analysis of the watersheds for Sites 5, 19, 20 and 31 reveals a mixture of
173	potential sources (Figure S5). For Site 5, the greatest source impact as a function of distance
174	within the watershed is from T.F. Green Airport, the largest public airport in Rhode Island. Prior
175	work indicates uses of AFFF in modern airports release diverse PFASs to downstream aquatic
176	environments, including the compounds identified as part of the first PCA/cluster. ^{4,29-31} For Sites
177	19 and 20, textile mills in the upstream watersheds have the highest impact as a function of
178	distance (Table S5). PFASs are used for water resistant coating in textiles and washing and
179	disposal of wastewater at textile mills provides a vector for their entry to the aquatic
180	environment. For Site 31, PCA scores suggest a mix of components 1-3 (Figure 2 c, d). This site
181	also clusters differently than Sites 19 and 20 (Figure 2b). The FCA database indicates the
182	watershed of Site 31 (Figure S5) contains diverse industrial sources that must account for this
183	profile including metal plating, printing, a landfill, petroleum and coal products manufacturing.
184	Overall, we conclude that the first PCA component and cluster of PFASs (PFOA, PFNA PFBS,
185	PFHxS, PFHxA, PFDA) represents a mixture of contemporary sources including airports and
186	textile mills.
187	The second component/cluster explains 19% of the variability in PFASs and includes two
188	long-chain PFASs (PFUnDA and PFDoDA) and two precursors to PFOS (MeFOSAA and
189	EtFOSAA) (Figure 2). PFUnDA and PFDoDA mainly originate from fluorotelomer alcohols or
190	other fluototelomer based products.32 Both N-MeFOSAA and N-EtFOSAA are intermediate

191 degradation products from the volatile parent compound N-alkyl perfluorooctane

192 sulfamideoethanol (FOSE) with PFOS as the final degradation product. This profile is most

193 pronounced at Site 3 along the Woonasquatucket River in RI and is also evident at Site 1 194 (Slack's Tributary, RI) and Site 6 (Buckeye Brook, RI). For Site 3, the largest source impact 195 based on distance is from a wastewater treatment plant 1 km upstream. No industrial facilities 196 exist upstream of Sites 1 and 6. Landfill/waste management facilities are located within 2 km of 197 all three sites but are not hydrologically connected to the sampling locations (Figure S5). Both 198 landfills and wastewater treatment plants are known atmospheric sources of fluorotelomer alcohols and FOSE.³³ Concentrations of N-MeFOSAA, PFUnDA and PFDoDA were not 199 200 spatially variable at most sites and only slightly elevated at Site 3, consistent with an atmospheric 201 input pathway. We thus infer that this component is most likely attributable to sources from the 202 waste sector.

203 The third component explains 15% of the variability in PFASs and includes PFPeA, 204 PFOS, and 6:2 FTS. This component is most pronounced at Site 2 along the Woonasquatucket 205 River, within the City of Providence, RI. GIS analysis of the watershed at this site reveals the 206 presence of 14 metal coating/plating industries upstream (Figure 2d, Table S5, Figure S5). PFOS 207 was historically used as a mist/fume control agent in metal plating, in surface coatings and as the major component in AFFFs for fighting petroleum related fire.^{25,26,34} Some PFOS applications 208 209 such as metal plating have been replaced by less stable fluorotelomer based chemicals such as 6:2 FtS,³⁵ which will eventually degrade into PFPeA and PFHxA (yields of 1.1% and 1.5% in 210 activated sludge).³⁶ It is likely that PFHxA is not included in the cluster because other direct 211 sources can contribute one order of magnitude more PFHxA than PFPeA.^{37,38} We conclude that 212 213 the distinct PFAS profile at Site 2 is can be explained by the metal plating industry.

214 Implications

215 Multivariate statistical tools such as PCA and hierarchical clustering of PFAS profiles 216 combined with data on hydrological proximity of potential sources are useful for identifying 217 sources of surface water contamination. We find aquatic transport pathways (hydrological 218 distance and river flow directions) are critical for source identification. This contrasts many other 219 persistent organic pollutants that are primarily transported atmospherically, allowing sources within a radius surrounding the sampling sites to be linked to concentrations.³⁹ We conclude that 220 221 the approach demonstrated here for RI and NY/NJ has potential for diagnosing PFAS source 222 contributions in urbanized regions with elevated concentrations and lacking specific information 223 on the magnitude of PFAS discharges from diverse industries. Background PFAS concentrations 224 at most rural sites in this study contain a mix of diverse source signatures that are not statistically 225 distinguishable using these methods. This analysis could be refined in future applications by 226 analyzing additional emerging short-chain PFASs and precursors to develop more unique 227 chemical signatures for specific industries (i.e., those contributing to the first component/cluster).

228 Supporting Information

Supporting Information Available: Details on analytical methods, data analyses, supporting
figures and tables. This material is available free of charge via the Internet at http://pubs.acs.org.

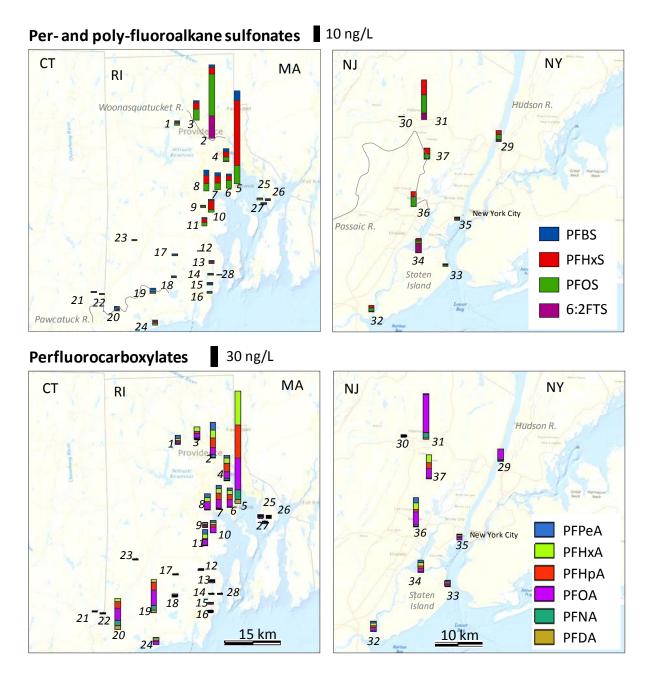
231 ACKNOWLEDGMENTS

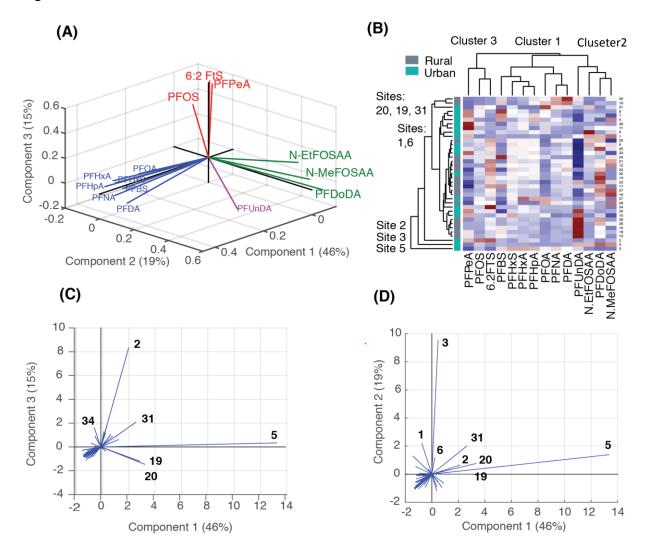
We acknowledge financial support for this study from the Smith Family Foundation, the Harvard
John A. Paulson School of Engineering and Applied Sciences TomKat fund and the Harvard
NIEHS Center Grant (P30ES00002). X.Z. was partially supported by a Postdoctoral Fellowship
from the Natural Sciences and Engineering Research Council of Canada (PDF-437949-2013).
We thank Pete August (URI), Wenlu Zhao, Minggang Cai (Xiamen Univ.), Kirk Barrett

- 237 (Manhattan College) for assistance with sample collection and GIS data. We thank Linda Green
- and Elizabeth Herron, University of Rhode Island Watershed Watch program
- 239 (<u>http://web.uri.edu/watershedwatch</u>) leaders as well as the many URI Watershed Watch
- volunteer water quality monitors who collected water samples.

241 References

242 Grandjean, P.; Andersen, E. W.; Budtz-Jorgensen, E.; Nielsen, F.; Molbak, K.; Weihe, P.; 1. 243 Heilmann, C., Serum vaccine antibody concentrations in children exposed to perfluorinated 244 compounds. Jama-J Am Med Assoc 2012, 307, 391-397.


- 245 2. Post, G. B.; Louis, J. B.; Lippincott, R. L.; Procopio, N. A., Occurrence of Perfluorinated
- 246 Compounds in Raw Water from New Jersey Public Drinking Water Systems. Environ. Sci.
- 247 Technol. 2013, 47, 13266-13275.
- 248 Castiglioni, S.; Valsecchi, S.; Polesello, S.; Rusconi, M.; Melis, M.; Palmiotto, M.; 3.
- 249 Manenti, A.; Davoli, E.; Zuccato, E., Sources and fate of perfluorinated compounds in the
- 250 aqueous environment and in drinking water of a highly urbanized and industrialized area in Italy. 251 J. Hazard. Mater. 2015, 282, 51-60.
- 252 de Solla, S. R.; De Silva, A. O.; Letcher, R. J., Highly elevated levels of perfluorooctane 4. 253 sulfonate and other perfluorinated acids found in biota and surface water downstream of an 254 international airport, Hamilton, Ontario, Canada. Environ. Int. 2012, 39, 19-26.
- 255
- Hurley, S.; Houtz, E. F.; Goldberg, D.; Wang, M.; Park, J.; Nelson, D. O.; Reynolds, P.; 5. 256 Bernstein, L.; Anton-Culver, H.; Horn-Ross, P., Preliminary Associations between the Detection
- 257 of Perfluoroalkyl Acids (PFAAs) in Drinking Water and Serum Concentrations in a Sample of
- 258 California Women. Environ. Sci. Technol. Letters 2016.
- 259 Happonen, M.; Koivusalo, H.; Malve, O.; Perkola, N.; Juntunen, J.; Huttula, T., 6.
- 260 Contamination risk of raw drinking water caused by PFOA sources along a river reach in south-261 western Finland. Sci. Total Environ. 2016, 541, 74-82.
- 262 7. Wang, Z. Y.; Cousins, I. T.; Scheringer, M.; Hungerbuhler, K., Fluorinated alternatives to 263 long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and 264 their potential precursors. Environ. Int. 2013, 60, 242-248.
- 265 US EPA, Facility Registry Service (FRS). http://www.epa.gov/enviro/epa-frs-facilities-8. state-single-file-csv-download (accessed Nov 2015). 266
- 267 9. U.S. EPA, Toxics Release Inventory (TRI) Program. https://http://www.epa.gov/toxics-268 release-inventory-tri-program (accessed May 2016).
- 269 Johnson, G. W.; Ehrlich, R.; Full, W.; Ramos, S., Principal components analysis and 10. 270 receptor models in environmental forensics. Academic Press, San Diego, CA: 2002.
- 271 Benskin, J. P.; Ahrens, L.; Muir, D. C. G.; Scott, B. F.; Spencer, C.; Rosenberg, B.; 11.
- 272 Tomy, G.; Kylin, H.; Lohmann, R.; Martin, J. W., Manufacturing Origin of Perfluorooctanoate
- 273 (PFOA) in Atlantic and Canadian Arctic Seawater. Environ. Sci. Technol. 2012, 46, 677-685.
- 274 Zhang, X.; Meyer, T.; Muir, D. C.; Teixeira, C.; Wang, X.; Wania, F., Atmospheric 12.
- 275 deposition of current use pesticides in the Arctic: snow core records from the Devon Island Ice 276 Cap, Nunavut, Canada. Environ Sci Process Impacts 2013, 15, 2304-11.
- 277 Westgate, J. N.; Wania, F., On the construction, comparison, and variability of airsheds 13.
- 278 for interpreting semivolatile organic compounds in passively sampled air. Environ. Sci. Technol. 279 2011, 45, 8850-7.
- 280 14. Taniyasu, S.; Kannan, K.; So, M. K.; Gulkowska, A.; Sinclair, E.; Okazawa, T.;
- 281 Yamashita, N., Analysis of fluorotelomer alcohols, fluorotelorner acids, and short- and long-
- 282 chain perfluorinated acids in water and biota. J. Chromatogr. A 2005, 1093, 89-97.
- 283 D'eon, J. C.; Crozier, P. W.; Furdui, V. I.; Reiner, E. J.; Libelo, E. L.; Mabury, S. A., 15.
- 284 Perfluorinated Phosphonic Acids in Canadian Surface Waters and Wastewater Treatment Plant
- 285 Effluent: Discovery of a New Class of Perfluorinated Acids. Environ. Toxicol. Chem. 2009, 28,


- 2101-2107. 286
- 287 16. Helsel, D. R., Nondetects and data analysis : statistics for censored environmental data.
- 288 Wiley-Interscience: Hoboken, N.J., 2005; p xv, 250 p.
- 289 17. ESRI Demographics (2012) Population density in the United States.
- 290 http://www.esri.com/data/esri data (accessed May 2016).
- 291 18. U.S. Geological Survey StreamStats (version 4). http://ssdev.cr.usgs.gov/streamstats/
- 292 (accessed May 2016).
- 293 19. Sakurai, T.; Serizawa, S.; Kobayashi, J.; Kodama, K.; Lee, J. H.; Maki, H.; Zushi, Y.;
- 294 Sevilla-Nastor, J. B.; Imaizumi, Y.; Suzuki, N.; Horiguchi, T.; Shiraishi, H., Temporal trends for
- 295 inflow of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) to Tokyo Bay, Japan,
- 296 estimated by a receptor-oriented approach. Sci. Total Environ. 2016, 539, 277-85.
- 297 Hansen, K. J.; Johnson, H. O.; Eldridge, J. S.; Butenhoff, J. L.; Dick, L. A., Quantitative 20.
- 298 characterization of trace levels of PFOS and PFOA in the Tennessee River. Environ. Sci. 299 Technol. 2002, 36, 1681-1685.
- 300 21. Nakayama, S.; Strynar, M. J.; Helfant, L.; Egeghy, P.; Ye, X. B.; Lindstrom, A. B.,
- 301 Perfluorinated compounds in the Cape Fear Drainage Basin in North Carolina. Environ. Sci. 302 Technol. 2007, 41, 5271-5276.
- 303 Konwick, B. J.; Tomy, G. T.; Ismail, N.; Peterson, J. T.; Fauver, R. J.; Higginbotham, D.; 22.
- 304 Fisk, A. T., Concentrations and patterns of perfluoroalkyl acids in Georgia, USA surface waters 305
- near and distant to a major use source. Environ. Toxicol. Chem. 2008, 27, 2011-2018.
- 306 Nakayama, S. F.; Strynar, M. J.; Reiner, J. L.; Delinsky, A. D.; Lindstrom, A. B., 23. 307 Determination of Perfluorinated Compounds in the Upper Mississippi River Basin. Environ. Sci. 308 Technol. 2010, 44, 4103-4109.
- 309 24. Lasier, P. J.; Washington, J. W.; Hassan, S. M.; Jenkins, T. M., Perfluorinated chemicals
- 310 in surface waters and sediments from northwest Georgia, USA, and their bioaccumulation in 311 Lumbriculus variegatus. Environ. Toxicol. Chem. 2011, 30, 2194-201.
- 312 25. Paul, A. G.; Jones, K. C.; Sweetman, A. J., A first global production, emission, and
- 313 environmental inventory for perfluorooctane sulfonate. Environ. Sci. Technol. 2009, 43, 386-314 392.
- 315 Armitage, J. M.; Schenker, U.; Scheringer, M.; Martin, J. W.; MacLeod, M.; Cousins, I. 26.
- 316 T., Modeling the Global Fate and Transport of Perfluorooctane Sulfonate (PFOS) and Precursor
- 317 Compounds in Relation to Temporal Trends in Wildlife Exposure. Environ. Sci. Technol. 2009, 318 43, 9274-9280.
- 319 27. US Census Bureau (1995) Urban And Rural Definitions.
- 320 http://www.census.gov/population/censusdata/urdef.txt (accessed June 2016).
- 321 Pistocchi, A.; Loos, R., A Map of European Emissions and Concentrations of PFOS and 28. 322 PFOA. Environ. Sci. Technol. 2009, 43, 9237-9244.
- 323 Ahrens, L.; Norström, K.; Viktor, T.; Cousins, A. P.; Josefsson, S., Stockholm Arlanda 29.
- 324 Airport as a source of per- and polyfluoroalkyl substances to water, sediment and fish.
- 325 Chemosphere 2015, 129, 33-38.
- 326 Awad, E.; Zhang, X. M.; Bhavsar, S. P.; Petro, S.; Crozier, P. W.; Reiner, E. J.; Fletcher, 30.
- 327 R.; Tittemier, S. A.; Braekevelt, E., Long-Term Environmental Fate of Perfluorinated
- 328 Compounds after Accidental Release at Toronto Airport. Environ. Sci. Technol. 2011, 45, 8081-329 8089.
- 330 31. Filipovic, M.; Woldegiorgis, A.; Norstrom, K.; Bibi, M.; Lindberg, M.; Osteras, A. H.,
- Historical usage of aqueous film forming foam: A case study of the widespread distribution of 331

- 332 perfluoroalkyl acids from a military airport to groundwater, lakes, soils and fish. *Chemosphere*
- **2015**, *129*, 39-45.
- 334 32. Government of Canada, Chemical Substances: Long-Chain (C9-C20)
- 335 Perfluorocarboxylic Acids (PFCAs), Their Salts, and Their Precursors
- 336 <u>http://www.chemicalsubstanceschimiques.gc.ca/challenge-defi/summary-sommaire/pfcaps-</u>
- 337 <u>apfcsp-eng.php</u> (accessed Nov 2015).
- 338 33. Ahrens, L.; Shoeib, M.; Harner, T.; Lee, S. C.; Guo, R.; Reiner, E. J., Wastewater
- Treatment Plant and Landfills as Sources of Polyfluoroalkyl Compounds to the Atmosphere.
 Environ Sci. Technol. 2011, 45, 8098-8105
- 340 Environ. Sci. Technol. 2011, 45, 8098-8105.
- 34. Moody, C. A.; Field, J. A., Perfluorinated surfactants and the environmental implications
 of their use in fire-fighting foams. *Environ. Sci. Technol.* 2000, *34*, 3864-3870.
- 343 35. Persistent Organic Pollutants Review Committee of UNEP (2012) Technical paper on the
- 344 identification and assessment of alternatives to the use of perfluorooctane sulfonic acid, its salts,
- 345 perfluorooctane sulfonyl fluoride and their related chemicals in open applications
- 346 (UNEP/POPS/POPRC.8/INF/17/Rev.1).
- 347 36. Wang, N.; Szostek, B.; Buck, R. C.; Folsom, P. W.; Sulecki, L. M.; Gannon, J. T., 8-2
- Fluorotelomer alcohol aerobic soil biodegradation: Pathways, metabolites, and metabolite yields.
 Chemosphere 2009, 75, 1089-1096.
- 350 37. Dauchy, X.; Boiteux, V.; Rosin, C.; Munoz, J. F., Relationship Between Industrial
- 351 Discharges and Contamination of Raw Water Resources by Perfluorinated Compounds: Part II:
- 352 Case Study of a Fluorotelomer Polymer Manufacturing Plant. Bull. Environ. Contam. Toxicol.
- **2012**, *89*, 531-536.
- 354 38. Butenhoff, J. L.; Kennedy, G. L., Jr.; Frame, S. R.; O'Connor, J. C.; York, R. G., The 355 reproductive toxicology of ammonium perfluorooctanoate (APFO) in the rat. *Toxicology* **2004**, 356 *196*, 95-116.
- 357 39. Khairy, M.; Muir, D.; Teixeira, C.; Lohmann, R., Spatial Distribution, Air-Water
- 358 Fugacity Ratios and Source Apportionment of Polychlorinated Biphenyls in the Lower Great
- 359 Lakes Basin. Environ. Sci. Technol. 2015, 49, 13787-97.
- 360

- 361 Figure Captions
- 362 **Figure 1**. Concentrations of PFASs measured in surface waters from Rhode Island and the New
- 363 York Metropolitan Area. Full names of individual compounds are listed in Table S2. N-
- 364 MeFOSAA and N-EtFOSAA are not shown but were detected in ~70% of the samples at
- 365 concentrations <1 ng/L.

- 367 Figure 2. Multivariate statistical analysis of surface water data. Panel (A) shows loadings of
- 368 principal components analysis (PCA) and Panels (C) and (D) show score plots for three
- 369 components across sampling sites. Panel (B) compares PCA results to hierarchical clustering of
- 370 compounds and sites. Sites with statistically distinct PFAS profiles are indicated on plots (C)
- and (D) and highlighted on the hierarchical clustering diagram. The three principal components
- together explain 80% of the variance in PFAS composition.

1 Supporting Information

- 2 Concentrations and source attribution of poly- and perfluoroalkyl substances (PFASs) in surface
 3 waters from the Northeastern U.S.
- 4 Xianming Zhang^{†‡}; Rainer Lohmann[§]; Clifton Dassuncao^{†‡}; Xindi C. Hu^{†‡}; Andrea Weber[†],
- 5 *Chad D. Vecitis*^{\dagger}, *Elsie M. Sunderland*^{\dagger ‡}
- 6 [†] Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University,
- 7 Cambridge MA USA 02138
- 8 [‡] Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard
- 9 University, Boston MA USA 02115
- 10 [§]Graduate School of Oceanography, University of Rhode Island
- 11 Number of pages: 20
- 12 Number of tables: 5
- 13 Number of figures: 5
- 14

15	Table of Contents
16	Section S1: Supplemental Information on Methods3
17	Sample Preparation and Instrumental Analysis
18	Data analysis4
19	Section S2: Supporting Tables and Figures5
20	Table S1. Surface water sampling dates, site locations and description
21	Table S2. Full names and acronyms of PFASs measured in surface waters, limits of detection (LOD),
22	concentration ranges measured across sites, and percent of sites with detection. PFASs measured in
23	>60% of samples analyzed in this study are highlighted in bold8
24	Figure S1. Chromatograms of PFASs in a sample analyzed using an Agilent 6460 LC-MS/MS equipped with an
25	online-SPE system (Agilent 1290 Infinity Flex Cube) in dynamic multiple reaction mode
26	Table S3a. Concentrations (pg/L) of poly- and perfluoroalkyl substances with detection frequency greater than
27	60%
28	Table S3b. Concentrations (pg/L) of poly- and perfluoroalkyl substances with detection frequency greater than
29	60%
30	Table S3c. Concentrations (pg/L) of branched isomers* of poly- and perfluoroalkyl substances
31	Table S4. PFAS concentrations measured in U.S. surface waters in this study and previous work
32	Figure S2. Concentrations of 14-PFASs measured in 37 rivers and estuaries in Rhode Island (RI) and the New
33	York Metropolitan area (NY/NJ). PFASs with branched isomers were quantified using calibration
34	standards of the linear isomers by assuming same response factors between isomers. The limit of
35	detection (LOD) for each compound is shown as a red bar. Those below detection are assigned
36	values based on the robust ROS (Regression on Order Statistics) approach for censored log-normally
37	distributed environmental data as described by Helsel. ² 14
38	Figure S3. Significance levels for Wilcoxon rank sum tests comparing PFAS concentrations (a) between urban
39	sites (RI sites 1–11 and NY/NJ sites 29–37) and rural sites 12-28 (b) RI sites 1–11 and NY/NJ sites 29–
40	37. Red line denotes <i>p</i> =0.05, which we use to indicate statistical significance
41	Figure S4. Per-capita release of PFAS (μ g/person/d) estimated based on measured PFAS concentrations, water
42	flow rate and upstream population at each sampling siteflow rate and upstream population at each sampling
43	Figure S5. Maps showing sampling sites with distinct PFAS composition profiles, the upstream watersheds and
44	the potential source contributions17
45	Table S5. Impact factors for potential PFAS sources in watersheds upstream of the non-estuarine sampling
46	sites
47	References
18	

50 Section S1: Supplemental Information on Methods

51 Sample Preparation and Instrumental Analysis

52 PFASs were extracted from water samples using Oasis Wax (6 ml, 150 mg sorbent) solid phase 53 extraction (SPE) cartridges following the method of Taniyasu et al.¹ Each 500 ml water sample was 54 passed through a preconditioned Oasis Wax (6 ml, 150 mg sorbent) weak ion exchange SPE cartridge 55 mounted on a vacuum manifold at a flow rate of ~1 drop/s. Target analytes were eluted off the 56 cartridges using 6 ml 0.1% NH₄OH in methanol and collected in 15 ml centrifuge tubes (Corning). The 57 extracts were concentrated to 0.5 ml under a gentle stream of high purity nitrogen (5.0 grade), 58 centrifuged at 5000 rpm for 10 minutes, and transferred 1.5 ml polypropylene auto-sampler vials 59 (Microsolv). Before instrumental analysis, 0.5 ml water was added to each sample and vortex mixed. 60 A 300 µL aliquot of each sample was injected and loaded to an Agilent Zorbax SB-Aq 61 (4.6×12.5mm; 5µm) online SPE column with 0.85 ml 0.1% (v:v) formic acid at a flow rate of 1 62 ml/min. Following sample loading, the SPE were eluted and load the analytes to an Agilent Poroshell 63 120 EC-C18 (3.0×50mm; 2.7µm) reverse phase HPLC column. Methanol and water containing 2 mM 64 ammonium acetate were used as mobile phases (flow rate: 0.5 ml/min). Starting from 3% methanol, 65 the elution gradient was linearly increased to 61% in 7 minutes, held for 1 minute, then linearly 66 increased to 100% methanol in 3 min, and was kept until the end of the sample run (14 min).

The tandem mass spectrometer equipped with an electrospray ionization source was operated in negative ion mode. Dynamic multiple reaction monitoring (dMRM) mode was used for data acquisition in order to increase sensitivity. The collision gas was 5.0 grade N₂. Optimized MS parameters are as follows: source temperature, 300 °C; capillary voltage, -3.8 kV; nitrogen nebulizer gas, 45 psi and 13 L/min. Methanol was injected and passed through the system to eliminate any potential carry-over after every sample (or calibration standard).

73

Shorter chain PFASs such as PFBA and 4:2 FtS were not analyzed due to their low retention on

the C-18 reverse phase HPLC column, which would result in a low accuracy.² A different analytical
method (e.g., using a normal phase HPLC column) that can accurately measure those shorter chain
PFASs is needed to detect these compounds and represents a limitation of the present analysis.

77 Data analysis

Helsel² suggests statistical inference bias may occur for data with detection frequencies of less than 30%. PFASs with detection frequencies of 60-70% are included here because they are important for source identification. We tested results of principal component analysis with and without PFASs with low detection frequencies (60-65%: PFPeA, PFHpA, PFDoDA) and find no significant changes in PCA scores (Wilcoxson signed rank tests (p=0.06-0.5) and clustering included in the main results of this work.

84 Potential industrial PFAS point sources were retrieved from the US EPA Facility Registry 85 Service (FRS) database and used in the geospatial analysis conducted as part of this research. Filtering 86 of the database was based North American Industry Classification System (NAICS) codes. Facilities 87 and their coordinates were retrieved based on the following NAICS codes: Sewage treatment facilities 88 (22132); textile mills (313); paper manufacturing (322); printing and related support activities (323); 89 petroleum and coal products manufacturing (324); paint, coating, and adhesive manufacturing (3255); 90 printing ink manufacturing (32591); metal coating, engraving, heat treating and allied activities (3328); 91 semiconductor manufacturing (3344); airport operation (48811); waste management and remediation 92 (562)

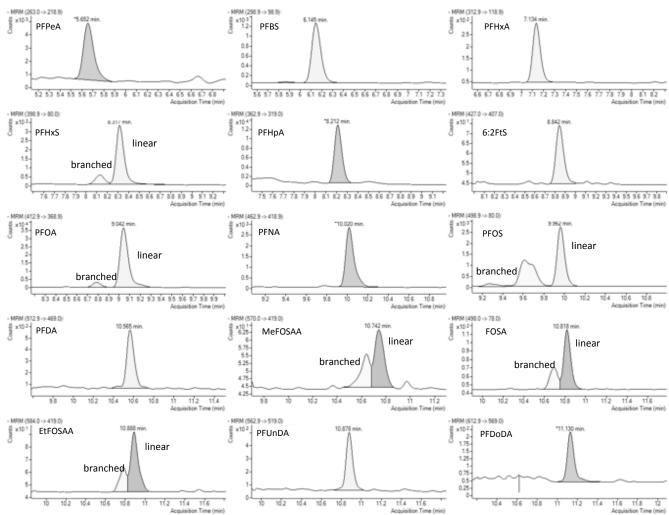
93 Section S2: Supporting Tables and Figures

Site	Location	Coastal	Urban/Rural	Potential sources	Date	Longitude	Latitude
1	Slack's Tributary	Ν	Urban	No hydrologically connected point sources; a landfill is located 1.9 km to the north		-71.55	41.85
2	Woonasqua- tucket River	Ν	Urban	Metal coating/plating	06/19/ 2014	-71.44	41.82
3	Woonasqua- tucket River (Greystone pond)	N	Urban	Wastewater treatment plant, printing activity	06/19/ 2014	-71.49	41.87
4	Pawtuxet River	Ν	Urban	Metal coating/plating, semiconductor manufacturing	06/19/ 2014	-71.40	41.77
5	Brook at Mill Cove	Ν	Urban	T.F. Green State Airport ~5km upstream	06/19/ 2014	-71.38	41.71
6	Buckeye Brook	Ν	Urban	No hydrologically connected point sources; a landfill is located 2.3 km to the west	06/19/ 2014	-71.39	41.70
7	Southern Creek	Ν	Urban	No hydrologically connected point sources	06/19/ 2014	-71.42	41.70
8	Mill Brook	Ν	Urban	One semiconductor manufacturer making thin film components, networks, and arrays on ceramic and silicon; one company conducting waste management providing service on hazardous waste removal, hazardous waste transportation, oil tank hazardous waste disposal (https://www3.epa.gov/region1/removal- sites/BradfordPrintingFinishing.html)	06/19/ 2014	-71.46	41.70
9	EG Town Dock	Y	Urban	Estuary of Greenwich Cove; next to an e-waste recycling company	06/19/ 2014	-71.45	41.65
10	Hunt River	Y	Urban	Two semiconductor manufacturers and one printing company	06/19/ 2014	-71.44	41.64
11	Sand Hill Brook (Saw Mill Pond Inlet)	N	Urban	A municipal waste transfer station and paint, coating, adhesive manufacturing	06/19/ 2014	-71.47	41.61
12	Secret Lake- Oak Hill Brook	N	Urban	A legacy landfill site is approximately 2 km to the west of this site	06/19/ 2014	-71.48	41.55
13	Narrow River Stuart Stream	N	Rural	Outlet of Carr Pond	06/19/ 2014	-71.44	41.52
14	Narrow	Ν	Rural	3 km downstream of site 13	06/19/	-71.45	41.49

94 Table S1. Surface water sampling dates, site locations and description.

Site	Location	Coastal	Urban/Rural	Potential sources	Date	Longitude	Latitude
	River Lakeside Dr.				2014		
15	Narrow River	N	Rural	2.5 km downstream of site 14	06/19/ 2014	-71.45	41.47
16	Narrow River	Ν	Rural	2 km downstream of site 15	06/19/ 2014	-71.45	41.45
17	Queens River	Ν	Rural	One river branch upstream of Pawcatuck River (background site)	06/19/ 2014	-71.56	41.54
18	Chickashee n Brook	Ν	Rural	River branch upstream of Pawcatuck River; a manufacturer of uninterruptible power supplies, electronics peripherals and data center products is downstream	06/19/ 2014	-71.56	41.49
19	Pawcatuck River	N	Rural	Where Beaver River merges into Pawcatuck River; a manufacture of military, tactical, and performance synthetic and synthetic blend textiles ~1 km upstream	06/19/ 2014	-71.63	41.45
20	Pawcatuck River	Ν	Rural	Adjacent to Bradford Printing & Finishing facility, a textile finishing plant from 1911 until 2012; a large fire occurred in 2007; heavy flooding occured in 2010; another fire occurred in 2012; Several hundred containers of highly flammable liquid, dyes and unknown compounds were stored next to each another and many containers were visibly leaking in 2012. ³	06/19/ 2014	-71.75	41.41
21	Green Falls River	N	Rural	Background site; no upstream industrial facilities recorded in FRS database	06/19/ 2014	-71.82	41.45
22	Green Falls River	N	Rural	~ 2 km downstream of site 21 where Parmenter Brook merges into Green Falls River; no upstream industrial facilities recorded in FRS database	06/19/ 2014	-71.80	41.44
23	Fall River	Ν	Rural	Background site; no upstream industrial facilities recorded in FRS database	06/19/ 2014	-71.69	41.58
24	Allen Cove - Inflow (Green Hill Pond)	N	Rural	Close to Charlestown beach; residential area	06/19/ 2014	-71.62	41.37
25	Bristol Harbor	Y	Rural	Coastal site; east shore of Bristol Harbor	06/19/ 2014	-71.29	41.67
26	Bristol Harbor	Y	Rural	Coastal site; east shore of Bristol Harbor	06/19/ 2014	-71.28	41.67
27	Bristol Harbor	Y	Rural	Coastal site; west shore of Bristol Harbor	06/19/ 2014	-71.27	41.66
28	South Ferry Rd Pier	Y	Rural	Coastal site; Narragansett Bay	06/19/ 2014	-71.42	41.49

Site	Location	Coastal	Urban/Rural	Potential sources	Date	Longitude	Latitude
	Dock						
29	Hudson River	N	Urban	There are a sewage treatment plant, a plastic bag manufacturing and printing company, a printing ink manufacture, and a floor coating manufacture within 10 km upstream along the river	10/24/ 2014	-73.93	40.87
30	Passaic River	N	Urban	West Paterson Recycling Center 2.5 km upstream	10/24/ 2014	-74.19	40.91
31	Passaic River	N	Urban	Highly industrialized between 30 and 31, including paint, coating, adhesive manufacturing, textile mills, printing ink manufactures, paper manufacturers; semiconductor manufactures and metal coating/plating companies.		-74.13	40.91
32	Harbortown Rd, NJ	Y	Urban	At the mouth of a tidal strait and a kill separating Staten Island, New York City from mainland New Jersey; some petroleum/coal related industrials within 2 km upstreams	10/25/ 2014	-74.25	40.52
33	Lower NY Harbor	Y	Urban	A printing ink manufacture 1 km away	10/25/ 2014	-74.06	40.62
34	Staten Island NY	N	Urban	A company with printing activity; a paint, coating, adhesive manufacture, and a paper manufacture within 1.5 km upstream	10/25/ 2014	-74.13	40.64
35	Hudson River	Y	Urban	Morris Canal close to Jersey city; two companies on Paint, coating, adhesive manufacturing 1 km away	10/26/ 2014	-74.04	40.71
36	Passaic River	N	Urban	Close to the city of Newark and the airport; highly industrialized area; Newark wastewater treatment plant is 2.5 km upstream	10/26/ 2014	-74.15	40.73
37	Passaic River	N	Urban	Upstream of site 36; highly industrial area; within 1 km upstream there is a company related to metal plating and a textile mill.	10/26/ 2014	-74.12	40.83


96 Table S2. Full names and acronyms of PFASs measured in surface waters, limits of detection (LOD),

97 concentration ranges measured across sites, and percent of sites with detection. PFASs measured in

98 >60% of samples analyzed in this study are highlighted in bold

PFAS	Acronym	# of carbo ns	Internal standard	LOD (ng/L)	Range (ng/L)	Detect. %
Perfluorocarboxylates	PFCAs					
Perfluoropentanate	PFPeA	C5	¹³ C ₂ -PFHxA	0.38	BD – 10	62%
Perfluorohexanate	PFHxA	C6	¹³ C ₂ -PFHxA	0.29	BD-48	87%
Perfluoroheptanate	РҒНрА	C7	$^{13}C_4$ -PFOA	0.62	BD-48	64%
Perfluorooctanate	PFOA	C8	¹³ C ₄ -PFOA	0.07	0.27 – 47	100%
Perfluorononanate	PFNA	С9	¹³ C ₅ -PFNA	0.04	0.07 – 14	100%
Perfluorodecanate	PFDA	C10	¹³ C ₂ -PFDA	0.03	BD – 5.8	92%
Perfluoroundecanate	PFUnDA	C11	¹³ C ₂ -PFUnDA	0.02	BD -1.9	77%
Perfluorododecanate	PFDoDA	C12	¹³ C ₂ -PFDoDA	0.02	BD-2.6	64%
Perfluorotridecanate	PFTrDA	C13	¹³ C ₂ -PFDoDA	0.02	BD-1.2	31%
Perfluorotetradecanate	PFTeDA	C14	$^{13}C_2$ -PFDoDA	0.02	BD0.4	18%
Perfluorohexaadecanate	PFHxDA	C16	$^{13}C_2$ -PFDoDA	0.01	BD-0.2	26%
Perfluorooctadecanate	PFODA	C18	¹³ C ₂ -PFDoDA	0.08	BD-0.4	8%
Perfluoroalkane sulfonates	PFSAs					
Perfluorobutane sulfonate Perfluorohexane sulfonate Perfluorooctane sulfonate	PFBS PFHxS PFOS	C4 C6 C8	¹⁸ O ₂ -PFHxS ¹⁸ O ₂ -PFHxS ¹³ C ₄ -PFOS	0.08 0.06 0.05	BD-6.2 BD - 35 BD - 23	85% 90% 95%
Perfluorododecane sulfonate	PFDS	C10	¹³ C ₄ -PFOS	0.07	BD-0.6	15%
6:2 fluorotelomer sulfonate	6:2 FtS		¹³ C ₂ -6:2 FtS	0.003	BD – 15	97%
8:2 fluorotelomer sulfonate	8:2 FtS		¹³ C ₂ -6:2 FtS	0.4	BD-0.8	41%
Perfluorooctane sulfonamide	FOSA	C8	¹³ C ₈ -FOSA	0.02	BD-0.2	41%
N-ethyl perfluorooctanesulfon- amidoacetic acid	N-EtFOSAA		D ₅ N-EtFOSAA	0.001	BD-9.9	67%
N-methyl perfluorooctanesulfon- amidoacetic acid BD = below detection	N-MeFOSAA		D5 N- MeFOSAA	0.002	BD-0.6	69%

99 BD = below detection.

100 101 Figure S1. Chromatograms of PFASs in a sample analyzed using an Agilent 6460 LC-MS/MS

102 equipped with an online-SPE system (Agilent 1290 Infinity Flex Cube) in dynamic multiple reaction103 mode.

Site	PFPeA	PFHxA	PFHpA	PFOA ^a	PFNA	PFDA	PFUnD
1	4550	2191	2409	2363	390	405	607 10
2	10357	12137	13577	8832	3134	1133	³⁰⁸ 10
3	<lod< td=""><td>6310</td><td>3371</td><td>5236</td><td>1476</td><td>894</td><td>1853 11</td></lod<>	6310	3371	5236	1476	894	1853 11
4	4228	7337	12301	7546	2735	957	114 11
5	<lod< td=""><td>48414</td><td>48159</td><td>36806</td><td>13986</td><td>5625</td><td>1286 11</td></lod<>	48414	48159	36806	13986	5625	1286 11
6	4359	5408	7640	8455	733	367	167 11
7	4828	6715	9236	10080	1275	205	46 11
8	5611	5649	<lod< td=""><td>9237</td><td>923</td><td>176</td><td>48 11</td></lod<>	9237	923	176	48 11
9	927	1562	1597	1972	336	127	97 11
10	3064	2987	3090	6978	308	125	<lod11< td=""></lod11<>
11	6361	6678	<lod< td=""><td>6905</td><td>799</td><td>226</td><td>177 11</td></lod<>	6905	799	226	177 11
12	555	565	<lod< td=""><td>849</td><td>165</td><td>59</td><td>38 11</td></lod<>	849	165	59	38 11
13	1413	1170	<lod< td=""><td>1480</td><td>253</td><td>104</td><td>$< LOD_{12}^{11}$</td></lod<>	1480	253	104	$< LOD_{12}^{11}$
14	<lod< td=""><td>665</td><td><lod< td=""><td>663</td><td>104</td><td><lod< td=""><td>33 12</td></lod<></td></lod<></td></lod<>	665	<lod< td=""><td>663</td><td>104</td><td><lod< td=""><td>33 12</td></lod<></td></lod<>	663	104	<lod< td=""><td>33 12</td></lod<>	33 12
15	732	556	<lod< td=""><td>851</td><td>136</td><td>31</td><td>$<$LOD$_{12}^{12}$</td></lod<>	851	136	31	$<$ LOD $_{12}^{12}$
16	631	543	<lod< td=""><td>946</td><td>174</td><td>87</td><td>62 12</td></lod<>	946	174	87	62 12
17	681	550	<lod< td=""><td>898</td><td>155</td><td>59</td><td>$62 12 \\ 12 12 12 12 12 12 1$</td></lod<>	898	155	59	$62 12 \\ 12 12 12 12 12 12 1$
18	2138	663	<lod< td=""><td>1006</td><td>293</td><td><lod< td=""><td>$< LOD_{12}^{12}$</td></lod<></td></lod<>	1006	293	<lod< td=""><td>$< LOD_{12}^{12}$</td></lod<>	$< LOD_{12}^{12}$
19	<lod< td=""><td>3740</td><td>11793</td><td>18974</td><td>6182</td><td>3808</td><td>482 12</td></lod<>	3740	11793	18974	6182	3808	482 12
20	<lod< td=""><td>4138</td><td>9728</td><td>14985</td><td>7235</td><td>5824</td><td>888 12</td></lod<>	4138	9728	14985	7235	5824	888 12
21	<lod< td=""><td><lod< td=""><td><lod< td=""><td>586</td><td>232</td><td>73</td><td>41 12</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>586</td><td>232</td><td>73</td><td>41 12</td></lod<></td></lod<>	<lod< td=""><td>586</td><td>232</td><td>73</td><td>41 12</td></lod<>	586	232	73	41 12
22	<lod< td=""><td>493</td><td><lod< td=""><td>708</td><td>206</td><td>83</td><td>$< LOD_{12}^{12}$</td></lod<></td></lod<>	493	<lod< td=""><td>708</td><td>206</td><td>83</td><td>$< LOD_{12}^{12}$</td></lod<>	708	206	83	$< LOD_{12}^{12}$
23	<lod< td=""><td><lod< td=""><td><lod< td=""><td>640</td><td>200</td><td>152</td><td>97 12</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>640</td><td>200</td><td>152</td><td>97 12</td></lod<></td></lod<>	<lod< td=""><td>640</td><td>200</td><td>152</td><td>97 12</td></lod<>	640	200	152	97 12
24	1221	2121	2479	3784	260	52	55 13
25	843	1214	897	1320	400	169	97 ¹³
26	821	964	751	1014	323	134	<LOD ₁₃
27	617	900	800	1170	355	166	78 13
28	<lod< td=""><td><lod< td=""><td><lod< td=""><td>267</td><td>74</td><td>38</td><td><LOD₁₃</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>267</td><td>74</td><td>38</td><td><LOD₁₃</td></lod<></td></lod<>	<lod< td=""><td>267</td><td>74</td><td>38</td><td><LOD₁₃</td></lod<>	267	74	38	<LOD ₁₃
29	<lod< td=""><td><lod< td=""><td><lod< td=""><td>11862</td><td>2188</td><td>685</td><td>257 13</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>11862</td><td>2188</td><td>685</td><td>257 13</td></lod<></td></lod<>	<lod< td=""><td>11862</td><td>2188</td><td>685</td><td>257 13</td></lod<>	11862	2188	685	257 13
30	<lod< td=""><td>815</td><td>947</td><td>871</td><td>151</td><td>59</td><td>28 13</td></lod<>	815	947	871	151	59	28 13
31	<lod< td=""><td><lod< td=""><td><lod< td=""><td>47254</td><td>6658</td><td>2154</td><td>101</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>47254</td><td>6658</td><td>2154</td><td>101</td></lod<></td></lod<>	<lod< td=""><td>47254</td><td>6658</td><td>2154</td><td>101</td></lod<>	47254	6658	2154	101
32	3032	3529	3226	3738	601	301	⁴⁰⁴ 13 <lod<sub>13</lod<sub>
33	1870	1802	1907	2020	363	182	
34	3434	5188	3431	4049	726	347	115 19
35	1111	1710	1852	2805	411	211	50 14
36	7998	9277	3426	15137	2022	719	220 14
37	<lod< td=""><td>10901</td><td>8455</td><td>11335</td><td>202 757</td><td>152</td><td>238 14 79 14</td></lod<>	10901	8455	11335	2 0 2 757	152	238 14 79 14

Table S3a. Concentrations (pg/L) of poly- and perfluoroalkyl substances with detection frequency
 greater than 60%.

145

^aLinear isomers with calibration standards for quantification

Site	PFBS	PFHxS ^a	PFOS ^a	6:2 FtS	MeFOSAA ^a	EtFOSAA ^a	14 PFDoD
1	669	864	777	15	241	348	618 15
2	1652	3758	23226	15292	147	278	⁸⁹ 15
3	1327	3583	5868	55	610	937	259815
4	2290	2558	2185	380	227	152	28 15
5	6181	35022	9804	239	113	240	117 15
6	1087	2637	4127	24	90	694	96 15
7	2102	4130	3743	30	<lod< td=""><td>122</td><td><lop5< td=""></lop5<></td></lod<>	122	<lop5< td=""></lop5<>
8	3355	4664	3937	9	23	53	23 15
9	296	695	735	26	38	65	61 15
10	1161	5075	1477	8	<lod< td=""><td>36</td><td><lop5< td=""></lop5<></td></lod<>	36	<lop5< td=""></lop5<>
11	546	2418	1822	5	106	94	313 16
12	278	<lod< td=""><td><lod< td=""><td><lod< td=""><td>43</td><td>14</td><td>25 16</td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td>43</td><td>14</td><td>25 16</td></lod<></td></lod<>	<lod< td=""><td>43</td><td>14</td><td>25 16</td></lod<>	43	14	25 16
13	889	645	347	6	<lod< td=""><td><lod< td=""><td><lop6< td=""></lop6<></td></lod<></td></lod<>	<lod< td=""><td><lop6< td=""></lop6<></td></lod<>	<lop6< td=""></lop6<>
14	368	476	176	<lod< td=""><td><lod< td=""><td><lod< td=""><td><lop<sub>6</lop<sub></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><lop<sub>6</lop<sub></td></lod<></td></lod<>	<lod< td=""><td><lop<sub>6</lop<sub></td></lod<>	<lop<sub>6</lop<sub>
15	705	421	180	10	<lod< td=""><td><lod< td=""><td><lop<sub>6</lop<sub></td></lod<></td></lod<>	<lod< td=""><td><lop<sub>6</lop<sub></td></lod<>	<lop<sub>6</lop<sub>
16	226	323	488	3	82	<lod< td=""><td>131 16</td></lod<>	131 16
17	466	372	334	7	82	<lod< td=""><td>131 16</td></lod<>	131 16
18	973	208	<lod< td=""><td>10</td><td>27</td><td><lod< td=""><td><lop<sub>6</lop<sub></td></lod<></td></lod<>	10	27	<lod< td=""><td><lop<sub>6</lop<sub></td></lod<>	<lop<sub>6</lop<sub>
19	2485	<lod< td=""><td>509</td><td>10</td><td>60</td><td><lod< td=""><td>194 16</td></lod<></td></lod<>	509	10	60	<lod< td=""><td>194 16</td></lod<>	194 16
20	1465	361	612	4	159	24	35 16
21	92	<lod< td=""><td>290</td><td>10</td><td>34</td><td><lod< td=""><td>24 17</td></lod<></td></lod<>	290	10	34	<lod< td=""><td>24 17</td></lod<>	24 17
22	341	133	292	13	39	<lod< td=""><td><lop7< td=""></lop7<></td></lod<>	<lop7< td=""></lop7<>
23	<lod< td=""><td>143</td><td>238</td><td>12</td><td><lod< td=""><td><lod< td=""><td>42 17</td></lod<></td></lod<></td></lod<>	143	238	12	<lod< td=""><td><lod< td=""><td>42 17</td></lod<></td></lod<>	<lod< td=""><td>42 17</td></lod<>	42 17
24	1185	916	1198	6	55	46	41 17
25	281	343	626	16	<lod< td=""><td>49</td><td><lop7< td=""></lop7<></td></lod<>	49	<lop7< td=""></lop7<>
26	254	282	437	12	47	<lod< td=""><td><lop7< td=""></lop7<></td></lod<>	<lop7< td=""></lop7<>
27	229	320	460	22	80	58	<lop7< td=""></lop7<>
28	131	<lod< td=""><td>161</td><td>4</td><td><lod< td=""><td><lod< td=""><td><lop7< td=""></lop7<></td></lod<></td></lod<></td></lod<>	161	4	<lod< td=""><td><lod< td=""><td><lop7< td=""></lop7<></td></lod<></td></lod<>	<lod< td=""><td><lop7< td=""></lop7<></td></lod<>	<lop7< td=""></lop7<>
29	<lod< td=""><td>2149</td><td>2835</td><td>1087</td><td>160</td><td>148</td><td>59 17</td></lod<>	2149	2835	1087	160	148	59 17
30	220	224	244	69	<lod< td=""><td><lod< td=""><td><lop7< td=""></lop7<></td></lod<></td></lod<>	<lod< td=""><td><lop7< td=""></lop7<></td></lod<>	<lop7< td=""></lop7<>
31	<lod< td=""><td>8526</td><td>9988</td><td>4377</td><td>166</td><td>593</td><td>99 18</td></lod<>	8526	9988	4377	166	593	99 18
32	<lod< td=""><td>1390</td><td>1929</td><td>464</td><td>32</td><td>59</td><td>25 18</td></lod<>	1390	1929	464	32	59	25 18
33	226	408	755	58	<lod< td=""><td>48</td><td>31 18</td></lod<>	48	31 18
34	467	963	1661	5918	<lod< td=""><td>92</td><td>34 18</td></lod<>	92	34 18
35	278	640	790	82	33	31	<lop8< td=""></lop8<>
36	<lod< td=""><td>3087</td><td>5384</td><td>89</td><td>40</td><td>57</td><td>99 18</td></lod<>	3087	5384	89	40	57	99 18
37	<lod< td=""><td>3162</td><td>2748</td><td>43</td><td><lod< td=""><td>18</td><td>128 18</td></lod<></td></lod<>	3162	2748	43	<lod< td=""><td>18</td><td>128 18</td></lod<>	18	128 18

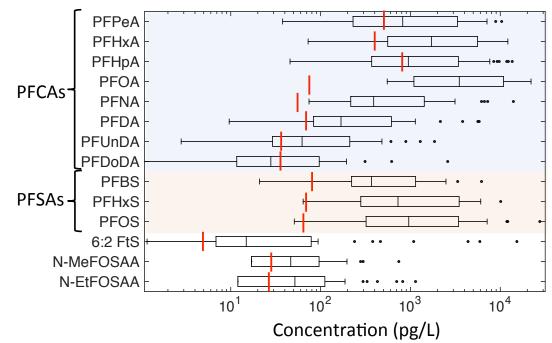
Table S3b. Concentrations (pg/L) of poly- and perfluoroalkyl substances with detection frequency
greater than 60%.

^aLinear isomers with calibration standards for quantification

189 Table S3c. Concentrations (pg/L) of branched isomers^a of poly- and perfluoroalkyl substances

Site	br-PFHxS	br-PFOA	br-PFOS	br-MeFOSAA	br-EtFOSAA
1	201	550	181	56	81
2 3	695	1635	4298	27	51
3	777	1135	1272	132	203
4	590	1741	504	52	35
5	8228	8647	2303	27	56
6	481	1542	753	<17	127
7	741	1808	671	<17	22
8	896	1775	756	<17	<12
9	<64	114	<51	<17	<12
10	982	1350	286	<17	<12
11	483	1378	364	21	19
12	<64	249	<51	<17	<12
13	76	174	<51	<17	<12
14	76	106	<51	<17	<12
15	<64	125	<51	<17	<12
16	<64	146	75	<17	<12
17	<64	118	<51	<17	<12
18	<64	151	<51	<17	<12
19	<64	3015	81	<17	<12
20	78	3250	133	35	<12
21	<64	74	<51	<17	<12
22	<64	<68	<51	<17	<12
23	<64	<68	<51	<17	<12
24	164	678	215	<17	<12
25	80	306	145	<17	<12
26	93	333	144	<17	<12
27	<64	227	89	<17	<12
28	<64	284	171	<17	<12
29	471	2602	622	35	32
30	<64	193	54	<17	<12
31	1578	8745	1848	31	110
32	294	790	408	<17	12
33	113	557	208	<17	13
34	176	739	303	<17	17
35	158	691	195	<17	<12
36	539	2660	953	<17	<12
37	700	2512	609	<17	<12

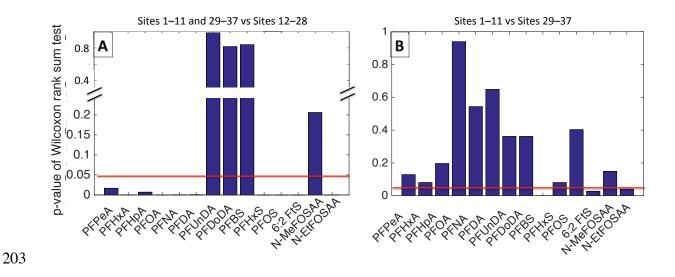
^aBranched isomers were quantified based on peak areas assuming the same response factors as the

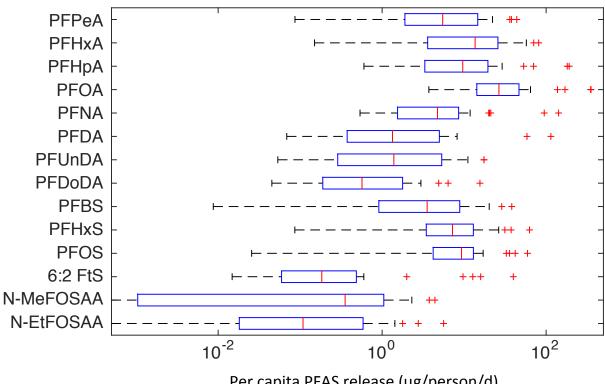

191 linear isomers.

Location/ (sites, sampling year)	PFPeA	PFHxA	PFHpA	PFOA	PFNA	PFDA	PFUnDA	PFDoDA	PFBS	PFHxS	PFOS
Tennessee				<25							17
(<i>n</i> =40, 2000) ⁴				<25							52
(<i>n</i> =40, 2000)				598							144
North Carolina		<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
$(n=11, 2006)^{5}$		5.14	14.8	12.6	5.7	13.2	5.67	1.95	2.46	5.66	28.9
(<i>n</i> =11, 2000)		23	329	287	194	120	52.1	4.46	9.41	35.1	132
Georgia				3	<0.6	<0.1	<0.1				1
$(n=11, 2006)^{6}$				238	5.6	2.1	< 0.1				6
(<i>n</i> =11, 2000)				1150	369	131	99				318
Upper	<loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""><th><loq< th=""></loq<></th></loq<></th></loq<>	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
Mississippi	0.71	1.59	2.16	2.07	0.71	0.71	0.71	0.71	0.71	0.71	3.01
River Basin	31.5	53.4	90.2	125	72.9	42	29.1	24.7	84.1	169	245
(<i>n</i>=177, 2008) ⁷											
Georgia	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
(<i>n</i> =8, 2008) ⁸	57	68	46	102	21	25			124	13	150
(<i>n</i> =0, 2000)	149	149	100	204	46	46			260	31	321
New Jersey	<5	<5	<5	<5	<5	<5			<5	<5	<5
$(n=12, 2009)^9$	<5	<5	<5	11	<5	<5			<5	<5	<5
(n-12, 2009)	15	17	10	100	19	ND			6	46	43
Rhode Island	<0.4	< 0.3	<0.6	0.3	0.1	< 0.03	<0.03	<0.03	<0.08	< 0.12	<0.10
and New York	0.8	1.7	0.9	3.5	0.4	0.2	0.1	0.0	0.4	0.7	0.96
Metropolitan											
Region (<i>n</i> =37, 2014, this study)*	10.4	48.4	48.2	56.0	14.0	5.8	1.9	2.6	6.2	43.0	27.5

PFASs, ng/L (minimum/median/maximum)

193 *PFOA, PFHxS and PFOS reported here include both linear and branched isomers. The branched


194 isomers were quantified based on peak areas assuming the same response factors as the linear isomers


198 Figure S2. Concentrations of 14-PFASs measured in 37 rivers and estuaries in Rhode Island (RI) and

the New York Metropolitan area (NY/NJ). The limit of detection (LOD) for each compound is shown as a red bar. Those below detection are assigned values based on the robust ROS (Regression on

Order Statistics) approach for censored log-normally distributed environmental data as described by Helsel.²

- Figure S3. Significance levels for Wilcoxon rank sum tests comparing PFAS concentrations (a)
- between urban sites (RI sites 1–11 and NY/NJ sites 29–37) and rural sites 12-28 (b) RI sites 1–11 and
- 206 NY/NJ sites 29–37. Red line denotes p=0.05, which we use to indicate statistical significance.

Per capita PFAS release (µg/person/d)

- Figure S4. Per-capita release of PFAS (µg/person/d) estimated based on measured PFAS
- concentrations, water flow rate and upstream population at each sampling site.

- Waste Management
- Printing Activity
- Sewage Treatment
- Metal Coating Plating
- Paint, Coating, Adhesive
 Manufacturing

- Semiconductor Manufacturing
- Paper Manufacturing
- Petroleum Coal
- Textile Mills
- Petroleum Coal Products
 Manufacturing

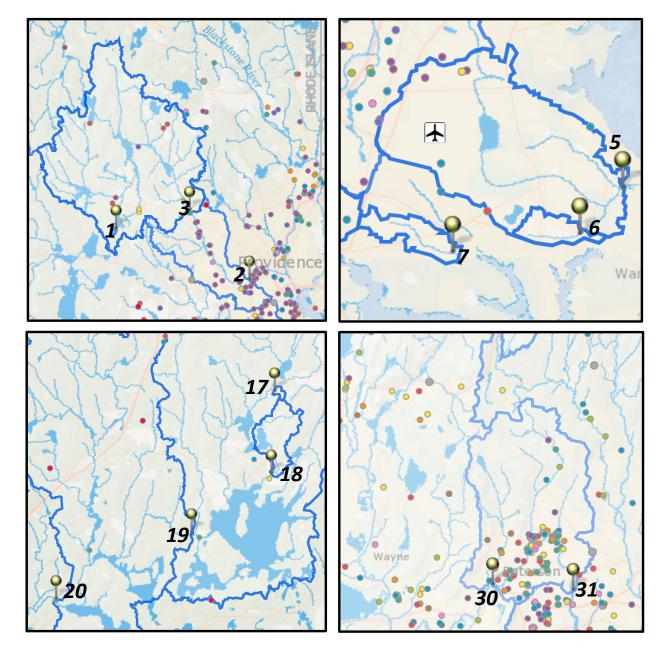


Figure S5. Maps showing sampling sites with distinct PFAS composition profiles, the upstream

214 watersheds and the potential source contributions.

215 Table S5. Impact factors for potential PFAS sources in watersheds upstream of the non-estuar	215
--	-----

216 sampling sites.

					Impact from facilities upstreams										
sites	Upstream Area (km²)	Upstream Population	Upstream Population Density (Person/km 2)	Metal Coating Plating	Paint, Coating, Adhesive Manufacturing	Paper Manufacturing	Petroleum Coal Products Manufacturing	Printing Activity	Printing Ink Manufacturing	Semiconductor Manufacturing	Sewage Treatment	Textile Mills	Waste Management (incl. Landfills)	Airport	
1	0.1	26	190												
2	124.4	87446	703	1.7E+00	3.7E-01	1.3E-02	2.6E-01	5.5E-05		5.1E-01		1.1E-01	5.5E-08		
3	97.6	24495	251	3.2E-04		1.7E-06			4 45 00	1.2E-06	3.7E-01		3.5E-04		
4	598.2	208255	348	1.3E-01	5.2E-04	1.7E-04	5.8E-04	5.5E-03	1.4E-08	2.8E-02	4.9E-03	1.7E-04	1.6E-01	4 1 5 0 2	
5	16.0 1.0	16509 1174	1032 1196	9.9E-04				3.0E-03					3.4E-04	4.1E-03	
6 7	1.0 1.4	1174	1306												
8	1.4 15.9	12476	783	7.1E-01			2.5E-04	6.1E-04		6.0E-01					
10	59.3	14886	251	4.4E-03	1.3E-03		2.52 04	9.1E-05		3.3E-04			3.0E-04		
11	5.5	1394	254		2.1E-01			5112 00		0102 01			6.9E-01		
	0.6	123	218												
13	12.1	1951	161												
14		4811	226												
15	24.4	5870	240												
16	33.8	8835	262												
	0.5	20	42												
	10.2	746	73												
	235.3	23112	98					2.0E-04		4.3E-05		3.9E-01			
20	561.1	43081	77			3.8E-15		4.8E-13		1.1E-13		9.1E-01			
	0.01	1	69												
	65.7	2647	40												
23 29	0.3 12799.8	12 1994644	44 156	9.6E-02	1.4E+00	2.2E+00	4.9E-09	5.6E+00	2.0E+00	7.5E-02	3.6E+00	2.8E-01	1.8E+00		
29 30	2015.8	1994644 854842	156 424	9.6E-02 1.2E-02	1.4E+00 4.7E-03	2.2E+00 6.5E-04	4.9E-09 8.0E-04	5.6E+00 9.8E-02	2.0E+00 1.8E-05	7.5E-02 6.3E-02	3.6E+00 9.4E-04	2.8E-01 3.8E-03	1.8E+00 3.8E-04		
30 31	2015.8	1050694		1.2E-02 3.2E-02	4.7E-03 1.1E-01	0.5E-04 2.6E-02	7.6E-04	9.8E-02 4.2E-02	1.6E-05 1.6E-01	0.3E-02 1.2E-01	9.4E-04 2.4E-04	1.6E-01	3.1E-04		
34	2090.0 3345.1	3737691			5.2E-04	1.8E-01	6.2E-04	4.2L-02 2.7E-01	1.5E-01	3.6E-01	2.9E-03	1.0L-01 1.7E-01	6.1E-02	2.5E-04	
	2406.9	1903628		1.7E+00	3.5E-01	1.8E-01	4.2E-01	7.8E-01	7.6E-03	4.8E-02	6.0E-01	4.2E-02	7.0E-01	2.32 01	
	2303.7	1494335		1.9E+00	5.5E-01	1.9E-01	8.0E-02	1.1E+00	3.7E-02	1.4E-01	1.3E-03	5.8E-01	5.7E-02		
		1			UCE		'1' D		<u>n · · </u>	1 4 1	10 T	4 6		· 1 · .	

37 2303.7 1494335 649 1.9E+00 5.5E-01 1.9E-01 8.0E-02 1.1E+00 3.7E-02 1.4E-01 1.3E-03 5.8E-01 5.7E-02
 *Facilities are based on the U.S. EPA Facility Registry Service database.¹⁰ Impact of potential point sources as a function of distance from sampling locations by assuming exponential decay in the

220 concentration (i.e., $Impact = 1/e^d$, where d = hydrological distance, km)

221 References

- 222
- Taniyasu, S.; Kannan, K.; So, M. K.; Gulkowska, A.; Sinclair, E.; Okazawa, T.; Yamashita, N.,
 Analysis of fluorotelomer alcohols, fluorotelorner acids, and short- and long-chain perfluorinated acids
 in water and biota. J. Chromatogr. A 2005, 1093, 89-97.
- 226 2. Huset, C. A.; Barlaz, M. A.; Barofsky, D. F.; Field, J. A., Quantitative determination of 227 fluorochemicals in municipal landfill leachates. *Chemosphere* **2011**, *82*, 1380-1386.
- 228 3. U.S. EPA, Waste Site Cleanup & Reuse in New England Bradford Printing & Finishing
- https://www3.epa.gov/region1/removal-sites/BradfordPrintingFinishing.html (accessed Feb 2016).
 2012.
- 4. Hansen, K. J.; Johnson, H. O.; Eldridge, J. S.; Butenhoff, J. L.; Dick, L. A., Quantitative
 characterization of trace levels of PFOS and PFOA in the Tennessee River. *Environ. Sci. Technol.*2002, *36*, 1681-1685.
- 234 5. Nakayama, S.; Strynar, M. J.; Helfant, L.; Egeghy, P.; Ye, X. B.; Lindstrom, A. B.,
- Perfluorinated compounds in the Cape Fear Drainage Basin in North Carolina. *Environ. Sci. Technol.*2007, 41, 5271-5276.
- 6. Konwick, B. J.; Tomy, G. T.; Ismail, N.; Peterson, J. T.; Fauver, R. J.; Higginbotham, D.; Fisk,
- A. T., Concentrations and patterns of perfluoroalkyl acids in Georgia, USA surface waters near and distant to a major use source. *Environ. Toxicol. Chem.* **2008**, *27*, 2011-2018.
- 240 7. Nakayama, S. F.; Strynar, M. J.; Reiner, J. L.; Delinsky, A. D.; Lindstrom, A. B.,
- Determination of Perfluorinated Compounds in the Upper Mississippi River Basin. *Environ. Sci. Technol.* 2010, 44, 4103-4109.
- 243 8. Lasier, P. J.; Washington, J. W.; Hassan, S. M.; Jenkins, T. M., Perfluorinated chemicals in
 244 surface waters and sediments from northwest Georgia, USA, and their bioaccumulation in Lumbriculus
 245 variegatus. *Environ. Toxicol. Chem.* 2011, *30*, 2194-201.
- 246 9. Post, G. B.; Louis, J. B.; Lippincott, R. L.; Procopio, N. A., Occurrence of Perfluorinated
- Compounds in Raw Water from New Jersey Public Drinking Water Systems. *Environ. Sci. Technol.*2013, 47, 13266-13275.
- 10. US EPA, Facility Registry Service (FRS). <u>http://www.epa.gov/enviro/epa-frs-facilities-state-</u>
 single-file-csv-download (accessed Nov 2015).